Stochastic Dynamical Systems and Climate Modeling

BIRS, Banff, Canada 15–20 April 2007

Geometric singular perturbation theory: Application to simple stochastic climate models

Barbara Gentz, University of Bielefeld http://www.math.uni-bielefeld.de/~gentz

Joint work with Nils Berglund, CPT, Marseille

This will be a talk on mathematics. In case you're bored ...

Seminar BINGO!

h .

ш

ш

ш

п

ш ш

ш

ш 1

ш

ш ш

11

.

н

ш

ш

ш

ш

н

ш

ш

ш ш

ш ш

н

П

ш

н

Ш ш

ш

н

sili.

To play, simply print out this bingo sheet and attend a departmental seminar.

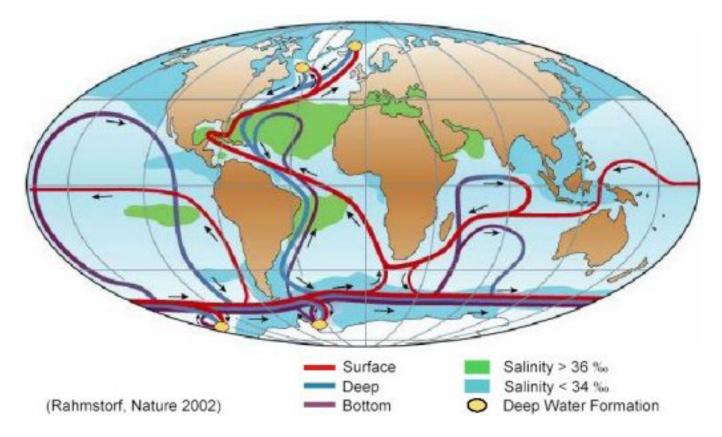
Mark over each square that occurs throughout the course of the lecture.

The first one to form a straight line (or all four corners) must yell out BINGO!! to win! 2

S E <u>M</u>	INA	R		
Β		Ν	G	0
Speaker bashes previous work	Repeated use of "um…"	Speaker sucks up to host professor	Host Professor falls asleep	Speaker wastes 5 minutes explaining outline
Laptop malfunction	Work ties in to Cancer/HIV or War on Terror	"et al."	You're the only one in your lab that bothered to show up	Blatant typo
Entire slide filled with equations	"The data <i>clearly</i> shows"	FREE Speaker runs out of time	Use of Powerpoint template with blue background	References Advisor (past or present)
There's a Grad Student wearing same clothes as yesterday	Post-doc	"That's an interesting question"	"Beyond the scope of this work"	Master's student bobs head fighting sleep
Speaker forgets to thank collaborators	Cell phone goes off	You've no idea what's going on	"Future work will"	Results conveniently show improvement

WWW. PHDCOMICS. COM

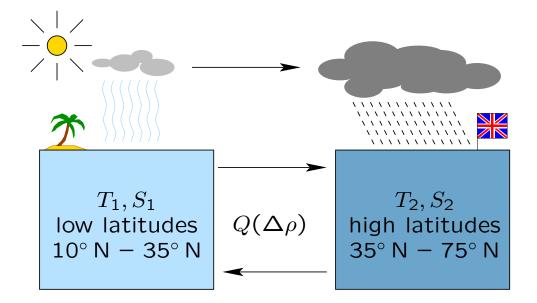
Thermohaline Circulation (THC)



- ▷ "Realistic" models (GCMs, EMICs): Numerical analysis
- Simple conceptual models: Analytical results
- ▷ In particular: Box models

North-Atlantic THC: Stommel's Box Model ('61)

 $T_i: \text{ Temperatures}$ $S_i: \text{ Salinities}$ F: Freshwater flux $Q(\Delta \rho): \text{ Mass exchange}$ $\Delta \rho = \alpha_S \Delta S - \alpha_T \Delta T$ $\Delta T = T_1 - T_2$ $\Delta S = S_1 - S_2$



$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}s} \Delta T = -\frac{1}{\tau_r} (\Delta T - \theta) - Q(\Delta \rho) \Delta T \\ \frac{\mathrm{d}}{\mathrm{d}s} \Delta S = \frac{S_0}{H} F - Q(\Delta \rho) \Delta S \end{cases}$$

Model for Q [Cessi '94]: $Q(\Delta \rho) = \frac{1}{\tau_d} + \frac{q}{V} (\Delta \rho)^2$

Stommel's box model as a slow–fast system

Separation of time scales: $\tau_r \ll \tau_d$

Rescaling: $x = \Delta_T/\theta$, $y = (\alpha_S/\alpha_T)(\Delta S/\theta)$, $s = \tau_d t$

$$\begin{cases} \varepsilon \dot{x} = -(x-1) - \varepsilon x [1 + \eta^2 (x-y)^2] \\ \dot{y} = \mu - y [1 + \eta^2 (x-y)^2] \end{cases}$$

 $\varepsilon = \tau_r / \tau_d \ll 1$

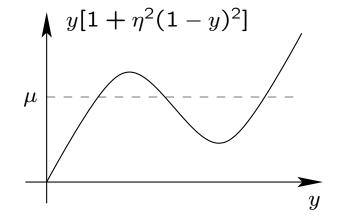
Slow manifold $(\varepsilon \dot{x} = 0)$:

 $x = x^{\star}(y) = 1 + \mathcal{O}(\varepsilon)$

Reduced equation on slow manifold:

$$\dot{y} = \mu - y[1 + \eta^2 (1 - y)^2 + \mathcal{O}(\varepsilon)]$$

1 or 2 stable equilibria, depending on freshwater flux μ (and η)



5

Geometric singular perturbation theory

General slow-fast system

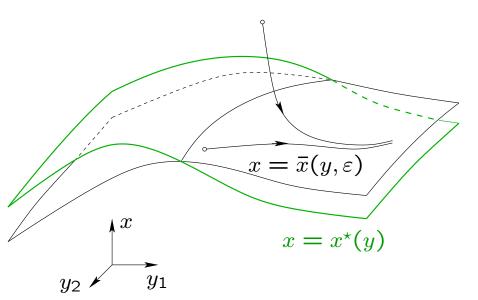
 $\begin{cases} \varepsilon \dot{x} = f(x, y) & \text{(fast variables} \in \mathbb{R}^n) \\ \dot{y} = g(x, y) & \text{(slow variables} \in \mathbb{R}^m) \end{cases}$

▷ Slow manifold: f = 0 for $x = x^*(y)$ ▷ Stability: e.v. of $\partial_x f(x^*(y), y)$ have real parts $\Re(\lambda_i(y)) < 0$

Assume
$$\Re(\lambda_i(y)) \leq -\delta < 0 \quad \forall y$$

Theorem [Tihonov '52, Fenichel '79] \exists adiabatic manifold $x = \bar{x}(y, \varepsilon)$ s.t.

▷
$$\bar{x}(y,\varepsilon)$$
 is invariant
▷ $\bar{x}(y,\varepsilon)$ attracts nearby solutions
▷ $\bar{x}(y,\varepsilon) = x^{\star}(y) + O(\varepsilon)$



Random dynamical systems

Random perturbations: One-dim. slowly driven systems

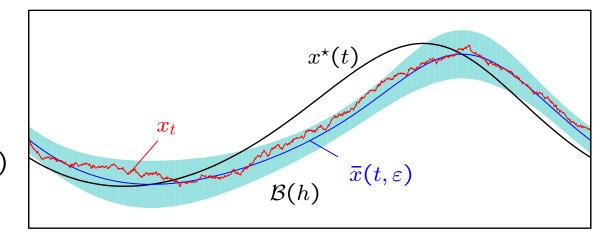
$$dx_t = \frac{1}{\varepsilon} f(x_t, t) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

Stable slow manifold / stable equilibrium branch $x^{\star}(t)$:

$$f(x^{\star}(t),t) = 0$$
, $a^{\star}(t) = \partial_x f(x^{\star}(t),t) \leq -a_0$

Adiabatic solution: $\bar{x}(t,\varepsilon) = x^{*}(t) + \mathcal{O}(\varepsilon)$

 $\mathcal{B}(h)$: strip around $\bar{x}(t, \varepsilon)$ of width $\simeq h/|a^{\star}(t)|$



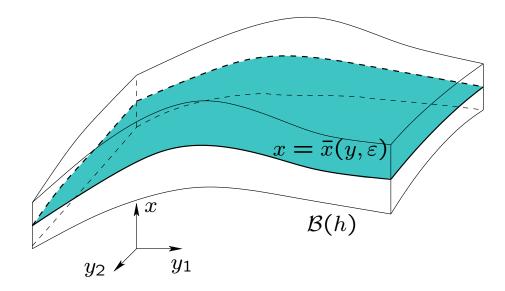
Theorem [Berglund & G '02], [Berglund & G '05]

$$\mathbb{P}\left\{x_t \text{ leaves } \mathcal{B}(h) \text{ before time } t\right\} \simeq \sqrt{\frac{2}{\pi}} \frac{1}{\varepsilon} \left|\int_0^t a^*(s) \,\mathrm{d}s\right| \frac{h}{\sigma} \,\mathrm{e}^{-h^2/2\sigma^2}$$

Random perturbations: General slow–fast systems

$$\begin{cases} dx_t = \frac{1}{\varepsilon} f(x_t, y_t) \ dt + \frac{\sigma}{\sqrt{\varepsilon}} F(x_t, y_t) \ dW_t & \text{(fast variables } \in \mathbb{R}^n) \\ dy_t = g(x_t, y_t) \ dt + \sigma' \ G(x_t, y_t) \ dW_t & \text{(slow variables } \in \mathbb{R}^m) \end{cases}$$

Stable slow manifold: $f(x^{\star}(y), y) = 0$, $A^{\star}(y) = \partial_x f(x^{\star}(y), y)$ stable



$$\mathcal{B}(h) := \left\{ (x, y) : \left\langle \left[x - \bar{x}(y, \varepsilon) \right], X^{\star}(y)^{-1} \left[x - \bar{x}(y, \varepsilon) \right] \right\rangle < h^2 \right\}$$

 $X^{*}(y)$ sol. of $A^{*}(y)X^{*} + X^{*}A^{*}(y)^{\top} + F(x^{*}(y), y)F(x^{*}(y), y)^{\top} = 0$

Random perturbations: General slow–fast systems

$$dx_t = \frac{1}{\varepsilon} f(x_t, y_t) dt + \frac{\sigma}{\sqrt{\varepsilon}} F(x_t, y_t) dW_t \qquad (fast variables \in \mathbb{R}^n)$$

$$dy_t = g(x_t, y_t) dt + \sigma' G(x_t, y_t) dW_t \qquad (slow variables \in \mathbb{R}^m)$$

Theorem [Berglund & G '03]

- $\mathbb{P}\left\{(x_t, y_t) \text{ leaves } \mathcal{B}(h) \text{ before time } t\right\} \simeq C_{n,m}(t,\varepsilon) \, \mathrm{e}^{-\kappa h^2/2\sigma^2}$ with $\kappa = 1 \mathcal{O}(h) \mathcal{O}(\varepsilon)$ (provided y_t does not drive the system away from the region where assumptions are satisfied)
- \triangleright Reduction to adiabatic manifold $\bar{x}(y,\varepsilon)$:

 $dy_t^0 = g(\bar{x}(y_t^0, \varepsilon), y_t^0) dt + \sigma' G(\bar{x}(y_t^0, \varepsilon), y_t^0) dW_t$

 y_t^0 approximates y_t to order $\sigma\sqrt{\varepsilon}$ up to Lyapunov time of $\dot{y}^{det} = g(\bar{x}(y^{det},\varepsilon)y^{det})$

Ex. of inertial manifolds for slow-fast RDS [Schmalfuß & Schneider '06]

Stommel's box model with Ornstein–Uhlenbeck noise

$$dx_t = \frac{1}{\varepsilon} \Big[-(x_t - 1) - \varepsilon x_t Q(x_t - y_t) \Big] dt + d\xi_t^1$$

$$d\xi_t^1 = -\frac{\gamma_1}{\varepsilon} \xi_t^1 dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t^1$$

$$dy_t = \Big[\mu - y_t Q(x_t - y_t) \Big] dt + d\xi_t^2$$

$$d\xi_t^2 = -\gamma_2 \xi_t^2 dt + \sigma' dW_t^2$$

Cross section of $\mathcal{B}(h)$ is controlled by matrix

$$X^{\star}(y) = \begin{pmatrix} \frac{1}{2(1+\gamma_{1})} & \frac{1}{2(1+\gamma_{1})} \\ \frac{1}{2(1+\gamma_{1})} & \frac{1}{2\gamma_{1}} \end{pmatrix} + \mathcal{O}(\varepsilon)$$

▷ Variance of $x_t - 1 \simeq \sigma^2 / (2(1 + \gamma_1))$

▷ Reduced system for (y_t, ξ_t^2) is bistable (for suitable choice of μ)

Modelling the freshwater flux

$$\frac{\mathrm{d}}{\mathrm{d}s}\Delta T = -\frac{1}{\tau_r}(\Delta T - \theta) - Q(\Delta \rho)\Delta T$$
$$\frac{\mathrm{d}}{\mathrm{d}s}\Delta S = \frac{S_0}{H}F(s) - Q(\Delta \rho)\Delta S$$

- \triangleright Feedback: F or \dot{F} depending on ΔT and ΔS
 - \Rightarrow relaxation oscillations, excitability
- External periodic forcing
 - \Rightarrow stochastic resonance, hysteresis
- ▷ Internal periodic forcing of ocean—atmosphere system
 - \Rightarrow stochastic resonance, hysteresis

Case I: Feedback (with Gaussian white noise)

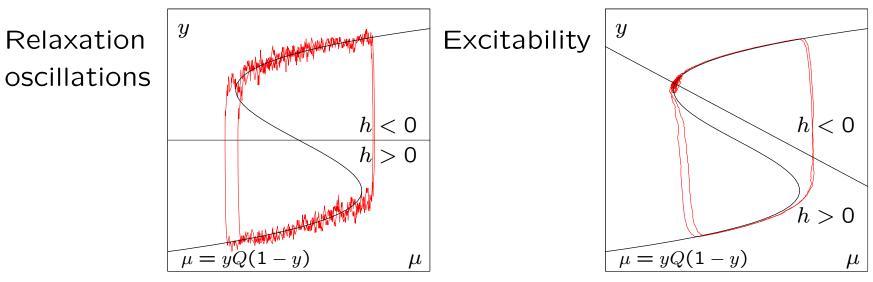
$$dx_{t} = \frac{1}{\varepsilon} \Big[-(x_{t} - 1) - \varepsilon x_{t} Q(x_{t} - y_{t}) \Big] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_{t}^{0}$$

$$dy_{t} = \Big[\mu_{t} - y_{t} Q(x_{t} - y_{t}) \Big] dt + \sigma_{1} dW_{t}^{1}$$

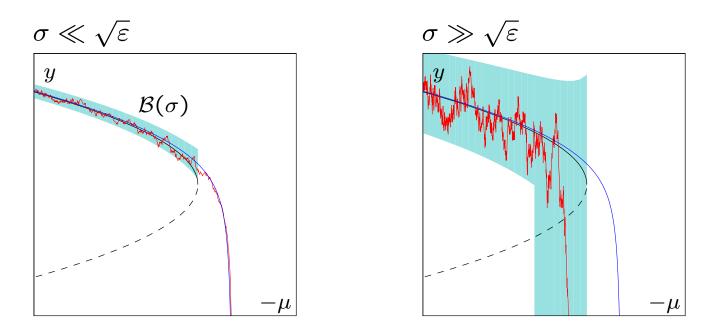
$$d\mu_{t} = \tilde{\varepsilon} h(x_{t}, y_{t}, \mu_{t}) dt + \sqrt{\tilde{\varepsilon}} \sigma_{2} dW_{t}^{2} \quad \text{(slow change in freshwater flux)}$$

Reduced equation (after time change $t \mapsto \tilde{\varepsilon}t$)

$$dy_t = \frac{1}{\tilde{\varepsilon}} \Big[\mu_t - y_t Q(1 - y_t) \Big] dt + \frac{\sigma_1}{\sqrt{\tilde{\varepsilon}}} dW_t^1$$
$$d\mu_t = h(1, y_t, \mu_t) dt + \sigma_2 dW_t^2$$



Saddle-node bifurcation



Deterministic solutions stay at distance $\varepsilon^{1/3}$ above the bifurcation point $(-\hat{\mu}, \hat{y})$ until time $-\mu = -\hat{\mu} + \varepsilon^{2/3}$

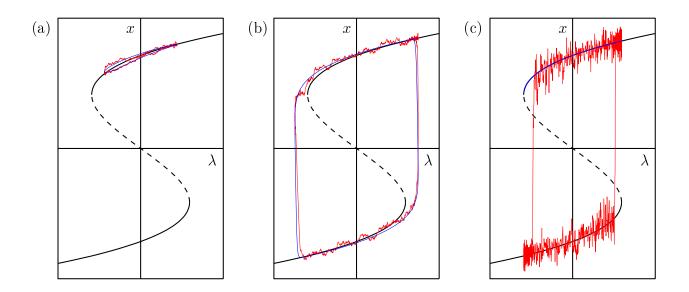
Theorem [Berglund & G '02]

 σ ≪ √ε: Paths likely to remain in B(σ) until time ε^{2/3} after
 bifurcation, with maximal spreading σ/ε^{1/6}

 σ ≫ √ε: Paths likely to escape at time σ^{4/3} before bifurcation

Case II: Periodic forcing

Assume periodic freshwater flux $\mu(t)$ (centred w.r.t. bifurcation diagram)



Theorem [Berglund & G '02]

- Small amplitude, small noise: Transitions unlikely during one Cycle (However: Concentration of transition times within each period)
- ▷ Large amplitude, small noise: Hysteresis cycles Area = static area + $O(\varepsilon^{2/3})$ (as in deterministic case)
- ▷ Large noise: Stoch. resonance / noise-induced synchronization Area = static area - $O(\sigma^{4/3})$ (reduced due to noise)

Density of the first-passage time through the unstable branch

Theorem [Berglund & G '05], work in progress

After a model-dependent time change:

$$p(t,t_0) = \frac{1}{\mathcal{N}} Q_{\lambda T} \left(t - |\log \sigma| \right) \frac{1}{\lambda T_{\mathsf{K}}(\sigma)} e^{-(t-t_0) / \lambda T_{\mathsf{K}}(\sigma)} f_{\mathsf{trans}}(t,t_0)$$

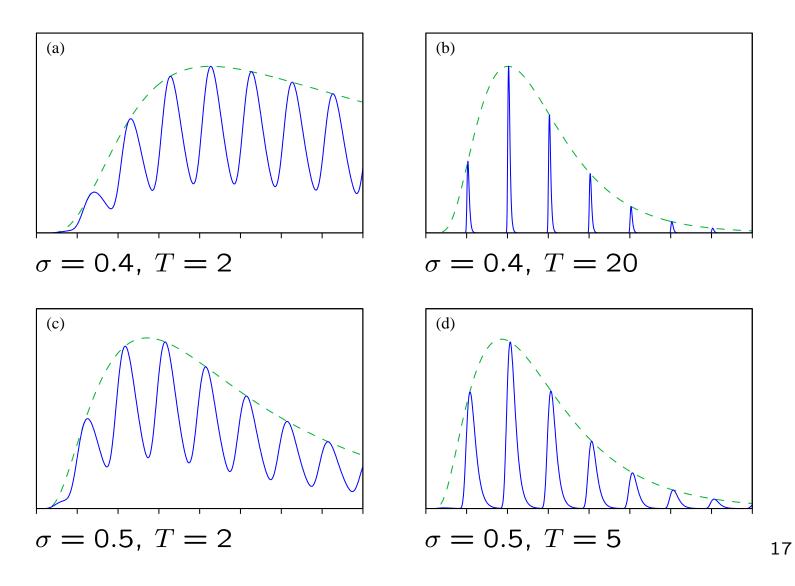
- $\triangleright~\mathcal{N}$ is the normalization
- ▷ $T_{\mathsf{K}}(\sigma)$ is the analogue of Kramers' time: $T_{\mathsf{K}}(\sigma) = \frac{C}{\sigma} e^{\overline{V}/\sigma^2}$
- ▷ f_{trans} grows from 0 to 1 in time $t t_0$ of order $|\log \sigma|$
- $\triangleright Q_{\lambda T}(y)$ is a *universal* λT -periodic function

Periodic dependence on $|\log \sigma|$: Peaks rotate as σ decreases

Rate of escape (in quasistat. regime) does not converge for $\sigma \rightarrow 0$!

$$Q_{\lambda T}(y) = 2\lambda T \sum_{k=-\infty}^{\infty} P(y - k\lambda T)$$

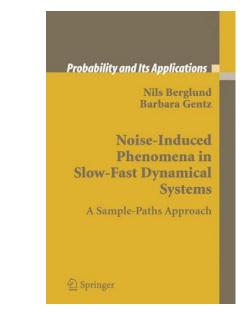
with double-exponential (Gumbel) peaks $P(z) = \frac{1}{2}e^{-2z}\exp\left\{-\frac{1}{2}e^{-2z}\right\}$



At approximately $78^{\circ}55' \text{ N}$

References

- Berglund & G, Noise-Induced Phenomena in Slow– Fast Dynamical Systems. A Sample-Paths Approach, Springer, London, 2005
- ▷ _____, Geometric singular perturbation theory for stochastic differential equations, J. Differential Equations 191, 1–54 (2003)
- Metastability in simple climate models: Pathwise analysis of slowly driven Langevin equations, Stoch. Dyn. 2, 327–356 (2002)
- Pathwise description of dynamic pitchfork bifurcations with additive noise, Probab. Theory Related Fields 122, 341–388 (2002)



- ▷ _____, The effect of additive noise on dynamical hysteresis, Nonlinearity 15, 605–632 (2002)
- _____, A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential, Ann. Appl. Probab. 12, 1419–1470 (2002)
- ▷ _____, Universality of first-passage- and residence-time distributions in non-adiabatic stochastic resonance, Europhys. Lett. **70**, 1–7 (2005)
- ▷ Berglund, Fernandez & G, *Metastability in interacting nonlinear stochastic differential equations I: From weak coupling to synchronisation*, submitted
- ▷ _____, Metastability in interacting nonlinear stochastic differential equations II: Large-N behaviour, submitted