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Aim of the project:
Understand aging in the dynamics of (real) spin glasses.
Prove Bouchaud’s aging heuristics.
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Introduction

Mean-field spin glasses
State space. ΣN = {−1,+1}N

Hamiltonians.
SK model. For x ∈ ΣN ,

HN (x) = N−1/2
∑
i,j

Jijxixj , Jij ’s i.i.d. N (0, 1).

i.e. HN is a Gaussian process on ΣN with covariance

E[HN (x)HN (y)] = ( 1
N x · y)2

p-spin SK model.
E[HN (x)HN (y)] = ( 1

N x · y)p

Random Energy Model (REM). a formal p →∞ limit

HN (x) are i.i.d.

Gibbs measure. τx = eβ
√

NHN (x)
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Introduction

Dynamic rules
Desirable properties of the dynamics.

Markov process (Xt)t≥0 on ΣN

nearest-neighbour = single spin flip
τ is reversible for X
attracted to states with large τ

Possible transition rates.
Metropolis dynamics.

wM
xy = e−β

√
N(HN (x)−HN (y))+

= 1 ∧ τy
τx

if x ∼ y.

Asymmetric Bouchaud’ dynamics. a ∈ [0, 1]

wa
xy = τa−1

x τa
y if x ∼ y.

Random Hopping Time (RHT) dynamics.

wRHT
xy = τ−1

x if x ∼ y.
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Introduction

Aim

Understand aging!

Remarks.
We want to understand out-of-equilibrium behaviour of finite-state reversible
Markov chains
These chains have random transition rules = random environment
The mixing time grows as Tmix ∼ ecN .

Energy Landscape      −50
    −100
    −150
    −200
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Bouchaud’s trap model

Bouchaud’s trap model
= a toy model to explain the aging behaviour of (real) spin glasses

State space. {1, . . . ,n}

Hamiltonian. (Ei)i=1,...,n i.i.d. standard exponential r.v.’s

Gibbs measure. τi = eβEi . Then P[τi ≥ u] = u−1/β .

Transition rates. wBTM
ij = 1

(n − 1)τi
, i 6= j

BTM is a time change of the simple random walk Y on the complete graph!

Theorem (Bouchaud 1992)
If α := 1/β ∈ (0, 1), θ > 1, then for a.e. realisation of τ ’s

PBTM
unif [X(t) = X(θt)] n→∞,t→∞−−−−−−−→ Aslα(θ) ∈ (0, 1).
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Bouchaud’s trap model

Proof of Bouchaud’s theorem
Take first n →∞: Yi ’s are “i.i.d. uniform over N”

As consequence: τYi ’s are i.i.d., P[τYi ≥ u] = u−α.

Let Sk be the time of the k-th jump of X . Then

Sk =
k−1∑
j=0

eiτYi

By standard convergence results

k−1/αSkt
k→∞−−−→ Vα(t), where Vα is an α-stable Lévy process

Conclusion:

PBTM
unif [X(t) = X(θt)] = PBTM

unif [{Sj : j ≥ 0} ∩ [t, θt] = ∅]
t→∞−−−→ Aslα(θ).
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Bouchaud’s trap model

And now . . . ?

Simplifications of the BTM:

1 Hypercube ΣN is replaced by the complete graph Kn

2 It considers the RHT dynamics

3 Hamiltonian is i.i.d.

4 (Energies are exponential instead of Gaussian.)

Question.

Can we confirm the aging heuristics based on the convergence
to Lévy processes for a dynamics of a mean-field spin glass?
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History

History of proving Bouchaud’s heuristic
Ben Arous, Bovier, Gayrard (2003): REM (truncated at 0), RHT
Ben Arous, Č. (2008): REM, RHT
Let Sk be time of k-th jump, Y a SRW on ΣN . Then

Sk =
k−1∑
j=0

eiτYi , X(t) = Y (S−1(t)).

Theorem
P-a.s. under PRHT

1
t(N )S(sr(N )) N→∞−−−−→ Vα(s)

where α ∈ (0, 1) and

t(N ) = eαβ
2N , r(N ) = Q(N )eα

2β2N/2 � 2N .

Scales choice.

P
[
τx ≥ ut(N )

]
= P

[
eβ
√

NHN (x) ≥ ut(N )
]
∼ 1

r(N )u−α
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History

History of proving Bouchaud’s heuristic (2)
RHT dynamics:

Zd , τx i.i.d., P[τx ≥ u] ∼ u−α, RHT:
I Ben Arous-Č-Mountford (2006),
I Mourrat (2011),
I Gayrard-Švejda (2013),
I Fontes-Mathieu (2014)

REM, RTH, new techniques: Gayrard (2010,2012)

p-spin model, RHT: Ben Arous-Bovier-Č.

Zd , τx coming from GFF, RHT: Louidor et al. 2015+

Non-RHT dynamics:
Zd , Asymmetric Bouchaud’s dynamics, τx i.i.d.:

I Barlow-Č. (2011) d ≥ 3,
I Č. (2011) d = 2.
I Gayrard-Švejda (2014)

Kn, Asymmetric Bouchaud’s dynamics: Gayrard (2010,2012)
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History

Non-RHT dynamics
Recall

wM
xy = 1 ∧ τy

τx
, wa

xy = τa−1
x τa

y , if x ∼ y.

The rate depend on the target vertex. =⇒ X is not a time change of the SRW.

A similar trick can be done: replace the SRW by a Markov chain with same
transition probabilities as X but whose equilibrium measure is flat.

Let Y by the chain with transition rates

qM
xy = τx ∧ τy, qa

xy = τa
x τ

a
y , if x ∼ y.

Define
S(t) =

∫ t

0
τYs ds.

Then
X(t) = Y (S−1(t)).

But . . . Y depends on τ . It is a RWRC.
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History

Ingredients of the proof
Goal: Show for some t(N ), r(N )→∞ that

1
t(N )S(sr(N )) N→∞−−−−→ Vα(s).

Step 1. Ignore “small” traps: There is a scale ρ(N )→∞ such that for

S(t) =
∫ t

0
τYs 1{τYS ≥ ρ(N )} ds

the processes S and S are very close, S(r(N))
S(r(N)) → 1.

And then . . . : For TN = {x : τx ≥ ρN} we should know how Y visits TN .
Ex [HTN ] for a “typical” x
Ex [HTN\{x}] for x ∈ TN

rescaled hitting times are asymptotically exponential
Ex [“time spent in x before escaping”].
Approximate S by an i.i.d. sequence, compute Laplace transform . . .
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Metropolis dynamics of the REM

Difficulties in the REM
‘Singularity’ of the Metropolis dynamics:
Let x ∈ TN

typically all its neighbours are not in TN

Let y1, y2 be the sites with the first and second maximal energy over the
neighbours of x.

HN (y1) ∼
√

2 log N , HN (y1)−HN (y2) ∼ 1/
√

2 log N .

Recall qM
xy = τx ∧ τy. So

qM
xy2

qM
xy1

= τx ∧ τy2

τx ∧ τy2

= τy2

τy2

= exp{β
√

N (HN (y2)−HN (y1))} N→∞−−−−→ 0.

Bouchaud’s asymmetric dynamics has the same property if a > 0.

Y is very different from the SRW.
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Metropolis dynamics of the REM

Recent works on asymmetric dynamics

Mathieu-Mourrat (2015): REM with the Asymmetric Bouchaud’s
dynamics, but with a = aN ≤ c

√
log(N )/N → 0.

qa
xy2

qa
xy1

=
τa

y2

τa
y2

= exp{βa
√

N (HN (y2)−HN (y1))}

remains non-negligible as N →∞
Gayrard (2014): Truncated REM with the Metropolis dynamics.
Replace HN (x) by HN (x)1{HN (x) ≥ uN}

P[HN (x) 6= 0] ≤ cN−3

As consequence, typically, all neighbours of x ∈ TN have the same energy.

Y recovers certain features of the SRW and (non-trivial) extensions of usual
techniques apply, that is SN converges to a stable process.
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Metropolis dynamics of the REM

Metropolis dynamics of the REM

Theorem (Č-Wassmer (2015))
Let α ∈ (0, 1) such that 1

2 <
α2β2

2 log 2 < 1. Then,

1
t(N )S(sRN ) N→∞−−−−→ Vα(s)

in PM -distribution, in P-probability where
t(N ) = eαβ2N as before.
RN are random, σ(τx : x ∈ ΣN )-measurable. But, as before,

1
N log RN

N→∞−−−−→ α2β2

2 log 2 .

The process YN should be modified slightly.

The theorem confirms BTM universality class for the Metropolis of the REM, at
the level of convergence of the clock.
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Metropolis dynamics of the REM

Modified process Y
Natural choice of Y . Recall qM

xy = τx ∧ τy.
+ has the same transition probabilities as X
+ has uniform invariant measure
− is trapped on sites with τx << 1
− its mixing time grows exponentially with N

Modified Y . Set
qM

xy = τx ∧ τy
1 ∧ τx

, πx = 1 ∧ τx

+ has the same transition probabilities as X
± its invariant measure π is uniform on sites with large energy
+ its mixing time Tmix = o(N 5)

S(t) =
∫ t

0
(1 ∨ τYs )ds, X(t) = Y (S−1(t)).
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Metropolis dynamics of the REM

Ingredients of the proof

Exponentiality of hitting times. Aldous-Brown (1992), A ⊂ Σ,

Pπ
[ HA

EπHA
≥ u

]
= e−u + O

( Tmix

EπHA

)

log EπHTN ∼ cN
For x ∈ TN , Ex [HTN\{x}] ???
Staying time in x ∈ TN ???
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Metropolis dynamics of the REM

Ideas of the proof.

Laplace transform computation.
Lemma. P-a.s. there is no x, y ∈ TN such that x ∼ y.
As consequence, qM

xy = τx∧τy
1∧τx

do not depend on τx , x ∈ TN .
We may average over those first.

ET
[

exp
{
− λS(sR(N ))

t(N )

}]
∼ exp

{
− Cλαh(N )

∑
x∈TN

`sR(N)(x)α
}
,

where `t(x) is the local time of Y at time t at site x, and h(N ) is explicit.
Prove concentration

h(N )
∑

x∈TN

`tR(N)(x)α N→∞−−−−→ s

18 / 20



Conclusions

Open questions

Can RN be made deterministic?
Asymmetric Bouchaud’s dynamics?
Aging in terms of the usual two-point functions?
Correlated spin glasses?
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Conclusions

Thank you for your attention.
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