Finite element approximation of the stochastic wave equation

Mihály Kovács

Department of Mathematics and Statistics
University of Otago, Dunedin, New Zealand

RDS'09 Bielefeld, 18-20 Nov 2009

Outline

$$
\begin{cases}u_{t t}-\Delta u=\dot{W}, & x \in \mathcal{D}, t>0 \\ u=0, & x \in \partial \mathcal{D}, t>0 \\ u(0)=u_{0}, u_{t}(0)=u_{1} . & \end{cases}
$$

- Abstract framework
- Finite element approximation
- Strong convergence
- Weak convergence

Co-workers

Stig Larsson (Chalmers)
Fardin Saedpanah (Chalmers)
Fredrik Lindgren (Chalmers)

Semigroup approach

Linear SPDE with additive noise:

$$
\left\{\begin{array}{l}
\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), t>0 \\
X(0)=X_{0}
\end{array}\right.
$$

- $\left(\Omega, \mathcal{F}, \mathbf{P},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$, filtered probability space
- H, U Hilbert spaces
- $W(t), Q$-Wiener process on U with respect to $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$
- $B: U \rightarrow H$, bounded linear operator
- $X(t), H$-valued stochastic process
- $E(t)=e^{-t A}, C_{0}$-semigroup of bounded linear operators on H
- X_{0} is \mathcal{F}_{0}-measurable H-valued random variable

Weak solution

A weak solution satisfies the integral equation: for all $\eta \in D\left(A^{*}\right)$

$$
\langle X(t), \eta\rangle+\int_{0}^{t}\left\langle X(s), A^{*} \eta\right\rangle \mathrm{d} s=\left\langle X_{0}, \eta\right\rangle+\int_{0}^{t}\langle\eta, B \mathrm{~d} W(s)\rangle
$$

The unique weak solution is given by (mild solution)

$$
X(t)=E(t) X_{0}+\int_{0}^{t} E(t-s) B \mathrm{~d} W(s)
$$

Must give a rigorous meaning to $W(t)$ and define the stochastic integral.

Q-Wiener process

- covariance operator $Q: U \rightarrow U$, self-adjoint, positive definite, bounded, linear operator
- $Q e_{j}=\gamma_{j} e_{j}, \quad \gamma_{j}>0, \quad\left\{e_{j}\right\}_{j=1}^{\infty}$ ON basis
- $\beta_{j}(t)$, independent identically distributed, real-valued, Brownian motions
- $W(t)=\sum_{j=1}^{\infty} \gamma_{j}^{1 / 2} \beta_{j}(t) e_{j}$

Two important cases:

- $\operatorname{Tr}(Q)<\infty . \quad W(t)$ converges in $L_{2}(\Omega, U)$:
$\mathbf{E}\left\|\sum_{j=1}^{\infty} \gamma_{j}^{1 / 2} \beta_{j}(t) e_{j}\right\|^{2}=\sum_{j=1}^{\infty} \gamma_{j} \mathbf{E}\left(\beta_{j}(t)^{2}\right)=t \sum_{j=1}^{\infty} \gamma_{j}=t \operatorname{Tr}(Q)<\infty$
- $Q=I$, "white noise". $\quad W(t)$ is not U-valued, since $\operatorname{Tr}(I)=\infty$, but converges in a weaker sense.

Q-Wiener process

If $\operatorname{Tr}(Q)<\infty$:

- $W(0)=0$
- continuous paths $t \mapsto W(t)$
- independent increments
- Gaussian law $\mathbf{P} \circ(W(t)-W(s))^{-1}=N(0,(t-s) Q), \quad s \leq t$
$\{W(t)\}_{t \geq 0}$ generates a filtration $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ so that it becomes a square integrable U-valued martingale.

We can integrate with respect to W : $\quad \int_{0}^{t} B(s) \mathrm{d} W(s)$.
The integral can be defined also when $\operatorname{Tr}(Q)=\infty$.

Stochastic integral

$X(t)=E(t) X_{0}+\int_{0}^{t} E(t-s) \mathrm{d} W(s), \quad t \geq 0$

- We can define the stochastic integral (deterministic integrand)

$$
\int_{0}^{t} B(s) \mathrm{d} W(s) \text { if } \int_{0}^{t}\left\|B(s) Q^{1 / 2}\right\|_{\mathrm{HS}}^{2} \mathrm{~d} s<\infty
$$

- Isometry property:

$$
\mathbf{E}\left\|\int_{0}^{t} B(s) \mathrm{d} W(s)\right\|^{2}=\int_{0}^{t}\left\|B(s) Q^{1 / 2}\right\|_{\mathrm{HS}}^{2} \mathrm{~d} s
$$

Hilbert-Schmidt operator B :
$\|B\|_{\mathrm{HS}}^{2}=\sum_{l=1}^{\infty}\left\|B \varphi_{l}\right\|^{2}<\infty, \quad\left\{\varphi_{l}\right\}$ arbitrary ON basis in U
Da Prato and Zabczyk, Stochastic Equations in Infinite Dimensions
C. Prévôt and M. Röckner, A Consise Course on Stochastic Partial Differential Equations

The stochastic wave equation

$$
\begin{cases}\frac{\partial^{2} u}{\partial t^{2}}(\xi, t)-\Delta u(\xi, t)=\dot{W}(\xi, t), & \xi \in \mathcal{D} \subset \mathbf{R}^{d}, t>0 \\ u(\xi, t)=0, & \xi \in \partial \mathcal{D}, t>0 \\ u(\xi, 0)=u_{0}, \frac{\partial u}{\partial t}(\xi, 0)=u_{1}, & \xi \in \mathcal{D}\end{cases}
$$

$$
\begin{aligned}
& \Lambda=-\Delta, \quad D(\Lambda)=\dot{H}^{2}=H^{2}(\mathcal{D}) \cap H_{0}^{1}(\mathcal{D}) \\
& \dot{H}^{\beta}=D\left(\Lambda^{\beta / 2}\right), \quad|v|_{\beta}=\left\|\Lambda^{\beta / 2} v\right\|=\left(\sum_{j=1}^{\infty} \lambda_{j}^{\beta}\left(v, \phi_{j}\right)^{2}\right)^{1 / 2}, \quad \beta \in \mathbf{R}
\end{aligned}
$$

$$
\left[\begin{array}{c}
\mathrm{d} u \\
\mathrm{~d} u_{t}
\end{array}\right]=\left[\begin{array}{cc}
0 & I \\
-\Lambda & 0
\end{array}\right]\left[\begin{array}{c}
u \\
u_{t}
\end{array}\right] \mathrm{d} t+\left[\begin{array}{l}
0 \\
I
\end{array}\right] \mathrm{d} W, \quad X=\left[\begin{array}{c}
u \\
u_{t}
\end{array}\right], A=-\left[\begin{array}{cc}
0 & I \\
-\Lambda & 0
\end{array}\right], B=\left[\begin{array}{l}
0 \\
I
\end{array}\right]
$$

$$
H=\dot{H}^{0} \times \dot{H}^{-1}, \quad D(A)=\dot{H}^{1} \times \dot{H}^{0}, \quad U=\dot{H}^{0}=L_{2}(\mathcal{D})
$$

Abstract framework

Let $u_{0}=0, u_{1}=0$ for simplicity.
$\left\{\begin{array}{l}\mathrm{d} X(t)+A X(t) \mathrm{d} t=B \mathrm{~d} W(t), \quad t>0 \\ X(0)=0\end{array}\right.$

- X $(t), H=\dot{H}^{0} \times \dot{H}^{-1}$-valued stochastic process
- $W(t), U=\dot{H}^{0}$-valued Q-Wiener process w.r.t $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$
- $E(t)=e^{-t A}=\left[\begin{array}{cc}\cos \left(t \Lambda^{1 / 2}\right) & \Lambda^{-1 / 2} \sin \left(t \Lambda^{1 / 2}\right) \\ -\Lambda^{1 / 2} \sin \left(t \Lambda^{1 / 2}\right) & \cos \left(t \Lambda^{1 / 2}\right)\end{array}\right], \quad C_{0}$-semigroup
$\cos \left(t \Lambda^{1 / 2}\right) v=\sum_{j=1}^{\infty} \cos \left(t \sqrt{\lambda_{j}}\right)\left(v, \phi_{j}\right) \phi_{j} \quad\left(\lambda_{j}, \phi_{j}\right.$ are the eigenpairs of $\left.\Lambda\right)$

Regularity

Theorem. If $\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\text {HS }}<\infty$ for some $\beta \geq 0$, then there exists a unique weak solution

$$
X(t)=\left[\begin{array}{l}
X_{1}(t) \\
X_{2}(t)
\end{array}\right]=\int_{0}^{t} E(t-s) B \mathrm{~d} W(s)=\left[\begin{array}{c}
\int_{0}^{t} \Lambda^{-1 / 2} \sin \left((t-s) \Lambda^{1 / 2}\right) \mathrm{d} W(s) \\
\int_{0}^{t} \cos \left((t-s) \Lambda^{1 / 2}\right) \mathrm{d} W(s)
\end{array}\right]
$$

and

$$
\|X(t)\|_{L_{2}\left(\Omega, \dot{H}^{\beta} \times \dot{H}^{\beta-1}\right)} \leq C(t)\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\text {Hs }} .
$$

Two cases:

- If $\left\|Q^{1 / 2}\right\|_{\mathrm{HS}}^{2}=\operatorname{Tr}(Q)<\infty$, then $\beta=1$.
- If $Q=I$, then $\left\|\Lambda^{(\beta-1) / 2}\right\|_{\text {HS }}<\infty$ iff $d=1, \beta<1 / 2$.

The finite element method

Spatial discretization

- triangulations $\left\{\mathcal{T}_{h}\right\}_{0<h<1}$, mesh size h
- finite element spaces $\left\{S_{h}\right\}_{0<h<1}$
- $S_{h} \subset \dot{H}^{1}=H_{0}^{1}(\mathcal{D})$ continuous piecewise linear functions
- $\Lambda_{h}: S_{h} \rightarrow S_{h}$, discrete Laplacian,
$\left(\Lambda_{h} \psi, \chi\right)=(\nabla \psi, \nabla \chi), \forall \chi \in S_{h}$
- $P_{h}: \dot{H}^{0} \rightarrow S_{h}$, orthogonal projection, $\left(P_{h} f, \chi\right)=(f, \chi), \forall \chi \in S_{h}$
- $A_{h}=\left[\begin{array}{cc}0 & 1 \\ -\Lambda_{h} & 0\end{array}\right], \quad B_{h}=\left[\begin{array}{c}0 \\ P_{h}\end{array}\right]$
- $\left\{\begin{array}{l}\mathrm{d} X_{h}(t)+A_{h} X_{h}(t) \mathrm{d} t=B_{h} \mathrm{~d} W(t), \quad t>0 \\ X_{h}(0)=0\end{array}\right.$
- $E_{h}(t)=e^{-t A_{h}}=\left[\begin{array}{cc}\cos \left(t \Lambda_{h}^{1 / 2}\right) & \Lambda_{h}^{-1 / 2} \sin \left(t \Lambda_{h}^{1 / 2}\right) \\ -\Lambda_{h}^{1 / 2} \sin \left(t \Lambda_{h}^{1 / 2}\right) & \cos \left(t \Lambda_{h}^{1 / 2}\right)\end{array}\right]$

The finite element method (continued)

The weak solution is:

$$
\begin{aligned}
X_{h}(t) & =\left[\begin{array}{l}
X_{h, 1}(t) \\
X_{h, 2}(t)
\end{array}\right] \\
& =\int_{0}^{t} E_{h}(t-s) B_{h} \mathrm{~d} W(s)=\left[\begin{array}{c}
\int_{0}^{t} \Lambda_{h}^{-1 / 2} \sin \left((t-s) \Lambda_{h}^{1 / 2}\right) P_{h} \mathrm{~d} W(s) \\
\int_{0}^{t} \cos \left((t-s) \Lambda_{h}^{1 / 2}\right) P_{h} \mathrm{~d} W(s)
\end{array}\right]
\end{aligned}
$$

where
$\cos \left(t \Lambda_{h}^{1 / 2}\right) v=\sum_{j=1}^{N_{h}} \cos \left(t \sqrt{\lambda_{h, j}}\right)\left(v, \phi_{h, j}\right) \phi_{h, j}$
$\lambda_{h, j}, \phi_{h, j}$ are the eigenpairs of Λ_{h}

Strong and weak error

- Strong error:

$$
\left\|X_{h}(t)-X(t)\right\|_{L_{2}(\Omega, H)}=\left(\mathbf{E}\left\|X_{h}(t)-X(t)\right\|_{H}^{2}\right)^{1 / 2}
$$

- Weak error:

$$
\mathbf{E} G\left(X_{h}(T)\right)-\mathbf{E} G(X(T))
$$

for $G: H \rightarrow \mathbb{R}$.

Error estimates for the deterministic problem

$$
\begin{array}{ll}
\begin{cases}v_{t t}(t)+\Lambda v(t)=0, t>0 \\
v(0)=0, v_{t}(0)=f\end{cases} & \Rightarrow v(t)=\Lambda^{-1 / 2} \sin \left(t \Lambda^{1 / 2}\right) f \\
\begin{cases}v_{h, t t}(t)+\Lambda_{h} v_{h}(t)=0, t>0 \\
v_{h}(0)=0, v_{h, t}(0)=P_{h} f\end{cases} & \Rightarrow v_{h}(t)=\Lambda_{h}^{-1 / 2} \sin \left(t \Lambda_{h}^{1 / 2}\right) P_{h} f
\end{array}
$$

We have, for $K_{h}(t)=\Lambda_{h}^{-1 / 2} \sin \left(t \Lambda_{h}^{1 / 2}\right) P_{h}-\Lambda^{-1 / 2} \sin \left(t \Lambda^{1 / 2}\right)$
$\left\|K_{h}(t) f\right\| \leq C(t) h^{2}\|f\|_{\text {H }^{2}} \quad$ "initial regularity of order $3 "$
$\left\|K_{h}(t) f\right\| \leq 2\|f\|_{\mathcal{H}^{-1}} \quad$ "initial regularity of order $0^{0 \prime}$ (stability)
$\left\|K_{h}(t) f\right\| \leq C(t) h^{\frac{2}{3} \beta}\|f\|_{\text {His }^{\beta-1}}, \quad 0 \leq \beta \leq 3$
$\beta-1$ can not be replaced by $\beta-1-\epsilon$ for $\epsilon>0$ (J. Rauch 1985)

Strong convergence in L_{2} norm

Theorem. If $\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\text {HS }}<\infty$ for some $\beta \in[0,3]$, then

$$
\left\|X_{h, 1}(t)-X_{1}(t)\right\|_{L_{2}\left(\Omega, \dot{H}^{0}\right)} \leq C(t) h^{\frac{2}{3} \beta}\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\mathrm{HS}}
$$

Higher order FEM: $\quad O\left(h^{\frac{r}{r+1} \beta}\right), \quad \beta \in[0, r+1]$.
Proof. $\left\{f_{k}\right\}$ an arbitrary ON basis in \dot{H}^{0}

$$
\begin{aligned}
\left\|X_{h, 1}(t)-X_{1}(t)\right\|_{L_{2}\left(\Omega, \mathcal{H}^{0}\right)}^{2} & =\mathbf{E}\left(\left\|X_{h, 1}(t)-X_{1}(t)\right\|^{2}\right) \\
& =\mathbf{E}\left(\left\|\int_{0}^{t} K_{h}(t-s) \mathrm{d} W(s)\right\|^{2}\right) \\
\{\text { Isometry }\} & =\int_{0}^{t}\left\|K_{h}(s) Q^{1 / 2}\right\|_{\text {HS }}^{2} \mathrm{~d} s=\int_{0}^{t} \sum_{k=1}^{\infty}\left\|K_{h}(s) Q^{1 / 2} f_{k}\right\|^{2} \mathrm{~d} s \\
& \leq C(t) h^{\frac{4}{3} \beta} \sum_{k=1}^{\infty}\left\|Q^{1 / 2} f_{k}\right\|_{\dot{H}^{\beta-1}}^{2}=C(t) h^{\frac{4}{3} \beta}\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\text {HS }}^{2}
\end{aligned}
$$

Kovács, Larsson and Saedpanah, preprint 2009

Strong convergence in L_{2} norm (special cases)

Two cases:

- If $\left\|Q^{1 / 2}\right\|_{\text {HS }}^{2}=\operatorname{Tr}(Q)<\infty$, then $\beta=1$.

$$
\left\|X_{h, 1}(t)-X_{1}(t)\right\|_{L_{2}\left(\Omega, \dot{H}^{0}\right)} \leq C(t) h^{2 / 3}
$$

- If $Q=I$, then $\left\|\Lambda^{(\beta-1) / 2}\right\|_{\text {HS }}<\infty$ iff $d=1,0 \leq \beta<1 / 2$.
$\left\|X_{h, 1}(t)-X_{1}(t)\right\|_{L_{2}\left(\Omega, \dot{H}^{0}\right)} \leq C(t) h^{s}, \quad s<1 / 3$

Earlier works in one dimension ($d=1, Q=l$):

- L. Quer-Sardanyons \& M. Sanz-Solé 2006: spatially semidiscrete difference scheme $O\left(h^{s}\right), s<1 / 3$
- J.B. Walsh 2006: a fully discrete leapfrog method $O\left(h^{1 / 2}\right)$

Proof technique: Green's function.

- We extend Quer-Sardanyons \& Sanz-Solé.
- We explain the discrepancy with Walsh.

Comparison with the heat equation

Regularity is the same for both the heat and wave equations:

$$
\left\|X_{1}(t)\right\|_{L_{2}\left(\Omega, \dot{H}^{\beta}\right)} \leq C\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\mathrm{HS}}
$$

Strong convergence in L_{2}-norm:

$$
\begin{array}{ll}
\left\|X_{h, 1}(t)-X_{1}(t)\right\|_{L_{2}\left(\Omega, \mathcal{H}^{0}\right)} \leq C h^{\frac{2}{3} \beta}\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\text {HS }} & \text { (wave equation) } \\
\left\|X_{h}(t)-X(t)\right\|_{L_{2}\left(\Omega, H^{0}\right)} \leq C h^{\beta}\left\|\Lambda^{(\beta-1) / 2} Q^{1 / 2}\right\|_{\text {HS }} & \text { (heat equation) }
\end{array}
$$

Weak error representation: preliminaries

Consider

$$
\mathrm{d} Y(t)=E(T-t) B \mathrm{~d} W(t), t \in(0, T] ; Y(0)=E(T) X_{0},
$$

with weak solution

$$
Y(t)=E(T) X_{0}+\int_{0}^{t} E(T-s) B \mathrm{~d} W(s)
$$

Similarly, consider

$$
\mathrm{d} Y_{h}(t)=E_{h}(T-t) B \mathrm{~d} W(t), t \in(0, T] ; \quad Y_{h}(0)=E_{h}(T) X_{0, h},
$$

with weak solution

$$
Y_{h}(t)=E_{h}(T) X_{0, h}+\int_{0}^{t} E_{h}(T-s) B_{h} \mathrm{~d} W(s) .
$$

Note: $X(T)=Y(T), X_{h}(T)=Y_{h}(T)$. No drift term in eq. for Y and Y_{h}.

Weak error representation: preliminaries

Auxiliary problem:

$$
\mathrm{d} Z(t)=E(T-t) B \mathrm{~d} W(t), t \in(\tau, T] ; Z(\tau)=\xi
$$

where ξ is a \mathcal{F}_{τ}-measurable random variable.
Unique weak solution: $Z(t, \tau, \xi)=\xi+\int_{\tau}^{t} E(T-s) B \mathrm{~d} W(s)$
Define $u: H \times[0, T] \rightarrow \mathbb{R}$ by

$$
u(x, t)=\mathbf{E}(G(Z(T, t, x))) .
$$

If $G \in C_{\mathrm{b}}^{2}(H, \mathbb{R})$, then u is a solution to Kolmogorov's equation

$$
\begin{aligned}
& u_{t}(x, t)+\frac{1}{2} \operatorname{Tr}\left(u_{x x}(x, t) E(T-t) B Q[E(T-t) B]^{*}\right)=0, \quad t \in[0, T), x \in H, \\
& u(x, T)=G(x),
\end{aligned}
$$

Weak error representation: preliminaries

Nuclear operators on H :
$T \in \mathcal{L}_{1}(H)$
if there are sequences $\left\{a_{j}\right\},\left\{b_{j}\right\} \subset H$ with $\sum_{j=1}^{\infty}\left\|a_{j}\right\|\left\|b_{j}\right\|<\infty$ and such that
$T x=\sum_{j=1}^{\infty}\left\langle x, b_{j}\right\rangle a_{j}, \quad \forall x \in H$.
Banach space with norm: $\|T\|_{\mathrm{T}_{\mathrm{r}}}=\inf \left\{\sum_{j=1}^{\infty}\left\|a_{j}\right\|\left\|b_{j}\right\|: T x=\sum_{j=1}^{\infty}\left\langle x, b_{j}\right\rangle a_{j}\right\}$.
For $T \in \mathcal{L}_{1}(H): \operatorname{Tr}(T)=\sum_{k=1}^{\infty}\left\langle T e_{k}, e_{k}\right\rangle \quad$ with $\left\{e_{k}\right\}_{k=1}^{\infty}$ ONB of H
Connection with HS: $\|T\|_{\mathrm{HS}}^{2}=\operatorname{Tr}\left(T^{*} T\right)=\left\|T^{*} T\right\|_{\mathrm{Tr}}$

Weak error representation

THEOREM. If

$$
\operatorname{Tr}\left(\int_{0}^{T} E(t) B Q[E(t) B]^{*} \mathrm{~d} t\right)<\infty
$$

and $G \in C_{\mathrm{b}}^{2}(H, \mathbb{R})$, then the weak error $e_{h}(T)=\mathbf{E} G\left(X_{h}(T)\right)-\mathbf{E} G(X(T))$ has the representation

$$
\begin{aligned}
e_{h}(T)= & \mathbf{E}\left(u\left(Y_{h}(0), 0\right)-u(Y(0), 0)\right) \\
+ & \frac{1}{2} \mathbf{E} \int_{0}^{T} \operatorname{Tr}\left(u_{x x}\left(Y_{h}(t), t\right)\right. \\
& \left.\times\left[E_{h}(T-t) B_{h}+E(T-t) B\right] Q\left[E_{h}(T-t) B_{h}-E(T-t) B\right]^{*}\right) \mathrm{d} t
\end{aligned}
$$

Weak error representation: proof

If ξ is \mathcal{F}_{t} measurable, then $u(\xi, t)=\mathbf{E}\left(G(Z(T, t, \xi)) \mid \mathcal{F}_{t}\right)$. Therefore, by the law of double expectation,

$$
\mathbf{E}(u(\xi, t))=\mathbf{E}\left(\mathbf{E}\left(G(Z(T, t, \xi)) \mid \mathcal{F}_{t}\right)\right)=\mathbf{E}(G(Z(T, t, \xi)))
$$

Thus, with $\xi=Y(0)$ and $t=0$,

$$
\mathbf{E}(u(Y(0), 0))=\mathbf{E}(G(Z(T, 0, Y(0))))=\mathbf{E}(G(Y(T)))=\mathbf{E}(G(X(T)))
$$

and, with $\xi=Y_{h}(T)$ and $t=T$,

$$
\mathbf{E}\left(u\left(Y_{h}(T), T\right)\right)=\mathbf{E}\left(G\left(Z\left(T, T, Y_{h}(T)\right)\right)\right)=\mathbf{E}\left(G\left(Y_{h}(T)\right)\right)=\mathbf{E}\left(G\left(X_{h}(T)\right)\right)
$$

Hence,

$$
\begin{aligned}
e_{h}(T) & =\mathbf{E}\left(G\left(X_{h}(T)\right)-G(X(T))\right)=\mathbf{E}\left(u\left(Y_{h}(T), T\right)-u(Y(0), 0)\right) \\
& =\mathbf{E}\left(u\left(Y_{h}(0), 0\right)-u(Y(0), 0)\right)+\mathbf{E}\left(u\left(Y_{h}(T), T\right)-u\left(Y_{h}(0), 0\right)\right) .
\end{aligned}
$$

Weak error representation: proof

Using Itô's formula for $u\left(Y_{h}(t), t\right)$ and Kolmogorov's equation

$$
\begin{aligned}
& \mathbf{E}\left(u\left(Y_{h}(T), T\right)-u\left(Y_{h}(0), 0\right)\right) \\
& =\mathbf{E} \int_{0}^{T} u_{t}\left(Y_{h}(t), t\right) \\
& \quad+\frac{1}{2} \operatorname{Tr}\left(u_{x x}\left(Y_{h}(t), t\right)\left[E_{h}(T-t) B_{h}\right] Q\left[E_{h}(T-t) B_{h}\right]^{*}\right) \mathrm{d} t \\
& =\frac{1}{2} \mathbf{E} \int_{0}^{t} \operatorname{Tr}\left(u_{x x}\left(Y_{h}(t), t\right)\right. \\
& \left.\quad \times\left[E_{h}(T-t) B_{h}\right] Q\left[E_{h}(T-t) B_{h}\right]^{*}-[E(T-t) B] Q[E(T-t) B]^{*}\right) \mathrm{d} t
\end{aligned}
$$

The proof can be finished by algebraic manipulation and playing around with traces.

Applications: Wave equation

THEOREM: Let $g \in C_{\mathrm{b}}^{2}\left(\dot{H}^{0}, \mathbb{R}\right)$ and assume that $\left\|\Lambda^{\beta-\frac{1}{2}} Q \Lambda^{-\frac{1}{2}}\right\|_{\mathrm{Tr}_{\mathrm{r}}}<\infty$ for some $\beta \in\left[0, \frac{r+1}{2}\right]$. Then, there are $C>0, h_{0}>0$, depending on g, X_{0}, Q, and T but not on h, such that for $h \leq h_{0}$,

$$
\left|\mathbf{E}\left(g\left(X_{h, 1}(T)\right)-g\left(X_{1}(T)\right)\right)\right| \leq C^{\frac{r}{r+1} 2 \beta} .
$$

The proof uses the weak error representation theorem with $G(X):=g\left(P_{1} X\right)=g\left(X_{1}\right)$ and the deterministic error estimate

$$
\left\|K_{h}(t)\right\|:=\left\|\Lambda_{h}^{-1 / 2} \sin \left(t \Lambda_{h}^{1 / 2}\right) P_{h} v-\Lambda^{-1 / 2} \sin \left(t \Lambda^{1 / 2}\right) v\right\| \leq C(T) h^{\frac{r}{+1} s}|v|_{s-1},
$$

$$
t \in[0, T], s \in[0, r+1]
$$

Wave equation: sketch of proof

Set $G(X):=g\left(X_{1}\right)$.

$$
\left(u_{x}(Y(t), t), \Phi\right)=\mathbf{E}\left(\left\langle g^{\prime}\left(P_{1} Z(Y(t), t, T)\right), P_{1} \Phi\right\rangle \mid \mathcal{F}_{t}\right)
$$

and

$$
\left(u_{x x}(Y(t), t) \Phi, \Psi\right)=\mathbf{E}\left(\left\langle g^{\prime \prime}\left(P_{1} Z(Y(t), t, T)\right) P_{1} \Phi, P_{1} \Psi\right\rangle \mid \mathcal{F}_{t}\right)
$$

Recall, the abstract weak error representation:

$$
\begin{aligned}
e_{h}(T)= & \mathbf{E}\left(u\left(Y_{h}(0), 0\right)-u(Y(0), 0)\right) \\
+ & \frac{1}{2} \mathbf{E} \int_{0}^{T} \operatorname{Tr}\left(u_{x x}\left(Y_{h}(t), t\right)\right. \\
& \left.\times\left[E_{h}(T-t) B_{h}-E(T-t) B\right] Q\left[E_{h}(T-t) B_{h}+E(T-t) B\right]^{*}\right) \mathrm{d} t .
\end{aligned}
$$

Wave equation: sketch of proof

The first term:

$$
\left|\mathbf{E}\left(u\left(Y_{h}(0), 0\right)-u(Y(0), 0)\right)\right| \leq C \sup _{x \in \dot{H}^{0}}\left\|g^{\prime}(x)\right\| C h^{\frac{2 r}{+1} \beta} \mathbf{E}\left\|X_{0}\right\| \|_{2 \beta} .
$$

The second term, using $G(X)=g\left(X_{1}\right)$:

$$
\begin{aligned}
& \mathbf{E}\left(\operatorname{Tr}\left(u_{x x}\left(Y_{h}(t), t\right)\left[E_{h}(T-t) B_{h}+E(T-t) B\right] Q\left[E_{h}(T-t) B_{h}-E(T-t) B\right]^{*}\right)\right) \\
& =\mathbf{E}\left(\operatorname{Tr}\left(K_{h}(T-t) Q\left[\Lambda_{h}^{-\frac{1}{2}} S_{h}(T-t) P_{h}+\Lambda^{-\frac{1}{2}} S(T-t)\right] g^{\prime \prime}\left(P_{1} Z(Y(t), t, T)\right)\right)\right.
\end{aligned}
$$

Wave equation: remark

Recall strong convergence rate: $O\left(h^{\frac{r}{r+1} \beta}\right)$ under the assumption $\left\|\Lambda^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\text {HS }}<\infty$.

It can be shown that

$$
\left\|\Lambda^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\mathrm{HS}}^{2} \leq\left\|\Lambda^{\beta-\frac{1}{2}} Q \Lambda^{-\frac{1}{2}}\right\|_{\mathrm{Tr}}
$$

with equality when A and Q have a common basis of eigenvectors, in particular, when $Q=I$.

If $Q=I$, then $d=1, \beta<\frac{1}{2}$ and the weak rate is almost $O\left(h^{\frac{r}{r+1}}\right)$.

Related results

This weak convergence analysis is from:
Kovács, Larsson and Lindgren, preprint 2009
In this paper we also study:

- stochastic heat equation

$$
\mathrm{d} X+\Lambda X \mathrm{~d} t=\mathrm{d} W
$$

strong rate: $O\left(h^{\beta}\right) \quad$ Yan 2004
weak rate: $O\left(h^{2 \beta}|\log (h)|\right) \quad$ Debussche and Printems 2009 (fully discrete) Geissert, Kovács and Larsson 2009
nonlinear equation in 1-D (only time-stepping): Debussche 2008, to appear

- linearized stochastic Cahn-Hilliard equation

$$
\begin{aligned}
& \mathrm{d} X+\Lambda^{2} X \mathrm{~d} t=\mathrm{d} W \\
& \mathrm{~d} X_{h}+\Lambda_{h}^{2} X_{h} \mathrm{~d} t=P_{h} \mathrm{~d} W
\end{aligned}
$$

Weak error for the leapfrog scheme: Hausenblas preprint 2009

