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Introduction: A Brownian particle in a potential
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Small random perturbations

Gradient dynamics (ODE)

ẋdet
t = −∇V (xdet

t )

Random perturbation by Gaussian white noise (SDE)

dxεt (ω) = −∇V (xεt (ω)) dt +
√

2ε dBt(ω)

Equivalent notation

ẋεt (ω) = −∇V (xεt (ω)) +
√

2εξt(ω)

x

z

y

with

. V : Rd → R : confining potential, growth condition at infinity

. {Bt(ω)}t≥0: d-dimensional Brownian motion

. {ξt(ω)}t≥0: Gaussian white noise, 〈ξt〉 = 0, 〈ξtξs〉 = δ(t − s)
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Fokker–Planck equation

Stochastic differential equation (SDE) of gradient type

dxεt (ω) = −∇V (xεt (ω)) dt +
√

2ε dBt(ω)

Kolmogorov’s forward or Fokker–Planck equation

. Solution {xεt (ω)}t is a (time-homogenous) Markov process

. Densities (x , t) 7→ p(x , t|y , s) of the transition probabilities satisfy

∂

∂t
p = Lεp = ∇ ·

[
∇V (x)p

]
+ ε∆p

. If {xεt (ω)}t admits an invariant density p0, then Lεp0 = 0

. Easy to verify (for gradient systems)

p0(x) =
1

Zε
e−V (x)/ε with Zε =

∫
Rd

e−V (x)/ε dx
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Equilibrium distribution

. Invariant measure or equilibrium distribution

µε(dx) =
1

Zε
e−V (x)/ε dx

. System is reversible w.r.t. µε (detailed balance)

p(y , t|x , 0) e−V (x)/ε = p(x , t|y , 0) e−V (y)/ε

. For small ε, invariant measure µε concentrates in the minima of V

ε = 1/4
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Timescales

Let V double-well potential as before, start in xε0 = x?− = left-hand well

How long does it take until xεt is well described by its invariant distribution?

. For ε small, paths will stay in the left-hand well for a long time

. xεt first approaches a Gaussian distribution, centered in x?−,

Trelax =
1

V ′′(x?−)
=

1

curvature at the bottom of the well
(d=1)

. With overwhelming probability, paths will remain inside left-hand well, for all
times significantly shorter than Kramers’ time

TKramers = eH/ε , where H = V (z?)− V (x?−) = barrier height

. Only for t � TKramers, the distribution of xεt approaches p0

The dynamics is thus very different on the different timescales
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Diffusion exit from a domain
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The more general picture: Diffusion exit from a domain

dxεt = b(xεt ) dt +
√

2εg(xεt ) dWt , x0 ∈ R d

General case: b not necessarily derived from a potential

Consider bounded domain D 3 x0 (with smooth boundary)

. First-exit time: τ = τεD = inf{t > 0: xεt 6∈ D}

. First-exit location: xετ ∈ ∂D

Questions

. Does xεt leave D ?

. If so: When and where?

. Expected time of first exit?

. Concentration of first-exit time and location?

. Distribution of τ and xετ ?
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First case: Deterministic dynamics leaves D
If xt leaves D in finite time, so will xεt . Show that deviation xεt − xt is small:

Assume b Lipschitz continuous and g = Id

‖xεt − xt‖ ≤ L

∫ t

0

‖xεs − xs‖ ds +
√

2ε ‖Wt‖

By Gronwall’s lemma

sup
0≤s≤t

‖xεs − xs‖ ≤
√

2ε sup
0≤s≤t

‖Ws‖ eLt

. d = 1: Use André’s reflection principle

P
{

sup
0≤s≤t

|Ws | ≥ r

}
≤ 2P

{
sup

0≤s≤t
Ws ≥ r

}
≤ 4P

{
Wt ≥ r

}
≤ 2 e−r

2/2t

. d > 1: Reduce to d = 1 using independence

. General case: Use large-deviation principle
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Second case: Deterministic dynamics does not leave D
Assume D positively invariant under deterministic flow: Study noise-induced exit

dxεt = b(xεt ) dt +
√

2εg(xεt ) dWt , x0 ∈ R d

. b, g Lipschitz continuous, bounded-growth condition

. a(x) = g(x)g(x)T ≥ 1
M Id (uniform ellipticity)

Infinitesimal generator Aε of diffusion xεt

Aε v(t, x) = ε

d∑
i,j=1

aij(x)
∂2

∂xi ∂xj
v(t, x) + 〈 b(x),∇v(t, x) 〉

Compare to Fokker–Planck operator: Lε is the adjoint operator of Aε

Approaches to the exit problem

. Mean first-exit times and locations via PDEs

. Exponential asymptotics via Wentzell–Freidlin theory
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Diffusion exit from a domain: Relation to PDEs

Theorem

. Poisson problem:

Ex{τεD} is the unique solution of

{
Aε u = −1 in D

u = 0 on ∂D
. Dirichlet problem:

Ex{f (xετεD )} is the unique solution of

{
Aε w = 0 in D

w = f on ∂D
(for f : ∂D → R continuous)

Remarks

. Expected first-exit times and distribution of first-exit locations obtained
exactly from PDEs

. In principle . . .

. Smoothness assumption for ∂D can be relaxed to “exterior-ball condition”
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An example in d = 1

Motion of a Brownian particle in a quadratic single-well potential

dxεt = b(xεt ) dt +
√

2ε dWt

where b(x) = −∇V (x), V (x) = ax2/2 with a > 0

. Drift pushes particle towards bottom

. Probability of xεt leaving D = (α1, α2) 3 0 through α1?

Solve the (one-dimensional) Dirichlet problem{
Aεw = 0 in D
w = f on ∂D

with f (x) =

{
1 for x = α1

0 for x = α2

Px

{
xετεD = α1

}
= Ex f (xετεD ) = w(x) =

∫ α2

x

eV (y)/ε dy

/∫ α2

α1

eV (y)/ε dy
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An example in d = 1: Small noise limit?

Px

{
xετεD = α1

}
=

∫ α2

x

eV (y)/ε dy

/∫ α2

α1

eV (y)/ε dy

What happens in the small-noise limit?

lim
ε→0

Px{xετεD = α1} = 1 if V (α1) < V (α2)

lim
ε→0

Px{xετεD = α1} = 0 if V (α2) < V (α1)

lim
ε→0

Px{xετεD = α1} =
1

|V ′(α1)|

/(
1

|V ′(α1)|
+

1

|V ′(α2)|

)
if V (α1) = V (α2)
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Large deviations: Wentzell–Freidlin theory
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Exponential asymptotics via large deviations

. Probability of observing sample paths being close to a given function
ϕ : [0,T ]→ Rd behaves like ∼ exp{−2I (ϕ)/ε}

. Large-deviation rate function

I (ϕ) = I[0,T ](ϕ) =

{
1
2

∫ T

0
‖ϕ̇s − b(ϕs)‖2 ds for ϕ ∈ H1

+∞ otherwise

. Large deviation principle reduces est. of probabilities to variational principle:
For any set Γ of paths on [0,T ]

− inf
Γ◦
I ≤ lim inf

ε→0
2ε logP{(xεt )t ∈ Γ} ≤ lim sup

ε→0
2ε logP{(xεt )t ∈ Γ} ≤ − inf

Γ
I

. Assume domain D has unique asymptotically stable equilibrium point x?−

. Quasipotential with respect to x?− = cost to reach z against the flow

V (x?−, z) := inf
t>0

inf{I[0,t](ϕ) : ϕ ∈ C([0, t],D), ϕ0 = x?−, ϕt = z}
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Wentzell–Freidlin theory

Theorem [Wentzell & Freidlin, 1969–72, 1984] For arbitrary initial condition in D
. Mean first-exit time: EτεD ∼ eV/2ε as ε→ 0

. Concentration of first-exit times

P
{

e(V−δ)/2ε 6 τεD 6 e(V+δ)/2ε
}
→ 1 as ε→ 0 (for arbitrary δ > 0)

. Concentration of exit locations near minima of quasipotential

Gradient case (reversible diffusion)

. b = −∇V , g = Id

. Quasipotential V (x?−, z) = 2[V (z)− V (x?−)]

. Cost for leaving potential well is

V = infz∈∂D V (x?−, z) = 2[V (z?)− V (x?−)] = 2H

. Attained for paths going against the flow:
ϕ̇t = +∇V (ϕt)

H
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Remarks

. Arrhenius Law [van’t Hoff 1885, Arrhenius 1889] follows as a corollary

Ex?−
τ+ ' const e[V (z?)−V (x?−)]/ε

where τ+ = first-hitting time of small ball Bδ(x?+) around other minimum x?+

τ+ = τεx?+ (ω) = inf{t ≥ 0: xεt (ω) ∈ Bδ(x?+)}

. Exponential asymptotics depends only on barrier height

. LDP also leads information on optimal transition paths

. Only 1-saddles are relevant for transitions between wells

. Multiwell case described by hierarchy of “cycles”

. Nongradient case: Work with variational problem

. Prefactor cannot be obtained by this approach
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Subexponential asymptotics
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Refined results in the gradient case: Kramers’ law

First-hitting time of a small ball Bδ(x?+) around minimum x?+

τ+ = τεx?+ (ω) = inf{t ≥ 0: xεt (ω) ∈ Bδ(x?+)}

Arrhenius Law [van’t Hoff 1885, Arrhenius 1889] – see previous slide

Ex?−
τ+ ' const e[V (z?)−V (x?−)]/ε

Eyring–Kramers Law [Eyring 35, Kramers 40]

. d = 1: Ex?−
τ+ '

2π√
V ′′(x?−)|V ′′(z?)|

e[V (z?)−V (x?−)]/ε

. d ≥ 2: Ex?−
τ+ '

2π

|λ1(z?)|

√
|det∇2V (z?)|
det∇2V (x?−)

e[V (z?)−V (x?−)]/ε

where λ1(z?) is the unique negative eigenvalue of ∇2V at saddle z?
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Proving Kramers’ law (multiwell potentials)

. Low-lying spectrum of generator of the diffusion (analytic approach)

[Helffer & Sjöstrand 85, Miclo 95, Mathieu 95, Kolokoltsov 96, . . . ]

. Potential theoretic approach [Bovier, Eckhoff, Gayrard & Klein 04]

Ex?−
τ+ =

2π

|λ1(z?)|

√
|det∇2V (z?)|
det∇2V (x?−)

e[V (z?)−V (x?−)]/ε [1 +O
(
(ε|log ε|)1/2

)
]

. Full asymptotic expansion of prefactor [Helffer, Klein & Nier 04]

. Asymptotic distribution of τ+ [Day 83, Bovier, Gayrard & Klein 05]

lim
ε→0

Px?−
{τ+ > t · Ex?−

τ+} = e−t
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Generalizations: Non-quadratic saddles

What happens if det∇2V (z?) = 0 ?

det∇2V (z?) = 0 ⇒ At least one vanishing eigenvalue at saddle z?

⇒ Saddle has at least one non-quadratic direction
⇒ Kramers Law not applicable

Quartic unstable direction Quartic stable direction

Why do we care about this
non-generic situation?

Parameter-dependent systems
may undergo bifurcations
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Example: Two harmonically coupled particles

Vγ(x1, x2) = U(x1) + U(x2) + γ
2 (x1 − x2)2

U(x) = x4

4
− x2

2

Change of variable: Rotation by π/4 yields

V̂γ(y1, y2) = −1

2
y2

1 −
1− 2γ

2
y2

2 +
1

8

(
y4

1 + 6y2
1 y

2
2 + y4

2

)
Note: det∇2V̂γ(0, 0) = 1− 2γ ⇒ Pitchfork bifurcation at γ = 1/2

γ > 1
2

1
2
> γ > 1

3
1
3
> γ > 0
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Transition times for non-quadratic saddles
. Assume x?− is a quadratic local minimum of V

(non-quadratic minima can be dealt with)

. Assume x?+ is another local minimum of V

. Assume z? = 0 is the relevant saddle for passage from x?− to x?+

. Normal form near saddle

V (y) = −u1(y1) + u2(y2) +
1

2

d∑
j=3

λjy
2
j + . . .

. Assume growth conditions on u1, u2

Theorem [Berglund & G, 2010)]

Ex?−
τ+ =

(2πε)d/2 e−V (x?−)/ε√
det∇2V (x?−)

/
ε

∫ ∞
−∞

e−u2(y2)/ε dy2∫ ∞
−∞

e−u1(y1)/ε dy1

d∏
j=3

√
2πε

λj

×
[
1 +O((ε|log ε|)α)

]
where α > 0 depends on the growth conditions and is explicitly known
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Corollary: Pitchfork bifurcation

Pitchfork bifurcation: V (y) = −1

2
|λ1|y2

1 +
1

2
λ2y

2
2 + C4y

4
2 +

1

2

d∑
j=3

λjy
2
j + . . .

. For λ2 > 0 (possibly small wrt. ε):

Ex?−
τ+ = 2π

√
(λ2 +

√
2εC4)λ3 . . . λd

|λ1| det∇2V (x?−)

e[V (z?)−V (x?−)]/ε

Ψ+(λ2/
√

2εC4)
[1 + R(ε)]

where

Ψ+(α) =

√
α(1 + α)

8π
eα

2/16 K1/4

(α2

16

)
lim
α→∞

Ψ+(α) = 1

K1/4 = modified Bessel fct. of 2nd kind

. For λ2 < 0: Similar, involving I±1/4

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

λ2 7→ prefactor

ε = 0.5, ε = 0.1, ε = 0.01
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Cycling
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New phenomena in non-gradient case: Cycling

Simplest situation of interest:
Nontrivial invariant set which is a single periodic orbit

Assume from now on:
d = 2, ∂D = unstable periodic orbit

. EτD ∼ eV/2ε still holds

. Quasipotential V (Π, z) ≡ V is constant on ∂D:

Exit equally likely anywhere on ∂D (on exp. scale)

. Phenomenon of cycling [Day ’92]:

Distribution of xτD on ∂D does not converge as ε→ 0

Density is translated along ∂D proportionally to |log ε|.
. In stationary regime: (obtained by reinjecting particle)

Rate of escape d
dt P

{
xt 6∈ D

}
has |log ε|-periodic prefactor [Maier & Stein ’96]
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Universality in cycling

Theorem ([Berglund & G ’04, ’05, work in progress)

There exists an explicit parametrization of ∂D s.t. the exit time density is given by

p(t, t0) =
ftrans(t, t0)

N
QλT

(
θ(t)− 1

2 |log ε|
) θ′(t)

λTK(ε)
e−(θ(t)−θ(t0)) / λTK(ε)

. QλT (y) is a universal λT -periodic function

. θ(t) is a “natural” parametrisation of the boundary:

θ′(t) > 0 is explicitely known model-dependent, T -periodic fct.;

θ(t + T ) = θ(t) + λT

. TK(ε) is the analogue of Kramers’ time: TK(ε) =
C√
ε
eV/2ε

. ftrans grows from 0 to 1 in time t − t0 of order |log ε|
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The universal profile

y 7→ QλT (λTy)/2λT

�������

�������

�	����

�������� �

. Profile determines concentration of first-passage times within a period

. Shape of peaks: Gumbel distribution P(z) = 1
2 e−2z exp

{
− 1

2 e−2z
}

. The larger λT , the more pronounced the peaks s

. For smaller values of λT , the peaks overlap more
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Density of the first-passage time for V = 0.5, λ = 1

(a) (b)

ε = 0.4, T = 2 ε = 0.4, T = 20

(c) (d)

ε = 0.5, T = 2 ε = 0.5, T = 5
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