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Cahn-Hilliard-Cook equation

The equation

∂tu = −∆(ε2∆u + f (u))

+ ∂tW ,

f derivative of a double well potential, (e.g. f (u) = u − u3)

∂tW derivative of a Q-Wiener process.

I A model for relative concentration of an alloy after quenching.
I Dynamics dominated by strongly unstable space.
I Initial condition: constant homogeneous concentration u = m.

I Perturbation causes spinodal decomposition.
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Spinodal decomposition
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Linearisation

I Good approximation by linearisation in m:

∂tu = −(ε2∆2 + ∆f ′(m))u + ∂tW on [0, 1]2.

L2-basis: ek,l(x) = C cos(kπx) cos(lπy).
I Assuming Qek,l = α2

k,lek,l , the solution is the stochastic convolution∑
k,l∈N

αk,l

∫ t

0
e(t−s)λk,l dBk,l(s)ek,l .

I The strong subspace is

Rγε := {(k, l) ∈ N2 : λk,l > γλmax}, γ ∈ (0, 1).

I Projecting there we have that at fixed time t the solution is well
approximated by

u(x , y) ≈
∑

(k,l)∈Rε

αk,lck,l · cos(kπx) cos(lπy), ck,l Gaussians.
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Cosine series
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Some comments

We have

Rε = {(k , l) ∈ N2| α	 <
√

(kε)2 + (lε)2 < α⊕},

(growing and moving with ε→ 0), with

α⊕ =

√
1 +
√
1− γ

2π2 and α	 =

√
1−
√
1− γ

2π2 with γ ∈ (0, 1).

We restrict to

f (x , y) =
∑

(k,l)∈Rε

ck,l ·cos(kπx) cos(lπy), x , y ∈ [0, 1]2 ck,l ∼ N(0, 1) i.i.d.

Note that f is neither stationary nor isotropic; its law might change
under translation or rotation (as a function extended to R2).
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Snake like pattern

Patterns like this one appear in other models (reaction-diffusions, . . . )
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The question

Question
What is the characteristic thickness of the pattern (i.e. snake-like
structures) in our model f (x , y), on the unit square (x , y) ∈ [0, 1]2?

Candidate answer
In the previous picture (and similar simulations) the average thickness
appears to be 2πε.

Strategy
To address the question, we draw a straight line across the unit square
and we count the (average) number of zeros of f on that segment, then
we divide the length of the segment by the number of zeros,.
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Strategy

Count number of zeros on lines and divide length of segment by it.
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How many zeros of a random polynomial?

Definition (Equator of a point and a curve)

Let P ∈ Sn. P⊥ is the hyperplane ⊥ to PO in O, intersected with Sn.
Let γ(t) rectifiable, then γ⊥ = {P⊥|P ∈ γ}.

Definition (Multiplicity and area swept out)

Multiplicity of Q ∈ ∪γ⊥ is #{t ∈ R|q ∈ γ(t)⊥} (equators containing Q).
|γ⊥| is the integral of multiplicity over ∪γ⊥ (area swept out by equators).

Lemma
If γ is a rectifiable curve, |γ| its length,

|γ⊥|
area Sn

=
|γ|
π
.
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Where are the random polynomials?

Let p(x) = anx
n + · · ·+ a1x + a0, and consider

a = (a0, a1, a2, . . . , an), v(t) = (1, t, t2, . . . , tn).

t is a zero of p(x) iff a ⊥ v(t). Project w(t) = v(t)/‖v(t)‖ (and a to ā).
Number of 0s of p(x) is number of times ā is swept by an equator, which
is the multiplicity of ā in w⊥.

Assume ai ∼ N(0, 1) iid, then ā is uniform on Sn, as the joint density is a
function of the radius only.
Let now En be the expected number of zeros. It is the portion of the
surface swept out (with multiplicity), so

En =
|w⊥|

area Sn
=
|w |
π
.

Now we only need to compute the length of w , using Kac’s formula.
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A theorem by Edelman and Kostlan

Theorem (Edelman&Kostlan, 1995)

Let v(x) = (g0(x), . . . , gn(x))T be any collection of differentiable
functions and c0, . . . , cn be independent and identically distributed
Gaussians centred in 0. Given the function

h(x) =
n∑

k=0

ck · gk(x),

the density of real zeros of h on an interval I is

δ(x) =
1
π

∥∥∥∥ d
dx

w(x)

∥∥∥∥
Rn

, where w(x) =
v(x)

‖v(x)‖Rn

.

The expected number of real zeros of h on I is then∫
I

δ(x) dx .

13/35



Main result

We need to introduce, in the spirit of the previous theorem, the following
notation:

wt(x) =

 cos(kπx) cos(lπt)√∑
m,n∈Rε

cos2(mπx) cos2(nπt)


(k,l)∈Rε

Wt(x) =

∥∥∥∥∥
(

d
dx

wt(x)

)
(k,l)∈Rε

∥∥∥∥∥
2

=
S3

S1
−
(
S2

S1

)2

where we have

S1 =
∑

m,n∈Rε

cos2(mπx) cos2(nπt)

S2 =
∑

m,n∈Rε

mπ cos(mπx) sin(mπx) cos2(nπt)

S3 =
∑

m,n∈Rε

m2π2 sin2(mπx) cos2(nπt).
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Main result (cont.)

Let
Lt = {(x , t) : x ∈ [0, 1]} for t ∈ [0, 1].

Theorem
For any γ ∈ (0, 1) and any horizontal line Lt for x , t ∈ (0, 1) the function
Wt(x) defined on Lt behaves asymptotically as (2ε)−2 for ε→ 0.
This means that the average number of zeros is (2πε)−1, so the mean
pattern size is 2πε.
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Dependency on γ

Remark
The result is independent of γ, even if the number of Fourier modes
involved is much smaller for γ ≈ 1 than for γ ≈ 0. As we can see , while
the average asymptotic pattern size along lines remains the same, the
domain with higher γ looks more organized. The pattern seems to be
“more regular” in some sense.

(γ = 0.1 and γ = 0.9)
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Ergodic Theory

Theorem (Birkhoff ergodic theorem)

Let (X , µ) be a probability space. If T is µ-invariant and ergodic and g is
integrable, then for a.e. z ∈ X

lim
N→∞

1
N

N∑
k=1

g
(
T k (z)

)
=

∫
X

g(ζ) dµ(ζ).

Moreover if T is continuous and uniquely ergodic with measure µ and if
g is continuous, then the limit holds for all z ∈ X (instead of a.e.).

Example
The map z 7→ z + α on the unit circle is uniquely ergodic if and only if α
is irrational. In this case the unique ergodic measure is the Lebesgue
measure.
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Weighted averaging condition

Requirement (Weighted averaging condition)

Let ([0, 1]d , λ) be the probability space with the Lebesgue-measure λ.
We say that (f , (am)) with f : [0, 1]d → R continuous and extended by
periodicity to Rd and am ∈ R fulfils the weighted averaging condition, if
for every x0 ∈ [0, 1]d , every α ∈ Nd and

QL =
d⊗

i=1

[1, . . . , αiL] ∩ Nd ,

the following holds:

1∑
m∈QL

am

∑
m∈QL

am · f (m1x
0
1 ,m2x

0
2 , . . . ,mdx

0
d ) −−−→

L→∞

∫
[0,1]d

f (x) dx .

For any open set M ⊂ Rd
+ we define the (scaled) projection

ML = (L ·M) ∩ Nd .
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Weighted averaging condition (cont.)

Lemma
Let (f , (am)) fulfil the weighted averaging condition with the weights a
generating a measure. Then for any open measurable set S ⊂ Rd

+

1
|SL|a

∑
m∈SL

am · f (m1x
0
1 ,m2x

0
2 , . . . ,mdx

0
d )

L→∞−−−→
∫
[0,1]d

f (x) dx .

Q1
L

Q2
L

Q3
L

RL
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Weights generating measures

Requirement (Generation of measures)

We require that the weights a = (am) generate a measure λa on Rd
+

which is equivalent to the Lebesgue measure λ, i.e. there exists an α > 0
such that for each set with open interior M ⊂ Rd

+,

L−α|ML|a
L→∞−−−→ λa(M).

Example
Consider ak,l = k2 in dimension d = 2.

L−4|ML|a = L−4
∑

(k,l)∈L·M

k2 =
∑

(k,l)∈M∩ 1
LN2

k2L−2 −−−→
L→∞

∫
M

ξ2 d(ξ, η) .

The measure λ(k2,1) has a Lebesgue-density (ξ, η) 7→ ξ2. The density is
a. e. strictly positive, so the measures λ(k2,1) and λ are equivalent.
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Key Lemma

Lemma
For x , t ∈ (0, 1),

lim
ε→0

1
|Rε|
· S1 =

1
4
, lim

ε→0
ε2 · S3

S1
=

1
4
, lim

ε→0
ε · S2

S1
= 0,

where the Si are

S1 =
∑

m,n∈Rε

cos2(mπx) cos2(nπt)

S2 =
∑

m,n∈Rε

mπ cos(mπx) sin(mπx) cos2(nπt)

S3 =
∑

m,n∈Rε

m2π2 sin2(mπx) cos2(nπt).
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Proof of key lemma (sketch)

We consider only the case x , t /∈ Q.
First limit. We can use Birkhoff’s ergodic theorem. Define
Tx(z) = z + x : this is a measure-preserving and uniquely ergodic
transformation (since x 6∈ Q). Then

1
N

N−1∑
k=0

cos2(πkx) =
1
N

N−1∑
k=0

cos2
(
πT k

x (0)
) N→∞−−−−→

∫ 1

0
cos2(πx) dx =

1
2
.

All the coefficients am are 1 in this case and the function is
multiplicative. Then the result follows immediately from previous lemma
and the fact that∫

[0,1]2
cos2(πx1) cos2(πx2) d(x1, x2) =

1
4
.
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Proof of key lemma (sketch)

Second limit. The asymptotic behaviour is (by previous limit)

ε2
S3

S1
∼ 4π2 ε2

|Rε|
·
∑

k,l∈Rε

k2 sin2(kπx) cos2(lπt).

By previous example

lim
ε→0

ε2 · |Rε|a
|Rε|

= lim
ε→0

ε2 · 1
|Rε|

∑
k,l∈Rε

k2 =
λa(R)

λ(R)
=

1
4π2 ,

where the rescaled domain is

R = {(η, ξ) ∈ R2| α	 <
√
ξ2 + η2 < α⊕},

We can check on rectangles and then on the quarter ring that

ε2 · S3

S1
∼ 4π2ε2 · |Rε|a

|Rε|
· 1
|Rε|a

·
∑

k,l∈Rε

k2 sin2(kπx) cos2(lπt) −−−→
ε→0

1
4
.
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Proof of theorem

Proof of main theorem.
From key lemma:

Wt(x) =
S3

S1
−
(
S2

S1

)2

∼ 1
4ε2

as ε→ 0.

By E-K’s theorem, the number of expected zeros on the horizontal line Lt
of length 1 is, for a given ε,

N =
1
π

∫ 1

0

√
1
4ε2

dx =
1

2π · ε
.

This is the same as saying that the average pattern size is 1
N = 2πε.
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Fast convergence

To get an idea of the speed of convergence, let’s consider the rescaled
density of zeros εδ(x).
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0
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Asymptotic result

Now, fix x0 ∈ (0, 1) and look at εδ(x0) as ε→ 0.

1.5 2 2.5 3 3.5
1e-3

1e-2

1e-1

1e+0

n, where ε = 10−n

ε
·δ

(x
0
)

x0 = 10−1

x0 = 10−2

x0 = 10−3
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Other Fourier domains

Lemma
Let Dε = ε−1D ∩ N2 be a scaled domain in Fourier space. Then

δ(x) ∼ 1
2πε
·

√
λ(k2,1)(D)

λ(D)
, δ(x) ∼ 1

2πε
·

√
λ(1,l2)(D)

λ(D)
,

respectively on horizontal and vertical lines.

Proof.
Analogous to the one of the key lemma. We obtain the following
asymptotic equivalences

δ(x)2 ∼ S3

S1
∼ 1

4
·
|Dε|(k2,1)

|Dε|
∼ 1

4ε2
·
λ(k2,1)(D)

λ(D)
.

30/35



Examples of Fourier domains

k

l

k1 k2

k1

k2

Rγε

k

l

k2

k2

Q1
ε

k

l

k1 k2

k1

k2

Q2
ε

k

l

k1 k2

2 · k1

k1 + k2

Q3
ε
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Corresponding patterns

x

y

x

y

x

y

x

y

R0.7
0.01 Q1

0.01

Q2
0.01 Q3

0.01
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Some numbers

Domain Corr. coeff. Avg. # 0s Avg. # 0s (sampled)

R0.7
0.01 1 15.915 (×1) 16.413

Q1
0.01 1.032 16.167 (×1.016) 16.984

Q2
0.01 1.891 21.887 (×1.375) 21.931

Q3
0.01 (hor.) 1.891 21.887 (×1.375) 21.931

Q3
0.01 (ver.) 5.374 36.894 (×2.318) 37.315.

The correction coefficient depends on γ (the quarter ring is a special
case!).
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Further generalisations

I Relax iid and equal variance assumption on coefficients. (Free, using
the fact that E-K result holds for a more general family of gaussian
random coefficients).

I Spaces of higher dimension?
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EOF

Thank you for your attention!
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