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Slowly driven systems in dimension n =1
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Slowly driven systems

Recall from yesterday's lecture

Parameter dependent ODE, perturbed by Gaussian white noise
dxs = (x5, \) ds + o dW; (xs € RY)
Assume parameter varies slowly in time: A = A(es)
dxs = 7(xs, Mes)) ds + o d W,

Rewrite in slow time t = es

1 o
dx; = gf(xt.,t)dt—&- %th
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Assumptions yesterday

Existence of a uniformly asymptotically stable equlibrium branch x*(t)
Ax*: 1 =R st F(x*(t),t) =0

and
a*(t) = Oxf(x*(t),t) < —ap <0

Then there exists an adiabatic solution x(t, )

x(t,e) = x*(t) + O(e)

and X(t, ) attracts nearby solutions exp. fast

Xdet(t)
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Defining the strip describing the typical spreading

v

Let v(t) be the variance of the solution z(t) of the linearized SDE for the
deviation x; — X(t, ¢)

v

v(t)/o? is solution of a deterministic slowly driven system admitting a
uniformly asymptotically stable equilibrium branch

Let ((t) be the adiabatic solution of this system
C(t) = 1/|a(t)|, where a(t) = Oxf(X(t,e),t) < —ap/2 <0

v

v

Define a strip B(h) around X(t, <) of width ~ hy/((t) and the first-exit time 75

B(h) = {(x, t): [x = x(t, )| < h/((1)}
(k) = inf{t > 0: (x;, t) & B(h)}
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Concentration of sample paths

B(h)

Theorem [Berglund & G '02, '05]

1 t
P{rpm) < t} < constf)/ a(s) ds‘ h e IPI1-0()-0(h) /207
€lJo

g
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Avoided bifurcation: Stochastic Resonance
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Overdamped motion of a Brownian particle
in a periodically modulated potential

10 o
dXt = —gaV(Xt, t) ds + %th

1 1
V(x, t) = —§x2 + ZX4 + (Ae — ag) cos(2mt)x
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Sample paths

Amplitude of modulation A = \. — ag
Speed of modulation ¢
Noise intensity o

i O |
e

A =0.00, c =0.30, e = 0.001

A=0.10, 0 =0.27, ¢ = 0.001

PRSI

A=0.24, 0 =0.20, e = 0.001

A=0.35 0=0.20, ¢ =0.001
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Different parameter regimes and stochastic resonance

Synchronisation |

> For matching time scales: 27/ = Tiorcing = 2 Tkramers = e?H/o?

> Quasistatic approach: Transitions twice per period likely
(physics’ literature; [Freidlin '00], [Imkeller et al, since '02])

> Requires exponentially long forcing periods

Synchronisation |1
> For intermediate forcing periods: Trelax < Trorcing K TKramers
and close-to-critical forcing amplitude: A ~ A.
> Transitions twice per period with high probability
> Subtle dynamical effects: Effective barrier heights [Berglund & G '02]

SR outside synchronisation regimes
> Only occasional transitions

> But transition times localised within forcing periods
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Slowly driven systems

Characterised by 3 small parameters: 0 <0 <1,0<e<k<1,0< 3«1

Bifurcations in Slow—Fast Systems

Stochastic resonance Saddle-node

Synchronisation regime |l

LIRS A A A S A S
7 06 0.5 04 03 02 -01 00 0.1 02 03 04 05 06

System  Stochastic resonance

Epsilon 0005 0005 0.005 1,005
Sigma 0 003 ¥ .12
Gap 0005 0005 0.005 005
Time siep 0.001
Seeds 0534154541 0355564852
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Effective barrier heights and scaling of small parameters

Theorem [Berglund & G '02] (informal version; exact formulation uses first-exit times)

3 threshold value o, = (ap V)34

Below: o < o,

> Transitions unlikely; sample paths concentrated in one well

> Typical spreading = 7 = 7

(|t]? v ao Vv 5)1/4 (curvature) 1/2

2/ 2
> Probability to observe a transition < e~ "5t ac/o

Above: 0 > o,
> 2 transitions per period likely (back and forth)

> with probabilty > 1 — e~consto*/3/zlloga|

> Transitions occur near instants of minimal barrier height; window = o2/3
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Deterministic dynamics

> For t < —const :

x°t reaches e-nbhd of x} (t)

in time < ellog | (Tihonov '52)
> For —const <t < —(agVe)/?:

i X~ xi(t) < e/t

> For [t| < (ag Ve)Y/?:

&) xgt =g (t) < (ag Vo) /2 > e
(effective barrier height)

/\_/\ > For (ap V)2 < t < +const :
=) xget = xi () = —e/ It

> For t > +const :

|xdet — X3 (t)] < e
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Slowly driven systems

Below threshold: o < o, = (ag V )%/4

Stochastic resonance

v(t) ~

Saddle-node

2

curvature  (Jt[2V ap V £)1/2

MMOs

Approach for stable case can still be used

2 2 5 2
C(h/ot,e)e 0 /27" < P{rsm < t} < C(h/o, t,e)e fi+h /20

with k. =1 —O(¢) = O(h), k- =1+ O(¢) + O(h) + O(e~=%)
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Above threshold: o > o, = (ag V £)*/*

> Typical paths stay below x{ + h/C(t)

B
> For t < —c?/3 :

Transitions unlikely; as below threshold
> At time t = —¢°/3

Typical spreading is o°/% > x® — x§(t)

Transitions become likely

> Near saddle:

Diffusion dominated dynamics

> 01 > 09 with £ < —1;
do in domain of attraction of x* (t)
Drift dominated dynamics

> Below do: behaviour as for small o

Bifurcations in Slow—Fast Systems Barbara Gentz NCTS, 18 May 2012 14 / 35



Slowly driven systems Stochastic resonance Saddle-node MMOs

Above threshold: o > o, = (ag V £)*/*

Idea of the proof
With probability > § > 0, in time < ¢|logo|/o
the path reaches

2/3

> X;jet

if above

> then the saddle

> finally the level 41

4/3

a .
there are ——— attempts possible
ellog o]

In time o?/3

During a subsequent timespan of length ¢,
level g is reached (with probability > §)

Finally, the path reaches the new well

Result

4/3
IP’{XS >0y Vse [—02/3, t]} < g const / /ellog o] (t> 7702/3, ~ small)
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Space—time sets for stochastic resonance

Below threshold Above threshold
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Saddle—node bifurcation
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Saddle—node bifurcation (eg. f(x,t) = —t — x?)

0L o, =el/? o> 0, =¢cl/?

1/3

o = 0: Solutions stay at distance £'/3 above bif. point until time %/3 after bif.

Theorem

> If ¢ < o.: Paths likely to stay in B(h) until time £2/3 after bifurcation;
maximal spreading o /<1/°.

> If o > o.: Transition typically for t = —g*/3

transition probability > 1 — e<o"/¢llce |
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Mixed-mode oscillations
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Mixed-Mode Oscillations (MMOs)

Belousov—Zhabotinsky reaction

Potential Imillivolts)

11 1 1 1

50

60

Time [minutes]

Recording from bromide ion electrode; T=25° C; flow rate = 3.99 ml/min; Ce™3 catalyst [Hudson, Hart, Marinko '79]
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MMOs in Biology

Layer Il Stellate Cells

5mV

4 bbbt ity )fﬂ

D: subthreshold membrane potential oscillations (1 and 2) and spike clustering (3) develop at increasingly depolarized membrane potential levels
positive to about 55 mV. Autocorrelation function (inset in 1) demonstrates the rhythmicity of the subthreshold oscillations [Dickson et al '00]

Questions:  Origin of small-amplitude oscillations?
Source of irregularity in pattern?
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MMOs & Slow—Fast Systems

Observation

MMOs can be observed in slow—fast systems undergoing a folded-node bifurcation
(1 fast, 2 slow variables)

Normal form of folded-node (bif) [Benoit, Lobry '82; Szmolyan, Wechselberger '01]

ex =y —x2

y=—(p+1)x—-z
g
2

zZ =

Questions:  Dynamics for small ¢ > 07
Effect of noise?
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MMOs & Slow—Fast Systems

Observation

MMOs can be observed in slow—fast systems undergoing a folded-node bifurcation
(1 fast, 2 slow variables)

Normal form of folded-node (bif) [Benoit, Lobry '82; Szmolyan, Wechselberger '01]

ex = y — x> 4 noise

y =—(p+ 1)x — z + noise
s

2

zZ =

Questions:  Dynamics for small ¢ > 07
Effect of noise?
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Folded-Node Bifurcation: Slow Manifold

ex=y—x°

y=—(p+1)x—-z o
. p

272

Slow manifold has a decomposition

Co={(xy,2) eR*>: y =x*} =C3U LU
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Folded-Node: Adiabatic Manifolds and Canard Solutions

11
SenZe © Assume
€T
> ¢ sufficiently small
ofé £ &2 Ve 1
>pe(0,1), pt ¢N
57N Ee : (@

Theorem

[Benoit, Lobry '82;

Szmolyan, Wechselberger '01;
Wechselberger '05;

Brgns, Krupa, Wechselberger '06]

[Desroches et al '12]
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Folded-Node: Adiabatic Manifolds and Canard Solutions

11
5ns, ® Assume

> ¢ sufficiently small
> pe(0,1), ptgN

ofé £ &2 Ve

5N B oy @

Theorem
> Existence of strong and
weak (maximal) canard 7%
> 2k+1<pt <2k+3:
3 k secondary canards .
>~ makes (2j +1)/2
oscillations around Y

[Desroches et al '12]
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Folded-Node: Canard Spacing

Tw

e M2 73

of-L /]
F A
-15 Vs
Yu n
i 72
3
10 ()
4 s Y 3
1 0 -5 -25 0 25 Yy s
z S
2 .10

[Desroches, Krauskopf, Osinga '08]

Lemma
. . 2
For z = 0: Distance between canards 7% and 74+ is O(e~@k+1)n)
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Stochastic Folded Nodes: Concentration of Sample Paths

Theorem [Berglund, G & Kuehn, JDE '12]

2

h
]P’{TB < z} C(2,2) exp{—mw} Vz € [z0,/12]

For z =0: : T S S
L] L
> Distance between canards 7 and /1 [ //,,cff
is O( —c 2k+1) ,u) I I
> Section of B(h) is close to circular with .|
radius ;. 1/*h N\
> Noisy canards become indistinguishable R
when typical radius 1~ /%c ~ distance
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Canards or Pasta ...7?

s\
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Noisy Small-Amplitude Oscillations

Theorem

h 2k+1

Canards wit oscillations become indistinguishable from noisy fluctuations for

1/4 e—(2k+1)2/1

o> ok(u)=p

Zoom

a2(p)

/L 0.1
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Early Escape

Model allowing for global returns : @

> Consider z > /1
> Dy = neighbourhood of 4%,
growing like 1/z

Theorem [Berglund, G & Kuehn '10] T =

dk, K1, k2, C >0
s.t.
for ollog o|™ < 3/

(b)

HD{TDO > z} < Cllog o2 e r(Z° =)/ (ullog o

Note:

r.h.s. small for z > /pllogo|/k o oes
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Mixed-Mode Oscillations in the Presence of Noise

09r

0.4r

Observations

> Noise smears out small-amplitude oscillations

> Early transitions modify the mixed-mode pattern
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