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This will be a talk on mathematics. In case you’re bored . . .
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Thermohaline Circulation (THC)

. “Realistic”models (GCMs, EMICs): Numerical analysis

. Simple conceptual models: Analytical results

. In particular: Box models
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North-Atlantic THC: Stommel’s Box Model (’61)

Ti: Temperatures

Si: Salinities

F : Freshwater flux

Q(∆ρ): Mass exchange

∆ρ = αS∆S − αT∆T

∆T = T1 − T2

∆S = S1 − S2

T1, S1

low latitudes
10◦N – 35◦N

Q(∆ρ)
T2, S2

high latitudes
35◦N – 75◦N


d

ds
∆T = −

1

τr
(∆T − θ)−Q(∆ρ)∆T

d

ds
∆S =

S0

H
F −Q(∆ρ)∆S

Model for Q [Cessi ’94]: Q(∆ρ) =
1

τd
+

q

V
(∆ρ)2
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Stommel’s box model as a slow–fast system

Separation of time scales: τr � τd

Rescaling: x = ∆T/θ, y = (αS/αT )(∆S/θ), s = τdt
εẋ = −(x− 1)− εx[1 + η2(x− y)2]

ẏ = µ− y[1 + η2(x− y)2]

ε = τr/τd � 1

Slow manifold (εẋ = 0):

x = x?(y) = 1 +O(ε)

Reduced equation on slow manifold:

ẏ = µ− y[1 + η2(1− y)2 +O(ε)]

y[1 + η2(1− y)2]

µ

y

1 or 2 stable equilibria, depending on freshwater flux µ (and η)
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Geometric singular perturbation theory

General slow–fast system εẋ = f(x, y) (fast variables ∈ Rn)

ẏ = g(x, y) (slow variables ∈ Rm)

. Slow manifold: f = 0 for x = x?(y)

. Stability: e.v. of ∂xf(x?(y), y) have real parts <(λi(y)) < 0

Assume <(λi(y)) ≤ −δ < 0 ∀y

Theorem [Tihonov ’52, Fenichel ’79]

∃ adiabatic manifold x = x̄(y, ε)

s.t.

. x̄(y, ε) is invariant

. x̄(y, ε) attracts nearby solutions

. x̄(y, ε) = x?(y) +O(ε)

x

y1y2

x = x?(y)

x = x̄(y, ε)
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Random dynamical systems
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Random perturbations: One-dim. slowly driven systems

dxt =
1

ε
f(xt, t) dt+

σ
√
ε

dWt

Stable slow manifold / stable equilibrium branch x?(t):

f(x?(t), t) = 0 , a?(t) = ∂xf(x?(t), t) 6 −a0

Adiabatic solution:

x̄(t, ε) = x?(t) +O(ε)

B(h): strip around x̄(t, ε)

of width ' h/|a?(t)|
x̄(t, ε)

xt

x?(t)

B(h)

Theorem [Berglund & G ’02], [Berglund & G ’05]

P
{
xt leaves B(h) before time t

}
'
√

2

π

1

ε

∣∣∣∣∫ t
0
a?(s) ds

∣∣∣∣ hσ e−h
2/2σ2
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Random perturbations: General slow–fast systems
dxt = 1

εf(xt, yt) dt+ σ√
ε
F (xt, yt) dWt (fast variables ∈ R n)

dyt = g(xt, yt) dt+σ′ G(xt, yt) dWt (slow variables ∈ Rm)

Stable slow manifold: f(x?(y), y) = 0, A?(y) = ∂xf(x?(y), y) stable

x

y1y2

B(h)

x = x̄(y, ε)

B(h) :=
{

(x, y):
〈[
x− x̄(y, ε)

]
, X?(y)−1

[
x− x̄(y, ε)

]〉
< h2

}

X?(y) sol. of A?(y)X? +X?A?(y)T + F (x?(y), y)F (x?(y), y)T = 0
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Random perturbations: General slow–fast systems
dxt = 1

εf(xt, yt) dt+ σ√
ε
F (xt, yt) dWt (fast variables ∈ R n)

dyt = g(xt, yt) dt+σ′ G(xt, yt) dWt (slow variables ∈ Rm)

Theorem [Berglund & G ’03]

. P
{

(xt, yt) leaves B(h) before time t
}
' Cn,m(t, ε) e−κh

2/2σ2

with κ = 1−O(h)−O(ε)
(provided yt does not drive the system away from the region where

assumptions are satisfied)

. Reduction to adiabatic manifold x̄(y, ε):

dy0
t = g(x̄(y0

t , ε), y
0
t ) dt+ σ′G(x̄(y0

t , ε), y
0
t ) dWt

y0
t approximates yt to order σ

√
ε up to Lyapunov time

of ẏdet = g(x̄(ydet, ε)ydet)

Ex. of inertial manifolds for slow–fast RDS [Schmalfuß & Schneider ’06]
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Stommel’s box model with Ornstein–Uhlenbeck noise

dxt =
1

ε

[
−(xt − 1)− εxtQ(xt − yt)

]
dt+ dξ1

t

dξ1
t = −

γ1

ε
ξ1
t dt+

σ
√
ε

dW1
t

dyt =
[
µ− ytQ(xt − yt)

]
dt+ dξ2

t

dξ2
t = −γ2ξ

2
t dt+ σ′ dW2

t

Cross section of B(h) is controlled by matrix

X?(y) =


1

2(1 + γ1)

1

2(1 + γ1)

1

2(1 + γ1)

1

2γ1

+O(ε)

. Variance of xt − 1 ' σ2/(2(1 + γ1))

. Reduced system for (yt, ξ2
t ) is bistable (for suitable choice of µ)
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Modelling the freshwater flux

d

ds
∆T = −

1

τr
(∆T − θ)−Q(∆ρ)∆T

d

ds
∆S =

S0

H
F (s)−Q(∆ρ)∆S

. Feedback: F or Ḟ depending on ∆T and ∆S

⇒ relaxation oscillations, excitability

. External periodic forcing

⇒ stochastic resonance, hysteresis

. Internal periodic forcing of ocean–atmosphere system

⇒ stochastic resonance, hysteresis
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Case I: Feedback (with Gaussian white noise)

dxt =
1

ε

[
−(xt − 1)− εxtQ(xt − yt)

]
dt+

σ
√
ε

dW0
t

dyt =
[
µt − ytQ(xt − yt)

]
dt+ σ1 dW1

t

dµt = ε̃h(xt, yt, µt) dt+
√
ε̃σ2 dW2

t (slow change in freshwater flux)

Reduced equation (after time change t 7→ ε̃t)

dyt =
1

ε̃

[
µt − ytQ(1− yt)

]
dt+

σ1√
ε̃

dW1
t

dµt = h(1, yt, µt) dt+ σ2 dW2
t

Relaxation

oscillations

y

µ

h > 0

h < 0

µ = yQ(1− y)

Excitability
y

µ

h > 0

h < 0

µ = yQ(1− y)
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Saddle–node bifurcation

σ �
√
ε

y

B(σ)

−µ

σ �
√
ε

y

−µ

Deterministic solutions stay at distance ε1/3 above the bifurcation
point (−µ̂, ŷ) until time −µ = −µ̂+ ε2/3

Theorem [Berglund & G ’02]

. σ �
√
ε: Paths likely to remain in B(σ) until time ε2/3 after

bifurcation, with maximal spreading σ/ε1/6

. σ �
√
ε: Paths likely to escape at time σ4/3 before bifurcation
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Case II: Periodic forcing

Assume periodic freshwater flux µ(t) (centred w.r.t. bifurcation diagram)
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Theorem [Berglund & G ’02]

. Small amplitude, small noise: Transitions unlikely during one
cycle (However: Concentration of transition times within each period)

. Large amplitude, small noise: Hysteresis cycles
Area = static area + O(ε2/3) (as in deterministic case)

. Large noise: Stoch. resonance / noise-induced synchronization
Area = static area − O(σ4/3) (reduced due to noise)
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Density of the first-passage time through the unstable branch

Theorem [Berglund & G ’05], work in progress

After a model-dependent time change:

p(t, t0) =
1

N
QλT

(
t− |logσ|

) 1

λTK(σ)
e−(t−t0) / λTK(σ) ftrans(t, t0)

. N is the normalization

. TK(σ) is the analogue of Kramers’ time: TK(σ) =
C

σ
eV /σ

2

. ftrans grows from 0 to 1 in time t− t0 of order |logσ|

. QλT (y) is a universal λT -periodic function

Periodic dependence on |logσ| : Peaks rotate as σ decreases

Rate of escape (in quasistat. regime) does not converge for σ → 0 !
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QλT (y) = 2λT
∞∑

k=−∞
P (y − kλT )

with double-exponential (Gumbel) peaks P (z) =
1

2
e−2z exp

{
−

1

2
e−2z

}

(a) (b)

σ = 0.4, T = 2 σ = 0.4, T = 20

(c) (d)

σ = 0.5, T = 2 σ = 0.5, T = 5 17



At approximately 78◦55′N
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