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Motivation: Two coupled oscillators
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Synchronization of two coupled oscillators

First observed by Huygens; see e.g. [Pikovsky, Rosenblum, Kurths 2001]

Motion of pendulums xi = (θi , θ̇i )

{
ẋ1 = f1(x1)

+ εh1(x1, x2)

ẋ2 = f2(x2)

+ εh2(x1, x2)

For a good parametrisation φi of the limit cycles

{
φ̇1 = ω1

+ εg1(x1, x2)

φ̇2 = ω2

+ εg2(x1, x2)

where ωi denotes the natural frequencies
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Coupled oscillators with slightly different frequencies

{
ψ = φ1 − φ2

ϕ = φ1+φ2

2

=⇒
{
ψ̇ = −ν + εq(ψ,ϕ) with ν = ω2 − ω1

ϕ̇ = ω +O(ε) with ω = ω1+ω2

2

Assume

. Detuning ν = ω2 − ω1 small

. Coupling strength ε > ε0

Observation

. Synchronization

ψ/2

0 / 2 /
0

/

2 /

ϕ
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Coupled oscillators subject to noise

Averaging

ω
dψ

dϕ
' −ν + εq̄(ψ)

+ noise

Adler equation (special choice of coupling)

q̄(ψ) = sinψ

Observations

. Fixed points at sinψ = ν
ε

. Synchronization

. In the presence of noise: occasional transitions (→ phase slips)

noise
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Without averaging

{
ψ̇ = −ν + εq(ψ,ϕ) + noise

ϕ̇ = ω +O(ε) + noise

Noise-induced phase slips

Averaged equation with noise

!
d 

d'
= �⌫ + "q̄( )| {z }

� @
@ 

�
⌫ �"

R  q̄(x) dx
�

+ noise

Original equations with noise
(
 ̇ = �⌫ + "q( ,') + noise

'̇ = ! + O(") + noise

'

 

stable

unstable

Question: distribution of phases ' when crossing unstable orbit?
This is a stochastic exit problem.

Noise-induced phase slips, log-periodic oscillations and the Gumbel distribution January 28, 2014 2 / 16

Observations

. Synchronization

. In the presence of noise: occasional transitions (→ phase slips)

. Phase slips correspond to passage through unstable orbit

Question
. Distribution of phase ϕ when crossing unstable periodic orbit?

To tackle
. Stochastic exit problem
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Exit problem:
Wentzell–Freidlin theory and beyond

6 / 29



Motivation Exit problem The irreversible case & periodic orbits Exit through an unstable periodic orbit

Transition probabilities and generators

dxt = f (xt) dt + σg(xt) dWt , x ∈ Rn

. Transition probability density pt(x , y)

. Markov semigroup Tt : For measurable ϕ ∈ L∞,

(Ttϕ)(x) = Ex{ϕ(xt)} =

∫
pt(x , y)ϕ(y) dy

. Infinitesimal generator Lϕ = d
dtTtϕ|t=0 of the diffusion:

(Lϕ)(x) =
∑

i

fi (x)
∂ϕ

∂xi
+
σ2

2

∑

i,j

(ggT )ij(x)
∂2ϕ

∂xi∂xj

. Adjoint semigroup: For probability measures µ

(µTt)(y) = Pµ{xt = dy} =

∫
pt(x , y)µ(dx)

with generator L∗
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Stochastic exit problem

. D ⊂ Rn bounded domain

. First-exit time τD = inf{t > 0: xt 6∈ D}

. First-exit location xτD ∈ ∂D

. Harmonic measure µ(A) = Px{xτD ∈ A}
D

xτD

Facts (following from Dynkin’s formula – see textbooks on stochastic analysis)

. u(x) = Ex{τD} satisfies

{
Lu(x) = −1 for x ∈ D
u(x) = 0 for x ∈ ∂D

. For ϕ ∈ L∞(∂D,R ), h(x) = Ex{ϕ(xτD )} satisfies

{
Lh(x) = 0 for x ∈ D
h(x) = ϕ(x) for x ∈ ∂D
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Wentzell–Freidlin theory

dxt = f (xt) dt + σg(xt) dWt , x ∈ Rn

. Large-deviation rate function / action funtional

I (γ) =
1

2

∫ T

0

[γ̇t − f (γt)]TD(γt)
−1[γ̇t − f (γt)] dt , where D = ggT

. Large-deviation principle: For a set Γ of paths γ : [0,T ]→ Rn

P{(xt)06t6T ∈ Γ} ' e− infΓ I/σ2

Consider first exit from D contained in basin of attraction of an attractor A
. Quasipotential

V (y) = inf{I (γ) : γ connects A to y in arbitrary time} , y ∈ ∂D
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Wentzell–Freidlin theory

V (y) = inf{I (γ) : γ connects A to y in arbitrary time} , y ∈ ∂D

Facts

. lim
σ→0

σ2 logE{τD} = V = inf
y∈∂D

V (y) [Wentzell, Freidlin 1969]

. If infimum is attained in a single point y∗ ∈ D then

lim
σ→0

P{‖xτD − y∗‖ > δ} = 0 ∀δ > 0 [Wentzell, Freidlin 1969]

. Minimizers of I are optimal transition paths; found from Hamilton equations

. Limiting distribution of τD is exponential

lim
σ→0

P{τD > s E{τD}} = e−s [Day 1983; Bovier et al 2005]
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The reversible case

dxt = −∇V (xt) dt + σ dWt , x ∈ Rn

. L = σ2

2 ∆−∇V (x) · ∇ = σ2

2 e2V/σ2 ∇ · e−2V/σ2 ∇ is self-adjoint in

L2(Rn, e−2V/σ2

dx)
. Reversibility (detailed balance): e−2V (x)/σ2

pt(x , y) = e−2V (y)/σ2

pt(y , x)

Facts
Assume V has N local minima

. −L has N exponentially small ev’s 0 = λ0 < · · · < λN−1 + spectral gap

. Precise expressions for the λi (Kramers’ law)

. λ−1
i are the expected transition times between neighbourhoods of minima,

i = 1, . . . ,N − 1 (in specific order)

Methods
Large deviations [Wentzell, Freidlin, Sugiura, . . . ]; Semiclassical analysis [Mathieu,
Miclo, Kolokoltsov, . . . ]; Potential theory [Bovier, Gayrard, Eckhoff, Klein]; Witten
Laplacian [Helffer, Nier, Le Peutrec, Viterbo]; Two-scale approach, using transport
techniques [Menz, Schlichting 2012]
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The irreversible case
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Irreversible case

If f is not of the form −∇V
. Large-deviation techniques still work, but . . .

. L not self-adjoint, analytical approaches harder

. not reversible, standard potential theory does not work

Nevertheless,

. Results exist on the Kramers–Fokker–Planck operator

L =
σ2

2
y
∂

∂x
− σ2

2
V ′(x)

∂

∂y
+
γ

2

(
y − σ2

2

∂

∂y

)(
y +

σ2

2

∂

∂y

)

[Hérau, Hitrik, Sjöstrand, . . . ]

. Question

What is the harmonic measure for the exit through an unstable periodic orbit?
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Random Poincaré maps
Near a periodic orbit, in appropriate coordinates

dϕt = f (ϕt , xt) dt + σF (ϕt , xt) dWt ϕ ∈ R
dxt = g(ϕt , xt) dt + σG (ϕt , xt) dWt x ∈ E ⊂ R n−1

. All functions periodic in ϕ (e.g. period 1)

. f > c > 0 and σ small ⇒ ϕt likely to increase

. Process may be killed when x leaves E

ϕ

x

E

1 2

X0

X1

X2

Random variables X0,X1, . . . form (substochastic) Markov chain
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Random Poincaré map and harmonic measures

ϕ

x

E

1−M
X0

X1

. First-exit time τ of zt = (ϕt , xt) from D = (−M, 1)× E

. µz(A) = Pz{zτ ∈ A} is harmonic measure (w.r.t. generator L)

. µz admits (smooth) density h(z , y) w.r.t. arclength on ∂D
(under hypoellipticity condition) [Ben Arous, Kusuoka, Stroock 1984]

. Remark: Lh(·, y) = 0 (kernel is harmonic)

. For Borel sets B ⊂ E

PX0{X1 ∈ B} = K (X0,B) :=

∫

B

K (X0, dy)

where K (x , dy) = h((0, x), (1, y)) dy =: k(x , y) dy
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Fredholm theory
Consider integral operator K acting

. on L∞ via f 7→ (Kf )(x) =

∫

E

k(x , y)f (y) dy = Ex{f (X1)}

. on L1 via m 7→ (mK )(·) =

∫

E

m(x)k(x , ·) dx = Pµ{X1 ∈ ·}

[Fredholm 1903]

. If k ∈ L2, then K has eigenvalues λn of finite multiplicity

. Eigenfunctions Khn = λnhn, h∗nK = λnh
∗
n form a complete ONS

[Perron; Frobenius; Jentzsch 1912; Krein–Rutman 1950; Birkhoff 1957]

. Principal eigenvalue λ0 is real, simple, |λn| < λ0 ∀n > 1 and h0 > 0

Spectral decomposition: k (x , y) = λ0h0(x)h∗0 (y) + λ1h1(x)h∗1 (y) + . . .

⇒ Px{Xn ∈ dy |Xn ∈ E} = π0(dy) +O((|λ1|/λ0)n)

where π0 = h∗0 /
∫
E
h∗0 is the quasistationary distribution (QSD)
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How to estimate the principal eigenvalue ?

. Trivial bounds: ∀A ⊂ E with Lebesgue(A) > 0,

inf
x∈A

K (x ,A) 6 λ0 6 sup
x∈E

K (x ,E )

Proof

x∗ = argmax h0 ⇒ λ0 =

∫
E

k(x∗, y)
h0(y)

h0(x∗)
dy 6 K(x∗,E)

λ0

∫
A

h∗0 (y) dy =

∫
E

h∗0 (x)K(x ,A) dx > inf
x∈A

K(x ,A)

∫
A

h∗0 (y) dy

. Donsker–Varadhan-type bound:

λ0 6 1− 1

supx∈E Ex{τ∆}
where τ∆ = inf{n > 0: Xn 6∈ E}

. Bounds using Laplace transforms (see below)
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How to estimate λ1 ?

Theorem [Birkhoff 1957]

Uniform positivity condition

s(x)ν(A) ≤ K (x ,A) ≤ Ls(x)ν(A) ∀ x ∈ E ∀A ⊂ E

implies spectral-gap-type estimate

|λ1|/λ0 ≤ 1− L−2

Localized version
Assume ∃A ⊂ E and ∃m : A→ (0,∞) such that

m(y) ≤ k(x , y) ≤ Lm(y) ∀ x , y ∈ A

Then
|λ1| ≤ L− 1 +O

(
sup
x∈E

K (x ,E \ A)
)

+O
(

sup
x∈A

[1− K (x ,E )]
)

To apply localized version
. For initial conditions x , y ∈ A: X x

n − X y
n decreases exponentially fast

. Use Harnack inequality once X x
n − X y

n = O(σ2)
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Application:
Exit through an unstable periodic orbit
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Exit through an unstable periodic orbit

. Planar SDE

dxt = f (xt) dt + σg(xt) dWt

. D ⊂ R 2: interior of unstable periodic orbit

. First-exit time τD = inf{t > 0: xt 6∈ D}

Law of first-exit location xτD ∈ ∂D ? DxτD

. Large-deviation principle with rate function

I (γ) =
1

2

∫ T

0

[γ̇t − f (γt)]TD(γt)
−1[γ̇t − f (γt)] dt , where D = ggT

. Quasipotential

V (y) = inf{I (γ) : γ connects A to y in arbitrary time}

Theorem [Freidlin, Wentzell 1969]

If V attains its min at a unique y∗ ∈ ∂D, then xτD concentrates in y∗ as σ → 0

Problem: V is constant on ∂D!
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Most probable exit paths

Minimizers of I obey Hamilton equations with Hamiltonian

H(γ, ψ) =
1

2
ψTD(γ)ψ + f (γ)Tψ

where ψ = D(γ)−1(γ̇ − f (γ))

Generically optimal path (for infinite time) is isolated
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Random Poincaré map
In polar-type coordinates (r , ϕ)

ϕ

r

1 − δ

R0

R1

1

s∗

γ∞

ϕτ

PR0{Rn ∈ A} = λn0h0(R0)

∫

A

h∗0 (y) dy
[
1 +O((|λ1|/λ0)n)

]

If t = n + s,

PR0{ϕτ ∈ dt} = λn0h0(R0)

∫
h∗0 (y)Py{ϕτ ∈ ds} dy

[
1 +O((|λ1|/λ0)n)

]

Periodically modulated exponential distribution
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Computing the exit distribution

ϕ

r

1 − δ

R0

R1

1

s∗

γ∞

ϕτ

Split into two Markov chains:
. First chain killed upon r reaching 1− δ in ϕ = ϕτ−

P0{ϕτ− ∈ [ϕ1, ϕ1 + ∆]} ' (λs
0)ϕ1 e−J(ϕ1)/σ2

. Second chain killed at r = 1− 2δ and on unstable orbit r = 1
. Principal eigenvalue: λu

0 = e−2λ+T+ (1 +O(δ))
λ+ = Lyapunov exponent, T+ = period of unstable orbit

. Using LDP

Pϕ1{ϕτ ∈ [ϕ,ϕ+ ∆]} ' (λu
0)ϕ−ϕ1 e−[I∞+c(e−2λ+T+(ϕ−ϕ1))]/σ2
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Main result: Cycling
Theorem [Berglund & G 2014]

∀∆ > 0 ∀ δ > 0 ∃σ0 > 0 ∀ 0 < σ < σ0

Pr0,0{ϕτ ∈ [ϕ,ϕ+ ∆]} = C (σ)(λ0)ϕθ′(ϕ)∆Qλ+T+

( |log σ| − θ(ϕ) +O(δ)

λ+T+

)

×
[
1 +O(e−cϕ/|log σ|) +O(δ|log δ|)

]

. Cycling profile, periodicized Gumbel distribution

QλT (x) =
∞∑

n=−∞
A(λT (n − x)) with A(x) = 1

2 exp{−2x − 1
2 e−2x}

x

Qλ+T+(x)

λ+T+ = 1

λ+T+ = 2

λ+T+ = 5
λ+T+ = 10
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( |log σ| − θ(ϕ) +O(δ)

λ+T+

)

×
[
1 +O(e−cϕ/|log σ|) +O(δ|log δ|)

]

. Cycling profile, periodicized Gumbel distribution

QλT (x) =
∞∑

n=−∞
A(λT (n − x)) with A(x) = 1

2 exp{−2x − 1
2 e−2x}

. θ(ϕ) explicit function of Drr (1, ϕ), θ(ϕ+ 1) = θ(ϕ) + λ+T+

(λ+ = Lyapunov exponent, T+ = period of unstable orbit)

. λ0 principal eigenvalue, λ0 = 1− e−Ṽ/σ
2

. C (σ) = O(e−Ṽ/σ
2

)
. Pπu

0{ϕτ ∈ [ϕ,ϕ+ ∆]} ∼ θ′(ϕ)∆

Periodic in |log σ|: [Day 1990, Maier & Stein 1996, Getfert & Reimann 2009]
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Density of the first-passage time (for V = 0.5, λ+ = 1)

(a) (b)

σ2 = 0.4, T+ = 2 σ2 = 0.4, T+ = 20

(c) (d)

σ2 = 0.5, T+ = 2 σ2 = 0.5, T+ = 5
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Dependence of exit distribution on the noise intensity

Author: Nils Berglund

. σ decreasing from 1 to 0.0001

. Parameter values: λ+ = 1, T+ = 4, V = 1

Modifications
. System starting in quasistationary distribution (no transitional phase)
. Maximum is chosen to be constant (area under the curve not constant)
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Why |log σ|-periodic oscillations?
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Concluding remarks

Warning
Naive WKB expansion may suggest absence of cycling, despite of
|log σ|-dependence of the exit distribution

Origin of Gumbel distribution

. Extreme-value distribution

. Connection with residual lifetimes [Bakhtin 2013]

. Connection with transition-paths theory
[Cerou, Guyader, Lelièvre & Malrieu 2013]

(see also [Berglund 2014])

Open questions

. Proof involving only spectral theory, without using large-deviation principle

. More precise estimates on spectrum and eigenfunctions of K

. Link between spectra of K and of L (with Dirichlet b.c.)
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Thank you for your attention!
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