1. French Complex Systems Summer School

Theory and Practice
August 2007

Random perturbations of dynamical systems

Barbara Gentz, University of Bielefeld
http://www.math. uni-bielefeld.de/~gentz

Abstract

These lectures will provide an introduction to the mathematics of random perturbations. We will start by discussing some examples arising in climate modelling, namely simple conceptual climate models where noise is used to model fluctuations on short time scales such as given by the weather. Typically, these models are multistable and evolve on several well-separated time scales. We shall see that many interesting questions in noisy dynamical systems can be viewed as diffusion exit from a domain or as noise-induced passage through a boundary.

We will than proceed to reviewing the basic mathematical tools for the study of noisy dynamical systems: Ito calculus, stochastic differential equations and the classical Wentzell-Freidlin theory for diffusion exit from a domain. Less wellknown but useful tools include results on the distribution of the first-passage time of Brownian motion to a (curved) boundary and so-called small-ball probabilities.

Finally, we will turn to the multitude of interesting phenomena arising in slowly driven systems with noise such as reduction of bifurcation delay, stochastic resonance, noise-induced synchronisation, the effect of noise on the size of hysteresis cycles. Using a constructive method developed by Berglund and the lecturer, we will describe the typical behaviour of a slowly-driven random system by specifying space-time sets in which the system's sample paths are typically concentrated. At the same time, we obtain precise bounds on the probability of atypical paths. We shall conclude by extending this method to general slow-fast systems and applying it to a conceptual model for the thermohaline circulation in the North-Atlantic.

Topics

I Motivation: Climate models
\triangleright Three examples of conceptual (i.e., simple!) climate models
II Review
\triangleright Brownian motion, stochastic integration, stochastic differential equations

III The paradym
\triangleright The overdamped motion of a Brownian particle in a potential
\triangleright Time scales
IV Diffusion exit from a domain
\triangleright Exponential asymptotics: Wentzell-Freidlin theory
\triangleright Refined results for gradient dynamics
\triangleright New phenomena for non-gradient systems: Cycling
\triangleright The density of the time of first passage through an unstable periodic orbit

V Small-ball probabilities for Brownian motion
VI First-passage of Brownian motion to a (curved) boundary
VII The simplest class of slow-fast systems: Slowly driven systems
\triangleright Concentration of sample paths near the bottom of a well
\triangleright Stochastic resonance
\triangleright Hysteresis cycles
\triangleright Bifurcation delay
VIII Random perturbations of general slow-fast systems
Δ Controlling the random fluctuations of the fast variables
\triangleright Reduced dynamics

The results on random perturbations of slow-fast systems were obtained in joint work with Nils Berglund (Université d'Orléans; previously CPT-CNRS, Marseille)

Slides available at
http://www.math.uni-bielefeld.de/~gentz/files/Paris_August07.pdf

This course will focus on (the mathematics of) random perturbations ...

PART I

Motivation: Climate models

- Different classes of climate models
\triangleright Examples of conceptual climate models
I Ice Ages: An energy-balance model
II Dansgaard-Oeschger events
III North-Atlantic thermohaline circulation: Stommel's box model
\triangleright Examples I \& II: Stochastic resonance
\triangleright Example III: Relaxation oscillations, excitability, stochastic resonance, hysteresis
\triangleright Random perturbations of general slow-fast systems

Motivation: Climate models

Task: Describe the evolution of the Earth's climate over time spans of several millennia

Seems impossible?

Numerous models have been developed

Goal: Capture the dynamics of the more relevant quantities (such as atmosphere and ocean temperatures averaged over long time intervals and large volumes)

Types of climate models

One distinguishes

General Circulation Models (GCMs): Discretised versions of PDEs governing the atmospheric and oceanic dynamics (including the effect of land masses, ice sheets, etc.)

Earth Models of Intermediate Complexity (EMICs): Focus on certain parts of the climate system, using a more coarsegrained description of the rest of the system

Simple conceptual models (such as box models): Variables are quantities averaged over large volumes. Dynamics based on global conservation laws

Climate models

\triangleright GCMs and EMICs can only be analysed numerically

- Simple conceptual models are usually chosen such that they are accessible to analytic methods
- They can provide some insight into the basic mechanisms governing the climate system
\triangleright Even the most refined GCMs have limited resolution, with highfrequency and short-wavelength modes being neglected
\triangleright How to include the effect of unresolved degrees of freedom?

Climate models

Parametrisation assumes that the unresolved degrees of freedom can be expressed as a function of the resolved ones
(like fast variables enslaved by the slow ones on a stable slow manifold of a slow-fast system)
The parametrisation is chosen on more or less empirical grounds
Averaging means that the equations for the resolved degrees of freedom are averaged over the unresolved ones, using (if possible) an invariant measure of the unresolved system in the averaging process

Modelling unresolved degrees of freedom by a noise term [Hasselmann 1976 (for climate models)]
Approach not yet rigorously justified (partial results by [Khasminskii 1966], [Kifer 1999-], [Bakhtin \& Kifer 2004], [Just et al 2003])
Deviations from the averaged equations often have Gaussian fluctuations (CLT)
Approach provides a plausible model for rapid transition phenomena observed in the climate system

Examples for conceptual climate models

\triangleright Ice Ages
\triangleright Dansgard-Oeschger events
\triangleright Thermohaline circulation of the North-Atlantic (Gulf stream)

Riss Ice Age, 110.000 years ago

Example I: Ice Ages

\triangleright During the last 2 million years: more than 20 glacier advances
\triangleright During the last 750.000 years: 8 glacier advances
\triangleright Period: 92.000-100.000 years

How do we know?

Several ways to estimate the amount of ice on Earth

Investigate sediments

- Type of plankton:

Indicator for water temperature
\triangleright Oxygen isotopes:
Allows conclusions about ice volume

Plankton: Helenina anderseni (Diameter $1 / 20-1 / 10 \mathrm{~mm}$)

Ice Ages

G: Glacier advance in the Middle West of the US

Ice Ages

Various proxies indicate that during the last 700000 years, the Earth's climate has repeatedly experienced dramatic transitions between "warm" phases (with average temperatures comparable to today's values), and Ice Ages (with temperatures about ten degrees lower)

Transitions occured with a striking, though not perfect, regularity

Average period of about 92000 years

How to explain this regularity?

Milankovitch factors

James Croll
(1821-1890)

Milutin Milankovitch
(1879-1958)

Milankovitch factors

Idea: Regularity of transitions between warm and cold phases might be related to (quasi-)periodic variations of the Earth's orbital parameters [Croll 1864]
Milankovitch (≈ 1920): Theoretical considerations and calculations
Changes in the eccentricity of the Earth's orbit (\rightarrow Distance Earth-Sun)

Periods: 90.000-100.000 years and 400.000 years
Large excentricity \longrightarrow large seasonal contrast on one hemisphere Effect: 0,1-0,2 \% variation in insolation

Changes in the tilt of the Earth's axis ($22,1^{\circ}-24,5^{\circ}$)
Period: 41.000 years
more tilt \longrightarrow enhanced seasonal contrast
The precession of the equinoxes $(\longrightarrow$ Dates of equinox)
Periods: 19000 years and 23.000 years
\longrightarrow seasonal contrast

Energy-balance model

Simplest model for the variation of the average climate is an energy-balance model

Sole dynamic variable: Mean temperature T of the atmosphere

Its time evolution is described by

$$
c \frac{\mathrm{~d} T}{\mathrm{~d} s}=R_{\mathrm{in}}(s)-R_{\mathrm{out}}(T, s)
$$

where
$\triangleright \quad s$ denotes time
$\triangleright \quad c$ is the heat capacity

Energy-balance model

$$
c \frac{\mathrm{~d} T}{\mathrm{~d} s}=R_{\mathrm{in}}(s)-R_{\mathrm{out}}(T, s)
$$

$\triangleright \quad R_{\text {in }}(s)$ is the incoming solar radiation, modelled by the periodic function

$$
R_{\mathrm{in}}(s)=Q(1+K \cos \omega s)
$$

\triangleright Constant Q is called solar constant
\triangleright Amplitude K of the modulation is small (of order 5×10^{-4})
\triangleright Period $2 \pi / \omega=92000$ years
$\triangleright \quad R_{\text {out }}(T, s)$ is the outgoing radiation, decomposing into directly reflected radiation and thermal emission:

$$
R_{\mathrm{out}}(T, s)=\alpha(T) R_{\mathrm{in}}(s)+E(T)
$$

$\triangleright \quad \alpha(T)$ is called the Earth's albedo
$\triangleright \quad E(T)$ is called emissivity

Energy-balance model

Approximate emissivity $E(T)$ by the Stefan-Boltzmann law of blackbody radiation: $E(T) \sim T^{4}$
$E(T)$ varies little in the range of interest: Replace by constant E_{0}
Richness of the model lies in modelling the albedo's temperaturedependence (which is influenced by factors such as size of ice sheets and vegetation coverage)

The evolution equation can be rewritten as

$$
\frac{\mathrm{d} T}{\mathrm{~d} s}=\frac{E_{0}}{c}[\gamma(T)(1+K \cos \omega s)+K \cos \omega s]
$$

where

$$
\gamma(T)=Q(1-\alpha(T)) / E_{0}-1
$$

Energy-balance model

For two stable climate regimes to coexist, $\gamma(T)$ should have three roots, the middle root corresponding to an unstable state

Following [Benzi, Parisi, Sutera \& Vulpiani 1983], we model $\gamma(T)$ by the cubic polynomial

$$
\gamma(T)=\beta\left(1-\frac{T}{T_{1}}\right)\left(1-\frac{T}{T_{2}}\right)\left(1-\frac{T}{T_{3}}\right)
$$

where
$\triangleright \quad T_{1}=278.6 \mathrm{~K}$ and $T_{3}=288.6 \mathrm{~K}$ are the representative temperatures of the two stable climate regimes
$\triangleright T_{2}=283.3 \mathrm{~K}$ represents an intermediate, unstable regime
$\triangleright \beta$ determines the relaxation time τ of the system in the "temperate climate" state, taken to be 8 years, by

$$
\frac{1}{\tau}=\left(\text { curvature at } T_{3}\right) \simeq-\frac{E_{0}}{c} \gamma^{\prime}\left(T_{3}\right)
$$

Energy-balance model

Introduce

\triangleright slow time $t=\omega s$
\triangleright "dimensionless temperature" $x=\left(T-T_{2}\right) / \Delta T$

$$
\text { with } \Delta T=\left(T_{3}-T_{1}\right) / 2=5 \mathrm{~K}
$$

Rescaled equation of motion

$$
\varepsilon \frac{\mathrm{d} x}{\mathrm{~d} t}=-x\left(x-X_{1}\right)\left(x-X_{3}\right)(1+K \cos t)+A \cos t
$$

with $X_{1}=\left(T_{1}-T_{2}\right) / \Delta T \simeq-0.94$ and $X_{3}=\left(T_{3}-T_{2}\right) / \Delta T \simeq 1.06$
Adiabatic parameter $\varepsilon=\omega \tau \frac{2\left(T_{3}-T_{2}\right)}{\Delta T} \simeq 1.16 \times 10^{-3}$
Effective driving amplitude $A=\frac{K}{\beta} \frac{T_{1} T_{2} T_{3}}{(\Delta T)^{3}} \simeq 0.12$
(according to the value $E_{0} / c=8.77 \times 10^{-3} / 4000 \mathrm{Ks}^{-1}$ given in [Benzi, Parisi, Sutera \& Vulpiani 1983])

Energy-balance model

For simplicity, replace X_{1} by $-1, X_{3}$ by 1 , and neglect the term $K \cos 2 \pi t$

This yields the equation

$$
\varepsilon \frac{\mathrm{d} x}{\mathrm{~d} t}=x-x^{3}+A \cos t
$$

The right-hand side derives from a double-well potential, and therefore has two stable equilibria and one unstable equilibrium, for all $A<A_{\mathrm{C}}=2 / 3 \sqrt{3} \simeq 0.38$

Overdamped particle in a periodically forced double-well potential

Energy-balance model

Overdamped particle in a periodically forced double-well potential

In our simple climate model, the two potential wells represent Ice Age and temperate climate

The periodic forcing is subthreshold and thus not sufficient to allow for transitions between the stable equilibria

Model too simple? The slow variations of insolation can only explain the rather drastic changes between climate regimes if some powerful feedbacks are involved, for example a mutual enhancement of ice cover and the Earth's albedo

Energy-balance model

New idea in [Benzi, Sutera \& Vulpiani 1981] and [Nicolis \& Nicolis 1981]: Incorporate the effect of short-timescale atmospheric fluctuations, by adding a noise term, as suggested by [Hasselmann 1976]

This yields the SDE

$$
\dot{x}_{t}=\frac{1}{\varepsilon}\left[x_{t}-x_{t}^{3}+A \cos t\right]+\widetilde{\sigma}(\varepsilon) \dot{W}_{t}
$$

(considered on the slow timescale, $\widetilde{\sigma}=\sigma / \sqrt{\varepsilon}$)

For adequate parameter values, typical solutions are likely to cross the potential barrier twice per period, producing the observed sharp transitions between climate regimes. This is a manifestation of stochastic resonance (SR).

Whether SR is indeed the right explanation for the appearance of Ice Ages is controversial, and hard to decide.

Sample paths

$$
A=0.24, \sigma=0.20, \varepsilon=0.001
$$

Example II: Dansgaard-Oeschger events

GISP2 climate record for the second half of the last glacial
[Rahmstorf, Timing of abrupt climate change: A precise clock, Geophys. Res. Lett. 30 (2003)]
\triangleright Abrupt, large-amplitude shifts in global climate during last glacial
\triangleright Cold stadials; warm Dansgaard-Oeschger interstadials
\triangleright Rapid warming; slower return to cold stadial
\triangleright 1470-year cycle?
\triangleright Occasionally a cycle is skipped

Interspike times for Dansgaard-Oeschger events

Histogram for "waiting times" between transitions
[from: Alley, Anandakrishnan \& Jung, Stochastic resonance in the North Atlantic, Paleoceanography 16 (2001)]

Sample paths

$$
A=0.24, \sigma=0.20, \varepsilon=0.001
$$

Stochastic resonance

What is stochastic resonance (SR)?
$S R=$ mechanism to amplify weak signals in presence of noise

Requirements

\triangleright (background) noise
\triangleright weak input
\triangleright characteristic barrier or threshold (nonlinear system)

Examples

\triangleright periodic occurrence of ice ages (?)
\triangleright Dansgaard-Oeschger events (?)
\triangleright bidirectional ring lasers
\triangleright visual and auditory perception
\triangleright receptor cells in crayfish

- ...

Stochastic resonance: The paradigm model

Overdamped motion of a Brownian particle ...

$$
\mathrm{d} x_{s}=\underbrace{\left[-x_{s}^{3}+x_{s}+A \cos (\varepsilon s)\right]}_{=-\frac{\partial}{\partial x} V\left(x_{t}, \varepsilon s\right)} \mathrm{d} s+\sigma \mathrm{d} W_{s}
$$

... in a periodically modulated double-well potential

$$
V(x, t)=\frac{1}{4} x^{4}-\frac{1}{2} x^{2}-A \cos (t) x \quad \text { with } \quad A<A_{\mathrm{C}}
$$

SR: Different parameter regimes

Synchronisation I

\triangleright Matching time scales $2 \pi / \varepsilon=T_{\text {forcing }}=2 T_{\text {Kramers }} \asymp \mathrm{e}^{2 H / \sigma^{2}}$
\triangleright Quasistatic approach: Transitions twice per period likely (physics' literature; [Freidlin '00], [Imkeller et al, since '02])
\triangleright Requires exponentially long forcing periods

Synchronisation II
\triangleright Intermediate forcing periods $T_{\text {relax }} \ll T_{\text {forcing }} \ll T_{\text {Kramers }}$ and close-to-critical forcing amplitude $A \approx A_{\text {c }}$
\triangleright Transitions twice per period with high probability
\triangleright Subtle dynamical effects: Effective barrier heights [Berglund \& G '02]
SR outside synchronisation regimes
\triangleright Only occasional transitions
\triangleright But transition times localised within forcing periods

Unified description / understanding of transition between regimes?

Example III: North-Atlantic thermohaline circulation

\triangleright "Realistic" models (GCMs, EMICs): Numerical analysis
\triangleright Simple conceptual models: Analytical results

- In particular: Box models

North-Atlantic THC: Stommel's Box Model ('61)

T_{i} : Temperatures
S_{i} : Salinities
F : Freshwater flux
$Q(\Delta \rho)$: Mass exchange
$\Delta \rho=\alpha_{S} \Delta S-\alpha_{T} \Delta T$
$\Delta T=T_{1}-T_{2}$
$\Delta S=S_{1}-S_{2}$

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} s} \Delta T=-\frac{1}{\tau_{r}}(\Delta T-\theta)-Q(\Delta \rho) \Delta T \\
\frac{\mathrm{~d}}{\mathrm{~d} s} \Delta S=\frac{S_{0}}{H} F-Q(\Delta \rho) \Delta S
\end{array}\right.
$$

Model for Q [Cessi '94]: $Q(\Delta \rho)=\frac{1}{\tau_{d}}+\frac{q}{V}(\Delta \rho)^{2}$

Stommel's box model as a slow-fast system

Separation of time scales: $\tau_{r} \ll \tau_{d}$

Rescaling: $x=\Delta_{T} / \theta, y=\left(\alpha_{S} / \alpha_{T}\right)(\Delta S / \theta), s=\tau_{d} t$

$$
\left\{\begin{aligned}
\varepsilon \dot{x} & =-(x-1)-\varepsilon x\left[1+\eta^{2}(x-y)^{2}\right] \\
\dot{y} & =\mu-y\left[1+\eta^{2}(x-y)^{2}\right]
\end{aligned}\right.
$$

$\varepsilon=\tau_{r} / \tau_{d} \ll 1$
Slow manifold $(\varepsilon \dot{x}=0)$:

$$
x=x^{\star}(y)=1+\mathcal{O}(\varepsilon)
$$

Reduced equation on slow manifold:

$$
\dot{y}=\mu-y\left[1+\eta^{2}(1-y)^{2}+\mathcal{O}(\varepsilon)\right]
$$

1 or 2 stable equilibria, depending on freshwater flux μ (and η)

Stommel's box model with Ornstein-Uhlenbeck noise

$$
\begin{aligned}
\mathrm{d} x_{t} & =\frac{1}{\varepsilon}\left[-\left(x_{t}-1\right)-\varepsilon x_{t} Q\left(x_{t}-y_{t}\right)\right] \mathrm{d} t+\mathrm{d} \xi_{t}^{1} \\
\mathrm{~d} \xi_{t}^{1} & =-\frac{\gamma_{1}}{\varepsilon} \xi_{t}^{1} \mathrm{~d} t+\frac{\sigma}{\sqrt{\varepsilon}} \mathrm{d} W_{t}^{1} \\
\mathrm{~d} y_{t} & =\left[\mu-y_{t} Q\left(x_{t}-y_{t}\right)\right] \mathrm{d} t+\mathrm{d} \xi_{t}^{2} \\
\mathrm{~d} \xi_{t}^{2} & =-\gamma_{2} \xi_{t}^{2} \mathrm{~d} t+\sigma^{\prime} \mathrm{d} W_{t}^{2}
\end{aligned}
$$

\triangleright Variance of $x_{t}-1 \simeq \sigma^{2} /\left(2\left(1+\gamma_{1}\right)\right)$
\triangleright Reduced system for $\left(y_{t}, \xi_{t}^{2}\right)$ is bistable (for suitable choice of μ)

How to choose μ, i. e., how to model the freshwater flux?

Modelling the freshwater flux

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} s} \Delta T=-\frac{1}{\tau_{r}}(\Delta T-\theta)-Q(\Delta \rho) \Delta T \\
& \frac{\mathrm{~d}}{\mathrm{~d} s} \Delta S=\frac{S_{0}}{H} F(s)-Q(\Delta \rho) \Delta S
\end{aligned}
$$

\triangleright Feedback: F or \dot{F} depending on ΔT and ΔS \Rightarrow relaxation oscillations, excitability
\triangleright External periodic forcing \Rightarrow stochastic resonance, hysteresis
\triangleright Internal periodic forcing of ocean-atmosphere system \Rightarrow stochastic resonance, hysteresis

Case I: Feedback (with Gaussian white noise)

$$
\begin{aligned}
\mathrm{d} x_{t} & =\frac{1}{\varepsilon}\left[-\left(x_{t}-1\right)-\varepsilon x_{t} Q\left(x_{t}-y_{t}\right)\right] \mathrm{d} t+\frac{\sigma}{\sqrt{\varepsilon}} \mathrm{d} W_{t}^{0} \\
\mathrm{~d} y_{t} & =\left[\mu_{t}-y_{t} Q\left(x_{t}-y_{t}\right)\right] \mathrm{d} t+\sigma_{1} \mathrm{~d} W_{t}^{1} \\
\mathrm{~d} \mu_{t} & =\tilde{\varepsilon} h\left(x_{t}, y_{t}, \mu_{t}\right) \mathrm{d} t+\sqrt{\tilde{\varepsilon}} \sigma_{2} \mathrm{~d} W_{t}^{2} \quad \text { (slow change in freshwater flux) }
\end{aligned}
$$

Reduced equation (after time change $t \mapsto \tilde{\varepsilon} t$)

$$
\begin{aligned}
& \mathrm{d} y_{t}=\frac{1}{\tilde{\varepsilon}}\left[\mu_{t}-y_{t} Q\left(1-y_{t}\right)\right] \mathrm{d} t+\frac{\sigma_{1}}{\sqrt{\tilde{\varepsilon}}} \mathrm{~d} W_{t}^{1} \\
& \mathrm{~d} \mu_{t}=h\left(1, y_{t}, \mu_{t}\right) \mathrm{d} t+\sigma_{2} \mathrm{~d} W_{t}^{2}
\end{aligned}
$$

Case II: Periodic forcing

Assume periodic freshwater flux $\mu(t)$ (centred w.r.t. bifurcation diagram)

Theorem [Berglund \& G '02]
\triangleright Small amplitude, small noise: Transitions unlikely during one cycle (However: Concentration of transition times within each period)
■ Large amplitude, small noise: Hysteresis cycles Area $=$ static area $+\mathcal{O}\left(\varepsilon^{2 / 3}\right)$ (as in deterministic case)
\triangleright Large noise: Stoch. resonance / noise-induced synchronization Area $=$ static area $-\mathcal{O}\left(\sigma^{4 / 3}\right)$ (reduced due to noise)

General slow-fast systems

Stommel's box model with noise

$$
\begin{aligned}
\mathrm{d} x_{t} & =\frac{1}{\varepsilon}\left[-\left(x_{t}-1\right)-\varepsilon x_{t} Q\left(x_{t}-y_{t}\right)\right] \mathrm{d} t+\mathrm{d} \xi_{t}^{1} \\
\mathrm{~d} \xi_{t}^{1} & =-\frac{\gamma_{1}}{\varepsilon} \xi_{t}^{1} \mathrm{~d} t+\frac{\sigma}{\sqrt{\varepsilon}} \mathrm{d} W_{t}^{1} \\
\mathrm{~d} y_{t} & =\left[\mu-y_{t} Q\left(x_{t}-y_{t}\right)\right] \mathrm{d} t+\mathrm{d} \xi_{t}^{2} \\
\mathrm{~d} \xi_{t}^{2} & =-\gamma_{2} \xi_{t}^{2} \mathrm{~d} t+\sigma^{\prime} \mathrm{d} W_{t}^{2}
\end{aligned}
$$

is a special case of a randomly perturbed slow-fast system

$$
\left\{\begin{array}{l}
\mathrm{d} x_{t}=\frac{1}{\varepsilon} f\left(x_{t}, y_{t}\right) \mathrm{d} t+\frac{\sigma}{\sqrt{\varepsilon}} F\left(x_{t}, y_{t}\right) \mathrm{d} W_{t} \\
\mathrm{~d} y_{t}=g\left(x_{t}, y_{t}\right) \mathrm{d} t+\sigma^{\prime} G\left(x_{t}, y_{t}\right) \mathrm{d} W_{t}
\end{array}\right.
$$

$$
\text { (fast variables } \in \mathbb{R}^{n} \text {) }
$$

$$
\text { (slow variables } \in \mathbb{R}^{m} \text {) }
$$

General slow-fast systems

For deterministic slow-fast systems

$$
\left\{\begin{aligned}
\varepsilon \dot{x} & =f(x, y) & & \left(\text { fast variables } \in \mathbb{R}^{n}\right) \\
\dot{y} & =g(x, y) & & \left(\text { slow variables } \in \mathbb{R}^{m}\right)
\end{aligned}\right.
$$

geometric singular perturbation theory permits to study the reduced dynamics on a slow or centre manifold (under suitable assumptions)

Our goals:
\triangleright Analog for the case of random perturbations
\triangleright Effect of random perturbations near bifurcation points of the deterministic system

We will focus on simple cases, in particular slowly driven systems

References for PART I

References from the text:
\triangleright R. Z.Khasminskii, A limit theorem for solutions of differential equations with random right-hand side, Teor. Veroyatnost. i Primenen. 11 (1966), pp. 390406
\triangleright Y. Kifer, Averaging and climate models, in Stochastic climate models (Chorin, 1999), Progr. Probab. 49, pp. 171-188, Birkhäuser, Basel (2001)
\triangleright Y. Kifer, Stochastic versions of Anosov's and Neistadt's theorems on averaging, Stoch. Dyn. 1 (2001), pp. 1-21
\triangleright Y. Kifer, L^{2} diffusion approximation for slow motion in averaging, Stoch. Dyn. 3 (2003), pp. 213-246
\triangleright V. Bakhtin, and Y. Kifer, Diffusion approximation for slow motion in fully coupled averaging, Probab. Theory Related Fields 129 (2004), pp. 157-181
\triangleright W. Just, K. Gelfert, N. Baba, A. Riegert, and H. Kantz, Elimination of fast chaotic degrees of freedom: on the accuracy of the Born approximation, J. Statist. Phys. 112 (2003), pp. 277-292
\triangleright R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, A theory of stochastic resonance in climatic change, SIAM J. Appl. Math. 43 (1983), pp. 565-578
\triangleright R. Benzi, Roberto, A. Sutera, and A. Vulpiani, The mechanism of stochastic resonance, J. Phys. A 14 (1981), pp. L453-L457
\triangleright C. Nicolis, and G. Nicolis, Stochastic aspects of climatic transitions-additive fluctuations, Tellus 33 (1981), pp. 225-234
\triangleright K. Hasselmann, Stochastic climate models. Part I. Theory, Tellus 28 (1976), pp. 473-485
\triangleright S. Rahmstorf, Timing of abrupt climate change: A precise clock, Geophysical Research Letters 30 (2003), pp. 17-1-17-4
\triangleright R. B. Alley, S. Anandakrishnan, and P. Jung, Stochastic resonance in the North Atlantic , Paleoceanography 16 (2001), 190-198
\triangleright M.I. Freidlin, Quasi-deterministic approximation, metastability and stochastic resonance, Physica D 137, (2000), pp. 333-352
\triangleright S. Herrmann, and P. Imkeller, Barrier crossings characterize stochastic resonance, Stoch. Dyn. 2 (2002), pp. 413-436
\triangleright P. Imkeller, and I. Pavlyukevich, Model reduction and stochastic resonance, Stoch. Dyn. 2 (2002), pp. 463-506
\triangleright N. Berglund, and B. Gentz, A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential, Ann. Appl. Probab. 12 (2002), pp. 1419-1470
\triangleright N. Berglund, and B. Gentz, Beyond the Fokker-Planck equation: Pathwise control of noisy bistable systems, J. Phys. A 35 (2002), pp. 2057-2091
\triangleright N. Berglund, and B. Gentz, Metastability in simple climate models: Pathwise analysis of slowly driven Langevin equations, Stoch. Dyn. 2 (2002), pp. 327-356
\triangleright S. Rahmstorf, Ocean circulation and climate during the past 120,000 years, Nature 419 (2002), pp. 207-214
\triangleright H. Stommel, Thermohaline convection with two stable regimes of flow, Tellus 13 (1961), pp. 224-230
\triangleright P. Cessi, Paola, A simple box model of stochastically forced thermohaline flow, J. Phys. Oceanogr. 24 (1994), pp. 1911-1920
\triangleright N. Berglund, and B. Gentz, The effect of additive noise on dynamical hysteresis, Nonlinearity 15 (2002), pp. 605-632

Additional reading:
\triangleright F. Moss, and K. Wiesenfeld, The benefits of background noise, Scientific American 273 (1995), pp. 50-53
\triangleright K. Wiesenfeld, and F. Moss, Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs, Nature 373 (1995), pp. 33-36
\triangleright K. Wiesenfeld, and F. Jaramillo, Minireview of stochastic resonance, Chaos 8 (1998), pp. 539-548

Data, figures and photographs:
\triangleright http://www.ncdc.noaa.gov/paleo/slides
\triangleright http://www.museum.state.il.us/exhibits/ice_ages
\triangleright http://arcss.colorado.edu/data/gisp_grip (ice-core date)
\triangleright http://www.ncdc.noaa.gov/paleo/icecore/greenland/greenland.html (ice-core date)
And last not least:
■ http://www.phdcomics.com/comics.php

I'm inviting you now to follow me onto a journey into probability theory.

In case you're bored - I recommend ...

Seminar
 BINGO

To play, simply print out this bingo sheet and attend a departmental seminar.

Mark over each square that occurs throughout the course of the lecture.

The first one to form a straight line (or all four corners) must yell out

PART II

Review

- Brownian motion
\triangleright Stopping times
\triangleright Stochastic integration (Itô integrals)
\triangleright Stochastic differential equations
\triangleright Diffusion processes and Fokker-Planck equation

Stochastic processes

A stochastic process is a collection $\left\{X_{t}(\omega)\right\}_{t \geq 0}$ of random (chance) variables $\omega \mapsto X_{t}(\omega)$, indexed by time.
ω denotes the dependence on chance
More precisely:
ω denotes the realisation of chance / randomness / noise
View stochastic process as a random function of time: $t \mapsto X_{t}(\omega)$ (for fixed ω)

We call $t \mapsto X_{t}(\omega)$ a sample path.

Brownian motion

Physics' literature:

Gaussian white noise $\dot{W}_{t}(\omega)$ is a Gaussian stationary stochastic process with autocorrelation function

$$
C(s):=\mathbb{E}\left(\dot{W}_{t} \dot{W}_{t+s}\right)=\delta(s)
$$

$\triangleright \mathbb{E}$ denotes expectation (weighted average over all realizations of the noise)
$\triangleright \quad \delta(s)$ denotes the Dirac delta function
$\triangleright \quad \dot{W}_{t}$ is completely uncorrelated

Brownian motion (BM): $W_{t}=\int_{0}^{t} \dot{W}_{s} d s$
(In the sense that Gaussian white noise is the generalized meansquare derivative of Brownian motion.)

Sample-path view on Brownian motion

(in the spirit of this course)

BM can be constructed as a scaling limit of a symmetric random walk

$$
W_{t}(\omega)=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor n t\rfloor} X_{i}(\omega)
$$

$\triangleright \quad X_{i}(\omega)$ are independent, identically distributed (i.i.d.) random variables (r.v.'s)
$\triangleright \mathbb{E} X_{i}=0, \operatorname{Var}\left(X_{i}\right)=1$

Special case:
Nearest-neighbour random walk $\left(X_{i}= \pm 1\right.$ with probability $\left.1 / 2\right)$

The limit is to be understood as convergence in distribution.

Definition of Brownian motion

A one-dimensional standard Brownian motion (or Wiener process) is a stochastic process $\left\{W_{t}\right\}_{t \geq 0}$, satisfying

1. $W_{0}=0$
2. Independent increments:
$W_{t}-W_{s}$ is independent of $\left\{W_{u}\right\}_{0 \leq u \leq s}$ (for all $t>s \geq 0$)
3. Gaussian increments:
$W_{t}-W_{s} \sim \mathcal{N}(0, t-s)($ for all $t>s \geq 0)$
That is:
$W_{t}-W_{s}$ has (probability) density $x \mapsto \frac{1}{\sqrt{2 \pi(t-s)}} \mathrm{e}^{-x^{2} / 2(t-s)}$
(the famous bell-shape curve!)

Properties of Brownian motion

- Continuity of sample paths

We may assume that the sample paths $t \mapsto W_{t}(\omega)$ of BM are continuous for almost all ω. (Kolmogorov's continuity theorem)
\triangleright Non-differentiability of sample paths
The sample paths are nowhere differentiable for almost all ω.

- Markov property

BM is a Markov process

$$
\mathbb{P}\left\{W_{t+s} \in A \mid W_{u}, u \leq t\right\}=\mathbb{P}\left\{W_{t+s} \in A \mid W_{t}\right\}
$$

\triangleright Gaussian transition probabilities

$$
\mathbb{P}\left\{W_{t+s} \in A \mid W_{t}=x\right\}=\mathbb{P}^{t, x}\left\{W_{t+s} \in A\right\}=\int_{A} \frac{\mathrm{e}^{-(y-x)^{2} / 2 s}}{\sqrt{2 \pi s}} \mathrm{~d} y
$$

\triangleright Fokker-Planck equation (FPE)
The transition densities $p(t, x)$ satiesfy the FPE / forward Kolmogorov equation

$$
\frac{\partial p}{\partial t}=\frac{1}{2} \sum_{i, j=1}^{d} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} p=\frac{1}{2} \triangle p \quad \text { (in the } d \text {-dim. case) }
$$

Properties of Brownian motion

- Gaussian process
$\left\{W_{t}\right\}_{t \geq 0}$ is a Gaussian process (i.e., all its finite-dimensional marginals are Gaussian random variables) with
- mean zero
$-\operatorname{Cov}\left\{W_{t}, W_{s}\right\}:=\mathbb{E}\left(W_{t} W_{s}\right)=t \wedge s$
Conversely, any mean-zero Gaussian process with this covariance structure is a standard Brownian motion.
\triangleright Scaling property
$\left\{c W_{t / c^{2}}\right\}_{t \geq 0}$ is a standard Brownian motion (for any $c>0$)

A k-dimensional standard Brownian motion is a vector

$$
W_{t}=\left(W_{t}^{(1)}, \ldots, W_{t}^{(k)}\right)
$$

of k independent one-dimensional standard Brownian motions

Stopping times

A random variable $\tau: \Omega \rightarrow[0, \infty]$ is called a stopping time (with respect to the BM $\left\{W_{t}\right\}_{t}$) if

$$
\{\tau \leq t\}=\{\omega \in \Omega: \tau(\omega) \leq t\}
$$

can be decided from the knowledge of W_{s} for $s \leq t$ alone.
(No need to "look into the future".)
Formally, we request $\{\tau \leq t\} \in \mathcal{F}_{t}=\sigma\left\{W_{s}, 0 \leq s \leq t\right\}$ for all $t>0$.
Example: First-exit time from a set

$$
\tau_{A}=\inf \left\{t>0: W_{t} \notin A\right\} \in[0, \infty]
$$

Note: The time

$$
\tilde{\tau}_{A}=\sup \left\{t>0: W_{t} \in A\right\} \in[0, \infty]
$$

of the last visit to A is in general no stopping time.

André's reflection principle

Consider a Brownian motion $\left\{W_{t}\right\}_{t}$, starting in $-b<0$. (Shift to whole sample path vertically by $-b$.)

First-passage time $\tau_{0}=\inf \left\{t>0: W_{t} \geq 0\right\}$ at level $x=0$

$$
\mathbb{P}^{0,-b}\left\{\tau_{0}<t\right\}=\mathbb{P}^{0,-b}\left\{\tau_{0}<t, W_{t} \geq 0\right\}+\mathbb{P}^{0,-b}\left\{\tau_{0}<t, W_{t}<0\right\}
$$

Now, for $\tau_{0}<t, W_{t}=W_{t}-W_{\tau_{0}}$ depends (by the strong Markov property) only on $W_{\tau_{0}}$ but not on the rest of the past of the sample path.

We can restart W_{t} at time τ_{0} in $W_{\tau_{0}}=0$.
By symmetry of the distribution of the Brownian sample path, starting in 0 at time τ_{0},

$$
\ldots=2 \mathbb{P}^{0,-b}\left\{\tau_{0}<t, W_{t} \geq 0\right\}=2 \mathbb{P}^{0,-b}\left\{W_{t} \geq 0\right\}=\int_{b}^{\infty} \frac{\mathrm{e}^{-y^{2} / 2 t}}{\sqrt{2 \pi t}} \mathrm{~d} y
$$

Depends only on the endpoint at time t !

Stochastic integrals (Itô integrals)

Goal: Give a meaning to stochastic differential equations (SDE's)

$$
\dot{x}_{t}=f\left(x_{t}, t\right)+F\left(x_{t}, t\right) \dot{W}_{t}
$$

Consider the discrete-time version
$x_{t_{k+1}}-x_{t_{k}}=f\left(x_{t_{k}}, t_{k}\right) \Delta t_{k}+F\left(x_{t_{k}}, t_{k}\right) \Delta W_{k}, \quad k \in\{0, \ldots, K-1\}$
with
$\triangleright \quad$ a partition $0=t_{0}<t_{1}<\cdots<t_{K}=T$
$\triangleright \quad \Delta t_{k}=t_{k+1}-t_{k}$
\triangleright Gaussian increments $\Delta W_{k}=W_{t_{k+1}}-W_{t_{k}}$
Observe that
$\sum_{k=0}^{K-1} f\left(x_{t_{k}}, t_{k}\right) \Delta t_{k} \rightarrow \int_{0}^{t} f\left(x_{s}, s\right) \mathrm{d} s \quad$ as the partition is chosen finer and finer

Stochastic integrals (Itô integrals)

This suggests to interpret the SDE as an integral equation

$$
x_{t}=x_{0}+\int_{0}^{t} f\left(x_{s}, s\right) \mathrm{d} s+\int_{0}^{t} F\left(x_{s}, s\right) \mathrm{d} W_{s}
$$

provided the second integral can be defined as

$$
\int_{0}^{t} F\left(x_{s}, s\right) \mathrm{d} W_{s}=\lim _{\Delta t_{k} \rightarrow 0} \sum_{k=0}^{K-1} F\left(x_{t_{k}}, t_{k}\right) \Delta W_{k}
$$

in some suitable sense

Thus we want to define (stochastic) integrals of the type

$$
\int_{0}^{t} h(s, \omega) \mathrm{d} W_{s}(\omega)
$$

for suitable integrands $h(s, \omega)$

A heuristic approach to stochastic integrals

Assume for the moment:
$s \mapsto h(s, \omega)$ continuous and of bounded variation for (almost) all ω
Were the paths of the Brownian motion $s \mapsto W_{s}(\omega)$ also of finite variation, we could apply integration by parts:

$$
\begin{aligned}
\int_{0}^{t} h(s, \omega) \mathrm{d} W_{s}(\omega) & =h(t) W_{t}(\omega)-h(0) W_{0}(\omega)-\int_{0}^{t} W_{s}(\omega) h(\mathrm{~d} s, \omega) \\
& =h(t) W_{t}(\omega)-\int_{0}^{t} W_{s}(\omega) h(\mathrm{~d} s, \omega)
\end{aligned}
$$

The integral on the right-hand side is defined as a Stieltjes integral for each fixed ω.
We can use this equation to define $\int_{0}^{t} h(s, \omega) \mathrm{d} W_{s}(\omega) \omega$-wise
Unfortunately, the paths of BM are almost surely not of finite variation, and we can not expect $s \mapsto h(s, \omega)=F\left(x_{s}(\omega), s\right)$ to be of finite variation either. Thus the class of possible integrands is not large enough for our purpose!

Elementary functions

Let $\mathcal{F}_{t}=\sigma\left\{W_{s}, s \leq t\right\}$ be the σ-algebra generated by the Brownian motion up to time t. We think of \mathcal{F}_{t} as the past of the BM up to time t

We start by defining the stochastic integral for a class of particularly simple functions:
$h:[0, T] \times \Omega \rightarrow \mathbb{R}$ is called elementary if there exists a partition $0=t_{0}<t_{1}<\ldots t_{K}=T$ such that
$\triangleright \quad h(t, \omega)=\sum_{k=0}^{K-1} h_{k}(\omega) 1_{\left(t_{k}, t_{k+1}\right]}(t)$
$\triangleright \quad \omega \mapsto h_{k}(\omega)$ is $\mathcal{F}_{t_{k}-\text {-measurable for all } k}$
For such elementary integrands h, define

$$
\int_{0}^{t} h(s, \omega) \mathrm{d} W_{s}(\omega)=\sum_{k=0}^{K-1} h_{k}(\omega)\left[W_{t_{k+1}}(\omega)-W_{t_{k}}(\omega)\right]
$$

Stochastic integrals: L_{2}-theory

To extend this definition, we use the following isometry

Itô isometry
Let h be elementary with $h_{k} \in L^{2}(\Omega)$ for all k. Then,

$$
\mathbb{E}\left\{\left(\int_{0}^{t} h(s) \mathrm{d} W_{s}\right)^{2}\right\}=\int_{0}^{t} \mathbb{E}\left\{h(s)^{2}\right\} \mathrm{d} s
$$

Importance of the Itô isometry
The map $h \mapsto \int_{0}^{T} h(s) \mathrm{d} W_{s}$ which maps (elementary) h to the stochastic integral of h is an isometry between $L_{2}([0, T] \times \Omega)$ and $L_{2}(\Omega)$

Stochastic integrals: L_{2}-theory

Class of possible integrands $h:[0, T] \times \Omega \rightarrow \mathbb{R}$:
$\triangleright \quad(t, \omega) \mapsto h(t, \omega)$ jointly measurable
$\triangleright \omega \mapsto h(t, \omega) \mathcal{F}_{t}$-measurable for any fixed t (Not looking into future!)
$\triangleright \int_{0}^{T} \mathbb{E}\left\{h(t)^{2}\right\} \mathrm{d} t<\infty$.
Such h can be approximated by elementary functions $e^{(n)}$

$$
\int_{0}^{T} \mathbb{E}\left\{\left(h(s)-e^{(n)}(s)\right)^{2}\right\} \mathrm{d} s \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

By Itô isometry

$$
\int_{0}^{t} h(s) \mathrm{d} W_{s}=L_{2^{-}} \lim _{n \rightarrow \infty} \int_{0}^{t} e^{(n)}(s) \mathrm{d} W_{s}
$$

is well-defined (its value does not depend on the choice of the sequence of elementary functions)

Stratonovich integral

By our definition of elementary functions, h is approximated by (random) step functions, where the value of such a step function at all times $t \in\left[t_{k}^{(n)}, t_{k+1}^{(n)}\right]$ is $\mathcal{F}_{t_{k}^{(n)}}$-measurable.

If h is a bounded function and continuous in t for (almost) all ω, the elementary functions $e^{(n)}$ can be chosen by setting $e^{(n)}(t)=h\left(t_{k}^{(n)}\right)$ for all $t \in\left[t_{k}^{(n)}, t_{k+1}^{(n)}\right]$.

If we were to choose $e^{(n)}(t)=h\left(t^{\star}\right)$ on $\left[t_{k}^{(n)}, t_{k+1}^{(n)}\right]$ for some different $t^{\star} \in\left[t_{k}^{(n)}, t_{k+1}^{(n)}\right]$, the definition of the stochastic integral would yield a different value. For instance, choosing t^{\star} as the midpoint the interval would yield the so-called Stratonovich integral.

Properties of the Itô integral

For $[a, b] \subset[0, T]$, define

$$
\int_{a}^{b} h(s) \mathrm{d} W_{s}=\int_{0}^{T} 1_{[a, b]}(s) h(s) \mathrm{d} W_{s}
$$

- Splitting

$$
\int_{s}^{t} h(s) \mathrm{d} W_{s}=\int_{s}^{u} h(s) \mathrm{d} W_{s}+\int_{u}^{t} h(s) \mathrm{d} W_{s} \text { for } 0 \leq s \leq u \leq t \leq T
$$

- Linearity

$$
\int_{0}^{t}\left(c h_{1}(s)+h_{2}(s)\right) \mathrm{d} W_{s}=c \int_{0}^{t} h_{1}(s) \mathrm{d} W_{s}+\int_{0}^{t} h_{2}(s) \mathrm{d} W_{s}
$$

\triangleright Expectation

$$
\mathbb{E}\left\{\int_{0}^{t} h(s) \mathrm{d} W_{s}\right\}=0 ;
$$

\triangleright Covariance / Itô isometry

$$
\mathbb{E}\left\{\left(\int_{0}^{t} h_{1}(s) \mathrm{d} W_{s}\right)\left(\int_{0}^{t} h_{2}(s) \mathrm{d} W_{s}\right)\right\}=\int_{0}^{t} \mathbb{E}\left\{h_{1}(s) h_{2}(s)\right\} \mathrm{d} s
$$

Itô integrals as stochastic processes

Consider $X_{t}=\int_{0}^{t} h(s) \mathrm{d} W_{s}$ as a function of t
$\triangleright \quad X_{t}$ is \mathcal{F}_{t}-measurable (not looking into the future)
$\triangleright \quad X_{t}$ is an \mathcal{F}_{t}-martingale: $\mathbb{E}\left\{X_{t} \mid \mathcal{F}_{s}\right\}=X_{s}$ for $0 \leq s \leq t \leq T$
\triangleright We may assume that $t \mapsto X_{t}(\omega)$ is continuous for allmost all ω

Extending the definition

The definition of the Itô integral can be extended to integrands h satisfying the same measurability assumptions as before but a weaker integrability assumption. It is sufficient to assume that

$$
\mathbb{P}\left\{\int_{0}^{t} h(s, \omega)^{2} \mathrm{~d} s<\infty \quad \text { for all } t \geq 0\right\}=1
$$

The stochastic integral is then defined as the limit in probability of integrals of elementary functions.

Keep in mind that for such h, those of the above properties of the stochastic integral which involve expectations may fail.

Examples

(a) Calculate $\int_{0}^{t} W_{s} \mathrm{~d} W_{s}$ directly from the definition by approximating W_{s} by elementary functions. (Homework!)
Note that the result

$$
\int_{0}^{t} W_{s} \mathrm{~d} W_{s}=\frac{1}{2} W_{t}^{2}-\frac{1}{2} t
$$

contains an unexpected term $-t / 2$, which shows that Itô integrals can not be calculated like ordinary integrals.
(The stochastic integral is a martingale, and the Itô correction $-t$ is the quadratic variation of W_{t} which makes $W_{t}^{2}-t$ a martingale.)

Below we will state Itô's formula which replaces the chain rule for Riemann integrals. Useful for calculating Itô integrals.
(b) Case of deterministic integrands (h not depending on ω): $\int_{0}^{t} h(s) \mathrm{d} W_{s}$ is Gaussian with mean zero and variance $\int_{0}^{t} h(s)^{2} \mathrm{~d} s$

Itô's formula

Assume
$\triangleright \quad h$ and f satisfy the standard measurability assumptions
$\triangleright \mathbb{P}\left\{\int_{0}^{t} h(s, \omega)^{2} \mathrm{~d} s<\infty \quad\right.$ for all $\left.t \geq 0\right\}=1$
$\triangleright \mathbb{P}\left\{\int_{0}^{t}|f(s, \omega)| \mathrm{d} s<\infty \quad\right.$ for all $\left.t \geq 0\right\}=1$

Itô process

$$
X_{t}=X_{0}+\int_{0}^{t} f(s) \mathrm{d} s+\int_{0}^{t} h(s) \mathrm{d} W_{s}
$$

Let $g: \mathbb{R} \times[0, T] \rightarrow \mathbb{R}$ be continuous with cont. partial derivatives

$$
g_{t}=\frac{\partial}{\partial t} g(x, t), \quad g_{x}=\frac{\partial}{\partial x} g(x, t), \quad g_{x x}=\frac{\partial^{2}}{\partial x^{2}} g(x, t)
$$

Itô's formula

Then $Y_{t}=g\left(X_{t}, t\right)$ is again an Itô process, given by

$$
\begin{aligned}
Y_{t}=g\left(X_{0}, 0\right) & +\int_{0}^{t}\left[g_{t}\left(X_{s}, s\right)+g_{x}\left(X_{s}, s\right) f(s)+\frac{1}{2} g_{x x}\left(X_{s}, s\right) h(s)^{2}\right] \mathrm{d} s \\
& +\int_{0}^{t} g_{x}\left(X_{s}, s\right) h(s) \mathrm{d} W_{s}
\end{aligned}
$$

Using the shorthand

$$
\mathrm{d} X_{t}=f \mathrm{~d} t+h \mathrm{~d} W_{t}
$$

Itô's formula can be written as

$$
\mathrm{d} Y_{t}=g_{t} \mathrm{~d} t+g_{x} \mathrm{~d} X_{t}+\frac{1}{2} g_{x x}\left(\mathrm{~d} X_{t}\right)^{2}
$$

where $\left(\mathrm{d} X_{t}\right)^{2}$ is calculated according to the scheme

$$
(\mathrm{d} t)^{2}=(\mathrm{d} t)\left(\mathrm{d} W_{t}\right)=\left(\mathrm{d} W_{t}\right)(\mathrm{d} t)=0, \quad\left(\mathrm{~d} W_{t}\right)^{2}=\mathrm{d} t
$$

Examples

(a) Using Itô's formula, we can calculate $\int_{0}^{t} s \mathrm{~d} W_{s}$:

Set $g(x, t)=t \cdot x$ and $Y_{t}=g\left(W_{t}, t\right)$.
Then $\mathrm{d} Y_{t}=W_{t} \mathrm{~d} t+t \mathrm{~d} W_{t}+\frac{1}{2} \mathrm{O} \mathrm{d} t$, and, therefore,

$$
\int_{0}^{t} s \mathrm{~d} W_{s}=Y_{t}-Y_{0}-\int_{0}^{t} W_{s} \mathrm{~d} s=t W_{t}-\int_{0}^{t} W_{s} \mathrm{~d} s
$$

Note that this is an integration-by-parts formula.
Similarly, by setting $g(x, t)=h(t) \cdot x$, the integration-by-parts formula from Slide 51 can be established for suitable h.
(b) Choosing $g(x, t)=x^{2}$ and $Y_{t}=g\left(t, W_{t}\right)$, Itô's formula gives a much easier way to calculate $\int_{0}^{t} W_{s} \mathrm{~d} W_{s}$. (Homework!)
(c) Let $X_{t}=W_{t}-t / 2$. Use Itô's formula to show that $Y_{t}=\mathrm{e}^{X_{t}}$ satisfies

$$
\mathrm{d} Y_{t}=Y_{t} \mathrm{~d} W_{t}
$$

Y_{t} is called the Doléans exponential of W_{t}.

The multidimensional case

Extension to \mathbb{R}^{n} is easy:
$\triangleright \quad W_{t}=\left(W_{t}^{(1)}, \ldots, W_{t}^{(k)}\right) k$-dimensional standard BM
$\triangleright \quad h(s, \omega)=\left(h_{i j}(s, \omega)\right)_{i \leq n, j \leq k}$ a matrix-valued function, taking values in the set of $(n \times k)$-matrices
\triangleright Assume, each $h_{i j}$ allows for stochastic integration in \mathbb{R}
Define the i th component of the n-dim. stochastic integral by

$$
\sum_{j=1}^{k} \int_{0}^{t} h_{i j}(s) \mathrm{d} W_{s}^{(j)}
$$

The above mentioned properties of stochastic integrals carry over in the natural way. In particular, the covariance of stochastic integrals can be calculated as

$$
\mathbb{E}\left\{\left(\int_{0}^{t} f(s) \mathrm{d} W_{s}\right)\left(\int_{0}^{t} g(s) \mathrm{d} W_{s}\right)^{\top}\right\}=\int_{0}^{t} \mathbb{E}\left\{f(s) g(s)^{\top}\right\} \mathrm{d} s
$$

Itô's formula: The multidimensional case

As the multidimensional integral can be defined componentwise, it is sufficient to consider $Y_{t}=g\left(X_{t}, t\right)$ for multidimensional X_{t} and one-dimensional Y_{t}.
$\triangleright \quad h:[0, \infty) \times \Omega \rightarrow \mathbb{R}^{n \times k}$
$\triangleright \quad f:[0, \infty) \times \Omega \rightarrow \mathbb{R}^{n}$
$\triangleright \quad g: \mathbb{R}^{n} \times[0, T] \rightarrow \mathbb{R}$
\triangleright Assumptions as before...

Let $\quad \mathrm{d} X_{t}=f(t) \mathrm{d} t+h(t) \mathrm{d} W_{t} \quad$ and $\quad Y_{t}=g\left(X_{t}, t\right)$
Then
$\mathrm{d} Y_{t}=g_{t}\left(X_{t}, t\right) \mathrm{d} t+\sum_{i=1}^{n} g_{x_{i}}\left(X_{t}, t\right) \mathrm{d} X_{t}^{(i)}+\frac{1}{2} \sum_{i, j=1}^{n} g_{x_{i} x_{j}}\left(X_{t}, t\right)\left(\mathrm{d} X_{t}^{(i)}\right)\left(\mathrm{d} X_{t}^{(j)}\right)$
using the scheme
$(\mathrm{d} t)^{2}=(\mathrm{d} t)\left(\mathrm{d} W_{t}^{(\mu)}\right)=\left(\mathrm{d} W_{t}^{(\mu)}\right)(\mathrm{d} t)=0$ and $\left(\mathrm{d} W_{t}^{(\mu)}\right)\left(\mathrm{d} W_{t}^{(\nu)}\right)=\delta_{\mu \nu} \mathrm{d} t$

Application of the multidimensional version of Itô's formula

Integration-by-parts formula
Let $\mathrm{d} X_{t}^{(i)}=f_{i} \mathrm{~d} t+h_{i} \mathrm{~d} W_{t}$ for $i=1,2$
The multidimensional version of Itô's formula shows
$X_{t}^{(1)} X_{t}^{(2)}=X_{0}^{(1)} X_{0}^{(2)}+\int_{0}^{t} X_{s}^{(1)} \mathrm{d} X_{s}^{(2)}+\int_{0}^{t} X_{s}^{(2)} \mathrm{d} X_{s}^{(1)}+\int_{0}^{t} h_{1}(s) h_{2}(s) \mathrm{d} s$

Stochastic differential equations

Goal: Give a meaning to SDE's of the form

$$
\mathrm{d} x_{t}=f\left(x_{t}, t\right) \mathrm{d} t+F\left(x_{t}, t\right) \mathrm{d} W_{t}
$$

$\left\{x_{t}\right\}_{t \in[0, T]}$ is called a strong solution with initial condition x_{0} if
\triangleright For all $t: x_{t}$ is $\left\{W_{s} ; s \leq t\right\}$-measurable (depends only on the past of the BM up to time t)
\triangleright Integrability condition:

$$
\mathbb{P}\left\{\int_{0}^{T}\left\|f\left(x_{s}, s\right)\right\| \mathrm{d} s<\infty\right\}=1, \quad \mathbb{P}\left\{\int_{0}^{T}\left\|F\left(x_{s}, s\right)\right\|^{2} \mathrm{~d} s<\infty\right\}=1
$$

\triangleright For all t :

$$
x_{t}=x_{0}+\int_{0}^{t} f\left(x_{s}, s\right) \mathrm{d} s+\int_{0}^{t} F\left(x_{s}, s\right) \mathrm{d} W_{s} \text { holds for almost all } \omega
$$

If the initial condition x_{0} is random, we assume that it does not depend on the BM!

Existence and uniqueness

Assume

\triangleright Lipschitz condition (local Lipschitz condition suffices)

$$
\|f(x, t)-f(y, t)\|+\|F(x, t)-F(y, t)\| \leq K\|x-y\|
$$

- Bounded-growth condition

$$
\|f(x, t)\|+\|F(x, t)\| \leq K(1+\|x\|)
$$

(Can be relaxed, f.e. to $x f(x, t)+F(x, t)^{2} \leq K^{2}\left(1+x^{2}\right)$ in the one-dim. case)

Then: The SDE has a (pathwise) unique almost surely continuous solution x_{t}

Uniqueness means:
For any two almost surely continuous solutions x_{t} and y_{t}

$$
\mathbb{P}\left\{\sup _{0 \leq t \leq T}\left\|x_{t}-y_{t}\right\|>0\right\}=0
$$

Existence and uniqueness: Remarks

\triangleright As in the deterministic case: Uniqueness requires only the Lipschitz condition
\triangleright As in the deterministic case: The bounded-growth condition excludes explosions of the solution
\triangleright Conditions can be relaxed in many ways

- Proof by a stochastic version of Picard-Lindelöf iterations
\triangleright The solution x_{t} satisfies the strong Markov property, meaning that we can restart the process not only at fixed times s in x_{s} but even at any stopping time τ in x_{τ}

Example: Linear SDE's

- We frequently approximate solutions of SDE's locally by linearizing
- Linear SDE's can be solved easily

One-dimensional linear SDE

$$
\mathrm{d} x_{t}=\left[a(t) x_{t}+b(t)\right] \mathrm{d} t+F(t) \mathrm{d} W_{t}
$$

Admits a strong solution

$$
x_{t}=x_{0} \mathrm{e}^{\alpha\left(t, t_{0}\right)}+\int_{t_{0}}^{t} \mathrm{e}^{\alpha(t, s)} b(s) \mathrm{d} s+\int_{t_{0}}^{t} \mathrm{e}^{\alpha(t, s)} F(s) \mathrm{d} W_{s}
$$

where

$$
\alpha(t, s)=\int_{s}^{t} a(u) \mathrm{d} u
$$

(Use Itô's formula to solve the equation! Hint: $y_{t}=\mathrm{e}^{-\alpha\left(t, t_{0}\right)} x_{t}$)

Example: Linear SDE's

\triangleright If the initial condition x_{0} is either deterministic of Gaussian, then

$$
x_{t}=x_{0} \mathrm{e}^{\alpha\left(t, t_{0}\right)}+\int_{t_{0}}^{t} \mathrm{e}^{\alpha(t, s)} b(s) \mathrm{d} s+\int_{t_{0}}^{t} \mathrm{e}^{\alpha(t, s)} F(s) \mathrm{d} W_{s}
$$

is a Gaussian process
\triangleright For arbitrary initial conditions (independent of the BM):

$$
\begin{aligned}
\mathbb{E}\left\{x_{t}\right\} & =\mathbb{E}\left\{x_{0}\right\} \mathrm{e}^{\alpha(t)}+\int_{0}^{t} b(s) \mathrm{e}^{\alpha(t, s)} \mathrm{d} s \\
\operatorname{Var}\left\{x_{t}\right\} & =\operatorname{Var}\left\{x_{0}\right\} \mathrm{e}^{2 \alpha(t)}+\int_{0}^{t} F(s)^{2} \mathrm{e}^{2 \alpha(t, s)} \mathrm{d} s
\end{aligned}
$$

If $a(t) \leq-a_{0}$, the effect of the initial condition is suppressed exponentially fast in t

Example: Ornstein-Uhlenbeck process

Consider the particular case

$$
a(t) \equiv-\gamma, \quad b(t) \equiv 0, \quad F(t) \equiv 1
$$

leading to the SDE

$$
\mathrm{d} x_{t}=-\gamma x_{t} \mathrm{~d} t+\mathrm{d} W_{t}
$$

Its solution

$$
x_{t}=x_{0} \mathrm{e}^{-\gamma\left(t-t_{0}\right)}+\int_{t_{0}}^{t} \mathrm{e}^{-\gamma(t-s)} \mathrm{d} W_{s}
$$

is known as Ornstein-Uhlenbeck process, modelling the velocity of a Brownian particle. In this context, $-\gamma x_{t}$ is the damping or frictional force

As soon as $t \gg 1 / 2 \gamma, x_{t}$ relaxes quickly towards its equilibrium distribution which is Gaussian with mean zero and variance

$$
\lim _{t \rightarrow \infty} \operatorname{Var}\left\{x_{t}\right\}=\lim _{t \rightarrow \infty} \int_{t_{0}}^{t} \mathrm{e}^{-2 \gamma(t-s)} \mathrm{d} s=\lim _{t \rightarrow \infty} \frac{1}{2 \gamma}\left[1-\mathrm{e}^{-2 \gamma t}\right]=\frac{1}{2 \gamma}
$$

Diffusion processes and Fokker-Planck equation

Diffusion process

$$
\mathrm{d} x_{t}=f\left(x_{t}, t\right) \mathrm{d} t+F\left(x_{t}, t\right) \mathrm{d} W_{t}
$$

The solution x_{t} is an (inhomogenous) Markov process, and the densities of the transition properties satisfy Kolmogorov's forward or Fokker-Planck equation

$$
\frac{\partial}{\partial t} \rho(y, t)=L \rho(y, t)
$$

$\triangleright \quad L \varphi=-\sum_{i=1}^{n} \frac{\partial}{\partial y_{i}}\left(f_{i}(y, t) \varphi\right)+\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}\left(d_{i j}(y, t) \varphi\right)$
$\triangleright \quad d_{i j}(x, t)$ are the matrix elements of $D(x, t):=F(x, t) F(x, t)^{\top}$
$\triangleright \quad \rho:(y, t) \mapsto p(y, t \mid x, s)$ is the (time-dependent) density of the transition probability, when starting in x at time s

Note: If x_{t} admits an invariant density ρ_{0}, then $L \rho_{0}=0$

Gradient systems and Fokker-Planck equation

Consider an (autonomous) SDE of the form

$$
\mathrm{d} x_{t}=-\nabla U(x) \mathrm{d} x+\sigma \mathrm{d} W_{t}
$$

Then

$$
L=\Delta U+\nabla U \cdot \nabla+\frac{\sigma^{2}}{2} \Delta
$$

If the potential grows sufficiently quickly at infinity, the stochastic process admits an invariant density

$$
\rho_{0}(x)=\frac{1}{\mathcal{N}} \mathrm{e}^{-2 U(x) / \sigma^{2}}
$$

(Homework: Compute L and verify that $L \rho_{0}=0$.)
For the Ornstein-Uhlenbeck process, $U(x)$ is quadratic, and thus the invariant density is indeed Gaussian.

References for PART II

The covered material is pretty standard, and you can choose your favourite text book. Standard references are for instance
\triangleright R. Durrett, Brownian motion and martingales in analysis, Wadswort (1984)
\triangleright I. Karatzas, and S.E. Shreve, Brownian motion and stochastic calculus, Springer (1991)
\triangleright Ph. E. Protter, Stochastic integration and differential equations, Springer (2003)
\triangleright B. K. Øksendal, Stochastic differential equations, Springer (2000)
For those who can read French, I'd like to recommend also the lecture notes by Jean-François Le Gall, available at

- http://www.dma.ens.fr/~legall

PART III

The paradym

\triangleright The overdamped motion of a Brownian particle in a potential

- Time scales
\triangleright Metastability
- Slowly driven systems

The motion of a particle in a double-well potential

Two-parameter family of ODEs

$$
\frac{\mathrm{d} x_{s}}{\mathrm{~d} s}=\mu x_{s}-x_{s}^{3}+\lambda
$$

describes the overdamped motion of a particle in the potential

$$
U(x)=-\frac{1}{2} \mu x^{2}+\frac{1}{4} x^{4}-\lambda x
$$

$\triangleright \quad \mu^{3}>(27 / 4) \lambda^{2}$: Two wells, one saddle
$\triangleright \quad \mu^{3}<(27 / 4) \lambda^{2}$: One well
$\triangleright \mu^{3}=(27 / 4) \lambda^{2}$ and $\lambda \neq 0$: Saddle-node bifurcation between the saddle and one of the wells
$\triangleright \quad(x, \lambda, \mu)=(0,0,0)$: Pitchfork bifurcation point

Notation
$x_{ \pm}^{\star}$ for (the position of) the well bottoms and x_{0}^{\star} for the saddle

The motion of a Brownian particle in a double-well potential

For a Brownian particle:

$$
\mathrm{d} x_{s}=\left[\mu x_{s}-x_{s}^{3}+\lambda\right] \mathrm{d} s+\sigma \mathrm{d} W_{s}
$$

x_{s} has an invariant density

$$
p_{0}(x)=\frac{1}{N} \mathrm{e}^{-2 U(x) / \sigma^{2}}
$$

\triangleright For small $\sigma, p_{0}(x)$ is strongly concentrated near the minima of the potential
\triangleright If $U(x)$ has two wells of different depths, the invariant density favours the deeper well

The invariant density does not contain all the information needed to describe the motion!

Time scales

Assume : U double-well potential and x_{0} concentrated at the bottom x_{+}^{\star} of the right-hand well

How long does it take, until we may safely assume that x_{t} is well described by the invariant distribution?

- If the noise is sufficiently weak, paths are likely to stay in the right-hand well for a long time
$\triangleright x_{t}$ will first approach a Gaussian in a time of order

$$
T_{\text {relax }}=\frac{1}{c}=\frac{1}{\text { curvature at the bottom } x_{+}^{\star} \text { of the well }}
$$

- With overwhelming probability, paths will remain inside the same well, for all times significantly shorter than Kramers' time $T_{\text {Kramers }}=\mathrm{e}^{2 H / \sigma^{2}}$, where $H=U\left(x_{0}^{\star}\right)-U\left(x_{+}^{\star}\right)=$ barrier height
\triangleright Only on longer time scales, the density of x_{t} will approach the bimodal stationary density p_{0}

Time scales

Dynamics is thus very different on the different time scales
$\triangleright \quad t \ll T_{\text {relax }}$
$\triangleright T_{\text {relax }} \ll t \ll T_{\text {Kramers }}$
$\triangleright \quad t \gg T_{\text {Kramers }}$
Method of choice to study the SDE depends on the time scale we are interested in

Hierarchical description
\triangleright On a coarse-grained level, the dynamics is described by a twostate Markovian jump process, with transition rates $e^{-2 H_{ \pm} / \sigma^{2}}$
\triangleright Dynamics between transitions (inside a well) can be approximated by ignoring the other well
Approximate local dynamics of the deviation $x_{t}-x_{ \pm}^{\star}$ by the linearisation (OU process)

$$
\mathrm{d} y_{s}=-\omega_{ \pm}^{2} y_{s} \mathrm{~d} s+\sigma \mathrm{d} W_{s}
$$

Metastability

The fact, that the double-well structure of the potential is not visible on time scales shorter than $T_{\text {Kramers }}$ is a manifestation of metastability: The distribution concentrated near x_{+}^{\star} seems to be invariant

The relevant time scales for metastability are related to the small eigenvalues of the generator of the diffusion

Slowly driven systems

Let us now turn to situations in which the potential $U(x)=U(x, \varepsilon s)$ depends slowly on time:

$$
\mathrm{d} x_{s}=-\frac{\partial U}{\partial x}\left(x_{s}, \varepsilon s\right) \mathrm{d} s+\sigma \mathrm{d} W_{s}
$$

In slow time $t=\varepsilon s$

$$
\mathrm{d} x_{t}=-\frac{1}{\varepsilon} \frac{\partial U}{\partial x}\left(x_{t}, t\right) \mathrm{d} t+\frac{\sigma}{\sqrt{\varepsilon}} \mathrm{d} W_{t}
$$

$$
\text { (} \mathrm{d} t=\varepsilon \mathrm{d} s, \mathrm{~d} W_{t}=\sqrt{\varepsilon} \mathrm{d} W_{s} \text { as } W_{\varepsilon s} \text { and } \sqrt{\varepsilon} W_{s} \text { have the same distribution) }
$$

Note that the probability density of x_{t} still obeys a Fokker-Planck equation, but there will be no stationary solution in general

Slowly driven systems

\triangleright Depths $H_{ \pm}=H_{ \pm}(t)$ of the well may now depend on time, and may even vanish if one of the bifurcation curves is crossed

- "Instantaneous" Kramers timescales $\mathrm{e}^{2 H_{ \pm}(t) / \sigma^{2}}$ no longer fixed
- If the forcing timescale ε^{-1}, at which the potential changes shape, is longer than the maximal Kramers time of the system, one can expect the dynamics to be a slow modulation of the dynamics for frozen potential
\triangleright Otherwise, the interplay between the timescales of modulation and of noise-induced transitions becomes nontrivial
ε introduces additional timescale via the forcing speed $T_{\text {forcing }}=1 / \varepsilon$

Slowly driven systems

Questions

- How long do sample paths remain concentrated near stable equilibrium branches, that is, near the bottom of slowly moving potential wells?
- How fast do sample paths depart from unstable equilibrium branches, that is, from slowly moving saddles?
- What happens near bifurcation points, when the number of equilibrium branches changes?
- What can be said about the dynamics far from equilibrium branches?

PART IV

Diffusion exit from a domain

\triangleright Large deviations for Brownian motion
\triangleright Large deviations for diffusion processes
\triangleright Diffusion exit from a domain

- Relation to PDEs
\triangleright The concept of a quasipotential
\triangleright Asymptotic behaviour of first-exit times and locations (small-noise asymptotics)
\triangleright Refined results for gradient systems
\triangleright Refined results for non-gradient systems: Passage through an unstable periodic orbit
\triangleright Cycling

Introduction: Small random perturbations

Consider a small random perturbation

$$
\mathrm{d} x_{t}^{\varepsilon}=b\left(x_{t}^{\varepsilon}\right) \mathrm{d} t+\sqrt{\varepsilon} g\left(x_{t}^{\varepsilon}\right) \mathrm{d} W_{t}, \quad x_{0}^{\varepsilon}=x_{0}
$$

of ODE

$$
\dot{x}_{t}=b\left(x_{t}\right)
$$

(with same initial cond.)

We expect $x_{t}^{\varepsilon} \approx x_{t}$ for small ε

Depends on
\triangleright deterministic dynamics
\triangleright noise intensity ε
\triangleright time scale

Introduction: Small random perturbations

Indeed, for b Lipschitz continuous and $g=$ Id

$$
\left\|x_{t}^{\varepsilon}-x_{t}\right\| \leq L \int_{0}^{t}\left\|x_{s}^{\varepsilon}-x_{s}\right\| \mathrm{d} s+\sqrt{\varepsilon}\left\|W_{t}\right\|
$$

Gronwall's lemma shows

$$
\sup _{0 \leq s \leq t}\left\|x_{s}^{\varepsilon}-x_{s}\right\| \leq \sqrt{\varepsilon} \sup _{0 \leq s \leq t}\left\|W_{s}\right\| \mathrm{e}^{L t}
$$

Remains to estimate $\sup _{0 \leq s \leq t}\left\|W_{s}\right\|$
$\triangleright \quad d=1$: Use reflection principle

$$
\mathbb{P}\left\{\sup _{0 \leq s \leq t}\left|W_{s}\right| \geq r\right\} \leq 2 \mathbb{P}\left\{\sup _{0 \leq s \leq t} W_{s} \geq r\right\} \leq 4 \mathbb{P}\left\{W_{t} \geq r\right\} \leq 2 \mathrm{e}^{-r^{2} / 2 t}
$$

$\triangleright d>1$: Reduce to $d=1$ using independence

$$
\mathbb{P}\left\{\sup _{0 \leq s \leq t}\left\|W_{s}\right\| \geq r\right\} \leq 2 d \mathrm{e}^{-r^{2} / 2 d t}
$$

Introduction: Small random perturbations

For $\Gamma \subset \mathcal{C}=\mathcal{C}\left([0, T], \mathbb{R}^{d}\right)$ with $\Gamma \subset B\left(\left(x_{s}\right)_{s}, \delta\right)^{\text {c }}$

$$
\mathbb{P}\left\{x^{\varepsilon} \in \Gamma\right\} \leq \mathbb{P}\left\{\sup _{0 \leq s \leq t}\left\|x_{s}^{\varepsilon}-x_{s}\right\| \geq \delta\right\} \leq \mathbb{P}\left\{\sup _{0 \leq s \leq t}\left\|W_{s}\right\| \geq \frac{\delta}{\sqrt{\varepsilon}} \mathrm{e}^{-L t}\right\}
$$

and

$$
\mathbb{P}\left\{x^{\varepsilon} \in \Gamma\right\} \leq 2 d \exp \left\{-\frac{\delta^{2} \mathrm{e}^{-2 L t}}{2 \varepsilon d t}\right\} \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
$$

\triangleright Event $\left\{x^{\varepsilon} \in \Gamma\right\}$ is atypical: Occurrence a large deviation
\triangleright Question: Rate of convergence as a function of Γ ?
\triangleright Generally not possible, but exponential rate can be found
Aim: Find functional $I: \mathcal{C} \rightarrow[0, \infty]$ s.t.

$$
\mathbb{P}\left\{\left\|x^{\varepsilon}-\varphi\right\|_{\infty}<\delta\right\} \approx \mathrm{e}^{-I(\varphi) / \varepsilon} \quad \text { for } \quad \varepsilon \rightarrow 0
$$

\triangleright Provides local description

Large deviations for Brownian motion: The endpoint

Special case: Scaled Brownian motion, $d=1$

$$
\mathrm{d} W_{t}^{\varepsilon}=\sqrt{\varepsilon} \mathrm{d} W_{t}, \quad \Longrightarrow \quad W_{t}^{\varepsilon}=\sqrt{\varepsilon} W_{t}
$$

\triangleright Consider endpoint instead of whole path

$$
\mathbb{P}\left\{W_{t}^{\varepsilon} \in A\right\}=\int_{A} \frac{1}{\sqrt{2 \pi \varepsilon t}} \exp \left\{-x^{2} / 2 \varepsilon t\right\} \mathrm{d} x
$$

\triangleright Use Laplace method to evaluate integral

$$
\varepsilon \log \mathbb{P}\left\{W_{t}^{\varepsilon} \in A\right\} \sim-\frac{1}{2} \inf _{x \in A} \frac{x^{2}}{t} \quad \text { as } \varepsilon \rightarrow 0
$$

Caution
$\triangleright \quad|A|=1$: I.h.s. $=-\infty<$ r.h.s. $\in(-\infty, 0]$
\triangleright Limit does not necessarily exit

Large deviations for Brownian motion: The endpoint

Remedy: Use interior and closure \Longrightarrow Large deviation principle

$$
\begin{aligned}
-\frac{1}{2} \inf _{x \in A^{\circ}} \frac{x^{2}}{t} & \leq \liminf _{\varepsilon \rightarrow 0} \varepsilon \log \mathbb{P}\left\{W_{t}^{\varepsilon} \in A\right\} \\
& \leq \limsup _{\varepsilon \rightarrow 0} \varepsilon \log \mathbb{P}\left\{W_{t}^{\varepsilon} \in A\right\} \leq-\frac{1}{2} \inf _{x \in \bar{A}} \frac{x^{2}}{t}
\end{aligned}
$$

Large deviations for Brownian motion: Schilder's theorem

Schilder's Theorem (1966)
Scaled BM satisfies a (full) large deviation principle (LDP) with good rate function
$I(\varphi)=I_{[0, T], 0}(\varphi)= \begin{cases}\frac{1}{2}\|\varphi\|_{H_{1}}^{2}=\frac{1}{2} \int_{[0, T]}\left\|\dot{\varphi}_{s}\right\|^{2} \mathrm{~d} s & \text { if } \varphi \in H_{1}, \varphi_{0}=0 \\ +\infty & \text { otherwise }\end{cases}$
$\triangleright \quad I: \mathcal{C}_{0}:=\left\{\varphi \in \mathcal{C}: \varphi_{0}=0\right\} \rightarrow[0, \infty]$ is lower semi-continuous
\triangleright Good rate function: I has compact level sets
\triangleright Upper and lower large-deviation bound:

$$
-\inf _{\Gamma^{\circ}} I \leq \liminf _{\varepsilon \rightarrow 0} \varepsilon \log \mathbb{P}\left\{W^{\varepsilon} \in \Gamma\right\} \leq \limsup _{\varepsilon \rightarrow 0} \varepsilon \log \mathbb{P}\left\{W^{\varepsilon} \in \Gamma\right\} \leq-\inf _{\Gamma} I
$$

- Infinite-dimensional version of Laplace method
$\triangleright \quad W^{\varepsilon} \notin H^{1} \Longrightarrow I\left(W^{\varepsilon}\right)=+\infty$ (almost surely)
$\triangleright \quad I(0)=0$ reflects $W^{\varepsilon} \rightarrow 0 \quad(\varepsilon \rightarrow 0)$

Large deviations for Brownian motion: Examples

Example I: Endpoint again $\ldots(d=1) \quad \Gamma=\left\{\varphi \in \mathcal{C}_{0}: \varphi_{t} \in A\right\}$

$$
\inf _{\Gamma} I=\inf _{x \in A} \frac{1}{2} \int_{0}^{t}\left|\frac{\mathrm{~d}}{\mathrm{~d} s}\left(\frac{x s}{t}\right)\right|^{2} \mathrm{~d} s=\inf _{x \in A} \frac{x^{2}}{2 t}
$$

$\inf _{\Gamma} I=$ cost to force BM to be in A at time t

$$
\Longrightarrow \mathbb{P}\left\{W_{t}^{\varepsilon} \in A\right\} \sim \exp \left\{-\inf _{x \in A} x^{2} / 2 t \varepsilon\right\}
$$

Note: Typical spreading of W_{t}^{ε} is $\sqrt{\varepsilon t}$
Example II: BM leaving a small ball $\quad \Gamma=\left\{\varphi \in \mathcal{C}_{0}:\|\varphi\|_{\infty} \geq \delta\right\}$

$$
\begin{aligned}
& \inf _{\Gamma} I=\inf _{0 \leq t \leq T} \inf _{\varphi \in \mathcal{C}_{0}:\left\|\varphi_{t}\right\|=\delta} I(\varphi)=\inf _{0 \leq t \leq T} \frac{\delta^{2}}{2 t}=\frac{\delta^{2}}{2 T} \\
& \inf _{\Gamma} I=\text { cost to force BM to leave } B(0, \delta) \text { before } T \\
& \Longrightarrow \mathbb{P}\left\{\exists t \leq T,\left\|W_{t}^{\varepsilon}\right\| \geq \delta\right\} \sim \exp \left\{-\delta^{2} / 2 T \varepsilon\right\}
\end{aligned}
$$

Large deviations for Brownian motion: Examples

Example III: BM staying in a cone
(similar ... Homework!)

Large deviations for Brownian motion: Lower bound

To show: Lower bound for open sets

$$
\liminf _{\varepsilon \rightarrow 0} \varepsilon \log \mathbb{P}\left\{W^{\varepsilon} \in G\right\} \geq-\inf _{G} I \quad \text { for all open } G \subset \mathcal{C}_{0}
$$

Lemma (local variant of lower bound)

$$
\liminf _{\varepsilon \rightarrow 0} \varepsilon \log \mathbb{P}\left\{W^{\varepsilon} \in B(\varphi, \delta)\right\} \geq-I(\varphi)
$$

for all $\forall \varphi \in \mathcal{C}_{0}$ s.t. $I(\varphi)<\infty$ and all $\delta>0$
\triangleright Lemma \Longrightarrow lower bound
Rewrite ($\left.\widehat{W}_{t}=W_{t}-\varphi_{t} / \sqrt{\varepsilon}\right)$

$$
\mathbb{P}\left\{W^{\varepsilon} \in B(\varphi, \delta)\right\}=\mathbb{P}\left\{\left\|W^{\varepsilon}-\varphi\right\|_{\infty}<\delta\right\}=\mathbb{P}\{\widehat{W} \in B(0, \delta / \sqrt{\varepsilon})\}
$$

\triangleright Proof of Lemma: via Cameron-Martin-Girsanov formula, allows to transform away the drift

Cameron-Martin-Girsanov formula (special case, $d=1$)

$$
\left\{W_{t}\right\}_{t} \quad \mathbb{P}-\mathrm{BM} \quad \Longrightarrow \quad\left\{\widehat{W}_{t}\right\}_{t} \quad \mathbb{Q}-\mathrm{BM}
$$

where

$$
\begin{aligned}
\widehat{W}_{t} & =W_{t}-\int_{0}^{t} h(s) \mathrm{d} s \\
\left.\frac{\mathrm{~d} \mathbb{Q}}{\mathrm{~d} \mathbb{P}}\right|_{\mathcal{F}_{t}} & =\exp \left\{\int_{0}^{t} h(s) \mathrm{d} W_{s}-\frac{1}{2} \int_{0}^{t} h(s)^{2} \mathrm{~d} s\right\}
\end{aligned}
$$

Proof of Cameron-Martin-Girsanov formula

First step

$$
\begin{aligned}
& X_{t}=\exp \left\{\int_{0}^{t} h(s) \mathrm{d} W_{s}-\frac{1}{2} \int_{0}^{t} h(s)^{2} \mathrm{~d} s\right\} \\
& Y_{t}=\exp \left\{\int_{0}^{t}(\gamma+h(s)) \mathrm{d} W_{s}-\frac{1}{2} \int_{0}^{t}(\gamma+h(s))^{2} \mathrm{~d} s\right\}=X_{t} \exp \left\{\gamma \widehat{W}_{t}-\frac{1}{2} \gamma^{2} t\right\}
\end{aligned}
$$

$$
h \in \mathcal{L}_{2}
$$

are exponential martingales wrt. \mathbb{P} (for any $\gamma>0$)
Second step
$\mathbb{E}^{\mathbb{Q}}\left\{Z \exp \left\{\gamma\left(\widehat{W}_{t}-\widehat{W}_{s}\right)\right\}\right\}=\mathbb{E}^{\mathbb{P}}\left\{Z X_{t} \exp \left\{\gamma\left(\widehat{W}_{t}-\widehat{W}_{s}\right)\right\}\right\}$

$$
\begin{aligned}
& =\mathbb{E}^{\mathbb{P}}\left\{Z \exp \left\{-\gamma \widehat{W}_{s}+\frac{1}{2} \gamma^{2} t\right\} \mathbb{E}^{\mathbb{P}}\left\{Y_{t} \mid \mathcal{F}_{s}\right\}\right\} \\
& =\mathbb{E}^{\mathbb{P}}\left\{Z X_{s} \exp \left\{\frac{1}{2} \gamma^{2}(t-s)\right\}\right\}=\mathbb{E}^{\mathbb{Q}}\{Z\} \exp \left\{\frac{1}{2} \gamma^{2}(t-s)\right\}
\end{aligned}
$$

$\triangleright \widehat{W}_{t}-\widehat{W}_{s}$ is \mathbb{Q}-independent of $\mathcal{F}_{s} \Longrightarrow$ increments are independent
\triangleright Increments are Gaussian
$\Longrightarrow \quad \widehat{W}_{t}$ is BM with respect to \mathbb{Q}

LDP for Brownian motion: Proof of the lower bound

$d=1, \delta>0, \varphi \in \mathcal{C}_{0}$ with $I(\varphi)<\infty, \widehat{W}_{t}=W_{t}-\varphi_{t} / \sqrt{\varepsilon}$

$$
\begin{aligned}
\mathbb{P}\left\{\left\|W^{\varepsilon}-\varphi\right\|_{\infty}<\delta\right\} & =\mathbb{P}\left\{\|\widehat{W}\|_{\infty}<\delta / \sqrt{\varepsilon}\right\} \\
& =\int_{\widehat{W} \in B(0, \delta / \sqrt{\varepsilon})} \exp \left\{-\frac{1}{\sqrt{\varepsilon}} \int_{0}^{T} \dot{\varphi}_{s} \mathrm{~d} W_{s}+\frac{1}{2 \varepsilon} \int_{0}^{T} \dot{\varphi}_{s}^{2} \mathrm{~d} s\right\} \mathrm{d} \mathbb{Q}
\end{aligned}
$$

Estimate integral by Jensen's inequality

$$
\begin{aligned}
\cdots= & \exp \left\{-\frac{I(\varphi)}{\varepsilon}\right\} \mathbb{Q}\{\widehat{W} \in B(0, \delta / \sqrt{\varepsilon})\} \\
& \times \frac{1}{\mathbb{Q}\{\ldots\}} \int_{\widehat{W} \in B(0, \delta / \sqrt{\varepsilon})} \exp \left\{-\frac{1}{\sqrt{\varepsilon}} \int_{0}^{T} \dot{\varphi}_{s} \mathrm{~d} \widehat{W}_{s}\right\} \mathrm{d} \mathbb{Q} \\
\geq & \exp \left\{-\frac{I(\varphi)}{\varepsilon}\right\} \mathbb{P}\{W \in B(0, \delta / \sqrt{\varepsilon})\} \times \exp \left\{-\frac{1}{\sqrt{\varepsilon} \mathbb{P}\{\ldots\}} \int_{W \in B(0, \delta / \sqrt{\varepsilon})} \int_{0}^{T} \dot{\varphi}_{s} \mathrm{~d} W_{s} \mathrm{~d} \mathbb{P}\right\} \\
= & \exp \left\{-\frac{I(\varphi)}{\varepsilon}\right\} \mathbb{P}\{W \in B(0, \delta / \sqrt{\varepsilon})\} \times 1
\end{aligned}
$$

Finally note
$\mathbb{P}\{W \in B(0, \delta / \sqrt{\varepsilon})\} \not \subset 1 \quad(\varepsilon \searrow 0) \Longrightarrow \liminf _{\varepsilon \rightarrow 0} \varepsilon \log \mathbb{P}\left\{\left\|W^{\varepsilon}-\varphi\right\|_{\infty}<\delta\right\} \geq-I(\varphi)$

LDP for Brownian motion: Approximation by polygons (upper bound)

Approximate W^{ε} by the random polygon $W^{n, \varepsilon}$ joining the random points $\left(0, W_{0}^{\varepsilon}\right),\left(T / n, W_{T / n}^{\varepsilon}\right), \ldots,\left(T, W_{T}^{\varepsilon}\right)$

To show: $W^{n, \varepsilon}$ is a good approximation to W^{ε}

$$
\begin{aligned}
\mathbb{P}\left\{\left\|W^{\varepsilon}-W^{n, \varepsilon}\right\|_{\infty} \geq \delta\right\} & \leq n \mathbb{P}\left\{\sup _{0 \leq s \leq T / n}\left\|W_{s}^{\varepsilon}-W_{s}^{n, \varepsilon}\right\| \geq \delta\right\} \\
& \leq n \mathbb{P}\left\{\sup _{0 \leq s \leq T / n}\left\|W_{s}^{\varepsilon}\right\| \geq \frac{\delta}{2}\right\} \\
& =n \mathbb{P}\left\{\sup _{0 \leq s \leq T / n}\left\|W_{s}\right\| \geq \frac{\delta}{2 \sqrt{\varepsilon}}\right\} \leq 2 n d \exp \left\{-\frac{n \delta^{2}}{8 \varepsilon d T}\right\}
\end{aligned}
$$

\Longrightarrow Difference is negligible:
$\limsup _{n \rightarrow \infty} \limsup _{\varepsilon \rightarrow 0} \varepsilon \log \mathbb{P}\left\{\left\|W^{\varepsilon}-W^{n, \varepsilon}\right\|_{\infty} \geq \delta\right\}=-\infty \quad$ for all $\delta>0$

LDP for Brownian motion: Proof of the upper bound

$$
\begin{aligned}
& F \subset \mathcal{C}_{0} \text { closed, } \delta>0, \ell_{\delta}=\inf _{F^{(\delta)}} I=\inf \left\{I(\varphi): \varphi \in F^{(\delta)}\right\}, n \in \mathbb{N} \\
& \qquad \begin{aligned}
\mathbb{P}\left\{W^{\varepsilon} \in F\right\} & \leq \mathbb{P}\left\{W^{n, \varepsilon} \in F^{(\delta)}\right\}+\mathbb{P}\left\{\left\|W^{\varepsilon}-W^{n, \varepsilon}\right\|_{\infty} \geq \delta\right\} \\
& \leq \mathbb{P}\left\{I\left(W^{n, \varepsilon}\right) \geq \ell_{\delta}\right\}+\text { negligible term }
\end{aligned}
\end{aligned}
$$

$W^{n, \varepsilon}$ being a polygon yields

$$
\begin{aligned}
& I\left(W^{n, \varepsilon}\right)= \frac{1}{2} \int_{0}^{T}\left\|\dot{W}_{s}^{n, \varepsilon}\right\|^{2} \mathrm{~d} s=\frac{1}{2} \sum_{k=1}^{n} \frac{T}{n}\left\|\frac{n}{T}\left(W_{k T / n}^{n, \varepsilon}-W_{(k-1) T / n}^{n, \varepsilon}\right)\right\|^{2} \\
& \stackrel{(\mathcal{D})}{=} \frac{\varepsilon}{2} \sum_{k=1}^{n d} \xi_{i}^{2} \quad\left(\xi_{i} \sim \mathcal{N}(0,1) \quad \text { i.i.d. }\right)
\end{aligned}
$$

LDP for Brownian motion: Proof of the upper bound

By Chebychev's inequality, for $\gamma<1 / 2$

$$
\begin{aligned}
\mathbb{P}\left\{I\left(W^{n, \varepsilon}\right) \geq \ell_{\delta}\right\} & \leq \mathbb{P}\left\{\sum_{k=1}^{n d} \xi_{i}^{2} \geq \frac{2 \ell_{\delta}}{\varepsilon}\right\} \leq \exp \left\{-\frac{2 \gamma \ell_{\delta}}{\varepsilon}\right\}\left(\mathbb{E} \exp \left\{\gamma \xi_{1}^{2}\right\}\right)^{n d} \\
& =\exp \left\{-\frac{2 \gamma \ell_{\delta}}{\varepsilon}\right\}(1-2 \gamma)^{-n d / 2}
\end{aligned}
$$

$\gamma<1 / 2$ being arbitrary and the lower semi-continuity of I show

$$
\begin{aligned}
\limsup _{\varepsilon \rightarrow 0} \varepsilon \log \mathbb{P}\left\{W^{\varepsilon} \in F\right\} & \leq \limsup _{n \rightarrow \infty} \limsup _{\substack{\varepsilon \rightarrow 0}} \varepsilon \log \mathbb{P}\left\{I\left(W^{n, \varepsilon}\right) \geq \ell_{\delta}\right\} \\
& \leq-\ell_{\delta}=-\inf _{F^{(\delta)}} I \searrow-\inf _{F} I
\end{aligned}
$$

Large deviations for solutions of SDEs: Special case

Special case: $g(x) \equiv$ identity matrix

$$
\mathrm{d} x_{t}^{\varepsilon}=b\left(x_{t}^{\varepsilon}\right) \mathrm{d} t+\sqrt{\varepsilon} \mathrm{d} W_{t}, \quad x_{0}^{\varepsilon}=x_{0}
$$

Define $F: \mathcal{C}_{0} \rightarrow \mathcal{C}$ by $\varphi \mapsto F(\varphi)=f, f$ the unique solution in \mathcal{C} to

$$
f(t)=x_{0}+\int_{0}^{t} b(f(s)) \mathrm{d} s+\varphi(t)
$$

$\triangleright \quad F\left(W^{\varepsilon}\right)=x^{\varepsilon}$
$\triangleright \quad F$ is continuous (use Gronwall's lemma)

Large deviations for solutions of SDEs: Special case

Contraction principle (trivial version)

I is a good rate fct, governing LDP for W^{ε}

$$
\Longrightarrow J(f)=\inf \left\{I(\varphi): \varphi \in \mathcal{C}_{0}, F(\varphi)=f\right\}
$$

$$
\text { is a good rate fct, governing LDP for } x^{\varepsilon}=F\left(W^{\varepsilon}\right)
$$

Identify J

$$
J(f)=J_{[0, T], x_{0}}(f)= \begin{cases}\frac{1}{2} \int_{[0, T]}\left\|\dot{f}_{s}-b\left(f_{s}\right)\right\|^{2} \mathrm{~d} s & \text { if } f \in H_{1}, f_{0}=x_{0} \\ +\infty & \text { otherwise }\end{cases}
$$

Large deviations for solutions of SDEs: General case

$$
\mathrm{d} x_{t}^{\varepsilon}=b\left(x_{t}^{\varepsilon}\right) \mathrm{d} t+\sqrt{\varepsilon} g\left(x_{t}^{\varepsilon}\right) \mathrm{d} W_{t}, \quad x_{0}^{\varepsilon}=x_{0}
$$

Assumptions

$\triangleright \quad b, g$ Lipschitz continuous
\triangleright bounded growth:

$$
\|b(x)\| \leq M\left(1+\|x\|^{2}\right)^{1 / 2}, a(x)=g(x) g(x)^{\top} \leq M\left(1+\|x\|^{2}\right) \mathrm{Id}
$$

\triangleright ellipticity: $a(x)>0$
Theorem (Wentzell-Freidlin)
x^{ε} satisfies a LDP with good rate function

$$
J(f)= \begin{cases}\frac{1}{2} \int_{[0, T]}\left\|a\left(f_{s}\right)^{-1 / 2}\left[\dot{f}_{s}-b\left(f_{s}\right)\right]\right\|^{2} \mathrm{~d} s & \text { if } f \in H_{1}, f_{0}=x_{0} \\ +\infty & \text { otherwise }\end{cases}
$$

Large deviations for solutions of SDEs: General case

Remark

$a(x)=0$: LDP remains valid with good rate function but identification of J may fail

$$
\begin{aligned}
J(f)=\inf \{I(\varphi): & \varphi \in H_{1}, \\
f_{t} & \left.=x_{0}+\int_{0}^{t} b\left(f_{s}\right) \mathrm{d} s+\int_{0}^{t} a\left(f_{s}\right)^{1 / 2} \dot{\varphi}_{s} \mathrm{~d} s, t \in[0, T]\right\}
\end{aligned}
$$

LDP for SDEs: Sketch of the proof for the general case

\triangleright Difficulty: Cannot apply contraction principle directly
\triangleright Introduce Euler approximations

$$
x_{t}^{n, \varepsilon}=x_{0}+\int_{0}^{t} b\left(x_{s}^{n, \varepsilon}\right) \mathrm{d} s+\sqrt{\varepsilon} \int_{0}^{t} g\left(x_{T_{n}(s)}^{n, \varepsilon}\right) \mathrm{d} W_{s}, \quad T_{n}(s)=\frac{[n s]}{n}
$$

\triangleright Schilder's Theorem and contraction principle imply LDP for $x^{n, \varepsilon}$ with good rate function J^{n}

$$
J^{n}(f)= \begin{cases}\frac{1}{2} \int_{[0, T]}\left\|a\left(f_{T_{n}(s)}\right)^{-1 / 2}\left[\dot{f}_{s}-b\left(f_{s}\right)\right]\right\|^{2} \mathrm{~d} s & \text { if } f \in H_{1}, f_{0}=x_{0} \\ +\infty & \text { otherwise }\end{cases}
$$

\triangleright To show:
(1) $x^{n, \varepsilon}$ is a good approximation to x^{ε}
(not difficult but tedious, uses Itô's formula)
(2) J^{n} approximates $J: \lim _{n \rightarrow \infty} \inf _{\Gamma} J^{n}=\inf _{\Gamma} J$ for all Γ

Large deviations for solutions of SDEs: Varadhan's Lemma

Assumptions

$\triangleright \quad \phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ continuous
\triangleright Tail condition

$$
\lim _{L \rightarrow \infty} \limsup _{\varepsilon \rightarrow 0} \varepsilon \log \int_{\phi\left(x^{\varepsilon}\right) \geq L} \exp \left\{\phi\left(x^{\varepsilon}\right) / \varepsilon\right\} \mathrm{d} \mathbb{P}=-\infty
$$

Theorem (Varadhan's Lemma)

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon \log \int \exp \left\{\phi\left(x^{\varepsilon}\right) / \varepsilon\right\} \mathrm{d} \mathbb{P}=\sup _{\varphi}[\phi(\varphi)-J(\varphi)]
$$

Remarks

- The moment condition

$$
\sup _{0<\varepsilon \leq 1}\left(\int \exp \left\{\alpha \phi\left(x^{\varepsilon}\right) / \varepsilon\right\} \mathrm{d} \mathbb{P}\right)^{\varepsilon}<\infty \quad \text { for some } \alpha \in(1, \infty)
$$

implies tail condition
\triangleright Infinite-dimensional analogue of Laplace method
\triangleright Holds in great generality - as long as x^{ε} satisfies a LDP with a good rate function J

Diffusion exit from a domain: Introduction

Deterministic ODE
Small random perturbation

$$
\begin{aligned}
\dot{x}_{t}^{\mathrm{det}} & =b\left(x_{t}^{\mathrm{det}}\right) \quad x_{0} \in \mathbb{R}^{d} \\
\mathrm{~d} x_{t} & =b\left(x_{t}\right) \mathrm{d} t+\sqrt{\varepsilon} g\left(x_{t}\right) \mathrm{d} W_{t}
\end{aligned}
$$

Bounded domain $\mathcal{D} \ni x_{0}$ (with smooth boundary)
\triangleright first-exit time $\quad \tau=\inf \left\{t>0: x_{t} \notin \mathcal{D}\right\}$
\triangleright first-exit location $x_{\tau} \in \partial \mathcal{D}$

Questions
\triangleright Does x_{t}^{ε} leave \mathcal{D} ?
\triangleright If so: When and where?
\triangleright Expected time of first exit?
\triangleright Concentration of first-exit time and location?

\triangleright Distribution of τ and x_{τ} ?

Diffusion exit from a domain: Introduction

Towards answers

\triangleright If x_{t} leaves \mathcal{D}, so will x_{t}^{ε}. Use LDP to estimate deviation $x_{t}^{\varepsilon}-x_{t}$.
\triangleright Assume x_{t} does not leave \mathcal{D}
(\mathcal{D} positively invariant under deterministic flow)
Study noise-induced exit

In the latter case:
\triangleright Mean first-exit times and locations via PDEs
\triangleright Exponential asymptotics via Wentzell-Freidlin theory

Diffusion exit from a domain: Relation to PDEs

Assumptions (from now on)
$\triangleright \quad b, g$ Lipschitz cont., bounded growth
$\triangleright \quad a(x)=g(x) g(x)^{\top} \geq(1 / M)$ Id (uniform ellipticity)
$\triangleright \mathcal{D}$ bounded domain, smooth boundary

Infinitesimal generator $\mathcal{L}^{\varepsilon}$ of diffusion x^{ε}

$$
\mathcal{L}^{\varepsilon} v(t, x)=\frac{\varepsilon}{2} \sum_{i, j=1}^{d} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} v(t, x)+\langle b(x), \nabla v(t, x)\rangle
$$

Compare to FPE!

Diffusion exit from a domain: Relation to PDEs

Theorem

For $f: \partial \mathcal{D} \rightarrow \mathbb{R}$ continuous
$\triangleright \mathbb{E}_{x}\left\{\tau^{\varepsilon}\right\}$ is the unique solution of $\left\{\begin{array}{cl}\mathcal{L}^{\varepsilon} u=-1 & \text { in } \mathcal{D} \\ u=0 & \text { on } \partial \mathcal{D}\end{array}\right.$
$\triangleright \mathbb{E}_{x}\left\{f\left(x_{\tau^{\varepsilon}}^{\varepsilon}\right)\right\}$ is the unique solution of $\left\{\begin{aligned} \mathcal{L}^{\varepsilon} w=0 & \text { in } \mathcal{D} \\ w=f & \text { on } \partial \mathcal{D}\end{aligned}\right.$

Remarks

\triangleright Information on first-exit times and exit locations can be obtained exactly from PDEs
\triangleright In principle...
\triangleright Smoothness assumption for $\partial \mathcal{D}$ can be relaxed to "exterior-ball condition"

Diffusion exit from a domain: An example

Motion of a Brownian particle in a single-well potential
$d=1, b(0)=0, x b(x)<0$ for $x \neq 0, g(x) \equiv 1$
\triangleright Drift pushes particle towards bottom
\triangleright Probability of x^{ε} leaving $\mathcal{D}=\left(\alpha_{1}, \alpha_{2}\right) \ni 0$?

Solve the (one-dimensional) Dirichlet problem

$$
\left\{\begin{array}{l}
\mathcal{L}^{\varepsilon} w=0 \quad \text { in } \mathcal{D} \\
w=f \quad \text { on } \partial \mathcal{D}
\end{array} \quad \text { with } \quad f(x)=\left\{\begin{array}{lll}
1 & \text { for } x=\alpha_{1} \\
0 & \text { for } & x=\alpha_{2}
\end{array}\right.\right.
$$

$w(x)=\mathbb{P}_{x}\left\{x_{\tau^{\varepsilon}}^{\varepsilon}=\alpha_{1}\right\}=\mathbb{E}_{x} f\left(x_{\tau^{\varepsilon}}^{\varepsilon}\right)=\int_{x}^{\alpha_{2}} \mathrm{e}^{2 U(y) / \varepsilon} \mathrm{d} y / \int_{\alpha_{1}}^{\alpha_{2}} \mathrm{e}^{2 U(y) / \varepsilon} \mathrm{d} y$

Diffusion exit from a domain: An example

$w(x)=\mathbb{P}_{x}\left\{x_{\tau^{\varepsilon}}^{\varepsilon}=\alpha_{1}\right\}=\mathbb{E}_{x} f\left(x_{\tau^{\varepsilon}}^{\varepsilon}\right)=\int_{x}^{\alpha_{2}} \mathrm{e}^{2 U(y) / \varepsilon} \mathrm{d} y / \int_{\alpha_{1}}^{\alpha_{2}} \mathrm{e}^{2 U(y) / \varepsilon} \mathrm{d} y$

What happens in the small-noise limit?

$$
\begin{array}{ll}
\lim _{\varepsilon \rightarrow 0} \mathbb{P}_{x}\left\{x_{\tau^{\varepsilon}}^{\varepsilon}=\alpha_{1}\right\}=1 & \text { if } U\left(\alpha_{1}\right)<U\left(\alpha_{2}\right) \\
\lim _{\varepsilon \rightarrow 0} \mathbb{P}_{x}\left\{x_{\tau^{\varepsilon}}^{\varepsilon}=\alpha_{1}\right\}=0 & \text { if } U\left(\alpha_{2}\right)<U\left(\alpha_{1}\right) \\
\lim _{\varepsilon \rightarrow 0} \mathbb{P}_{x}\left\{x_{\tau^{\varepsilon}}^{\varepsilon}=\alpha_{1}\right\}=\frac{1}{\left|U^{\prime}\left(\alpha_{1}\right)\right|} /\left(\frac{1}{\left|U^{\prime}\left(\alpha_{1}\right)\right|}+\frac{1}{\left|U^{\prime}\left(\alpha_{2}\right)\right|}\right) & \text { if } U\left(\alpha_{1}\right)=U\left(\alpha_{2}\right)
\end{array}
$$

Note that the information we obtained this way is more precise than results relying on the LDP can provide.

Diffusion exit from a domain: A first result

Corollary (to LDP for x^{ε})

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \varepsilon \log \mathbb{P}_{x}\left\{\tau^{\varepsilon} \leq t\right\}=-\inf \{V(x, y ; s): s \in[0, t], y \notin \mathcal{D}\} \\
& V(x, y ; s)=\inf \left\{J_{[0, s], x}(\varphi): \varphi \in \mathcal{C}\left([0, s], \mathbb{R}^{d}\right), \varphi_{0}=x, \varphi_{s}=y\right\} \\
&=\operatorname{cost} \text { of forcing a path to connect } x \text { and } y \text { in time } s
\end{aligned}
$$

Remarks

\triangleright Upper and lower LDP bounds coincide \Longrightarrow limit exists
\triangleright Calculation of asymptotical behaviour reduces to a variational problem
$\triangleright \quad V(x, y ; s)$ is solution to a Hamilton-Jacobi equation
\triangleright extremals solution to an Euler equation

The concept of a quasipotential

Assumptions (for the next slides)

- \mathcal{D} positively invariant
\triangleright unique, asymptotically stable equilibrium point at $0 \in \mathcal{D}$
$\triangleright \quad \partial \mathcal{D} \subset$ basin of attraction of 0

Quasipotential

- Quasipotential with respect to 0:

Cost to go against the flow from 0 to z

$$
V(0, z)=\inf _{t>0} \inf \left\{I_{[0, t]}(\varphi): \varphi \in \mathcal{C}\left([0, t], \mathbb{R}^{d}\right), \varphi_{0}=0, \varphi_{t}=z\right\}
$$

\triangleright Minimum of quasipotential on boundary $\partial \mathcal{D}$

$$
\bar{V}:=\min _{z \in \partial \mathcal{D}} V(0, z)
$$

Wentzell-Freidlin theory

Theorem [Wentzell \& Freidlin \geqslant '70] (under above assumptions)
For arbitrary initial condition in \mathcal{D}
\triangleright Mean first-exit time

$$
\mathbb{E} \tau \sim e^{\bar{V} / \sigma^{2}} \quad \text { as } \sigma \rightarrow 0
$$

\triangleright Concentration of first-exit times

$$
\mathbb{P}\left\{\mathrm{e}^{(\bar{V}-\delta) / \sigma^{2}} \leqslant \tau \leqslant \mathrm{e}^{(\bar{V}+\delta) / \sigma^{2}}\right\} \rightarrow 1 \quad \text { as } \sigma \rightarrow 0 \quad(\text { for arbitrary } \delta>0)
$$

\triangleright Concentration of exit locations near minima of quasipotential

Gradient case (reversible diffusion)

Drift coefficient deriving from potential:
$f=-\nabla V, g=\mathrm{Id}$
\mathcal{D} containing saddle $\Longrightarrow \overline{\mathcal{D}}$ no longer invariant
\triangleright Cost for leaving potential well: $\bar{V}=2 H$
\triangleright Attained for paths going against the flow:

$$
\dot{\varphi}_{t}=-f\left(\varphi_{t}\right)
$$

Wentzell-Freidlin theory: Idea of the proof

First step

x^{ε} cannot remain in \mathcal{D} arbitrarily long without hitting a small neighbourhood $B(0, \mu)$ of 0 :

$$
\forall \mu \quad \lim _{t \rightarrow \infty} \limsup _{\varepsilon \rightarrow 0} \varepsilon \log \sup _{x \in \mathcal{D}} \mathbb{P}_{x}\left\{x_{s}^{\varepsilon} \in \mathcal{D} \backslash B(0, \mu) \text { for all } s \leq t\right\}=-\infty
$$

\Longrightarrow Restrict to initial conditions in $B(0, \mu)$
Second step
Lower bound on probability to leave \mathcal{D} :
$\forall \eta>0 \exists \mu_{0} \forall \mu<\mu_{0} \exists T_{0}>0 \quad \liminf _{\varepsilon \rightarrow 0} \varepsilon \log \inf _{x \in B(0, \mu)} \mathbb{P}_{x}\left\{\tau^{\varepsilon} \leq T_{0}\right\}>-(\bar{V}+\eta)$
\triangleright Construct piecewise a continuous exit path φ connecting $x_{0}, 0, \partial \mathcal{D}$ and some point y at distance μ from $\overline{\mathcal{D}}$ with $I(\varphi) \leq \bar{V}+\eta$
\triangleright Use LDP to estimate probability of x^{ε} remaining in $\mu / 2$-neighbourhood of exit path

Third step
More lemmas in the same spirit ... (involving exit locations)
Forth step
Prove Theorem by considering successive trials to leave \mathcal{D} using strong Markov property

Refined results in the gradient case

Simplest case: V double-well potential
First-hitting time $\tau^{\text {hit }}$ of deeper well
$\triangleright \mathbb{E}_{x_{1}} \tau^{\text {hit }}=c(\sigma) \mathrm{e}^{2\left[V(z)-V\left(x_{1}\right)\right] / \sigma^{2}}$
$\triangleright \lim _{\sigma \rightarrow 0} c(\sigma)=\frac{2 \pi}{\left|\lambda_{1}(z)\right|} \sqrt{\frac{\left|\operatorname{det} \nabla^{2} V(z)\right|}{\operatorname{det} \nabla^{2} V\left(x_{1}\right)}}$

$\lambda_{1}(z)$ unique negative e.v. of $\nabla^{2} V(z)$ (Physics' literature: [Eyring '35], [Kramers '40]; rigorous: [Bovier, Gayrard, Eckhoff, Klein '02-'05], [Helffer, Klein, Nier '04])
\triangleright Subexponential asymptotics known
Related to geometry at well and saddle / small eigenvalues of the generator
$\triangleright \tau^{\text {hit }} \approx$ exp. distributed: $\lim _{\sigma \rightarrow 0} \mathbb{P}\left\{\tau^{\text {hit }}>t \mathbb{E} \tau^{\text {hit }}\right\}=\mathrm{e}^{-t}$ ([Day '82], [Bovier et al '02])

New phenomena for drift term not deriving from a potential?

Simplest situation of interest
Nontrivial invariant set which is a single periodic orbit

Assume from now on
$d=2, \quad \partial \mathcal{D}=$ unstable periodic orbit
$\triangleright \mathbb{E} \tau \sim \mathrm{e}^{\bar{V} / \sigma^{2}}$ still holds
\triangleright Quasipotential $V(\Pi, z) \equiv \bar{V}$ is constant on $\partial \mathcal{D}$: Exit equally likely anywhere on $\partial \mathcal{D}$ (on exp. scale)
\triangleright Phenomenon of cycling [Day '92]:
Distribution of x_{τ} on $\partial \mathcal{D}$ does not converge as $\sigma \rightarrow 0$ Density is translated along $\partial \mathcal{D}$ proportionally to $|\log \sigma|$.
\triangleright In stationary regime: (obtained by reinjecting particle) Rate of escape $\frac{\mathrm{d}}{\mathrm{d} t} \mathbb{P}\left\{x_{t} \in \mathcal{D}\right\}$ has $|\log \sigma|$-periodic prefactor

Density of the first-passage time at an unstable periodic orbit

Study first-exit time by taking number of revolutions into account

Idea
Density of first-passage time at unstable orbit

$$
p(t)=c(t, \sigma) \mathrm{e}^{-\bar{V} / \sigma^{2}} \times \text { transient term } \times \text { geometric decay per period }
$$

Identify $c(t, \sigma)$ as periodic component in first-passage density

Notations

- Value of quasipotential on unstable orbit: \bar{V}
\triangleright Period of unstable orbit: $T=2 \pi / \varepsilon$
\triangleright Curvature at unstable orbit: $a(t)=-\frac{\partial^{2}}{\partial x^{2}} V\left(x^{\text {unst }}(t), t\right)$
\triangleright Lyapunov exponent of unstable orbit: $\quad \lambda=\frac{1}{T} \int_{0}^{T} a(t) \mathrm{d} t$

Universality in first-passage-time distributions

Theorem ([Berglund \& G '04], [Berglund \& G '05], work in progress)
For any $\Delta \geqslant \sqrt{\sigma}$ and all $t \geqslant t_{0}$

$$
\mathbb{P}\{\tau \in[t, t+\Delta]\}=\int_{t}^{t+\Delta} p\left(s, t_{0}\right) \mathrm{d} s[1+\mathcal{O}(\sqrt{\sigma})]
$$

where
$\triangleright p\left(t, t_{0}\right)=\frac{f_{\mathrm{trans}}\left(t, t_{0}\right)}{\mathcal{N}} Q_{\lambda T}(\theta(t)-|\log \sigma|) \frac{\theta^{\prime}(t)}{\lambda T_{\mathrm{K}}(\sigma)} \mathrm{e}^{-\left(\theta(t)-\theta\left(t_{0}\right)\right) / \lambda T_{\mathrm{K}}(\sigma)}$
$\triangleright Q_{\lambda T}(y)$ is a universal λT-periodic function
$\triangleright \theta(t)$ is a "natural" parametrisation of the boundary: $\theta^{\prime}(t)>0$ is explicitely known model-dependent, T-periodic fct.; $\theta(t+T)=\theta(t)+\lambda T$
$\triangleright T_{\mathrm{K}}(\sigma)$ is the analogue of Kramers' time: $T_{\mathrm{K}}(\sigma)=\frac{C}{\sigma} e^{\bar{V} / \sigma^{2}}$
$\triangleright f_{\text {trans }}$ grows from 0 to 1 in time $t-t_{0}$ of order $|\log \sigma|$

Idea of the proof

Exit occurs in $I_{n}=[t, t+\Delta] \subset[(n-1) T, n T]$
\Longrightarrow rate function has n minimizers (of comparable value)
$\mathbb{P}^{0,0}\left\{\tau \in I_{n}\right\} \simeq \sum_{\ell=1}^{n} \underbrace{\mathbb{P}^{J_{\ell}, \delta}\left\{\tau \in I_{n}\right\}}_{Q_{n-\ell}(t)} \underbrace{\mathbb{P}^{0,0}\left\{\tau^{\prime} \in J_{\ell}\right\}}_{P_{\ell}}$
$P_{\ell} \simeq$ const $\mathrm{e}^{-\ell q} \exp \left\{-\frac{\overline{\bar{V}_{1}}}{\sigma^{2}}\left(1-\mathrm{e}^{-2 \ell \lambda T}\right)\right\}, \quad q=T \mathrm{e}^{-\overline{V_{1}} / \sigma^{2}}$
$Q_{k}(t) \simeq C(t) \mathrm{e}^{-2 k \lambda T} \exp \left\{-\frac{\overline{\bar{V}_{2}}}{\sigma^{2}}\left(1-c(t) \mathrm{e}^{-2 k \lambda T}\right)\right\}$

The different regimes (after time change $\theta(t) \mapsto t$)

$$
p\left(t, t_{0}\right)=\frac{f_{\mathrm{trans}}\left(t, t_{0}\right)}{\mathcal{N}} Q_{\lambda T}(t-|\log \sigma|) \frac{1}{\lambda T_{\mathrm{K}}(\sigma)} \mathrm{e}^{-\left(t-t_{0}\right) / \lambda T_{\mathrm{K}}(\sigma)}
$$

Transient regime
$f_{\text {trans }}$ is increasing; exponentially close to 1 for $t-t_{0}>2|\log \sigma|$
Metastable regime
$Q_{\lambda T}(y)=2 \lambda T \sum_{k=-\infty}^{\infty} P(y-k \lambda T) \quad$ where $\quad P(z)=\frac{1}{2} \mathrm{e}^{-2 z} \exp \left\{-\frac{1}{2} \mathrm{e}^{-2 z}\right\}$
k th summand: Path spends
$\triangleright k$ periods near stable periodic orbit
$\triangleright\left[\left(t-t_{0}\right) / T\right]-k$ periods near unstable periodic orbit
Periodic dependence on $|\log \sigma|$: Peaks $P(z)$ rotate as σ decreases
Asymptotic regime
Significant decay only for $t-t_{0} \gg T_{\mathrm{K}}(\sigma)$

The universal profile

$y \mapsto Q_{\lambda T}(\lambda T y) / 2 \lambda T$

\triangleright Profile determines concentration of first-passage times within a period
\triangleright Shape of peaks: Gumbel distribution
\triangleright The larger λT, the more pronounced the peaks
\triangleright For smaller values of λT, the peaks overlap more

Density of the first-passage time $\quad \bar{V}=0.5, \lambda=1$

Residence-times

x_{t} crosses unstable periodic orbit $x^{\text {per }}(t)$ at time s
τ : time of first crossing back after time s

\triangleright First-passage-time density:

$$
p(t, s)=\frac{\partial}{\partial t} \mathbb{P}^{s, x^{\text {per }}(s)}\{\tau<t\}
$$

\triangleright Asymptotic transition-phase density: (stationary regime)

$$
\psi(t)=\int_{-\infty}^{t} p(t, s) \psi(s-T / 2) \mathrm{d} s=\psi(t+T)
$$

\triangleright Residence-time distribution:

$$
q(t)=\int_{0}^{T} p(s+t, s) \psi(s-T / 2) \mathrm{d} s
$$

Computation of residence-time distributions

Without forcing $\quad(A=0)$
$p(t, s) \sim$ exponential, $\psi(t)$ uniform $\Longrightarrow q(t) \sim$ exponential

With forcing $\quad\left(A \gg \sigma^{2}\right)$
\triangleright First-passage-time density:

$$
p(t, s) \simeq \frac{f_{\mathrm{trans}}(t, s)}{\mathcal{N}} Q_{\lambda T}(t-|\log \sigma|) \frac{1}{\lambda T_{\mathrm{K}}} \mathrm{e}^{-(t-s) / \lambda T_{\mathrm{K}}}
$$

\triangleright Asymptotic transition-phase density:

$$
\psi(s) \simeq \frac{1}{\lambda T} Q_{\lambda T}(s-|\log \sigma|)\left[1+\mathcal{O}\left(T / T_{\mathrm{K}}\right)\right]
$$

\triangleright Residence-time distribution: (no cycling)

$$
q(t) \simeq \tilde{f}_{\mathrm{trans}}(t) \frac{\mathrm{e}^{-t / \lambda T_{\mathrm{K}}}}{\lambda T_{\mathrm{K}}} \frac{\lambda T}{2} \sum_{k=-\infty}^{\infty} \frac{1}{\left.\cosh ^{2}(t+\lambda T / 2-k \lambda T)\right)}
$$

Density of the residence-time distribution $\quad \bar{V}=0.5, \lambda=1$

$\sigma=0.2, T=2$

\triangleright Peaks symmetric
\triangleright Shape of peaks: Solitons
\triangleright No cycling
$\triangleright \sigma$ fixed, λT increasing: Transition into synchronisation regime
\triangleright Picture as for Dansgaard-Oeschger events:
Periodically perturbed asymmetric double-well potential

References for PART IV

\triangleright M. I. Freidlin, and A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer (1998)
\triangleright A. Dembo and O. Zeitouni, Large deviations techniques and applications, Springer (1998)
$\triangleright \quad$ J.-D. Deuschel and D. W. Stroock,Large deviations, Academic Press (1989). (Reprinted by the American Mathematical Society, 2001)
$\triangleright \quad$ S.R.S. Varadhan, Diffusion problems and partial differential equations, Springer (1980)
$\triangleright \quad \mathrm{H}$. Eyring, The activated complex in chemical reactions, Journal of Chemical Physics 3 (1935), pp. 107-115
\triangleright H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7 (1940), pp. 284-304
\triangleright A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times, J. Eur. Math. Soc. 6 (2004), pp. 399-424
\triangleright A. Bovier, V. Gayrard, and M. Klein, Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues, J. Eur. Math. Soc. 7 (2005), pp. 69-99
\triangleright B. Helffer, M. Klein, and F. Nier, Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach, Mat. Contemp. 26 (2004), pp. 41-85
\triangleright M.V. Day, On the exponential exit law in the small parameter exit problem, Stochastics 8 (1983), pp. 297-323
\triangleright M.V. Day, Conditional exits for small noise diffusions with characteristic boundary, Ann. Probab. 20 (1992), pp. 1385-1419
\triangleright R.S. Maier, and DL. Stein, Oscillatory behavior of the rate of escape through an unstable limit cycle, Phys. Rev. Lett. 77 (1996), pp. 48604863
\triangleright N. Berglund, and B. Gentz, On the noise-induced passage through an unstable periodic orbit I: Two-level model, J. Statist. Phys. 114 (2004), pp. 15771618
\triangleright N. Berglund, and B. Gentz, Universality of first-passage- and residence-time distributions in non-adiabatic stochastic resonance, Europhys. Lett. 70(2005), pp. 1-7

PART V

Small-ball probabilities for Brownian motion

\triangleright Small-ball probabilities for Brownian motion
\triangleright Generalizations

Small-ball probabilities for Brownian motion

$B M$ is growing with $\sqrt{t}-$ What does that mean?
$\triangleright \operatorname{Var}\left\{W_{t}\right\}$ grows like $t \Longrightarrow$ typical spreading at time t is \sqrt{t}
$\triangleright \mathbb{P}\left\{\left|W_{t}\right| \geq c \sqrt{t}\right\} \leq \mathrm{e}^{-c^{2} / 2} \ll 1$ for $c \gg 1$
\triangleright Also lower bound:

$$
\mathbb{P}\left\{\left|W_{t}\right| \leq c \sqrt{t}\right\}=\sqrt{2 / \pi} c\left[1-\mathcal{O}\left(c^{2}\right)\right] \ll 1 \text { for } c \ll 1
$$

\triangleright These are statements on the endpoint W_{t}
\triangleright For the whole sample path, recall LDP: (for small ε)

$$
\begin{aligned}
\mathbb{P}\left\{\sup _{0 \leq t \leq T}\left|W_{t}\right| \geq c \sqrt{t} / \sqrt{\varepsilon}\right\} & \leq \mathbb{P}\left\{\sup _{0 \leq t \leq T}\left|W_{t}\right| \geq c \sqrt{T} / \sqrt{\varepsilon}\right\} \\
& =\mathbb{P}\left\{\sup _{0 \leq t \leq T}\left|\sqrt{\varepsilon} W_{t}\right| \geq c \sqrt{T}\right\} \sim \mathrm{e}^{-c^{2} / 2 \varepsilon}
\end{aligned}
$$

Note: The large deviation is realized for sample paths leaving the set as late as possible. Thus: The first two probabilities behave in the same way.

Small-ball probabilities for Brownian motion

What can be said about the probability

$$
\mathbb{P}\left\{\sup _{0 \leq t \leq T}\left|W_{t}\right| \leq \varepsilon\right\}
$$

that BM stays for a long time in a small neighbourhood of the origin ("in a small ball")?

Unlikely event!
For the endpoint, we've seen

$$
\mathbb{P}\left\{\left|W_{t}\right| \leq c \sqrt{t}\right\}=\sqrt{\frac{2}{\pi}} c\left[1-\mathcal{O}\left(c^{2}\right)\right]
$$

Equivalent

$$
\mathbb{P}\left\{\left|W_{t}\right| \leq \varepsilon\right\}=\sqrt{\frac{2}{\pi}} \frac{\varepsilon}{\sqrt{t}}\left[1-\mathcal{O}\left(\frac{\varepsilon^{2}}{t}\right)\right]
$$

Here, the behaviour of the paths is not dominated by the behaviour of the endpoint as it is easier for the whole path to exit some time than to be outside the ball at time t

Small-ball probabilities for Brownian motion

$\tau_{r}=$ first-exit time of BM from a centred ball $B(0, r)$ of radius r

Theorem

For $d=1$ and any $r>0$,

$$
\mathbb{P}\left\{\sup _{0 \leqslant s \leqslant 1}\left|W_{s}\right|<r\right\} \leqslant \frac{4}{\pi} \mathrm{e}^{-\pi^{2} / 8 r^{2}}
$$

For arbitrary dimension d, the distribution function of the first-exit time τ_{r} can be expressed with the help of an infinite series

Theorem [Ciesielski \& Taylor, 1962]

$$
\mathbb{P}\left\{\tau_{r}>t\right\}=\mathbb{P}\left\{\sup _{0 \leqslant s \leqslant t}\left\|W_{s}\right\|<r\right\}=\sum_{l=1}^{\infty} \xi_{d, l} \mathrm{e}^{-q_{d, l}^{2} t / 2 r^{2}}
$$

where $q_{d, l}, l \geqslant 1$, are the positive roots of the Bessel function J_{ν}, for $\nu=d / 2-1$, and

$$
\xi_{d, l}=\frac{1}{2^{\nu-1} \Gamma(\nu+1)} \frac{q_{d, l}^{\nu-1}}{J_{\nu+1}\left(q_{d, l}\right)}
$$

Generalizations: Weighted norms

Theorem [Berthet \& Zhan Shi, 1998 (preprint)] ($d=1$)

$$
\mathbb{P}\left\{\sup _{0<t \leq 1} \frac{\left|W_{t}\right|}{f(t)}<\varepsilon\right\} \sim \exp \left(-\frac{\pi^{2}}{8 \varepsilon^{2}} \int_{0}^{1} \frac{\mathrm{~d} t}{f^{2}(t)}\right)
$$

There is a condition on the admissible weights f :
\triangleright Admissible are for example $f(t)=t^{\alpha},-\infty<\alpha<1 / 2$, strictly positive $f, f(t)=t^{1 / 2}(\log (1 / t))^{\beta}$ for $\beta>1 / 2$
\triangleright An example of a not admissible function is $f(t)=\sqrt{t \log \log (1 / t)}$
\triangleright Generalizations to other norms, to shifted balls

- Generalizations to Gaussian processes
\triangleright We will use the simplest variant to study escape from a saddle

References for PART V

Here is a brief selection of references:
\triangleright Z. Ciesielski, and S.J. Taylor, First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc. 103 (1962), pp. 434-450
\triangleright Ph. Berthet and Zhan Shi, Small ball estimates for Brownian motion under a weighted sup-norm (1998) (preprint)

- Wenbo V. Li, and Qi-Man Shao, Gaussian processes: Inequalities, small ball probabilities and applications. In: D. N. Shanbhag (ed.) et al., Stochastic processes: Theory and methods, North-Holland/Elsevier (2001), pp. 533597

PART VI

First-passage of Brownian motion to a (curved) boundary

\triangleright Brownian motion crossing constant levels (reflection principle)
\triangleright Brownian motion crossing a linear boundary
\triangleright A master equation for the distribution of the first-passage time to a general boundary
\triangleright An integral equation for the first-passage density

First passage to a constant level

Recall the reflection principle for BM

$$
\mathbb{P}^{0,-b}\left\{\tau_{0}<t\right\}=2 \mathbb{P}^{0,-b}\left\{W_{t} \geq 0\right\}
$$

$\tau_{a}=$ first-passage time of BM at level $a \geq 0$
Equivalent

$$
\mathbb{P}^{0,0}\left\{\tau_{b}<t\right\}=2 \mathbb{P}^{0,0}\left\{W_{t} \geq b\right\}=\frac{1}{\sqrt{2 \pi t}} \int_{b}^{\infty} \mathrm{e}^{-x^{2} / 2 t} \mathrm{~d} x
$$

Differentiate to obtain density of τ_{b}

$$
\begin{aligned}
f(t) & =\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{P}^{0,0}\left\{\tau_{b}<t\right\} \\
& =-\frac{1}{\sqrt{2 \pi t}} \frac{1}{t} \int_{b}^{\infty} e^{-x^{2} / 2 t} \mathrm{~d} x+\frac{1}{\sqrt{2 \pi t}} \int_{b}^{\infty} \frac{x^{2}}{t^{2}} e^{-x^{2} / 2 t} \mathrm{~d} x \\
& =-\frac{1}{\sqrt{2 \pi t}} \frac{1}{t} \int_{b}^{\infty} e^{-x^{2} / 2 t} \mathrm{~d} x-\frac{1}{\sqrt{2 \pi t}}\left[\left.\frac{x}{t} e^{-x^{2} / 2 t}\right|_{x=b} ^{\infty}-\frac{1}{t} \int_{b}^{\infty} e^{-x^{2} / 2 t} \mathrm{~d} x\right] \\
& =\frac{1}{\sqrt{2 \pi t}} \frac{b}{t} \mathrm{e}^{-b^{2} / 2 t}=\frac{b}{t^{3 / 2}} \varphi\left(\frac{b}{\sqrt{t}}\right) \quad \text { (} \varphi=\text { standard Normal density) }
\end{aligned}
$$

Linear boundaries

The formula for the density generalizes to linear boundaries

$$
\tau_{g}:=\inf \left\{t: W_{t} \geq g(t)\right\} \quad \text { with } \quad g(t):=b+c t \quad(b>0)
$$

τ_{g} has density

$$
f(t)=\frac{b}{t^{3 / 2}} \varphi\left(\frac{g(t)}{\sqrt{t}}\right)
$$

Note that for $c \geq 0$

$$
\mathbb{P}^{0,0}\left\{\tau_{g}<\infty\right\}=\mathrm{e}^{-2 c b}
$$

For $c>0: \mathbb{P}\left\{\tau_{g}=\infty\right\}>0 \Longrightarrow f$ no proper density

General boundaries

In general: No closed-form expression for the density of the firstpassage time of BM to a curved boundary
$g:(0, \infty) \rightarrow \mathbb{R}$ continuous, $g(0+) \geq 0$
Markov property for BM allows to restart upon first passage, yielding

Master equation

$$
1-\Phi\left(\frac{z}{\sqrt{t}}\right)=\int_{0}^{t}\left[1-\Phi\left(\frac{z-g(s)}{\sqrt{t-s}}\right)\right] F(\mathrm{~d} s) \quad \forall z \geq g(t)
$$

$\triangleright \quad F$ is the distribution function of τ_{g}
$\triangleright \Phi$ is the distribution function of a standard Normal r.v.
From this integral equation, a variety of integral equations for the first-passage distribution or density are derived
Solved either numerically or using fixed-point arguments

General boundaries

Under additional assumptions on g
(g cont. differentiable with $\mathbb{P}\left\{\tau_{g}=0\right\}=0$)

Density f of τ_{g} exists and satisfies

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[1-\Phi\left(\frac{g(t)}{\sqrt{t}}\right)\right]=\frac{1}{2} f(t)+\int_{0}^{t} \frac{\mathrm{~d}}{\mathrm{~d} t}\left[1-\Phi\left(\frac{g(t)-g(s)}{\sqrt{t-s}}\right)\right] f(s) \mathrm{d} s \quad \forall t
$$

(Proof nontrivial - taking derivatives has to be justified)

References for PART VI

Here is a brief selection of references:
\triangleright G. Peskir, On integral equations arising in the first-passage problem for Brownian motion, Journal of Integral Equations and Applications 14 (2002), pp. 397-423
\triangleright H.-R. Lerche, Boundary crossing of Brownian motion, Lecture Notes in Statistics 40, Springer (1986)
\triangleright J. Durbin, The first-passage density of the Brownian motion process to a curved boundary, J. Appl. Prob. 29 (1992), pp. 291-304
$\triangleright \mathrm{J}$. Durbin, The first-passage density of a continuous Gaussian process to a general boundary, J. Appl. Probab. 22 (1985), pp. 99-122
\triangleright B. Ferebee, The tangent approximation to one-sided Brownian exit densities, Z. Wahrsch. Verw. Gebiete 61 (1982), pp. 309-326
\triangleright B. Ferebee, An asymptotic expansion for one-sided Brownian exit densities, Z. Wahrsch. Verw. Gebiete 63 (1983), pp. 1-15
\triangleright H.E. Daniels, Approximating the first crossing-time density for a curved boundary, Bernoulli 2 (1996), pp. 133-143
\triangleright V.S.F. Lo, G. O. Roberts, and H.E. Daniels, Inverse method of images, Bernoulli 8 (2002), pp. 53-80
\triangleright V. Giorno, A. G. Nobile, L. M. Ricciardi, and S. Sato, On the evaluation of first-passage-time probability densities via nonsingular integral equations, Adv. in Appl. Probab. 21 (1989), pp. 20-36
\triangleright L. Sacerdote, and F. Tomassetti, On evaluations and asymptotic approximations of firrst-passage-time probabilities, Adv. in Appl. Probab. 28 (1996), pp. 270-284
\triangleright M. T. Giraudo, and L. Sacerdote, An improved technique for the simulation of first passage times for diffusion processes, Comm. Statist. Simulation Comput. 28 (1999), pp. 1135-1163
\triangleright M. T. Giraudo, L. Sacerdote, and C. Zucca, A Monte Carlo method for the simulation of first passage times of diffusion processes, Methodol. Comput. Appl. Probab. 3 (2001), pp. 215-231

PART VII

The simplest class of slow-fast systems: Slowly driven systems

\triangleright Concentration of sample paths near the bottom of a well
\triangleright Stochastic resonance
\triangleright Hysteresis cycles
\triangleright Bifurcation delay

Concentration of sample paths near the bottom of a well: Deterministic case
$d=1$
Overdamped motion in a potential landscape

$$
\varepsilon \dot{x}_{t}=f\left(x_{t}, t\right), \quad f(x, t)=-\nabla U(x, t)=-\frac{\partial}{\partial x} U(x, t)
$$

Assume for the moment that U is a single-well potential for all t (Otherwise: restrict to a suitable space-time region)

Let $x^{\star}(t)$ denote the bottom of the well, i.e.,

$$
f\left(x^{\star}(t), t\right)=0 \quad \forall t
$$

$t \mapsto x^{\star}(t)$ is called equilibrium branch
$x^{\star}(t)$ is called uniformly asymptotically stable if

$$
a^{\star}(t):=\partial_{x} f\left(x^{\star}(t), t\right)=-\partial_{x x} U\left(x^{\star}(t), t\right) \leq-a_{0}<0 \quad \forall t
$$

(Curvature of the well remains bounded away from zero)

Excursion: Static potentials

Assume $U(x, t)=U\left(x, t_{0}\right)$ for all times t ("frozen system")

Dynamics

$$
\begin{aligned}
y_{t} & :=x_{t}^{\text {frozen }}-x^{\star}\left(t_{0}\right) \\
\varepsilon \dot{y}_{t} & =\varepsilon \frac{\mathrm{d}}{\mathrm{~d} t} x_{t}^{\text {frozen }}=f\left(x_{t}^{\text {frozen }}, t_{0}\right)=a^{\star}\left(t_{0}\right) y_{t}+\mathcal{O}\left(y_{t}^{2}\right), \quad a^{\star}\left(t_{0}\right)<0
\end{aligned}
$$

This implies

$$
\left|y_{t}\right| \leq\left|y_{0}\right| \mathrm{e}^{-\left|a^{\star}\left(t_{0}\right)\right| t / 2 \varepsilon} \quad \text { for }\left|y_{t}\right| \text { small enough }
$$

$\triangleright \quad x_{t}^{\text {frozen }}$ approaches $x^{\star}\left(t_{0}\right)$ exponentially fast
\triangleright The speed depends on the curvature of the well:
The steeper the well, the faster the approach

What happens when the shape of the well changes slowly in time?

Back to slowly driven systems

Theorem [Tihonov 1952, Gradšteīn 1953]
$\exists \varepsilon_{0}, c_{0}, c_{1} \forall \varepsilon \leq \varepsilon_{0}$ (depending only on f) s.t.
$\triangleright \quad \exists$ particular solution $\widehat{x}_{t}^{\text {det }}$ s.t. $\left|\widehat{x}_{t}^{\text {det }}-x^{\star}(t)\right| \leq c_{1} \varepsilon \quad \forall t$
$\triangleright \quad$ If $\left|x_{0}-x^{\star}(0)\right| \leq c_{0}$ then the solution $x_{t}^{\text {det }}$ starting in x_{0} at time $t=0$ satisfies

$$
\left|x_{t}^{\mathrm{det}}-\widehat{x}_{t}^{\mathrm{det}}\right| \leq\left|x_{0}-x^{\star}(0)\right| \mathrm{e}^{-a_{0} t / 2 \varepsilon} \quad \forall t
$$

$\widehat{x}_{t}^{\text {det }}$ is called adiabatic or slow solution
$\triangleright \quad \widehat{x}_{t}^{\mathrm{det}}$ attracts nearby solutions
$\triangleright \quad \widehat{x}_{t}^{\text {det }}$ tracks $x^{\star}(t)$ at distance $\leq \varepsilon$
$\triangleright \widehat{x}_{t}^{\text {det }}$ is not uniquely determined, we can always start closer to $x^{\star}(t)$

Sketch of the proof

Part 1: Existence of an adiabatic solution
(compare to the idea of proof in the case of a frozen potential)
For an arbitrary solution x_{t}, define the deviation $z_{t}:=x_{t}-x^{\star}(t)$
A Taylor expansion in the moving point $x^{\star}(t)$ shows

$$
\varepsilon \dot{z}_{t}=a^{\star}(t) z_{t}+b^{*}\left(z_{t}, t\right)-\varepsilon \dot{x}^{\star}(t) \leq-a_{0} z_{t}+\mathcal{O}\left(z_{t}^{2}\right)-\varepsilon \dot{x}^{\star}(t)
$$

We need a bound on the speed at which $x^{\star}(t)$ can change:

$$
0=\frac{\mathrm{d}}{\mathrm{~d} t} f\left(x^{\star}(t), t\right)=\partial_{x} f\left(x^{\star}(t), t\right) \dot{x}^{\star}(t)+\partial_{t} f\left(x^{\star}(t), t\right)
$$

implies
$\dot{x}^{\star}(t)=\frac{\partial_{t} f\left(x^{\star}(t), t\right)}{\left|a^{\star}(t)\right|} \quad$ bounded, as $a^{\star}(t)$ is bounded away from 0
$\Longrightarrow \exists K$ s.t. $\left|\dot{x}^{\star}(t)\right| \leq K<\infty$

Sketch of the proof

For small enough z_{t}, Gronwall's lemma shows

$$
\begin{aligned}
\varepsilon \dot{z}_{t} \leq-\frac{a_{0}}{2} z_{t}+\varepsilon K & \Longrightarrow \dot{z}_{t} \leq-\frac{a_{0}}{2 \varepsilon} z_{t}+K \\
& \Longrightarrow z_{t} \leq\left(z_{0}-\frac{2 \varepsilon}{a_{0}} K\right) \mathrm{e}^{-a_{0} t / 2 \varepsilon}+\frac{2 \varepsilon}{a_{0}} K
\end{aligned}
$$

Choosing z_{0} of order ε yields $\left|z_{t}\right| \leq$ const ε for all t. This implies the existence of an adiabatic solution.

Part 2: An adiabatic solution is attracting

Repeating the same kind of arguments, this time using a Taylor expansion around the adiabatic solution $\widehat{x}_{t}^{\text {det }}$, proves the claim.

The effect of noise

The approach we will present first is not optimal for $d=1$, but generalisable.

$$
\mathrm{d} x_{s}=-\nabla_{x} U\left(x_{s}, \varepsilon s\right) \mathrm{d} s+\sigma \mathrm{d} W_{s}
$$

In slow time $\left(t=\varepsilon s, x_{t}=x_{\varepsilon s}, W_{t}=\sqrt{\varepsilon} W_{s}\right.$ (in distribution))

$$
\begin{aligned}
\mathrm{d} x_{t} & =-\frac{1}{\varepsilon} \nabla_{x} U\left(x_{t}, t\right) \mathrm{d} t+\frac{\sigma}{\sqrt{\varepsilon}} \mathrm{d} W_{t} \\
& =: \frac{1}{\varepsilon} f\left(x_{t}, t\right) \mathrm{d} t+\frac{\sigma}{\sqrt{\varepsilon}} \mathrm{d} W_{t}
\end{aligned}
$$

Assume for the moment that the potential $U(x, t)$ is quadratic, i.e.,

$$
f(x, t)=a^{\star}(t)\left[x-x^{\star}(t)\right]
$$

(Curvature and location of the bottom of the well change in time with $a^{\star}(t)$ and $\left.x^{\star}(t)\right)$

Effect of noise - quadratic potentials

$$
\begin{aligned}
z_{t} & :=x_{t}-x_{t}^{\mathrm{det}} \\
\mathrm{~d} z_{t} & =\frac{1}{\varepsilon}\left[f\left(x_{t}, t\right)-f\left(x_{t}^{\mathrm{det}}, t\right)\right] \mathrm{d} t+\frac{\sigma}{\sqrt{\varepsilon}}=\frac{1}{\varepsilon} a^{\star}(t) z_{t} \mathrm{~d} t+\frac{\sigma}{\sqrt{\varepsilon}} \mathrm{d} W_{t}
\end{aligned}
$$

We can solve the non-autonomous SDE for z_{t}

$$
z_{t}=z_{0} e^{\alpha^{\star}(t) / \varepsilon}+\frac{\sigma}{\sqrt{\varepsilon}} \int_{0}^{t} e^{\alpha^{\star}(t, s) / \varepsilon} \mathrm{d} W_{s}
$$

where $\alpha^{\star}(t)=\int_{0}^{t} a^{\star}(s) \mathrm{d} s$ and $\alpha^{\star}(t, s)=\alpha^{\star}(t)-\alpha^{\star}(s)$
Therefore, z_{t} is a Gaussian r.v. with variance

$$
v^{\star}(t)=\operatorname{Var}\left(z_{t}\right)=\frac{\sigma^{2}}{\varepsilon} \int_{0}^{t} e^{2 \alpha^{\star}(t, s) / \varepsilon} \mathrm{d} s
$$

For any fixed time t, z_{t} has a typical spreading of $\sqrt{v^{\star}(t)}$, and a standard estimate shows

$$
\mathbb{P}\left\{\left|z_{t}\right| \geq h\right\} \leq \mathrm{e}^{-h^{2} / 2 v^{\star}(t)}
$$

Effect of noise - quadratic potentials

Goal: Similar estimate for the whole sample path

As $v^{\star}(0)=0$, we need to find a better idea near the origin. We will replace $v^{\star}(t)$ by its "asymptotic value", pretending that we started the process at time $t_{0} \rightarrow-\infty$.

Crucial observation

$$
\frac{\mathrm{d} v^{\star}(t)}{\mathrm{d} t} \frac{\mathrm{~d}}{\sigma^{2}}=\frac{1}{\mathrm{~d} t} \frac{\int_{0}^{t}}{\varepsilon} \mathrm{e}^{2 \alpha^{\star}(t, s) / \varepsilon} \mathrm{d} s=\frac{1}{\varepsilon}+\frac{2 a^{\star}(t)}{\varepsilon} \frac{v^{\star}(t)}{\sigma^{2}}
$$

$\triangleright \quad v^{\star}(t) / \sigma^{2}$ satisfies a singularly perturbed ODE
\triangleright Actual variance $v^{\star}(t) / \sigma^{2}$ is the particular solution starting in 0
$\triangleright \exists$ adiabatic solution $\zeta(t)$, tracking $\zeta^{\star}(t)=1 / 2\left|a^{\star}(t)\right|$
$\triangleright v^{\star}(t) / \sigma^{2}$ is attracted exponentially fast by $\zeta(t) \mathrm{s}$
$\triangleright \quad \operatorname{Var} z_{t}=v^{\star}(t)=\sigma^{2}\left[\zeta(t)-\zeta(0) \mathrm{e}^{2 \alpha^{\star}(t) / \varepsilon}\right]$

Introducing space-time sets

$$
\mathcal{B}(h):=\{(z, t):|z| \leq h \sqrt{\zeta}\}
$$

For $h=\sigma$, at each t the "breathing" strip $\mathcal{B}(h)$ has a width equal to the typical spreading of z_{t}

For $h>\sigma$, we expect z_{t} to remain in $\mathcal{B}(h)$ for quite a while How long will it take until z_{t} exits?

A first result for the first-exit time $\tau_{\mathcal{B}(h)}$

$\forall \gamma \in(0,1 / 2) \forall t$

$$
\mathbb{P}\left\{\tau_{\mathcal{B}(h)}<t\right\}=C_{h / \sigma}(t, \varepsilon) \mathrm{e}^{-h^{2} / 2 \sigma^{2}}
$$

with $C_{h / \sigma}(t, \varepsilon) \leq 2\left\lceil\frac{\left|\alpha^{\star}(t)\right|}{\varepsilon \gamma}\right\rceil \mathrm{e}^{\gamma[1+\mathcal{O}(\varepsilon)] h^{2} / \sigma^{2}}$
$\triangleright \mathrm{e}^{-h^{2} / 2 \sigma^{2}}$ becomes small as soon as $h \gg \sigma$
$\triangleright \quad a^{\star}(t)$ bounded $\Longrightarrow \alpha^{\star}(t) \sim t \Longrightarrow C_{h / \sigma}(t, \varepsilon)=\operatorname{const} \frac{t}{\varepsilon \gamma} \mathrm{e}^{\gamma h^{2}[1+\mathcal{O}(\varepsilon)] / \sigma^{2}}$ The probability of exit remains small for all times t which are comparable to Kramers' time

Idea for the proof
\triangleright Consider a partition of the time interval s.t. $\left|\alpha^{\star}\left(t_{j+1}, t_{j}\right)\right|=\varepsilon \gamma$
$\triangleright \quad\lceil\ldots\rceil$ is the number of intervals in the partition
\triangleright On these short time intervals, approximate z_{t} by a Gaussian martingale
\triangleright Use Bernstein-type inequality to estimate probability of exit during a short time interval

The behaviour of the first-exit time $\tau_{\mathcal{B}(h)}(d=1)$

In the special case $d=1$ the preceding result on the first-exit time from a neighbourhood of a quadratic potential well can be improved:

Theorem [Berglund \& G '05]
$\exists c_{0}, r_{0}>0$ s.t. whenever

$$
r=r(h / \sigma, t, \varepsilon):=\frac{\sigma}{h}+\frac{t}{\varepsilon} \mathrm{e}^{-c_{0} h^{2} / \sigma^{2}} \leq r_{0}
$$

then

$$
\mathbb{P}\left\{\tau_{\mathcal{B}(h)}<t\right\}=C_{h / \sigma}(t, \varepsilon) e^{-h^{2} / 2 \sigma^{2}}
$$

with

$$
C_{h / \sigma}(t, \varepsilon)=\sqrt{\frac{2}{\pi}} \frac{|\alpha(t)|}{\varepsilon} \frac{h}{\sigma}\left[1+\mathcal{O}(r)+\varepsilon+\frac{\varepsilon}{|\alpha(t)|} \log (1+h / \sigma)\right]
$$

Idea of the proof
Proceed as before, considering the approximating Gaussian martingale as a time-changed BM. Use results on first passage of BM to a curved boundary.

The behaviour of the first-exit time $\tau_{\mathcal{B}(h)}(d=1)$

For general single-well potentials with non-vanishing curvature, as long as $t<\tau_{c B(h)}$, the solution of the SDE is well approximated by the solution of the linearized SDE.

The error made scales with the width h of $\mathcal{B}(h)$.

Theorem [Berglund \& G '05]
$\exists c_{0}, r_{0}>0$ s.t. whenever

$$
r=r(h / \sigma, t, \varepsilon):=\frac{\sigma}{h}+\frac{t}{\varepsilon} \mathrm{e}^{-c_{0} h^{2} / \sigma^{2}} \leq r_{0}
$$

then
$C_{h / \sigma}(t, \varepsilon) e^{-[1+\mathcal{O}(h)] h^{2} / 2 \sigma^{2}} \leq \mathbb{P}\left\{\tau_{\mathcal{B}(h)}<t\right\} \leq C_{h / \sigma}(t, \varepsilon) e^{-[1-\mathcal{O}(h)] h^{2} / 2 \sigma^{2}}$
with the prefactor $C_{h / \sigma}(t, \varepsilon)$ as above

Repetition: One-dimensional slowly driven systems

$$
\mathrm{d} x_{t}=\frac{1}{\varepsilon} f\left(x_{t}, t\right) \mathrm{d} t+\frac{\sigma}{\sqrt{\varepsilon}} \mathrm{d} W_{t}
$$

Uniformly asymptotically stable equilibrium branch $x^{\star}(t)$:

$$
f\left(x^{\star}(t), t\right)=0, \quad a^{\star}(t)=\partial_{x} f\left(x^{\star}(t), t\right) \leqslant-a_{0}
$$

Adiabatic solution:
$\bar{x}(t, \varepsilon)=x^{\star}(t)+\mathcal{O}(\varepsilon)$
$\mathcal{B}(h)$: strip around $\bar{x}(t, \varepsilon)$
of width $\simeq h / 2\left|a^{\star}(t)\right|$

Theorem [Berglund \& G '02], [Berglund \& G '05] $\mathbb{P}\left\{x_{t}\right.$ leaves $\mathcal{B}(h)$ before time $\left.t\right\} \simeq \sqrt{\frac{2}{\pi}} \frac{1}{\varepsilon}\left|\int_{0}^{t} a^{\star}(s) \mathrm{d} s\right| \frac{h}{\sigma} \mathrm{e}^{-h^{2} / 2 \sigma^{2}}$

Idea

Behaviour of $y_{t}=x_{t}-\bar{x}(t, \varepsilon)$?
Linearizing the drift coefficent \longrightarrow nonautonomous linear SDE
$\mathrm{d} y_{t}^{0}=\frac{1}{\varepsilon} a(t) y_{t}^{0} \mathrm{~d} t+\frac{\sigma}{\sqrt{\varepsilon}} \mathrm{d} W_{t}, \quad y_{0}=0$
$a(t)=\partial_{x} f(\bar{x}(t, \varepsilon), t)=$ curvature ; $\quad \alpha(t, s):=\int_{s}^{t} a(u) d u$
Solution $y_{t}^{0}=\frac{\sigma}{\sqrt{\varepsilon}} \int_{0}^{t} \mathrm{e}^{\alpha(t, s) / \varepsilon} \mathrm{d} W_{s}$ is a Gaussian process
Variance $v(t)=\frac{\sigma^{2}}{\varepsilon} \int_{0}^{t} \mathrm{e}^{2 \alpha(t, s) / \varepsilon} \mathrm{d} s \sim \frac{\sigma^{2}}{\text { curvature }}$
Concentration result for $y_{t}^{0}: \quad \mathbb{P}\left\{\left|y_{t}^{0}\right|>\delta\right\} \leq \mathrm{e}^{-\delta^{2} / 2 v(t)}$
Theorem: Analogous resultat for the whole path $\left\{y_{t}\right\}_{t \geq 0}$

Example I: Stochastic resonance

Recall the energy-balance model from the first lecture

Overdamped motion of a Brownian particle

$$
\mathrm{d} x_{s}=-\frac{\partial}{\partial x} V\left(x_{s}, \varepsilon s\right) \mathrm{d} s+\sigma \mathrm{d} W_{s}
$$

in a periodically modulated potential
$V(x, \varepsilon s)=-\frac{1}{2} x^{2}+\frac{1}{4} x^{4}+\left(\lambda_{c}-a_{0}\right) \cos (2 \pi \varepsilon s) x$

Example I: Stochastic resonance

3 small parameters:
$0<\sigma \ll 1, \quad 0<\varepsilon \ll 1, \quad 0<a_{0} \ll 1$

Equation of motion of a Brownian particle
$\mathrm{d} x_{s}=-\frac{\partial}{\partial x} V\left(x_{s}, \varepsilon s\right) \mathrm{d} s+\sigma \mathrm{d} W_{s}$
$V(x, \varepsilon s)=-\frac{1}{2} x^{2}+\frac{1}{4} x^{4}+\left(\lambda_{\mathrm{c}}-a_{0}\right) \cos (2 \pi \varepsilon s) x, \quad \lambda_{\mathrm{c}}=\frac{2}{3 \sqrt{3}}$
Rewrite in slow time $t=\varepsilon s$:
$\mathrm{d} x_{t}=\frac{1}{\varepsilon} f\left(x_{t}, t\right) \mathrm{d} t+\frac{\sigma}{\sqrt{\varepsilon}} \mathrm{d} W_{t}$
with drift term
$f(x, t)=-\frac{\partial}{\partial x} V(x, t)=x-x^{3}-\left(\lambda_{\mathrm{c}}-a_{0}\right) \cos (2 \pi t)$

Sample paths

Amplitude of modulation $A=\lambda_{\mathrm{c}}-a_{0}$ Speed of modulation ε Noise intensity σ

$A=0.00, \sigma=0.30, \varepsilon=0.001$

$A=0.24, \sigma=0.20, \varepsilon=0.001$

$A=0.10, \sigma=0.27, \varepsilon=0.001$

$A=0.35, \sigma=0.20, \varepsilon=0.001$

Small-barrier-height regime

Effective barrier heights and scaling of small parameters

Theorem [Berglund \& G, Annals of Appl. Probab. '02]
(informal version; exact formulation uses first-exit times from space-time sets)
\exists threshold value $\sigma_{\mathrm{c}}=\left(a_{0} \vee \varepsilon\right)^{3 / 4}$
Below: $\quad \sigma \leq \sigma_{\mathrm{c}}$
\triangleright Transitions unlikely
\triangleright Sample paths concentrated in one well
\triangleright Typical spreading

$$
\asymp \frac{\sigma}{\left(|t|^{2} \vee a_{0} \vee \varepsilon\right)^{1 / 4}} \asymp \frac{\sigma}{(\text { curvature })^{1 / 2}}
$$

\triangleright Probability to observe a transition $\leq \mathrm{e}^{- \text {const } \sigma_{\mathrm{C}}^{2} / \sigma^{2}}$

Above: $\quad \sigma \gg \sigma_{\mathrm{c}}$
$\triangleright 2$ transitions per period likely (back and forth)
\triangleright with probability $\geq 1-\mathrm{e}^{- \text {const } \sigma^{4 / 3} / \varepsilon|\log \sigma|}$
\triangleright Transtions occur near instants of minimal barrier height
\triangleright Transition window $\asymp \sigma^{2 / 3}$

Step 1: Deterministic dynamics

\triangleright For $t \leq$-const :
$x_{t}^{\text {det }}$ reaches ε-nbhd of $x_{+}^{\star}(t)$ in time $\asymp \varepsilon|\log \varepsilon| \quad$ (Tihonov '52)
\triangleright For -const $\leq t \leq-\left(a_{0} \vee \varepsilon\right)^{1 / 2}$:
$x_{t}^{\text {det }}-x_{+}^{\star}(t) \asymp \varepsilon /|t|$
\triangleright For $|t| \leq\left(a_{0} \vee \varepsilon\right)^{1 / 2}$:
$x_{t}^{\mathrm{det}}-x_{0}^{\star}(t) \asymp\left(a_{0} \vee \varepsilon\right)^{1 / 2} \geq \sqrt{\varepsilon}$ (effective barrier height)
\triangleright For $\left(a_{0} \vee \varepsilon\right)^{1 / 2} \leq t \leq+$ const :
$x_{t}^{\text {det }}-x_{+}^{\star}(t) \asymp-\varepsilon /|t|$
\triangleright For $t \geq+$ const :

$$
\left|x_{t}^{\mathrm{det}}-x_{+}^{\star}(t)\right| \asymp \varepsilon
$$

Step 2: Below threshold $\sigma \leq \sigma_{\mathrm{C}}=\left(a_{0} \vee \varepsilon\right)^{3 / 4}$

$$
\begin{aligned}
v(t) & \sim \frac{\sigma^{2}}{\text { curvature }} \sim \frac{\sigma^{2}}{\left(|t|^{2} \vee a_{0} \vee \varepsilon\right)^{1 / 2}} \\
\zeta(t) & :=\frac{v(t)}{\sigma^{2}} \\
\mathcal{B}(h) & :=\left\{(x, t):\left|x-x_{t}^{\operatorname{det}}\right|<h \sqrt{\zeta(t)}\right\}
\end{aligned}
$$

$\tau_{\mathcal{B}(h)}=$ first-exit time of $\left(x_{t}, t\right)$ from $\mathcal{B}(h)$

Step 2: Below threshold $\sigma \leq \sigma_{\mathrm{C}}=\left(a_{0} \vee \varepsilon\right)^{3 / 4}$
Theorem ([Berglund \& G '02], [Berglund \& G '05])
$\exists h_{0}, c_{1}, c_{2}, c_{3}>0 \quad \forall h \leq h_{0}$

$$
C(h / \sigma, t, \varepsilon) \mathrm{e}^{-\kappa-h^{2} / 2 \sigma^{2}} \leq \mathbb{P}\left\{\tau_{\mathcal{B}(h)}<t\right\} \leq C(h / \sigma, t, \varepsilon) \mathrm{e}^{-\kappa_{+} h^{2} / 2 \sigma^{2}}
$$

with $\kappa_{+}=1-c_{1} h, \quad \kappa_{-}=1+c_{1} h+c_{1} \mathrm{e}^{-c_{2} t / \varepsilon}$;
$C(h / \sigma, t, \varepsilon)=\sqrt{\frac{2}{\pi}} \frac{|\alpha(t)|}{\varepsilon} \frac{h}{\sigma}\left[1+\mathcal{O}\left(\frac{\sigma}{h}\right)+\frac{t}{\varepsilon} \mathrm{e}^{-c_{3} h^{2} / \sigma^{2}}+\mathrm{e}^{-c_{1} t / \varepsilon}+\varepsilon\right]$

Basic idea

local approximation of y_{t} by y_{t}^{0}; Gaussian process is a rescaled Brownian motion; results on the density of the first-passage time for BM through nonlinear curves

Step 3: Above threshold $\sigma \gg \sigma_{\mathrm{C}}=\left(a_{0} \vee \varepsilon\right)^{3 / 4}$

\triangleright Typical paths stay below $x_{t}^{\mathrm{det}}+h \sqrt{\zeta(t)}$
\triangleright For $t \ll-\sigma^{2 / 3}$:
Transitions unlikely; as below threshold
\triangleright At time $t=-\sigma^{2 / 3}$: Typical spreading satisfies $\sigma^{2 / 3} \gg x_{t}^{\text {det }}-x_{0}^{\star}(t)$;
Transitions become likely
\triangleright Near saddle:
Diffusion dominated dynamics
\triangleright Levels $\delta_{1}>\delta_{0}$ with $f \asymp-1$; δ_{0} in domain of attr. of $x_{-}^{\star}(t)$; Drift dominated dynamics
\triangleright Below δ_{0} : beh. as for small σ

Step 3: Above threshold $\sigma \gg \sigma_{\mathrm{C}}=\left(a_{0} \vee \varepsilon\right)^{3 / 4}$

Idea of the proof

With probability $\geq \delta>0$, in time $\asymp \varepsilon|\log \sigma| / \sigma^{2 / 3}$, the path reaches
$\triangleright x_{t}^{\text {det }}$ if above
\triangleright then the saddle
\triangleright finally the level δ_{1}
In time $\sigma^{2 / 3}$ there are $\frac{\sigma^{4 / 3}}{\varepsilon|\log \sigma|}$ attempts possible
During a subsequent time span of length ε, level δ_{0} is reached (with probability $\geq \delta$)

Finally, the path reaches the new well

Result
$\mathbb{P}\left\{x_{s}>\delta_{0} \quad \forall s \in\left[-\sigma^{2 / 3}, t\right]\right\} \leq \mathrm{e}^{- \text {const } \sigma^{4 / 3} / \varepsilon|\log \sigma| \quad\left(t \geq-\gamma \sigma^{2 / 3}, \gamma \text { small }\right) ~}$

Example II: Hysteresis cycles

Recall the possibly periodic forcing of the freshwater flux in Stommel's box model

Periodically modulated double-well potential, where we now allow for above-threshold forcing amplitude

In this case, it becomes possible for the deterministic particle to switch wells
(provided the barrier vanishes for a sufficiently long time span ($\geq \gamma \varepsilon$))

Example II: Hysteresis cycles

Theorem [Berglund \& G '02]

- Small amplitude, small noise: Transitions unlikely during one cycle (However: Concentration of transition times within each period)
\triangleright Large amplitude, small noise: Hysteresis cycles Area $=$ static area $+\mathcal{O}\left(\varepsilon^{2 / 3}\right)$ (as in deterministic case)
\triangleright Large noise: Stoch. resonance / noise-induced synchronization Area $=$ static area $-\mathcal{O}\left(\sigma^{4 / 3}\right)$ (reduced due to noise)

Example III: Bifurcation delay

Symmetry breaking; try to measure bifurcation diagram

Slowly modulated potential, changing from single- to double-well

\triangleright What happens, if there is noise in the system?
\triangleright In which well will the particle finally settle?
\triangleright When is the decision taken?

Example III: Bifurcation delay

Deterministic system: Macroscopic bifurcation delay

Example III: Bifurcation delay

In the presence of noise:
$\triangleright \quad \sigma \leq \mathrm{e}^{-K / \varepsilon}$: Bifurcation delay remains of order 1
$\triangleright \quad \sigma=\varepsilon^{p / 2}$ for $p>1$: Bifurcation delay becomes microscopic, delay $=\sqrt{(p-1) \varepsilon|\log \varepsilon|}$
$\triangleright \quad \sigma \geq \sqrt{\varepsilon}$: Spreading of paths is of order $\sqrt{\sigma}$ during a window of size σ around the bifurcation point

References for PART VII

\triangleright A. N. Tihonov, Systems of differential equations containing small parameters in the derivatives, Mat. Sbornik N. S. 31 (1952), pp. 575-586
\triangleright N. Berglund, Geometrical theory of dynamical systems, Lecture Notes, http://arxiv.org/abs/math.HO/0111177
\triangleright N. Berglund, Perturbation theory of dynamical systems, Lecture Notes, http://arxiv.org/abs/math.HO/0111178
\triangleright N. Berglund, and B. Gentz, Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach, Springer (2005)
\triangleright N. Berglund, and B. Gentz, Beyond the Fokker-Planck equation: Pathwise control of noisy bistable systems, J. Phys. A 35 (2002), pp. 2057-2091
\triangleright N. Berglund, and B. Gentz, A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential, Ann. Appl. Probab. 12 (2002), pp. 1419-1470
\triangleright N. Berglund, and B. Gentz, The effect of additive noise on dynamical hysteresis, Nonlinearity 15 (2002), pp. 605-632
\triangleright N. Berglund, and B. Gentz, Pathwise description of dynamic pitchfork bifurcations with additive noise, Probab. Theory Related Fields 122 (2002), 341-388

PART VIII

Random perturbations of general slow-fast systems

\triangleright Controlling the random fluctuations of the fast variables
\triangleright Reduced dynamics

General slow-fast systems

Recall the model for the North-Atlantic thermohaline circulation from the first lecture

Fully coupled SDEs on well-separated time scales

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathrm{d} x_{t}=\frac{1}{\varepsilon} f\left(x_{t}, y_{t}\right) \mathrm{d} t+\frac{\sigma}{\sqrt{\varepsilon}} F\left(x_{t}, y_{t}\right) \mathrm{d} W_{t} \quad \text { (fast variables } \in \mathbb{R}^{n} \text {) } \\
\mathrm{d} y_{t}=g\left(x_{t}, y_{t}\right) \mathrm{d} t+\sigma^{\prime} G\left(x_{t}, y_{t}\right) \mathrm{d} W_{t} \quad \text { (slow variables } \in \mathbb{R}^{m} \text {) }
\end{array}\right. \\
& \triangleright\left\{W_{t}\right\}_{t \geq 0 \quad k \text {-dimensional (standard) Brownian motion }} \begin{array}{l}
\triangleright \mathcal{D} \subset \mathbb{R}^{n} \times \mathbb{R}^{m} \\
\triangleright f: \mathcal{D} \rightarrow \mathbb{R}^{n}, \quad g: \mathcal{D} \rightarrow \mathbb{R}^{m} \quad \text { drift coefficients, } \in \mathcal{C}^{2} \\
\triangleright F: \mathcal{D} \rightarrow \mathbb{R}^{n \times k}, \quad G: \mathcal{D} \rightarrow \mathbb{R}^{m \times k} \quad \text { diffusion coefficients, } \in \mathcal{C}^{1}
\end{array}
\end{aligned}
$$

Small parameters
$\triangleright \varepsilon>0 \quad$ adiabatic parameter (no quasistatic approach)
$\triangleright \sigma, \sigma^{\prime} \geq 0$ noise intensities; may depend on ε : $\sigma=\sigma(\varepsilon), \quad \sigma^{\prime}=\sigma^{\prime}(\varepsilon)$ and $\sigma^{\prime}(\varepsilon) / \sigma(\varepsilon)=\varrho(\varepsilon) \leq 1$

Near slow manifolds: Assumptions on the fast variables

Existence of a slow manifold: $\exists \mathcal{D}_{0} \subset \mathbb{R}^{m} \quad \exists x^{\star}: \mathcal{D}_{0} \rightarrow \mathbb{R}^{n}$ s.t $\quad\left(x^{\star}(y), y\right) \in \mathcal{D} \quad$ and $\quad f\left(x^{\star}(y), y\right)=0 \quad$ for $y \in \mathcal{D}_{0}$

Slow manifold is attracting: Eigenvalues of $A^{\star}(y):=\partial_{x} f\left(x^{\star}(y), y\right)$ satisfy $\operatorname{Re} \lambda_{i}(y) \leq-a_{0}<0$, uniformly in \mathcal{D}_{0}

Theorem ([Tihonov '52], [Fenichel '79])
There exists an adiabatic manifold:
$\exists \bar{x}(y, \varepsilon)$ s.t.
$\triangleright \bar{x}(y, \varepsilon)$ is invariant manifold for deterministic dynamics
$\triangleright \bar{x}(y, \varepsilon)$ attracts nearby solutions

$\triangleright \bar{x}(y, 0)=x^{\star}(y)$ and $\bar{x}(y, \varepsilon)=x^{\star}(y)+\mathcal{O}(\varepsilon)$
Consider now stochastic system under these assumptions

Typical neighbourhoods of adiabatic manifolds

\triangleright Consider deterministic process $\left(x_{t}^{\mathrm{det}}=\bar{x}\left(y_{t}^{\mathrm{det}}, \varepsilon\right), y_{t}^{\mathrm{det}}\right)$ on (invariant) adiabatic manifold
\triangleright Dev. $\xi_{t}:=x_{t}-x_{t}^{\text {det }}$ of fast variables from adiabatic manifold \triangleright Linearize SDE for ξ_{t}; resulting process ξ_{t}^{0} is Gaussian

Key observation
$\frac{1}{\sigma^{2}} \operatorname{Cov} \xi_{t}^{0}$ is a particular sol. of the det. slow-fast system
$\left\{\begin{aligned} \varepsilon \dot{X}(t) & =A\left(y_{t}^{\mathrm{det}}\right) X(t)+X(t) A\left(y^{\mathrm{det}}\right)^{\top}+F_{0}\left(y^{\mathrm{det}}\right) F_{0}\left(y^{\mathrm{det}}\right)^{\top} \\ \dot{y}_{t}^{\mathrm{det}} & =g\left(\bar{x}\left(y_{t}^{\mathrm{det}}, \varepsilon\right), y_{t}^{\mathrm{det}}\right)\end{aligned}\right.$
with $A(y)=\partial_{x} f(\bar{x}(y, \varepsilon), y)$ and F_{0} Oth-order approximation to F
\triangleright System admits an adiabatic manifold $\bar{X}(y, \varepsilon)$
Typical neighbourhoods
$\mathcal{B}(h):=\left\{(x, y):\left\langle[x-\bar{x}(y, \varepsilon)], \bar{X}(y, \varepsilon)^{-1}[x-\bar{x}(y, \varepsilon)]\right\rangle\left\langle h^{2}\right\}\right.$

Concentration of sample paths near adiabatic manifolds

Define (random) first-exit times
$\tau_{\mathcal{D}_{0}}:=\inf \left\{s>0: y_{s} \notin \mathcal{D}_{0}\right\}$
$\tau_{\mathcal{B}(h)}:=\inf \left\{s>0:\left(x_{s}, y_{s}\right) \notin \mathcal{B}(h)\right\}$

Theorem [Berglund \& G, J. Differential Equations, 2003]
Assume: $\|\bar{X}(y, \varepsilon)\|,\left\|\bar{X}(y, \varepsilon)^{-1}\right\|$ uniformly bounded in \mathcal{D}_{0}
Then: $\quad \exists \varepsilon_{0}>0 \quad \exists h_{0}>0 \quad \forall \varepsilon \leqslant \varepsilon_{0} \quad \forall h \leqslant h_{0}$

$$
\mathbb{P}\left\{\tau_{\mathcal{B}(h)}<\min \left(t, \tau_{\mathcal{D}_{0}}\right)\right\} \leqslant C_{n, m}(t) \exp \left\{-\frac{h^{2}}{2 \sigma^{2}}[1-\mathcal{O}(h)-\mathcal{O}(\varepsilon)]\right\}
$$

where $C_{n, m}(t)=\left[C^{m}+h^{-n}\right]\left(1+\frac{t}{\varepsilon^{2}}\right)$

Random perturbations: General slow-fast systems

$$
\left\{\begin{array}{l}
\mathrm{d} x_{t}=\frac{1}{\varepsilon} f\left(x_{t}, y_{t}\right) \mathrm{d} t+\frac{\sigma}{\sqrt{\varepsilon}} F\left(x_{t}, y_{t}\right) \mathrm{d} W_{t} \\
\mathrm{~d} y_{t}=g\left(x_{t}, y_{t}\right) \mathrm{d} t+\sigma^{\prime} G\left(x_{t}, y_{t}\right) \mathrm{d} W_{t}
\end{array}\right.
$$

Theorem

\triangleright Previous theorem can be summarized as:
$\mathbb{P}\left\{\left(x_{t}, y_{t}\right)\right.$ leaves $\mathcal{B}(h)$ before time $\left.t\right\} \simeq C_{n, m}(t, \varepsilon) \mathrm{e}^{-\kappa h^{2} / 2 \sigma^{2}}$
with $\kappa=1-\mathcal{O}(h)-\mathcal{O}(\varepsilon)$
(provided y_{t} does not drive the system away from the region where assumptions are satisfied)
\triangleright Reduction to adiabatic manifold $\bar{x}(y, \varepsilon)$:

$$
\mathrm{d} y_{t}^{0}=g\left(\bar{x}\left(y_{t}^{0}, \varepsilon\right), y_{t}^{0}\right) \mathrm{d} t+\sigma^{\prime} G\left(\bar{x}\left(y_{t}^{0}, \varepsilon\right), y_{t}^{0}\right) \mathrm{d} W_{t}
$$

y_{t}^{0} approximates y_{t} to order $\sigma \sqrt{\varepsilon}$ up to Lyapunov time of $\dot{y}^{\mathrm{det}}=g\left(\bar{x}\left(y^{\mathrm{det}}, \varepsilon\right) y^{\mathrm{det}}\right)$

Near slow manifolds: Longer time scales

\triangleright Behaviour of g or behaviour of y_{t} and $y_{t}^{\text {det }}$ becomes important

Example:
$y_{t}^{\text {det }}$ following a
stable periodic orbit

$\triangleright y_{t} \sim y_{t}^{\text {det }}$ for $t \leqslant \frac{\text { const }}{\sigma \vee \varrho^{2} \vee \varepsilon}$
linear coupling $\rightarrow \varepsilon$
nonlinear coupling $\rightarrow \sigma$
noise acting on slow variable $\rightarrow \varrho$
\triangleright On longer time scales: Markov property allows for restarting y_{t} stays exp. long in a neighbourhood of the periodic orbit (with probability close to 1)

Bifurcations

Question

What happens if $\left(x_{t}, y_{t}\right)$ approaches a bifurcation point $(\widehat{x}, \widehat{y})$ for the deterministic dynamics?

Ex.: Saddle-node bifurcation

General approach
\triangleright Apply centre-manifold theorem
\triangleright Concentration results for deviation from centre manifold ([Berglund \& G, 2003])
\triangleright Consider reduced dynamics on centre manifold
\triangleright Concentration results for deviation of reduced system from original variables [Berglund \& G, 2003]

References for PART VIII

\triangleright A. N. Tihonov, Systems of differential equations containing small parameters in the derivatives, Mat. Sbornik N. S. 31 (1952), pp. 575-586
\triangleright N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), pp. 53-98
\triangleright N. Berglund, Geometrical theory of dynamical systems, Lecture Notes, http://arxiv.org/abs/math.HO/0111177
\triangleright N. Berglund, Perturbation theory of dynamical systems, Lecture Notes, http://arxiv.org/abs/math.HO/0111178
\triangleright N. Berglund, and B. Gentz, Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach, Springer (2005)
\triangleright N. Berglund, and B. Gentz, Geometric singular perturbation theory for stochastic differential equations, J. Differential Equations 191 (2003), pp. 154

