Eighth Workshop on Random Dynamical Systems

Regularity structures and renormalisation of FitzHugh-Nagumo SPDEs in three space dimensions

Nils Berglund
MAPMO, Université d'Orléans
Bielefeld, 5 November 2015
with Christian Kuehn (TU Vienna)

FitzHugh-Nagumo SDE

$$
\begin{aligned}
\mathrm{d} u_{t} & =\left[u_{t}-u_{t}^{3}+v_{t}\right] \mathrm{d} t+\sigma \mathrm{d} W_{t} \\
\mathrm{~d} v_{t} & =\varepsilon\left[a-u_{t}-b v_{t}\right] \mathrm{d} t
\end{aligned}
$$

$\triangleright u_{t}$: membrane potential of neuron
$\triangleright v_{t}$: gating variable (proportion of open ion channels)

$$
\begin{aligned}
& \varepsilon=0.1 \\
& b=0 \\
& a=\frac{1}{\sqrt{3}}+0.02 \\
& \sigma=0.03
\end{aligned}
$$

FitzHugh-Nagumo SPDE

$$
\begin{aligned}
& \partial_{t} u=\Delta u+u-u^{3}+v+\xi \\
& \partial_{t} v=a_{1} u+a_{2} v
\end{aligned}
$$

$\triangleright u=u(t, x) \in \mathbb{R}, v=v(t, x) \in \mathbb{R}\left(\right.$ or $\left.\mathbb{R}^{n}\right),(t, x) \in D=\mathbb{R}_{+} \times \mathbb{T}^{d}, d=2,3$
$\triangleright \xi(t, x)$ Gaussian space-time white noise: $\mathbb{E}[\xi(t, x) \xi(s, y)]=\delta(t-s) \delta(x-y)$ ξ : distribution defined by $\langle\xi, \varphi\rangle=W_{\varphi},\left\{W_{h}\right\}_{h \in L^{2}(D)}, \mathbb{E}\left[W_{h} W_{h^{\prime}}\right]=\left\langle h, h^{\prime}\right\rangle$
(Link to simulation)

Main result

Mollified noise: $\xi^{\varepsilon}=\varrho_{\varepsilon} * \xi$
where $\varrho_{\varepsilon}(t, x)=\frac{1}{\varepsilon^{d+2}} \varrho\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right)$ with ϱ compactly supported, integral 1
Theorem [NB \& C. Kuehn, preprint 2015, arXiv/1504.02953]
There exists a choice of renormalisation constant $C(\varepsilon), \lim _{\varepsilon \rightarrow 0} C(\varepsilon)=\infty$, such that

$$
\begin{aligned}
& \partial_{t} u^{\varepsilon}=\Delta u^{\varepsilon}+[1+C(\varepsilon)] u^{\varepsilon}-\left(u^{\varepsilon}\right)^{3}+v^{\varepsilon}+\xi^{\varepsilon} \\
& \partial_{t} v^{\varepsilon}=a_{1} u^{\varepsilon}+a_{2} v^{\varepsilon}
\end{aligned}
$$

admits a sequence of local solutions $\left(u^{\varepsilon}, v^{\varepsilon}\right)$, converging in probability to a limit (u, v) as $\varepsilon \rightarrow 0$.

Main result

Mollified noise: $\xi^{\varepsilon}=\varrho_{\varepsilon} * \xi$ where $\varrho_{\varepsilon}(t, x)=\frac{1}{\varepsilon^{d+2}} \varrho\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right)$ with ϱ compactly supported, integral 1

Theorem [NB \& C. Kuehn, preprint 2015, arXiv/1504.02953]
There exists a choice of renormalisation constant $C(\varepsilon), \lim _{\varepsilon \rightarrow 0} C(\varepsilon)=\infty$, such that

$$
\begin{aligned}
& \partial_{t} u^{\varepsilon}=\Delta u^{\varepsilon}+[1+C(\varepsilon)] u^{\varepsilon}-\left(u^{\varepsilon}\right)^{3}+v^{\varepsilon}+\xi^{\varepsilon} \\
& \partial_{t} v^{\varepsilon}=a_{1} u^{\varepsilon}+a_{2} v^{\varepsilon}
\end{aligned}
$$

admits a sequence of local solutions $\left(u^{\varepsilon}, v^{\varepsilon}\right)$, converging in probability to a limit (u, v) as $\varepsilon \rightarrow 0$.

- Local solution means up to a random possible explosion time
\triangleright Initial conditions should be in appropriate Hölder spaces
$\triangleright C(\varepsilon) \asymp \log \left(\varepsilon^{-1}\right)$ for $d=2$ and $C(\varepsilon) \asymp \varepsilon^{-1}$ for $d=3$
\triangleright Similar results for more general cubic nonlinearity and $v \in \mathbb{R}^{n}$

Mild solutions of SPDE

$$
\begin{aligned}
\partial_{t} u & =\Delta u+F(u)+\xi \\
u(0, x) & =u_{0}(x)
\end{aligned}
$$

Mild solutions of SPDE

$$
\begin{aligned}
\partial_{t} u & =\Delta u+F(u)+\xi \\
u(0, x) & =u_{0}(x)
\end{aligned}
$$

Construction of mild solution via Duhamel formula:
$\triangleright \partial_{t} u=\Delta u \Rightarrow u(t, x)=\int G(t, x-y) u_{0}(y) \mathrm{d} y=:\left(\mathrm{e}^{\Delta t} u_{0}\right)(x)$ where $G(t, x)$: heat kernel (compatible with bc)

Mild solutions of SPDE

$$
\begin{aligned}
\partial_{t} u & =\Delta u+F(u)+\xi \\
u(0, x) & =u_{0}(x)
\end{aligned}
$$

Construction of mild solution via Duhamel formula:
$\triangleright \partial_{t} u=\Delta u \Rightarrow u(t, x)=\int G(t, x-y) u_{0}(y) \mathrm{d} y=:\left(\mathrm{e}^{\Delta t} u_{0}\right)(x)$ where $G(t, x)$: heat kernel (compatible with bc)
$\triangleright \partial_{t} u=\Delta u+f \Rightarrow u(t, x)=\left(\mathrm{e}^{\Delta t} u_{0}\right)(x)+\int_{0}^{t} \mathrm{e}^{\Delta(t-s)} f(s, \cdot)(x) \mathrm{d} s$
Notation: $u=G u_{0}+G * f$

Mild solutions of SPDE

$$
\begin{aligned}
\partial_{t} u & =\Delta u+F(u)+\xi \\
u(0, x) & =u_{0}(x)
\end{aligned}
$$

Construction of mild solution via Duhamel formula:
$\triangleright \partial_{t} u=\Delta u \Rightarrow u(t, x)=\int G(t, x-y) u_{0}(y) \mathrm{d} y=:\left(\mathrm{e}^{\Delta t} u_{0}\right)(x)$ where $G(t, x)$: heat kernel (compatible with bc)
$\triangleright \partial_{t} u=\Delta u+f \Rightarrow u(t, x)=\left(\mathrm{e}^{\Delta t} u_{0}\right)(x)+\int_{0}^{t} \mathrm{e}^{\Delta(t-s)} f(s, \cdot)(x) \mathrm{d} s$
Notation: $u=G u_{0}+G * f$
$\triangleright \partial_{t} u=\Delta u+\xi \quad \Rightarrow \quad u=G u_{0}+G * \xi \quad$ (stochastic convolution)

Mild solutions of SPDE

$$
\begin{aligned}
\partial_{t} u & =\Delta u+F(u)+\xi \\
u(0, x) & =u_{0}(x)
\end{aligned}
$$

Construction of mild solution via Duhamel formula:
$\triangleright \partial_{t} u=\Delta u \Rightarrow u(t, x)=\int G(t, x-y) u_{0}(y) \mathrm{d} y=:\left(\mathrm{e}^{\Delta t} u_{0}\right)(x)$ where $G(t, x)$: heat kernel (compatible with bc)
$\triangleright \partial_{t} u=\Delta u+f \Rightarrow u(t, x)=\left(\mathrm{e}^{\Delta t} u_{0}\right)(x)+\int_{0}^{t} \mathrm{e}^{\Delta(t-s)} f(s, \cdot)(x) \mathrm{d} s$
Notation: $u=G u_{0}+G * f$
$\triangleright \partial_{t} u=\Delta u+\xi \quad \Rightarrow \quad u=G u_{0}+G * \xi \quad$ (stochastic convolution)
$\triangleright \partial_{t} u=\Delta u+\xi+F(u) \quad \Rightarrow \quad u=G u_{0}+G *[\xi+F(u)]$
Aim: use Banach's fixed-point theorem - but which function space?

Hölder spaces

Definition of \mathcal{C}^{α} for $f: I \rightarrow \mathbb{R}$, with $I \subset \mathbb{R}$ a compact interval:
$\triangleright 0<\alpha<1:|f(x)-f(y)| \leqslant C|x-y|^{\alpha} \quad \forall x \neq y$
$\triangleright \alpha>1: f \in \mathcal{C}^{\lfloor\alpha\rfloor}$ and $f^{\prime} \in \mathcal{C}^{\alpha-1}$
$\triangleright \alpha<0: f$ distribution, $\left|\left\langle f, \eta_{x}^{\delta}\right\rangle\right| \leqslant C \delta^{\alpha}$ where $\eta_{x}^{\delta}(y)=\frac{1}{\delta} \eta\left(\frac{x-y}{\delta}\right)$ for all test functions $\eta \in \mathcal{C}^{-\lfloor\alpha\rfloor}$

Property: $f \in \mathcal{C}^{\alpha}, 0<\alpha<1 \quad \Rightarrow \quad f^{\prime} \in \mathcal{C}^{\alpha-1}$ where $\left\langle f^{\prime}, \eta\right\rangle=-\left\langle f, \eta^{\prime}\right\rangle$
Remark: $f \in \mathcal{C}^{1+\alpha} \nRightarrow|f(x)-f(y)| \leqslant C|x-y|^{1+\alpha}$. See e.g $f(x)=x+|x|^{3 / 2}$

Hölder spaces

Definition of \mathcal{C}^{α} for $f: I \rightarrow \mathbb{R}$, with $I \subset \mathbb{R}$ a compact interval:
$\triangleright 0<\alpha<1:|f(x)-f(y)| \leqslant C|x-y|^{\alpha} \quad \forall x \neq y$
$\triangleright \alpha>1: f \in \mathcal{C}^{\lfloor\alpha\rfloor}$ and $f^{\prime} \in \mathcal{C}^{\alpha-1}$
$\triangleright \alpha<0: f$ distribution, $\left|\left\langle f, \eta_{x}^{\delta}\right\rangle\right| \leqslant C \delta^{\alpha}$ where $\eta_{x}^{\delta}(y)=\frac{1}{\delta} \eta\left(\frac{x-y}{\delta}\right)$ for all test functions $\eta \in \mathcal{C}^{-\lfloor\alpha\rfloor}$

Property: $f \in \mathcal{C}^{\alpha}, 0<\alpha<1 \quad \Rightarrow \quad f^{\prime} \in \mathcal{C}^{\alpha-1}$ where $\left\langle f^{\prime}, \eta\right\rangle=-\left\langle f, \eta^{\prime}\right\rangle$
Remark: $f \in \mathcal{C}^{1+\alpha} \nRightarrow|f(x)-f(y)| \leqslant C|x-y|^{1+\alpha}$. See e.g $f(x)=x+|x|^{3 / 2}$

Case of the heat kernel: $\left(\partial_{t}-\Delta\right) u=f \quad \Rightarrow \quad u=G * f$
Parabolic scaling $\mathcal{C}_{\mathfrak{s}}^{\alpha}:|x-y| \longrightarrow|t-s|^{1 / 2}+\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|$

$$
\frac{1}{\delta} \eta\left(\frac{x-y}{\delta}\right) \longrightarrow \frac{1}{\delta^{d+2}} \eta\left(\frac{t-s}{\delta^{2}}, \frac{x-y}{\delta}\right)
$$

Schauder estimates and fixed-point equation

> Schauder estimate
> $\alpha \notin \mathbb{Z}, f \in \mathcal{C}_{\mathfrak{s}}^{\alpha} \Rightarrow G * f \in \mathcal{C}_{\mathfrak{s}}^{\alpha+2}$

Fact: in dimension d, space-time white noise $\xi \in \mathcal{C}_{s}^{\alpha}$ a.s. $\forall \alpha<-\frac{d+2}{2}$

Schauder estimates and fixed-point equation

> Schauder estimate
> $\alpha \notin \mathbb{Z}, f \in \mathcal{C}_{\mathfrak{s}}^{\alpha} \Rightarrow G * f \in \mathcal{C}_{\mathfrak{s}}^{\alpha+2}$

Fact: in dimension d, space-time white noise $\xi \in \mathcal{C}_{s}^{\alpha}$ a.s. $\forall \alpha<-\frac{d+2}{2}$
Fixed-point equation: $u=G u_{0}+G *[\xi+F(u)]$
$\triangleright d=1: \xi \in \mathcal{C}_{\mathfrak{s}}^{-3 / 2^{-}} \Rightarrow G * \xi \in \mathcal{C}_{\mathfrak{s}}^{1 / 2^{-}} \Rightarrow F(u)$ defined
$\triangleright d=3: \xi \in \mathcal{C}_{5}^{-5 / 2^{-}} \Rightarrow G * \xi \in \mathcal{C}_{5}^{-1 / 2^{-}} \Rightarrow F(u)$ not defined
$\triangleright d=2: \xi \in \mathcal{C}_{\mathfrak{s}}^{-2^{-}} \Rightarrow G * \xi \in \mathcal{C}_{\mathfrak{s}}^{0^{-}} \Rightarrow F(u)$ not defined
Boundary case, can be treated with Besov spaces
[Da Prato \& Debussche 2003]
Why not use mollified noise? Limit $\varepsilon \rightarrow 0$ does not exist

Regularity structures

Basic idea of Martin Hairer [Inventiones Math. 198, 269-504, 2014]:
Lift mollified fixed-point equation

$$
u=G u_{0}+G *\left[\xi^{\varepsilon}+F(u)\right]
$$

to a larger space called a Regularity structure

$\triangleright u^{\varepsilon}=\overline{\mathcal{S}}\left(u_{0}, \xi^{\varepsilon}\right)$: classical solution of mollified equation
$\triangleright U=\mathcal{S}\left(u_{0}, Z^{\varepsilon}\right)$: solution map in regularity structure
$\triangleright \mathcal{S}$ and \mathcal{R} are continuous (in suitable topology)

Regularity structures

Basic idea of Martin Hairer [Inventiones Math. 198, 269-504, 2014]:
Lift mollified fixed-point equation

$$
u=G u_{0}+G *\left[\xi^{\varepsilon}+F(u)\right]
$$

to a larger space called a Regularity structure

$\triangleright u^{\varepsilon}=\overline{\mathcal{S}}\left(u_{0}, \xi^{\varepsilon}\right)$: classical solution of mollified equation
$\triangleright U=\mathcal{S}\left(u_{0}, Z^{\varepsilon}\right)$: solution map in regularity structure
$\triangleright \mathcal{S}$ and \mathcal{R} are continuous (in suitable topology)
\triangleright Renormalisation: modification of the lift ψ
Aternative approaches for $d=3$: [Catellier \& Chouk '13], [Kupiainen '15]

Regularitv structures

Structure of Hairer, Invent. Math. 198:269-504 (2014)
Drawing by Christian Kuehn

Basic idea: Generalised Taylor series

$f: I \rightarrow \mathbb{R}, 0<\alpha<1$
$f \in \mathcal{C}^{2+\alpha} \Leftrightarrow f \in \mathcal{C}^{2}$ and $f^{\prime \prime} \in \mathcal{C}^{\alpha}$
Associate with f the triple ($f, f^{\prime}, f^{\prime \prime}$)
When does a triple (f_{0}, f_{1}, f_{2}) represent a function $f \in \mathcal{C}^{2+\alpha}$?

Basic idea: Generalised Taylor series

$f: I \rightarrow \mathbb{R}, 0<\alpha<1$
$f \in \mathcal{C}^{2+\alpha} \quad \Leftrightarrow \quad f \in \mathcal{C}^{2}$ and $f^{\prime \prime} \in \mathcal{C}^{\alpha}$
Associate with f the triple $\left(f, f^{\prime}, f^{\prime \prime}\right)$
When does a triple $\left(f_{0}, f_{1}, f_{2}\right)$ represent a function $f \in \mathcal{C}^{2+\alpha}$?
When there is a constant C such that for all $x, y \in I$

$$
\begin{aligned}
&\left|f_{0}(y)-f_{0}(x)-(y-x) f_{1}(x)-\frac{1}{2}(y-x)^{2} f_{2}(x)\right| \leqslant C|x-y|^{2+\alpha} \\
&\left|f_{1}(y)-f_{1}(x)-(y-x) f_{2}(x)\right| \leqslant C|x-y|^{1+\alpha} \\
&\left.\mid f_{2}(y)-f_{2}(x)\right)|\leqslant C| x-\left.y\right|^{\alpha}
\end{aligned}
$$

Basic idea: Generalised Taylor series

$f: l \rightarrow \mathbb{R}, 0<\alpha<1$
$f \in \mathcal{C}^{2+\alpha} \Leftrightarrow f \in \mathcal{C}^{2}$ and $f^{\prime \prime} \in \mathcal{C}^{\alpha}$
Associate with f the triple ($f, f^{\prime}, f^{\prime \prime}$)
When does a triple (f_{0}, f_{1}, f_{2}) represent a function $f \in \mathcal{C}^{2+\alpha}$?
When there is a constant C such that for all $x, y \in I$

$$
\begin{aligned}
\left|f_{0}(y)-f_{0}(x)-(y-x) f_{1}(x)-\frac{1}{2}(y-x)^{2} f_{2}(x)\right| & \leqslant C|x-y|^{2+\alpha} \\
\left|f_{1}(y)-f_{1}(x)-(y-x) f_{2}(x)\right| & \leqslant C|x-y|^{1+\alpha} \\
\left.\mid f_{2}(y)-f_{2}(x)\right) \mid & \leqslant C|x-y|^{\alpha}
\end{aligned}
$$

Notation: $f=f_{0} \mathbf{1}+f_{1} X+f_{2} X^{2}$
Regularity structure: Generalised Taylor basis whose basis elements can also be singular distributions

Definition of a regularity structure

Definition [M. Hairer, Inventiones Math 2014]
A Regularity structure is a triple (A, T, \mathcal{G}) where

1. Index set: $A \subset \mathbb{R}$, bdd below, locally finite, $0 \in A$
2. Model space: $T=\bigoplus T_{\alpha}$, each T_{α} Banach space, $T_{0}=\operatorname{span}(\mathbf{1}) \simeq \mathbb{R}$ $\alpha \in A$
3. Structure group: \mathcal{G} group of linear maps $\Gamma: T \rightarrow T$ such that

$$
\Gamma \tau-\tau \in \bigoplus_{\beta<\alpha} T_{\beta} \quad \forall \tau \in T_{\alpha}
$$

$$
\text { and } \Gamma \mathbf{1}=\mathbf{1} \forall \Gamma \in \mathcal{G} .
$$

Definition of a regularity structure

Definition [M. Hairer, Inventiones Math 2014]
A Regularity structure is a triple (A, T, \mathcal{G}) where

1. Index set: $A \subset \mathbb{R}$, bdd below, locally finite, $0 \in A$
2. Model space: $T=\bigoplus T_{\alpha}$, each T_{α} Banach space, $T_{0}=\operatorname{span}(\mathbf{1}) \simeq \mathbb{R}$ $\alpha \in A$
3. Structure group: \mathcal{G} group of linear maps $\Gamma: T \rightarrow T$ such that

$$
\Gamma \tau-\tau \in \bigoplus_{\beta<\alpha} T_{\beta} \quad \forall \tau \in T_{\alpha}
$$

$$
\text { and } \Gamma \mathbf{1}=\mathbf{1} \forall \Gamma \in \mathcal{G} \text {. }
$$

Polynomial regularity structure on \mathbb{R} :
$\triangleright A=\mathbb{N}_{0}$
$\triangleright T_{k} \simeq \mathbb{R}, T_{k}=\operatorname{span}\left(X^{k}\right)$
$\triangleright \Gamma_{h}\left(X^{k}\right)=(X-h)^{k} \forall h \in \mathbb{R}$
Polynomial reg. structure on $\mathbb{R}^{d}: X^{k}=X_{1}^{k_{1}} \ldots X_{d}^{k_{d}} \in T_{|k|},|k|=\sum_{i=1}^{d} k_{i}$

Regularity structure for $\partial_{t} u=\Delta u-u^{3}+\xi$

New symbols: \equiv, representing ξ, Hölder exponent $|\equiv|_{\mathfrak{s}}=\alpha_{0}=-\frac{d+2}{2}-\kappa$ $\mathcal{I}(\tau)$, representing $G * f$, Hölder exponent $|\mathcal{I}(\tau)|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+2$ $\tau \sigma$, Hölder exponent $|\tau \sigma|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+|\sigma|_{\mathfrak{s}}$

Regularity structure for $\partial_{t} u=\Delta u-u^{3}+\xi$

 $\mathcal{I}(\tau)$ ，representing $G * f$ ，Hölder exponent $|\mathcal{I}(\tau)|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+2$ $\tau \sigma$ ，Hölder exponent $|\tau \sigma|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+|\sigma|_{\mathfrak{s}}$

τ	Symbol	$\|\tau\|_{s}$	$d=3$	$d=2$
三	三	α_{0}	$-\frac{5}{2}-\kappa$	$-2-\kappa$
$\mathcal{I}(\overline{\text { I }})^{3}$	＊	$3 \alpha_{0}+6$	$-\frac{3}{2}-3 \kappa$	0－3k
$\mathcal{I}(\overline{\text { I }})^{2}$	V	$2 \alpha_{0}+4$	$-1-2 \kappa$	$0-2 \kappa$
$\mathcal{I}\left(\mathcal{I}(\equiv)^{3}\right) \mathcal{I}(\equiv)^{2}$	＊＊	$5 \alpha_{0}+12$	$-\frac{1}{2}-5 \kappa$	$2-5 \kappa$
\mathcal{I}（三）	\dagger	$\alpha_{0}+2$	$-\frac{1}{2}-\kappa$	$0-\kappa$
$\mathcal{I}\left(\mathcal{I}(\equiv)^{3}\right) \mathcal{I}(\equiv)$	\cdots	$4 \alpha_{0}+10$	$0-4 \kappa$	$2-4 \kappa$
$\mathcal{I}\left(\mathcal{I}(\equiv)^{2}\right) \mathcal{I}(\equiv)^{2}$	\cdots	$4 \alpha_{0}+10$	$0-4 \kappa$	$2-4 \kappa$
$\mathcal{I}(\equiv)^{2} X_{i}$	$\cup X_{i}$	$2 \alpha_{0}+5$	$0-2 \kappa$	$1-2 \kappa$
1	1	0	0	
$\mathcal{I}\left(\mathcal{I}(\equiv)^{3}\right)$	\oplus	$3 \alpha_{0}+8$	$\frac{1}{2}-3 \kappa$	$2-3 \kappa$
\ldots	\ldots	\ldots	．	．．．

Fixed-point equation for $\partial_{t} u=\Delta u-u^{3}+\xi$

$$
\begin{gathered}
u=G *\left[\xi^{\varepsilon}-u^{3}\right]+G u_{0} \quad \Rightarrow \quad U=\mathcal{I}\left(\equiv-U^{3}\right)+\varphi \mathbf{1}+\ldots \\
U_{0}=0 \\
U_{1}=\mathfrak{\imath}+\varphi \mathbf{1} \\
U_{2}=\mathfrak{\imath}+\varphi \mathbf{1}-\boldsymbol{\psi}+3 \varphi \stackrel{Y}{ }+\ldots
\end{gathered}
$$

Fixed-point equation for $\partial_{t} u=\Delta u-u^{3}+\xi$

$$
\begin{gathered}
u=G *\left[\xi^{\varepsilon}-u^{3}\right]+G u_{0} \quad \Rightarrow \quad U=\mathcal{I}\left(\equiv-U^{3}\right)+\varphi \mathbf{1}+\ldots \\
U_{0}=0 \\
U_{1}=\boldsymbol{\bullet}+\varphi \mathbf{1} \\
U_{2}=\boldsymbol{\imath}+\varphi \mathbf{1}-\boldsymbol{\Psi}+3 \varphi \boldsymbol{Y}+\ldots
\end{gathered}
$$

To prove convergence, we need
\triangleright A model $(\Pi, \Gamma): \forall z \in \mathbb{R}^{d+1}, \Pi_{z} \tau$ is distribution describing τ near z $\Gamma_{z \bar{z}} \in \mathcal{G}$ describes translations: $\Pi_{\bar{z}}=\Pi_{z} \Gamma_{z \bar{z}}$
\triangleright Spaces of modelled distributions $\mathcal{D}^{\gamma}=\left\{f: \mathbb{R}^{d+1} \rightarrow \bigoplus_{\beta<\gamma} T_{\beta}:\left\|f(z)-\Gamma_{z \bar{z}} f(\bar{z})\right\|_{\beta} \lesssim\|z-\bar{z}\|_{\mathfrak{s}}^{\gamma-\beta}\right\}$
equipped with a seminorm
\triangleright The Reconstruction theorem: provides a unique map $\mathcal{R}: \mathcal{D}^{\gamma} \rightarrow \mathcal{C}_{\mathfrak{s}}^{\alpha_{*}}$ $\left(\alpha_{*}=\inf A\right)$ s.t. $\left|\left\langle\mathcal{R} f-\Pi_{z} f(z), \eta_{\mathfrak{s}, z}^{\delta}\right\rangle\right| \lesssim \delta^{\gamma}$ (constructed using wavelets)

Canonical model $Z^{\varepsilon}=\left(\Pi^{\varepsilon}, \Gamma^{\varepsilon}\right)$

Defined inductively by

$$
\begin{aligned}
\left(\Pi_{z}^{\varepsilon} \overline{\bar{\prime}}\right)(\bar{z}) & =\xi^{\varepsilon}(\bar{z}) \\
\left(\Pi_{z}^{\varepsilon} X^{k}\right)(\bar{z}) & =(\bar{z}-z)^{k} \\
\left(\Pi_{z}^{\varepsilon} \tau \sigma\right)(\bar{z}) & =\left(\Pi_{z}^{\varepsilon} \tau\right)(\bar{z})\left(\Pi_{z}^{\varepsilon} \sigma\right)(\bar{z})
\end{aligned}
$$

Canonical model $Z^{\varepsilon}=\left(\Pi^{\varepsilon}, \Gamma^{\varepsilon}\right)$

Defined inductively by

$$
\begin{aligned}
\left(\Pi_{z}^{\varepsilon} \overline{\bar{Z}}\right)(\bar{z}) & =\xi^{\varepsilon}(\bar{z}) \\
\left(\Pi_{z}^{\varepsilon} X^{k}\right)(\bar{z}) & =(\bar{z}-z)^{k} \\
\left(\Pi_{z}^{\varepsilon} \tau \sigma\right)(\bar{z}) & =\left(\Pi_{z}^{\varepsilon} \tau\right)(\bar{z})\left(\Pi_{z}^{\varepsilon} \sigma\right)(\bar{z}) \\
\left(\Pi_{z}^{\varepsilon} \mathcal{I}(\tau)\right)(\bar{z}) & =\int G\left(\bar{z}-z^{\prime}\right)\left(\Pi_{z}^{\varepsilon} \tau\right)\left(z^{\prime}\right) \mathrm{d} z^{\prime}
\end{aligned}
$$

Canonical model $Z^{\varepsilon}=\left(\Pi^{\varepsilon}, \Gamma^{\varepsilon}\right)$

Defined inductively by

$$
\begin{aligned}
\left(\Pi_{z}^{\varepsilon} \bar{\Xi}\right)(\bar{z}) & =\xi^{\varepsilon}(\bar{z}) \\
\left(\Pi_{z}^{\varepsilon} X^{k}\right)(\bar{z}) & =(\bar{z}-z)^{k} \\
\left(\Pi_{z}^{\varepsilon} \tau \sigma\right)(\bar{z}) & =\left(\Pi_{z}^{\varepsilon} \tau\right)(\bar{z})\left(\Pi_{z}^{\varepsilon} \sigma\right)(\bar{z}) \\
\left(\Pi_{z}^{\varepsilon} \mathcal{I}(\tau)\right)(\bar{z}) & =\int G\left(\bar{z}-z^{\prime}\right)\left(\Pi_{z}^{\varepsilon} \tau\right)\left(z^{\prime}\right) \mathrm{d} z^{\prime}-\text { polynomial term }
\end{aligned}
$$

Canonical model $Z^{\varepsilon}=\left(\Pi^{\varepsilon}, \Gamma^{\varepsilon}\right)$

Defined inductively by

$$
\begin{aligned}
\left(\Pi_{z}^{\varepsilon} \overline{\bar{Z}}\right)(\bar{z}) & =\xi^{\varepsilon}(\bar{z}) \\
\left(\Pi_{z}^{\varepsilon} X^{k}\right)(\bar{z}) & =(\bar{z}-z)^{k} \\
\left(\Pi_{z}^{\varepsilon} \tau \sigma\right)(\bar{z}) & =\left(\Pi_{z}^{\varepsilon} \tau\right)(\bar{z})\left(\Pi_{z}^{\varepsilon} \sigma\right)(\bar{z}) \\
\left(\Pi_{z}^{\varepsilon} \mathcal{I}(\tau)\right)(\bar{z}) & =\int G\left(\bar{z}-z^{\prime}\right)\left(\Pi_{z}^{\varepsilon} \tau\right)\left(z^{\prime}\right) \mathrm{d} z^{\prime}-\text { polynomial term }
\end{aligned}
$$

Then $\exists \mathcal{K}$ s.t. $\mathcal{R} \mathcal{K} f=G * \mathcal{R} f$ and the following diagrams commute:

where $\alpha_{*}=\inf A$ and $\mathcal{K} f=\mathcal{I} f+$ polynomial term + nonlocal term

Why do we need to renormalise?

Let $G_{\varepsilon}=G * \varrho_{\varepsilon}$ where ϱ_{ε} is the mollifier

$$
\left(\Pi_{\bar{z}}^{\varepsilon} \bullet\right)(z)=\left(G * \xi^{\varepsilon}\right)(z)=\left(G_{\varepsilon} * \xi\right)(z)=\int G_{\varepsilon}\left(z-z_{1}\right) \xi\left(z_{1}\right) d z_{1}
$$

belongs to first Wiener chaos, limit $\varepsilon \rightarrow 0$ well-defined

Why do we need to renormalise?

Let $G_{\varepsilon}=G * \varrho_{\varepsilon}$ where ϱ_{ε} is the mollifier

$$
\left(\Pi_{\bar{z}}^{\varepsilon} \bullet\right)(z)=\left(G * \xi^{\varepsilon}\right)(z)=\left(G_{\varepsilon} * \xi\right)(z)=\int G_{\varepsilon}\left(z-z_{1}\right) \xi\left(z_{1}\right) d z_{1}
$$

belongs to first Wiener chaos, limit $\varepsilon \rightarrow 0$ well-defined

$$
\left(\Pi_{\bar{z}}^{\varepsilon} \mathscr{V}\right)(z)=\left(G * \xi^{\varepsilon}\right)(z)^{2}=\iint G_{\varepsilon}\left(z-z_{1}\right) G_{\varepsilon}\left(z-z_{2}\right) \xi\left(z_{1}\right) \xi\left(z_{2}\right) \mathrm{d} z_{1} \mathrm{~d} z_{2}
$$ diverges as $\varepsilon \rightarrow 0$

Why do we need to renormalise?

Let $G_{\varepsilon}=G * \varrho_{\varepsilon}$ where ϱ_{ε} is the mollifier

$$
\left(\Pi_{\bar{z}}^{\varepsilon} \bullet\right)(z)=\left(G * \xi^{\varepsilon}\right)(z)=\left(G_{\varepsilon} * \xi\right)(z)=\int G_{\varepsilon}\left(z-z_{1}\right) \xi\left(z_{1}\right) d z_{1}
$$

belongs to first Wiener chaos, limit $\varepsilon \rightarrow 0$ well-defined

$$
\left(\Pi_{\bar{z}}^{\varepsilon} \mathscr{V}\right)(z)=\left(G * \xi^{\varepsilon}\right)(z)^{2}=\iint G_{\varepsilon}\left(z-z_{1}\right) G_{\varepsilon}\left(z-z_{2}\right) \xi\left(z_{1}\right) \xi\left(z_{2}\right) \mathrm{d} z_{1} \mathrm{~d} z_{2}
$$

diverges as $\varepsilon \rightarrow 0$
Wick product: $\xi\left(z_{1}\right) \diamond \xi\left(z_{2}\right)=\xi\left(z_{1}\right) \xi\left(z_{2}\right)-\delta\left(z_{1}-z_{2}\right)$

$$
\left(\Pi_{\bar{z}}^{\varepsilon} \mathscr{V}\right)(z)=\underbrace{\iint G_{\varepsilon}\left(z-z_{1}\right) G_{\varepsilon}\left(z-z_{2}\right) \xi\left(z_{1}\right) \diamond \xi\left(z_{2}\right) \mathrm{d} z_{1} \mathrm{~d} z_{2}}_{\text {in 2nd Wiener chaos, bdd }}+\underbrace{\int G_{\varepsilon}\left(z-z_{1}\right)^{2} \mathrm{~d} z_{1}}_{C_{1}(\varepsilon) \rightarrow \infty}
$$

Renormalised model: $\left(\widehat{\Pi}_{\bar{z}}^{\varepsilon} \cup \mathscr{V}\right)(z)=\left(\Pi_{\bar{z}}^{\varepsilon} \cup\right)(z)-C_{1}(\varepsilon)$

The case of the FitzHugh-Nagumo equations

Fixed-point equation

$$
\begin{aligned}
& u(t, x)=G *\left[\xi^{\varepsilon}+u-u^{3}+v\right](t, x)+G u_{0}(t, x) \\
& v(t, x)=\int_{0}^{t} u(s, x) \mathrm{e}^{(t-s) a_{2}} a_{1} \mathrm{~d} s+\mathrm{e}^{t a_{2}} v_{0}
\end{aligned}
$$

Lifted version

$$
\begin{aligned}
U & =\mathcal{I}\left[\equiv+U-U^{3}+V\right]+G u_{0} \\
V & =\mathcal{E} U+Q v_{0}
\end{aligned}
$$

where \mathcal{E} is an integration map which is not regularising in space New symbols $\mathcal{E}(\mathcal{I}(\Xi))=\dot{\AA}$, etc...

We expect U, and thus also V to be α-Hölder for $\alpha<-\frac{1}{2}$ Thus $\mathcal{I}\left(U-U^{3}+V\right)$ should be well-defined

The standard theory has to be extended, because \mathcal{E} does not correspond to a smooth kernel

Concluding remarks

\triangleright Models with $\partial_{t} u$ of order $u^{4}+v^{4}$ and $\partial_{t} v$ of order $u^{2}+v$ should be renormalisable
Current approach does not work when singular part (t, x)-dependent
\triangleright Global existence: recent progress by J.-C. Mourrat and H. Weber on 2D Allen-Cahn
\triangleright More quantitative results?

References

\triangleright Martin Hairer, A theory of regularity structures, Invent. Math. 198 (2), pp 269-504 (2014)

- Martin Hairer, Introduction to Regularity Structures, lecture notes (2013)
\triangleright Ajay Chandra, Hendrik Weber, Stochastic PDEs, regularity structures, and interacting particle systems, preprint arXiv/1508.03616
\triangleright N. B., Christian Kuehn, Regularity structures and renormalisation of FitzHugh-Nagumo SPDEs in three space dimensions, preprint arXiv/1504.02953

Details on implementing \mathcal{E}

Problems:
\triangleright Fixed-point equation requires diagonal identity $\left(\Pi_{t, x} \tau\right)(t, x)=0$
\triangleright Usual definition of \mathcal{K} would contain Taylor series

$$
\begin{aligned}
& \mathcal{J}(z) \tau=\sum_{|k|_{s}<\alpha} \frac{X^{k}}{k!} \int D^{k} G(z-\bar{z})\left(\Pi_{z} \tau\right)(\mathrm{d} \bar{z}) \\
& \mathcal{N} f(z)=\sum_{|k|_{s}<\gamma} \frac{X^{k}}{k!} \int D^{k} G(z-\bar{z})\left(\mathcal{R} f-\Pi_{z} f(z)\right)(\mathrm{d} \bar{z})
\end{aligned}
$$

Details on implementing \mathcal{E}

Problems:

\triangleright Fixed-point equation requires diagonal identity $\left(\Pi_{t, x} \tau\right)(t, x)=0$
\triangleright Usual definition of \mathcal{K} would contain Taylor series

$$
\begin{aligned}
& \mathcal{J}(z) \tau=\sum_{|k|_{s}<\alpha} \frac{X^{k}}{k!} \int D^{k} G(z-\bar{z})\left(\Pi_{z} \tau\right)(\mathrm{d} \bar{z}) \\
& \mathcal{N} f(z)=\sum_{|k|_{s}<\gamma} \frac{X^{k}}{k!} \int D^{k} G(z-\bar{z})\left(\mathcal{R} f-\Pi_{z} f(z)\right)(\mathrm{d} \bar{z})
\end{aligned}
$$

Solution:
\triangleright Define $\Pi \mathcal{E} \tau$ only if $-2<|\tau|_{\mathfrak{s}}<0$ (otherwise $\left.\mathcal{E} \tau=0\right) \Rightarrow \mathcal{J}(z) \tau=0$
\triangleright Define \mathcal{K} only for $f=\sum_{|\tau|_{s}<0} c_{\tau} \tau+\sum_{|\tau|_{s} \geqslant 0} c_{\tau}(t, x) \tau=: f_{-}+f_{+}$ \Rightarrow can take $\mathcal{R} f=\Pi_{t, x} f(t, x)$ and thus $\mathcal{N} f=0$ for these f
\triangleright Time-convolution with Q lifted to

$$
\left(\mathcal{K}^{Q} f\right)(t, x)=\sum_{|\tau|_{s}<0} c_{\tau} \mathcal{E} \tau+\sum_{|\tau|_{\mathfrak{s}} \geqslant 0} \int Q(t-s) c_{\tau}(s, x) \mathrm{d} s \tau=:\left(\mathcal{E} f_{-}+\mathcal{Q} f_{+}\right)(t, x)
$$

Fixed-point equation

Consider $\partial_{t} u=\Delta_{u}+F(u, v)+\xi$ with F a polynomial of degree 3 If (U, V) satisfies fixed-point equation

$$
\begin{aligned}
U & =\mathcal{I}[\bar{\Xi}+F(U, V)]+G u_{0}+\text { polynomial term } \\
V & =\mathcal{E} U_{-}+\mathcal{Q} U_{+}+Q v_{0}
\end{aligned}
$$

then $(\mathcal{R} U, \mathcal{R} V)$ is solution, provided $\mathcal{R} F(U, V)=F(\mathcal{R} U, \mathcal{R} V)$

Fixed-point equation

Consider $\partial_{t} u=\Delta_{u}+F(u, v)+\xi$ with F a polynomial of degree 3 If (U, V) satisfies fixed-point equation

$$
\begin{aligned}
U & =\mathcal{I}[\bar{Z}+F(U, V)]+G u_{0}+\text { polynomial term } \\
V & =\mathcal{E} U_{-}+\mathcal{Q} U_{+}+Q v_{0}
\end{aligned}
$$

then $(\mathcal{R} U, \mathcal{R} V)$ is solution, provided $\mathcal{R} F(U, V)=F(\mathcal{R} U, \mathcal{R} V)$
Fixed point is of the form

Fixed-point equation

Consider $\partial_{t} u=\Delta_{u}+F(u, v)+\xi$ with F a polynomial of degree 3 If (U, V) satisfies fixed-point equation

$$
\begin{aligned}
U & =\mathcal{I}[\bar{Z}+F(U, V)]+G u_{0}+\text { polynomial term } \\
V & =\mathcal{E} U_{-}+\mathcal{Q} U_{+}+Q v_{0}
\end{aligned}
$$

then $(\mathcal{R} U, \mathcal{R} V)$ is solution, provided $\mathcal{R} F(U, V)=F(\mathcal{R} U, \mathcal{R} V)$
Fixed point is of the form
\triangleright Prove existence of fixed point in (modification of) \mathcal{D}^{γ} with $\gamma=1+\bar{\kappa}$
\triangleright Extend from small interval $[0, T]$ up to first exit from large ball
\triangleright Deal with renormalisation procedure

Renormalisation

\triangleright Renormalisation group: group of linear maps $M: T \rightarrow T$ Associated model: Π_{z}^{M} s.t. $\Pi^{M} \tau=\Pi M \tau$ where $\Pi_{z}=\Pi \Gamma_{f_{z}}$ Allen-Cahn eq.: $M=\mathrm{e}^{-C_{1} L_{1}-C_{2} L_{2}}$ with $L_{1}: V \rightarrow \mathbf{1}, L_{2}: \vdots \rightarrow \mathbf{1}$ FHN eq.: the same group suffices because Q is smoothing

Renormalisation

\triangleright Renormalisation group: group of linear maps $M: T \rightarrow T$ Associated model: Π_{z}^{M} s.t. $\Pi^{M} \tau=\Pi M \tau$ where $\Pi_{z}=\Pi \Gamma_{f_{z}}$
Allen-Cahn eq.: $M=\mathrm{e}^{-C_{1} L_{1}-C_{2} L_{2}}$ with $L_{1}: V \rightarrow \mathbf{1}, L_{2}: Q \rightarrow \mathbf{1}$ FHN eq.: the same group suffices because Q is smoothing
\triangleright Look for r.v. $\widehat{\Pi}_{z} \tau$ s.t. if $\widehat{\Pi}_{z}^{(\varepsilon)}=\left(\Pi_{z}^{(\varepsilon)}\right)^{M_{\varepsilon}}$ then $\exists \kappa, \theta>0$ s.t.

$$
\mathbb{E}\left|\left\langle\widehat{\Pi}_{z} \tau, \eta_{z}^{\lambda}\right\rangle\right|^{2} \lesssim \lambda^{2|\tau|_{\mathfrak{s}}+\kappa} \quad \mathbb{E}\left|\left\langle\widehat{\Pi}_{z} \tau-\widehat{\Pi}_{z}^{(\varepsilon)} \tau, \eta_{z}^{\lambda}\right\rangle\right|^{2} \lesssim \varepsilon^{2 \theta} \lambda^{2|\tau|_{\mathfrak{s}}+\kappa}
$$

Then $\left(\widehat{\Pi}_{z}^{(\varepsilon)}, \widehat{\Gamma}_{z}^{(\varepsilon)}\right)$ converges to limiting model, with explicit L^{p} bounds

Renormalisation

\triangleright Renormalisation group: group of linear maps $M: T \rightarrow T$ Associated model: Π_{z}^{M} s.t. $\Pi^{M} \tau=\Pi M \tau$ where $\Pi_{z}=\Pi \Gamma_{f_{z}}$
Allen-Cahn eq.: $M=\mathrm{e}^{-C_{1} L_{1}-C_{2} L_{2}}$ with $L_{1}: V \rightarrow \mathbf{1}, L_{2}: \vdots \rightarrow \mathbf{1}$
FHN eq.: the same group suffices because Q is smoothing
\triangleright Look for r.v. $\widehat{\Pi}_{z} \tau$ s.t. if $\widehat{\Pi}_{z}^{(\varepsilon)}=\left(\Pi_{z}^{(\varepsilon)}\right)^{M_{\varepsilon}}$ then $\exists \kappa, \theta>0$ s.t.

$$
\mathbb{E}\left|\left\langle\widehat{\Pi}_{z} \tau, \eta_{z}^{\lambda}\right\rangle\right|^{2} \lesssim \lambda^{2|\tau|_{\mathfrak{s}}+\kappa} \quad \mathbb{E}\left|\left\langle\widehat{\Pi}_{z} \tau-\widehat{\Pi}_{z}^{(\varepsilon)} \tau, \eta_{z}^{\lambda}\right\rangle\right|^{2} \lesssim \varepsilon^{2 \theta} \lambda^{2|\tau|_{\mathfrak{s}}+\kappa}
$$

Then $\left(\widehat{\Pi}_{z}^{(\varepsilon)}, \widehat{\Gamma}_{z}^{(\varepsilon)}\right)$ converges to limiting model, with explicit L^{p} bounds
\triangleright Renormalised equations have nonlinearity \widehat{F} s.t.
$\widehat{F}(M U, M V)=M F(U, V)+$ terms of Hölder exponent >0
FHN eq. with cubic nonlinearity
$F=\alpha_{1} u+\alpha_{2} v+\beta_{1} u^{2}+\beta_{2} u v+\beta_{3} v^{2}+\gamma_{1} u^{3}+\gamma_{2} u^{2} v+\gamma_{3} u v^{2}+\gamma_{4} v^{3}$ $\widehat{F}(u, v)=F(u, v)-c_{0}(\varepsilon)-c_{1}(\varepsilon) u-c_{2}(\varepsilon) v$ with the $c_{i}(\varepsilon)$ depending on C_{1}, C_{2}, provided either $d=2$ or $\gamma_{2}=0$

