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Aim of the project:
@ Understand aging in the dynamics of (real) spin glasses.

@ Prove Bouchaud’s aging heuristics.

Outline
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@ Bouchaud’s trap model
@ History of proving Bouchaud's heuristics
@ Metropolis dynamics of the REM



Introduction

Mean-field spin glasses

State space. Yy = {—1,+1}"
Hamiltonians.
o SK model. For z € Xy,

HN(Z') = N_1/2 Z JijZL'iiCj7 Jij'S i.i.d. ./V-(O7 1)
.3

i.e. Hy is a Gaussian process on Xy with covariance

E[HN(z)Hn(y)]

(§z-y)°

@ p-spin SK model.
E[Hy(z)Hn(y)] = (52 - y)”
e Random Energy Model (REM). a formal p — oo limit

Hy(z) are i.id.

Gibbs measure. 7, = BV NHN(2)



Introduction

Dynamic rules
Desirable properties of the dynamics.

Markov process (X¢);>0 on X

@ nearest-neighbour = single spin flip
@ T is reversible for X
°

attracted to states with large 7

Possible transition rates.

o Metropolis dynamics.

wM = e_Bﬁ(HN(GC)—HN(y))Jr =1A Ty

oy 7
o Asymmetric Bouchaud’ dynamics. a € [0,1]

Wy, = T;‘_lT; if v ~y.
@ Random Hopping Time (RHT) dynamics.

wlAT — 71 if z ~y.

Ty T



Aim

Understand aging!

Remarks.

@ We want to understand out-of-equilibrium behaviour of finite-state reversible
Markov chains

@ These chains have random transition rules = random environment

@ The mixing time grows as Ty,ix ~ e,

Energy Landscape
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Bouchaud's trap model
= a toy model to explain the aging behaviour of (real) spin glasses

State space. {1,...,n}

Hamiltonian. (Ei)i=1,...n i.i.d. standard exponential r.v.'s

Gibbs measure. T = PP Then Plr; > u] = u= /5.
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Transition rates. wE™ — 147
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BTM is a time change of the simple random walk Y on the complete graph!



Bouchaud's trap model

= a toy model to explain the aging behaviour of (real) spin glasses

State space. {1,...,n}
Hamiltonian. (Ei)i=1,...n i.i.d. standard exponential r.v.'s
Gibbs measure. T = PP Then Plr; > u] = u= /5.
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Transition rates. wE™ — 147
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BTM is a time change of the simple random walk Y on the complete graph!

Theorem (Bouchaud 1992)
Ifa:=1/8 €(0,1), 8 > 1, then for a.e. realisation of T's

n—o00,t—00

PBTMIX (1) = X(0t)] =272 Asl, (6) € (0,1).




Bouchaud’s trap model

Proof of Bouchaud's theorem

o Take first n — oo: Y;'s are "i.i.d. uniform over N"
@ As consequence: Ty,'s are i.i.d., Plry, > u] = v~

o Let Sy be the time of the k-th jump of X. Then

k=1
Sy = E eTy;
=0

@ By standard convergence results
_ k . .
EYoS, 2225 Va(t), where V,, is an a-stable Lévy process

@ Conclusion:
P [X(t) = X(01)] = ﬁTfM[{S j=>0}n[t, 0t = 0]



And now ...?

Simplifications of the BTM:
@ Hypercube Xy is replaced by the complete graph K,
@ It considers the RHT dynamics
© Hamiltonian is i.i.d.

@ (Energies are exponential instead of Gaussian.)

Question.

Can we confirm the aging heuristics based on the convergence
to Lévy processes for a dynamics of a mean-field spin glass?



History of proving Bouchaud's heuristic
Ben Arous, Bovier, Gayrard (2003): REM (truncated at 0), RHT
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History of proving Bouchaud’s heuristic
Ben Arous, Bovier, Gayrard (2003): REM (truncated at 0), RHT

Ben Arous, C. (2008): REM, RHT
Let Sy be time of k-th jump, Y a SRW on X . Then

k—1
Se=3 ey,  X(t)=Y(57(1).
§=0

Theorem

P-a.s. under PRHT

where o € (0,1) and

Scales choice.

P[r, > ut(N)] = P[?V VNG > ui(N)] ~ o

- r(N)



History of proving Bouchaud's heuristic (2)

RHT dynamics:
e Z% 1, i.id., Plr, > u] ~ u~%, RHT:
» Ben Arous-C-Mountford (2006),
Mourrat (2011),
Gayrard-Svejda (2013),
Fontes-Mathieu (2014)

e REM, RTH, new techniques: Gayrard (2010,2012)

vvYyy

o p-spin model, RHT: Ben Arous-Bovier-C.
e 7% 1, coming from GFF, RHT: Louidor et al. 2015+

Non-RHT dynamics:
e 7% Asymmetric Bouchaud's dynamics, 7 i.i.d.:
> Barlow-C. (2011) d > 3,
> € (2011) d =2.
» Gayrard-Svejda (2014)
e K, Asymmetric Bouchaud's dynamics: Gayrard (2010,2012)
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Non-RHT dynamics

Recall -
M y -1 .
u)Iy:l/\T—z7 Wy =Ty Ty, if x ~y.
The rate depend on the target vertex. = X is not a time change of the SRW.

A similar trick can be done: replace the SRW by a Markov chain with same
transition probabilities as X but whose equilibrium measure is flat.

Let Y by the chain with transition rates

q% =Tu N Ty, Qoy = TuTys if z~y.
Define .
S(t) / TYSdS.
0
Then

X(t)=Y(57'(1).
But ... Y dependson 7. It is a RWRC.
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Ingredients of the proof
Goal: Show for some ¢(N), r(N) — oo that

ﬁS(sr(N)) Mooy (g).

Step 1. Ignore “small” traps: There is a scale p(N) — oo such that for

(1) = / v {7y, > p(N)} ds

the processes S and & are very close, é((:((%)))) — 1.

And then ...: For Ty = {z: 7, > pn} we should know how Y visits T.
e E.[Hr,] for a “typical” z

Ey[Hpy\ (23] for z € Ty

rescaled hitting times are asymptotically exponential

]
e FE,[“time spent in z before escaping”].
@ Approximate & by an i.i.d. sequence, compute Laplace transform . ..

12 /20



Metropolis dynamics of the REM

Difficulties in the REM

‘Singularity’ of the Metropolis dynamics:
Let x € T

@ typically all its neighbours are not in Ty

o Let y1, yo be the sites with the first and second maximal energy over the
neighbours of z.

Hy(y1) ~ /2log N, Hy(y1) — Hy(y2) ~ 1/4/2log N.
o Recall ¢} =7, A7y. So

M
Gy, Tae N\ Ty, Ty

=20 T e {BVN(Hy(y2) — Hy (1))} 2222 0.
b = T = T o3Vt () ~ H )

@ Bouchaud’s asymmetric dynamics has the same property if a > 0.

Y is very different from the SRW.
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Metropolis dynamics of the REM

Recent works on asymmetric dynamics

e Mathieu-Mourrat (2015): REM with the Asymmetric Bouchaud's
dynamics, but with ¢ = ay < ¢y/log(N)/N — 0.

a

Yoy = sz = exp{BaVN(Hy(y2) — Hn(11))}

a
szl Y2

remains non-negligible as N — oo

o Gayrard (2014): Truncated REM with the Metropolis dynamics.
Replace Hy(z) by Hy(z)1{Hn(z) > un}

P[Hy(z) # 0] < eN ™3

As consequence, typically, all neighbours of z € T have the same energy.

Y recovers certain features of the SRW and (non-trivial) extensions of usual
techniques apply, that is Sy converges to a stable process.
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Metropolis dynamics of the REM

Theorem (C-Wassmer (2015))

Let o € (0,1) such that § < 255 < 1. Then,

ﬁS(sRN) LE_ WAt

in PM_distribution, in P-probability where
o t(N) = ¢*°N as before.

15 /20




Metropolis dynamics of the REM

Theorem (C-Wassmer (2015))

Let o € (0,1) such that § < 255 < 1. Then,

1 N
WS(SRN) ﬂ) VQ(S)
in PM_distribution, in P-probability where
o t(N) = ¢*°N as before.

e Ry are random, o (7, : x € ¥ y)-measurable. But, as before,

N—o0 a2ﬂ2

1
—log R .
N ol 2log2

@ The process Yy should be modified slightly.
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Metropolis dynamics of the REM

Theorem (C-Wassmer (2015))

Let o € (0,1) such that § < 255 < 1. Then,

1 N
WS(SRN) ﬂ VQ(S)
in PM_distribution, in P-probability where
o t(N) = ¢*°N as before.

e Ry are random, o (7, : x € ¥ y)-measurable. But, as before,

N—o0 a2ﬂ2

1
—log R .
N ol 2log2

@ The process Yy should be modified slightly.

The theorem confirms BTM universality class for the Metropolis of the REM, at
the level of convergence of the clock.
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Modified process Y

; M _

Natural choice of Y. Recall ¢, = 7, A 7y.

+ has the same transition probabilities as X
+ has uniform invariant measure

— is trapped on sites with 7, << 1

— its mixing time grows exponentially with N

Modified Y. Set
M_ Tz ATy

Goy = 1AT,’

T =1AT,

@ + has the same transition probabilities as X

@ = its invariant measure 7 is uniform on sites with large energy
@ + its mixing time Tiix = o(N®)

S(t) = /Ot(l V Ty, )ds, X(t) = Y(S7L(¢)).
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Ingredients of the proof

o Exponentiality of hitting times. Aldous-Brown (1992), A C &,
Ha Trix
Pt 2] = of )
== TNEm,

log ExHp, ~ cN
For z € Ty, Ez[HTN\{z}] 777
Staying time in x € Ty 777

17 /20



|deas of the proof.

Laplace transform computation.

@ Lemma. P-as. thereis no z,y € Ty such that z ~ y.
TT/\T7/
IAT,

o We may average over those first.

ET{exp{ — /\6(%%]\([;\7))}} ~ exp{ — CA“h(N) xEZT:N ESR(N)(x)O‘},

@ As consequence, q% = do not depend on 7.,z € Ty.

where (;(z) is the local time of Y at time ¢ at site z, and h(N) is explicit.

@ Prove concentration

N) S gy (@) T2 s
€Ty
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Conclusions

Open questions

Can Ry be made deterministic?
Asymmetric Bouchaud’s dynamics?

Aging in terms of the usual two-point functions?

Correlated spin glasses?
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Conclusions

Thank you for your attention.
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