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Metastability: A common phenomenon

> Observed in the dynamical behaviour of complex systems
> Related to first-order phase transitions in nonlinear dynamics

Characterization of metastability
> Existence of quasi-invariant subspaces €;, i € /
> Multiple timescales

> A short timescale on which local equilibrium is reached within the Q;
> A longer metastable timescale governing the transitions between the Q;

Important feature

> High free-energy barriers to overcome

Consequence

> Generally very slow approach to the (global) equilibrium distribution
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Example: Liquid—cristal transition through nucleation

Change parameters quickly across the line of a first-order phase transition:

> System remains in metastable equilibrium for long time before undergoing a
rapid transition to the new equilibrium state due to (random) perturbations

Example: Supercooled liquid
217.7
> Pure water freezes at about
—44° F rather than at its = - Nermal melting
. ) point
freezing temperature of : S .
32°F if no crystal nuclei are & | g <L A boiling point
present
0.006 .

0 100 3744

Temperature ('C) m—
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Example: Liquid—cristal transition through nucleation

Change parameters quickly across the line of a first-order phase transition:

> System remains in metastable equilibrium for long time before undergoing a
rapid transition to the new equilibrium state due to (random) perturbations

Example: Supercooled liquid
> Pure water freezes at about
—44° F rather than at its
freezing temperature of
32° F if no crystal nuclei are
present
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Reversible diffusions

Gradient dynamics (ODE)
= TV
Random perturbation by Gaussian white noise (SDE)

dx(w) = —V V(x5 (w)) dt + V2 dB.(w)
with

> V:RY — R: confining potential, growth condition at infinity
> {B¢(w)}¢>0: d-dimensional Brownian motion

Invariant measure or equilibrium distribution (for gradient systems)

1
pe(d) = SO ax i zgz/w e VI/e gy

€

[le concentrates in the minima of V
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Metastability in reversible diffusions: Timescales

Let V double-well potential as before, start in x5 = x* = left-hand well

How long does it take until x; is well described by its invariant distribution?

v

For £ small, paths will stay in the left-hand well for a long time

v

x; first approaches a Gaussian distribution, centered in x*,

1 1
T — = d=1
relax V"(x*)  curvature at the bottom of the well (=1

v

With overwhelming probability, paths will remain inside left-hand well, for all
times significantly shorter than Kramers' time

Tiramers = €7/, where H = V(z*) — V(x*) = barrier height

v

Only for t > Tkramers, the distribution of x; approaches pg
The dynamics is thus very different on the different timescales
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Transition times between potential wells

First-hitting time of a small ball Bs(x}) around minimum x}

T+ =T (w) = inf{t > 0: X (w) € Bs(x})}

Eyring—Kramers Law [Eyring 35, Kramers 40]

2n V() V(< )]/

pd=1 Ex714 > AR
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Transition times between potential wells

First-hitting time of a small ball Bs(x}) around minimum x}

T+ =T (w) = inf{t > 0: X (w) € Bs(x})}

Eyring—Kramers Law [Eyring 35, Kramers 40]

2n V() V(<))

pd=1 Ex714 > AR

o |det V2V (z*)| V-Vt e

d>2 FEyery~
Ca= ST\ detvRv(xr)

where \;(z*) is the unique negative eigenvalue of V2V at saddle z*
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Proving Kramers Law |

> Exponential asymptotics and optimal transition paths via large deviations
approach [Wentzell & Freidlin 69-72]

> Probability of observing sample paths being close to a function
¢ : [0, T] — R? behaves like ~ exp{—2/(p)/c}
> Large-deviation rate function

| _ 3 Ies = (=Y V(@) s for o € Ha
[o.T](@)* .
+00 otherwise

> Domain D with unique asymptotically stable equilibrium point x*
Quasipotential with respect to x* = Cost to reach z against the flow

V(xt,2) = inf inf{lo,q(#): @ € C(I0, 8], D), go=x", e = 2}

> Gradient case (reversible diffusion)
> Cost for leaving potential well: V = ménD V(xX,z) =2[V(z¥) — V(xX)]
ze

> Attained for paths going against the flow: ¢ = +V V/(p¢)
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Proving Kramers Law I

v

Exponential asymptotics depends only on barrier height

IimoelogEX:T+ =V(z¥) - V(x*)

Only 1-saddles are relevant for transitions between wells

v

Low-lying spectrum of generator of the diffusion (analytic approach)
[Helffer & Sjéstrand 85, Miclo 95, Mathieu 95, Kolokoltsov 96, .. .]

Potential theoretic approach [Bovier, Eckhoff, Gayrard & Klein 04]

v

2 |det V2V/(z*)] V(")
[A1(z%)] || det V2V/(x*)
Full asymptotic expansion of prefactor [Helffer, Klein & Nier 04]
Asymptotic distribution of 7, [Day 83, Bovier, Gayrard & Klein 05]

Eye 74 = “VODN/E 1+ O(1?]loge|)]

v

v

IimO]P’X1 {ry >t Eprit=et
£E—
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Non-quadratic saddles

What happens if det V2V (z*) =07

det V2V(z*) =0 = At least one vanishing eigenvalue at saddle z*

= Saddle has at least one non-quadratic direction
= Kramers Law not applicable

Why do we care about this
non-generic situation?

Parameter-dependent systems
may undergo bifurcations

Quartic unstable direction Quartic stable direction
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Example: Two harmonically coupled particles

V. (x1, %) = UGa) + Ulx) + 3(x1 — x)?

Change of variable: Rotation by 7 /4 yields

Ux)=5 -2

~ 1 1-2y 1

Vilyi,ye) = =598 = =5 —vi + g (v +6y1y3 +3)
Note: det V2 VV(O, 0) =1—2v = Pitchfork bifurcation at v = 1/2

v> 1 3>v>1% I>v>0
O O
@, O
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Further examples: More particles

N particles with nearest-neighbour coupling : i € A = Z/NZ

V() = 3 UG + 5 D (i1 = xi)?

ieN ien

Results [Berglund, G. & Fernandez 07]
> Bifurcation diagram
> Optimal transition paths

> Exponential asymptotics of transition times
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Weak coupling |

Without coupling v = 0:
> Stationary points of global potential: S = {—1,0,1}"
> Global minima: Sy = {—1,1}"

Theorem [Berglund, G. & Fernandez 07]
VYN 3~v*(N) > 0 s.t.

> For k € Ny: k-saddles x*() € Sk(~) depend continuously on v € [0,7*(N))
1 1
—< i * <yr == — =0.

> 4 < jnf vt (N) <97 (3) 3 3+2V3—v/3) =0.2701

For0 <y« 1t

V5 (x*(7)) = Vo(x*(0)) + % > (x4a(0) = 7 (0))? + O(7%)

ien

Dynamics minimizes # of interfaces (cf. Ising spin system with Glauber dynamics)
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Weak coupling Il

Dynamics like in Ising spin system with Glauber dynamics:

I 1
o
P+
I o+
P+
1+ +o
P+t
IO+ ++
o+t
| O+ 4+ + + |
I+ 4+ +
I +++++0
[
| S+ +++++
I+ 4+ +++ + +

S+ ++++++
g

TN
+ +
[SIEN]I

= =2

T AVWVR

Potential seen along an optimal transition path:

time

Differences in potential height determine transition times
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Weak coupling Il

Dynamics like in Ising spin system with Glauber dynamics

Partial representation of the hypercube
(showing only edges contained in optimal transition paths)
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Strong coupling: Synchronisation

Forall v > 0: /* =+(1,1,...,1) € Sgand O = (0,0,...,0) € S
1 N?
= N == =
7 =m(N) 1—cos(2n/N)  2rm 2[ +ON)]

Theorem [Berglund, G. & Fernandez 07]
> Stationary points S={/",/T,0} & v>~

> 1-saddles S ={0} Sy >
Proof (using Lyapunov function W(x) = 3 Z —xi11)> = Ix — Rx||%)
I—y /2 .. /2
x=Ax—F(x), A=|"? | R =3, Rx=(x,..
D ~/2
V)2 e )2 1y

Transition times

. 7XN7X1)

W) = (x = Rx, F(x — Rx)) < (x — R, A(x — Rx)) < (1= 2)||x — Rx|?
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Intermediate coupling

Reduction via symmetry groups: Global potential V/, is invariant under
> R(x1,. .., xn) = (X2, .., Xy, X1)
> S(X1y .y XN) = (XNy XN—1y .-+, X1)
> C(x1y .y xn) = —(X1, .-+, Xn)

V., invariant under group G = Dy X Z, generated by R, S, C

. 0 1/3 1/2 5
Small lattices: N =2 - : ;
x2]  (1,1) (@) It
x1] (0,0 ©9___ -0
x2] (1,-1)
[x4] (1,0
I+
0
s
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Small lattices: N = 3

0 7 2/3 5
(x2]  (1,1,1) (@, 2,2) *
[x1] 000 0
[x6]
[<6]
[x6]
[x6]
I+
o)
-
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Small lattices: N = 4

(x2] (1,1,1,1

(x1] (0,0,0,0
[x2] (1,-1,1,—1
[x4] (1,0,1,0
(x8  (1,0,1,—1
(x8]  (1,-1,0,0
(x8] (0,1,0,0

(x4 (1,0,—1,0

(x4 (1,1,-1,-1
[x8] (1,1,0,0
[x16] (1,1,0,—1
(8  (1,1,1,—1

x8  (1,1,1,0
I+ I+ I+ I+ I+

I~ I~ I~ I~
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Degenerate saddles

Recall: Only saddles with one unstable direction are relevant for transitions

Let z be a stationary point: VV(z) =0
> Quadratic case det V2V/(z) # 0:
z saddle < V2V/(z) has exactly one e.v. < 0
> Non-quadratic case det V2V/(z) = 0:

at least one e.v. <0
z saddle = V?V/(z) has -
at most one e.v. < 0

Most generic cases: One degenerate direction, V?V/(z) having eigenvalues

PN <0 =N < A3 < A\ << Ny (one stable direction non-quadratic)
PAM=0< < A3< - < Ay (the unstable direction non-quadratic)
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Degenerate saddles: An example

Assume z* = 0 and eigenvalues \; < 0 = Xy < A3 < --- < \y of V2V/(0)

d
1 1
V(x) = *5‘)\1|X12 T3 E )\ijz + E Vijexixixie + ...
Jj=3

= 1<i<j<k<d

Normal form: There exists a polynomial g(y) = O(||y||?) s.t.

d
1 1
Viy+g(y)) = —§|/\1|y12 + Gy3 + Gys + 5 Z )\jyjz + higher-order terms

j=3
Sy CGs#0o0r G4 <0 :z=0is not a saddle
3 e C3=0and C; > 0: z=0is a saddle

Ca explicitly known G=0G=0 : higher-order terms relevant

If z# =0 is a saddle with (3 =0 and C; > 0, then

d
1 1
Vv +gly) = — §|)\1|y12 + Goys + 5 Z )\jyj2 + higher-order terms
=3
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Main result
> Assume x* is a quadratic local minimum of V
(non-quadratic minima can be dealt with)
> Assume x is another local minimum of V/

> Assume z* = 0 is the relevant saddle for passage from x* to x7}

v

Normal form near saddle

V(y) = —u1(y1) + ua(y2) Z/\J}/J

> Assume growth conditions on wuq, u

Theorem [Berglund & G. (to appear in MPRF)]

u(y2)/e 4
E (2me)d/2 e~ VIx2)/e 2 ﬁ |2me
x* T4 = -
\/det V2V / e—tiln)/e dy; Jj=3 )‘J

x [1+ O((elloge|)™)

where o > 0 depends on the growth conditions and is explicitly known
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Corollaries:
Quadratic saddles, quartic saddles, and worse than that ...

d
1 1
> Quadratic saddle: V(y) = f§|)\1|y12 + 5 Z)\J-yf +
j=2

- V(") -V e | 12
e \/|/\1|detV2V e [1+ O((cllog <])?)]

d
1 1
> Quartic stable direction: V(y) = —§|)\1\y12 + Goyd + 5 Z/\J-yj2 +
j=3

26414 | (2733, . Mg

Vi)~V )/ s
r(1/4) \/ hldet v2vV(x*) < [1+ O((elloge])*)]

Exi T+ =
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Corollaries:
Quadratic saddles, quartic saddles, and worse than that ...

d
1 1
> Quadratic saddle: V(y) = —§|)\1|y12 +5 SNy
j=2

Y o
EX* =2 [V(Z ) V(X—)]/E 1 I 1/2
W\/|/\1|detV2V(xi) ‘ [1+ O((clogel)*/2)]

d
1
> Quartic unstable direction: V/(y) = —Cyy; + 5 Z )\J-yf +...
j=2

UL VL) Iy (€25 YD VRV S

_ —V(x*)]/e 1 | 1/4
— 2C;‘L/451/4 det VQ V(Xi) [ + O((E| OgE') )]
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Corollaries: Worse than quartic . ..
1 d
> Quartic unstable direction: V/(y) = —Cyy; + 5 Z)xjyf +...
j=2

I'(1/4) 27‘1’)\2...)\(/
20/ 4c1/4 || det V2V(x2)

By = elVED=VODNE1 4 O((ellog e])/*)]

d
1
> Degenerate unstable direction: V(y) = —C2Py12p + 5 Z)\jyf +...
j=2

Ex: e = r(1/2p) 2Ty ... A e[V(z*)_V(xj)]/e[l + O(( N )l/2p)]

o pC21p/2p€1/2(1—1/p) det V2V/(x*)
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Corollaries: Pitchfork bifurcation

d
: : 1 1 1
Pitchfork bif.: V(y) = —5\)\1|y12 + 5)\2)/22 + Coys + 5 Z)\jyf +

> For A\, > 0 (possibly small wrt. ¢):

Jj=3

(A2 +v2eC)As... Ay V() =V e
Ey 17y =27 5 1+
- |)\1‘ det V V( _) \U+()\2/\/ 2€C4)

where
olta) , ?
Vi(a) = [ e K ()

Ki/s = modified Bessel fct. of 2nd kind

> For \» < 0: Similar
(involving eigenvalues at new saddles and /11 /4)

Metastable Lifetimes in Coupled Random Dynamical Systems SAMSI
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0 T T T T T

A2 — prefactor

e =0.5, € =0.1, € =0.01
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Outlook

> Multiple zero eigenvalues (bifurcations of higher
codimension):
Obvious extension under certain assumptions, in progress

> Expand to SPDEs via Fourier variables:
In progress, first results published [Berglund & G. 09]

> Develop theory directly for SPDEs
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