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Polarity of points

Polarity of points for random fields

Let U = (U(x), x ∈ Rk) be an Rd -valued continuous stochastic process.

Fix I ⊂ Rk , compact with positive Lebesgue measure.

The range of U over I is the random compact set

U(I ) = {U(x), x ∈ I}.

Question. Fix z ∈ Rd . Is z hit by U, that is,

P{∃x ∈ I : U(x) = z} > 0 ?

Polarity. If P{∃x ∈ I : U(x) = z} = 0, then z is polar for U.

Typically, there is a critical value Q(k) such that:

- if d < Q(k), then points are not polar.

- if d > Q(k), then points are polar.

- at the critical valued d = Q(k): ???
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The Brownian sheet

First example: the Brownian sheet

Let (W (x), x ∈ Rk
+) denote an k-parameter Rd -valued Brownian sheet, that is,

a centered continuous Gaussian random field

W (x) = (W1(x), . . . ,Wd(x))

with covariance

E [Wi (x)Wj(y)] = δi,j

k∏
`=1

min(x`, y`), i , j ∈ {1, . . . , d},

where x = (x1, . . . , xk) and y = (y1, . . . , yk).

The case k = 1: Brownian motion B = (B(t), t ∈ R+).

The case k > 1: multi-parameter extension of Brownian motion.

A few references: Orey & Pruitt (1973), R. Adler (1978), W. Kendall (1980),
J.B. Walsh (1986), D. & Walsh (1992), Khoshnevisan & Shi (1999)

D. Khoshnevisan, Multiparameter processes, Springer (2002).
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The Brownian sheet

Hitting probabilities for the Brownian sheet

Let (W (x), x ∈ Rk
+) denote a k-parameter Rd -valued Brownian sheet.

Theorem 1 (Khoshnevisan and Shi, 1999)

Fix M > 0 and 0 < a` < b` <∞ (` = 1, . . . , k). Let

I = [a1, b1]× · · · × [ak , bk ] (⊂ Rk).

There exists 0 < C <∞ such that for all compact sets A ⊂ B(0,M) (⊂ Rd),

1

C
Capd−2k(A) 6 P{W (I ) ∩ A 6= ∅} 6 C Capd−2k(A).

(see also F. Hirsch and S. Song (1991, 1995).

Example. A = {z}.

Capd−2k({z}) =

{
1 if d < 2k,
0 if d > 2k,

so points are polar in the critical dimension d = 2k.
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Other Gaussian processes

Anisotropic Gaussian random fields (Biermé, Lacaux & Xiao, 2007)

Let (V (x), x ∈ Rk) be a centered continuous Gaussian random field with
values in Rd with i.i.d. components: V (x) = (V1(x), . . . ,Vd(x)). Set

∆(x , y) = ‖V1(x)− V1(y)‖L2

Let I be a “rectangle”. Assume the two conditions:
(C1) There exists 0 < c <∞ and H1, . . . ,Hk ∈ ]0, 1[ such that for all x ∈ I ,

c−1 6 ∆(0, x) 6 c,

and for all x , y ∈ I ,

c−1
k∑

j=1

|xj − yj |Hj 6 ∆(x , y) 6 c
k∑

j=1

|xj − yj |Hj

(Hj is the Hölder exponent for coordinate j).

(C2) There is c > 0 such that for all x , y ∈ I ,

Var(V1(y) | V1(x)) > c
k∑

j=1

|xj − yj |2Hj .
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Other Gaussian processes

Anisotropic Gaussian fields

Theorem 2 (Biermé, Lacaux & Xiao, 2007)

Fix M > 0. Set

Q =
k∑

j=1

1

Hj
.

Then there is 0 < C <∞ such that for every compact set A ⊂ B(0,M),

C−1 Capd−Q(A) 6 P{V (I ) ∩ A 6= ∅} 6 CHd−Q(A).

Example. A = {z}

Capd−Q({z}) =


1 if d < Q,
0 if d = Q,
0 if d > Q,

Hd−Q({z}) =


∞ if d < Q,
1 if d = Q,
0 if d > Q.

If d = Q, Theorem 2 says: 0 6 P{∃x ∈ I : V (x) = z} 6 1 (not informative)!
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Other Gaussian processes

Funaki’s random string

Let (u(t, x), (t, x) ∈ R+ × R) be an Rd -valued random field such that

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + Ẇ (t, x), x ∈ R, t > 0,

u(0, ·) : R→ Rd given, Ẇ (t, x) is space-time white noise.

Theorem 3 (Mueller & Tribe, 2002)

The critical dimension for hitting points is d = 6 and points are polar in this
dimension.

Their proof uses the “stationary pinned string,” then scaling and time reversal
(method of Paul Lévy).

It does not apply to the wave equation, nor to heat equation with deterministic
non-constant coefficients, such as

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + σ(t, x)Ẇ (t, x),

where (t, x) 7→ σ(t, x) is deterministic but not constant.

(They also treat the issue of double points for this random field)
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u(0, ·) : R→ Rd given, Ẇ (t, x) is space-time white noise.

Theorem 3 (Mueller & Tribe, 2002)

The critical dimension for hitting points is d = 6 and points are polar in this
dimension.

Their proof uses the “stationary pinned string,” then scaling and time reversal
(method of Paul Lévy).
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Non-Gaussian random fields

Systems 1d nonlinear wave equations

Let (u(t, x), (t, x) ∈ R+ × R) be an Rd -valued random field such that

∂2

∂t2
u(t, x) =

∂2

∂x2
u(t, x) + b(u(t, x)) + σ(u(t, x))Ẇ (t, x), x ∈ R, t > 0,

u(0, ·), ∂
∂t
u(0, ·) : R→ Rd given,

Ẇ (t, x) is space-time white noise, v 7→ b(v) and v 7→ σ(v) Lipschitz.

Theorem 4 (D. & E. Nualart, 2004)

The critical dimension for hitting points is d = 4 and points are polar in this
dimension.

The proof uses Malliavin calculus and Cairoli’s maximal inequality for
multi-parameter martingales.
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Non-Gaussian random fields

Other nonlinear systems of spde’s

Let u = {u(t, x), (t, x) ∈ R+ × Rk} be an Rd -valued continuous process that
solves a system of nonlinear heat equations (k > 1) driven by Ẇ .

When k = 1, Ẇ can be space-time white noise: E [Ẇ (t, x)Ẇ (s, y)] = δ(t − s) δ(x , y)

When k > 1, Ẇ is spatially homogeneous: E [Ẇ (t, x)Ẇ (s, y)] = δ(t − s) ‖x − y‖−β

Theorem 5 (D., Khoshnevisan & Nualart, 2007, 2013)

Fix η > 0. Then

cηCapd−Q+η(A) 6 P{u(I × J) ∩ A 6= ∅} 6 CηHd−Q−η(A)

Remarks. (a) This is similar to the result of Biermé, Lacaux and Xiao (2007).
(b) In the critical dimension d = Q (= 4+2k

2−β ), this is not informative!

(c) For wave equations (k ∈ {1, 2, 3}): see D. & Sanz-Solé, Memoirs AMS
2015, lower bound is less sharp.
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Standard argument

Polarity of points in dimensions > the critical dimension

Case k = 1, d > 3: let (W (t), t ∈ R+) be a standard Brownian motion with
values in R3. Want to explain why it does not hit points.
Explanation. A.a. points are polar ←→ λd(W ([1, 2])) = 0 (Fubini)
Let tk = 1 + k2−2n. Then

W ([1, 2]) ⊂
22n⋃
k=1

B(W (tk), sup
|t−tk |62−2n

|W (t)−W (tk)|)

so

λd(W ([1, 2])) 6
22n∑
k=1

λd(B(W (tk), sup
|t−tk |62−2n

|W (t)−W (tk)|))

=
22n∑
k=1

[
sup

|t−tk |62−2n

|W (t)−W (tk)|

]d

6
22n∑
k=1

c
[
n2−n]d = cnd2(2−d)n → 0 a.s. as n→ +∞ (because d > 3).

We covered W ([1, 2]) using a uniform partition of the parameter space [1, 2].
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Talagrand’s idea for fBM

A non-uniform partition

Let X = {X (t), t ∈ Rk}, be an Rd -valued fractional Brownian motion:
E [|X (t)− X (s)|2] = d · |t − s|2α, where 0 < α < 1.

Theorem 6 (Talagrand, 1998)

There are constants δ > 0 and K <∞ with the following property: Given
r0 6 δ and t0 ∈ Rk , we have

P

∃r ∈ [r2
0 , r0] : sup

t: |t−t0|6r
|X (t)− X (t0)| 6 K

rα[
log log 1

r

]α
k

 > 1−exp

[
−
[

log
1

r0

] 1
2

]

Interpretation. It is quite likely that there will be an r > 0 such that
increments of X in the ball centered at t0 of radius r are smaller than is typical.

Utilization. Many points t0 will have this property, so if d = Q(k) (= k/α),
then he can use a non-uniform partition and smaller balls to create a covering
 the d-dimensional Hausdorff measure of the range of t 7→ X (t) is 0.
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∃r ∈ [r2
0 , r0] : sup

t: |t−t0|6r
|X (t)− X (t0)| 6 K

rα[
log log 1

r

]α
k

 > 1−exp

[
−
[

log
1

r0

] 1
2

]

Interpretation. It is quite likely that there will be an r > 0 such that
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Talagrand’s idea for fBM

Harmonizable representation of fBM

Talagrand makes essential use of:

Fact. Let Ẇ1 and Ẇ2 be independent white noises on Rk . Then

Y (t) =

∫
Rk

1− cos〈t, ξ〉
|ξ|α+ k

2

Ẇ1(dξ) +

∫
Rk

sin〈t, ξ〉
|ξ|α+ k

2

Ẇ2(dξ)

is an fBM. (The ξ plays the role of a frequency.)

Another representation (that looks more like a solution of an spde), such as:

Y (t) :=

∫
Rk

(|t − x |α−
k
2 − |x |α−

k
2 )Ẇ (dx)

Passing from one to the other: set ft(x) := |t − x |α−
k
2 − |x |α−

k
2 , so

Y (t) = 〈Ẇ , ft〉 = 〈FẆ ,F f ∨t 〉
law
= 〈Ẇ ,F f ∨t 〉

and F f ∨t (ξ) =
exp(i〈t, ξ〉)− 1

|ξ|α+ k
2

. Then take real parts.
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Fact. Let Ẇ1 and Ẇ2 be independent white noises on Rk . Then

Y (t) =

∫
Rk

1− cos〈t, ξ〉
|ξ|α+ k

2
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Talagrand’s idea for fBM

Use of the harmonizable representation

It has the form

Y (t) =

∫
Rk

Ft(ξ)Ẇ (dξ),

where ξ 7→ Ft(ξ) has a specified decay as ξ →∞.
Define a white noise:

A 7→ Y (A, t) :=

∫
A

Ft(ξ)Ẇ (dξ)

When Ft(ξ) is smooth and has appropriate decay as ξ →∞, it can happen that

|t − s| ∼ 2−n/β ⇒ Y (t)− Y (s) ∼ Y ([2n, 2n+1[, t)− Y ([2n, 2n+1[, s)

“most of the increment of Y over an interval of length 2−n/β comes from the
contribution of Y ([2n, 2n+1[, t).

Further, for distinct n, the Y ([2n, 2n+1[, t) are independent!
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Extension to other Gaussian processes

Extension to a wide class of anisotropic Gaussian processes

Suppose that

‖v(x)− v(y)‖L2 6 C
k∑

j=1

|xj − yj |αj =: ∆(x , y)

(the αj bound the Hölder-exponents of x 7→ v(x))
+ Additional Assumptions (that include a kind of harmonizable representation).

Proposition (D., Mueller & Xiao)

Let

Q =
k∑

j=1

1

αj
.

Under the above assumptions,

P

{
∃r ∈ [r2

0 , r0] : sup
y :∆(y,x0)<r

|v(y)− v(x0)| 6 K̃
r

(log log 1
r

)1/Q

}
>1−exp

[
−
[

log
1

r0

] 1
2

]
.
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Extension to other Gaussian processes

Main abstract result

Let v = (v(x), x ∈ Rk) be a centered continuous Rd -valued Gaussian random
field with i.i.d. components: v(x) = (v1(x), . . . , vd(x)).

Suppose in particular that

c
k∑

j=1

|xj − yj |αj 6 ‖v(x)− v(y)‖L2 6 C
k∑

j=1

|xj − yj |αj

+ Additional Assumptions.
Recall that the critical dimension is:

Q =
k∑

j=1

1

αj

Theorem 1 (D., Mueller & Xiao)

Assume that Q = d. Then for any closed box J and for all z ∈ RQ ,

P{∃x ∈ J : v(x) = z} = 0.

(Points are polar for v)
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SPDE’s

Linear systems of stochastic p.d.e.’s

Heat equations, spatial dimension 1, space-time white noise

Let v̂ = (v̂(t, x), t ∈ R+, x ∈ R) solve
∂
∂t
v̂j(t, x) = ∂2

∂x2 v̂j(t, x) + ˙̂Wj(t, x), j = 1, . . . , d ,

v(0, x) = 0, x ∈ Rk .
(1)

Here, v̂(t, x) = (v̂1(t, x), . . . , v̂d(t, x))

Corollary 1

Suppose d = 6 (critical dimension). Then points are polar for v̂ .

Proof. Check the Assumptions, using the harmonizable representation

v(t, x) =

∫
R

∫
R
e−iξ·x e

−iτ t − e−t|ξ|2

|ξ|2 − iτ
W (dτ, dξ).

(This representation also appears in R. Balan, 2012). Method also works with
smooth deterministic non-constant coefficients.
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SPDE’s

Explanation

Let G(s, y) = (4πt)−1/2 exp[−y 2/(4t)], so that

v̂(t, x) =

∫
[0,t]×R

G(t − s, x − y) Ŵ (ds, dy)

Then

v̂(t, x) = 〈 ˙̂W , G(t−·, x−·)〉 = 〈F ˙̂W , FG∨(t−·, x−·)〉 = 〈white noise, F(t,x)〉

where

F(t,x)(τ, ξ) = Fs,yG
∨(t − ·, x − ·)(τ, ξ) = e−iξx e

−iτ t − e−t|ξ|2

|ξ|2 − iτ
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SPDE’s

Checking the Assumptions

For A ⊂ R, set

v(A, t, x) :=

∫∫
max(|τ |

1
4 , |ξ|

1
2 )∈A

e−iξx e
−iτ t − e−tξ2

ξ2 − iτ
W (dτ, dξ),

Need to check:

‖v([0, a[, t, x)− v([0, a[, s, y)‖L2 6 c0

[
a3|t − s|+ a|x − y |

]
where 3 = ( 1

4
)−1 − 1 and 1 = ( 1

2
)−1 − 1, and

‖v([b,∞[, t, x)− v([b,∞[, s, y)‖L2 6 c0 b
−1

Proving the inequality requires estimating double integrals.
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SPDE’s

Linear systems of stochastic heat equations with nonconstant coefficients

Let v̂ = (v̂(t, x), t ∈ R+, x ∈ Rk) solve
∂
∂t
v̂j(t, x) = ∆v̂j(t, x) + σj(t, x) ˙̂Wj(t, x), j = 1, . . . , d ,

v(0, x) = 0, x ∈ Rk .

The harmonizable representation is:

vj(t, x) =

∫
R

∫
Rk

Wj(dτ, dξ)(Fs,y G̃t,x ∗ Fs,yσj)(τ, ξ).

Assumption. Fs,yσj is a measure µj with compact support (i.e. σ is much
smoother than the noise).
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SPDE’s

Linear systems of stochastic p.d.e.’s (2)

Heat equations, spatial dimension k > 1, spatially homogeneous noise:
E [Ẇ (t, x)Ẇ (s, y)] = δ(t − s) ‖x − y‖−β (0 < β < 2 ∧ k)

Let v̂ = (v̂(t, x), t ∈ R+, x ∈ Rk) solve
∂
∂t
v̂j(t, x) = ∆v̂j(t, x) + ˙̂Wj(t, x), j = 1, . . . , d ,

v(0, x) = 0, x ∈ Rk .

Corollary 2

Suppose d = 4+2k
2−β (critical dimension). Then points are polar for v̂ .

Proof. Check Assumptions, using the harmonizable representation

v(t, x) =

∫
R

∫
Rk

e−iξ·x e
−iτ t − e−t|ξ|2

|ξ|2 − iτ
|ξ|(β−k)/2 W (dτ, dξ)
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E [Ẇ (t, x)Ẇ (s, y)] = δ(t − s) ‖x − y‖−β (0 < β < 2 ∧ k)

Let v̂ = (v̂(t, x), t ∈ R+, x ∈ Rk) solve
∂
∂t
v̂j(t, x) = ∆v̂j(t, x) + ˙̂Wj(t, x), j = 1, . . . , d ,

v(0, x) = 0, x ∈ Rk .

Corollary 2

Suppose d = 4+2k
2−β (critical dimension). Then points are polar for v̂ .

Proof. Check Assumptions, using the harmonizable representation

v(t, x) =

∫
R

∫
Rk

e−iξ·x e
−iτ t − e−t|ξ|2

|ξ|2 − iτ
|ξ|(β−k)/2 W (dτ, dξ)

Polarity of points for systems of linear spde’s in critical dimensions Robert C. Dalang 21 / 24



SPDE’s

Linear systems of stochastic p.d.e.’s (3)

Wave equations, spatial dimension 1, space-time white noise

Let v̂ = (v̂(t, x), t ∈ R+, x ∈ R) solve
∂2

∂t2 v̂j(t, x) = ∂2

∂x2 v̂j(t, x) + ˙̂Wj(t, x), j = 1, . . . , d ,

v̂(0, x) = 0, ∂
∂t
v̂(0, x) = 0, x ∈ R.

Corollary 3

Suppose d = 4 (critical dimension). Then points are polar for v̂ .

Proof. Check Assumptions, using the harmonizable representation

v(t, x) =

∫
R

∫
R

e−iξ·x−iτ t

2|ξ|

[
1− e it(τ+|ξ|)

τ + |ξ| − 1− e it(τ−|ξ|)

τ − |ξ|

]
W (dτ, dξ).

(This representation also appears in R. Balan, 2012).
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SPDE’s

Linear systems of stochastic p.d.e.’s (4)

Wave equations, spatial dimension k > 1, spatially homogeneous noise
E [Ẇ (t, x)Ẇ (s, y)] = δ(t − s) ‖x − y‖−β (0 < β < 2)
Let v̂ = (v̂(t, x), t ∈ R+, x ∈ R) solve

∂2

∂t2 v̂j(t, x) = ∆v̂j(t, x) + ˙̂Wj(t, x), j = 1, . . . , d ,

v̂(0, x) = 0, ∂
∂t
v̂(0, x) = 0, x ∈ Rk .

Corollary 4

Suppose 1 < β < k ∧ 2, and d = 2(k+1)
2−β (critical dimension). Then points are

polar for v̂ ,

Proof. Check Assumptions, using the harmonizable representation

v(t, x) =

∫
R

∫
R

e−iξ·x−iτ t

2|ξ|

[
1− e it(τ+|ξ|)

τ + |ξ| − 1− e it(τ−|ξ|)

τ − |ξ|

]
|ξ|(β−k)/2 W (dτ, dξ).
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