Stochastic Flows and Signed Measure Valued Stochastic Partial Differential Equations

Peter Kotelenez Department of Mathematics Case Western Reserve University Cleveland, Ohio 44106 email: pxk4@cwru.edu http://www.case.edu/artsci/math/kotelenez

Abstract

We derive a class of quasi-linear stochastic partial differential equations (SPDEs) from the empirical distributions of stochastic flows of systems of stochastic ordinary differential equations (SODEs) on \mathbb{R}^d . We show that the solutions of the SODEs generate a.s. a homeomorphism from the initial conditions onto the solutions at time t. Generalizing results of Kotelenez (2008), Ch. 8,¹ from positive measure valued SPDEs to signed measure valued SPDEs, the solutions of the SPDEs may be represented as follows:

$$\mathcal{X}(t) = \mathcal{X}^{+}(t) - \mathcal{X}^{-}(t), \qquad (*)$$

where $\mathcal{X}^{+}(t)$ and $\mathcal{X}^{-}(t)$ are positive measures with the following flow representation

$$\mathcal{X}^{\pm}(t) = \int_{\mathbb{R}^d} \delta_{(\overline{r}(t,\mathcal{X},q))} \mathcal{X}^{\pm}(0,dq).$$
(**)

 $\mathcal{X}(0) = \mathcal{X}^+(0) - \mathcal{X}^-(0)$ is the initial distribution and $\mathcal{X}^{\pm}(0)$ is the Hahn-Jordan decomposition of $\mathcal{X}(0)$. Further, $\overline{r}(t, \mathcal{X}, q)$ is the flow of solutions of the SODEs, depending on the "empirical distribution" $\mathcal{X}(\cdot)$ and the initial condition q. The flow properties imply that $\mathcal{X}^{\pm}(t)$ is the Hahn-Jordan decomposition of $\mathcal{X}(t)$. Smoothness and uniqueness hold for smooth initial conditions and smooth coefficients of the SODEs. This result has numerous applications in 2D fluid mechanics and other areas.

¹Cf. Kotelenez, P. (2008) Stochastic Ordinary and Stochastic Partial Differential Equations: Transition from Microscopic to Macroscopic Equations, Springer-Verlag, Berlin-Heidelberg-New York.