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Metastability: A common phenomenon

. Observed in the dynamical behaviour of complex systems

. Related to first-order phase transitions in nonlinear dynamics

Characterization of metastability

. Existence of quasi-invariant subspaces Ωi , i ∈ I

. Multiple timescales
. A short timescale on which local equilibrium is reached within the Ωi

. A longer metastable timescale governing the transitions between the Ωi

Important feature

. High free-energy barriers to overcome

Consequence

. Generally very slow approach to the (global) equilibrium distribution
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Example: Liquid–cristal transition through nucleation

Change parameters quickly across the line of a first-order phase transition:

. System remains in metastable equilibrium for long time before undergoing a
rapid transition to the new equilibrium state due to (random) perturbations

Example: Supercooled liquid

. Pure water freezes at about
−44◦ F rather than at its
freezing temperature of
32◦ F if no crystal nuclei are
present

Metastable Lifetimes in Coupled Random Dynamical Systems SAMSI 31 August 2009 2 / 25



Metastability Reversible diffusions Timescales Why non-quadratic saddles? Transition times

Example: Liquid–cristal transition through nucleation

Change parameters quickly across the line of a first-order phase transition:

. System remains in metastable equilibrium for long time before undergoing a
rapid transition to the new equilibrium state due to (random) perturbations

Example: Supercooled liquid

. Pure water freezes at about
−44◦ F rather than at its
freezing temperature of
32◦ F if no crystal nuclei are
present

Supercooled water
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Reversible diffusions

Gradient dynamics (ODE)

ẋdet
t = −∇V (xdet

t )

Random perturbation by Gaussian white noise (SDE)

dxεt (ω) = −∇V (xεt (ω)) dt +
√

2ε dBt(ω)

with

x?−

z?

x?+

. V : Rd → R : confining potential, growth condition at infinity

. {Bt(ω)}t≥0: d-dimensional Brownian motion

Invariant measure or equilibrium distribution (for gradient systems)

µε(dx) =
1

Zε
e−V (x)/ε dx with Zε =

∫
Rd

e−V (x)/ε dx

µε concentrates in the minima of V
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Metastability in reversible diffusions: Timescales

Let V double-well potential as before, start in xε0 = x?− = left-hand well

How long does it take until xεt is well described by its invariant distribution?

. For ε small, paths will stay in the left-hand well for a long time

. xεt first approaches a Gaussian distribution, centered in x?−,

Trelax =
1

V ′′(x?−)
=

1

curvature at the bottom of the well
(d=1)

. With overwhelming probability, paths will remain inside left-hand well, for all
times significantly shorter than Kramers’ time

TKramers = eH/ε , where H = V (z?)− V (x?−) = barrier height

. Only for t � TKramers, the distribution of xεt approaches p0

The dynamics is thus very different on the different timescales
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Transition times between potential wells

First-hitting time of a small ball Bδ(x?+) around minimum x?+

τ+ = τεx?+ (ω) = inf{t ≥ 0: xεt (ω) ∈ Bδ(x?+)}

Eyring–Kramers Law [Eyring 35, Kramers 40]

. d = 1: Ex?−
τ+ '

2π√
V ′′(x?−)|V ′′(z?)|

e[V (z?)−V (x?−)]/ε

. d ≥ 2: Ex?−
τ+ '

2π

|λ1(z?)|

√
|det∇2V (z?)|
det∇2V (x?−)

e[V (z?)−V (x?−)]/ε

where λ1(z?) is the unique negative eigenvalue of ∇2V at saddle z?
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Proving Kramers Law I

. Exponential asymptotics and optimal transition paths via large deviations
approach [Wentzell & Freidlin 69–72]

. Probability of observing sample paths being close to a function
ϕ : [0,T ]→ Rd behaves like ∼ exp{−2I (ϕ)/ε}

. Large-deviation rate function

I[0,T ](ϕ) =

(
1
2

R T

0
‖ϕ̇s − (−∇V (ϕs))‖2 ds for ϕ ∈ H1

+∞ otherwise

. Domain D with unique asymptotically stable equilibrium point x?
−

Quasipotential with respect to x?
− = Cost to reach z against the flow

V (x?
−, z) = inf

t>0
inf{I[0,t](ϕ) : ϕ ∈ C([0, t],D), ϕ0 = x?

−, ϕt = z}

. Gradient case (reversible diffusion)
. Cost for leaving potential well: V := min

z∈∂D
V (x?
−, z) = 2[V (z?)− V (x?

−)]

. Attained for paths going against the flow: ϕ̇t = +∇V (ϕt)
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Proving Kramers Law II

. Exponential asymptotics depends only on barrier height

lim
ε→0

ε log Ex?−
τ+ = V (z?)− V (x?−)

Only 1-saddles are relevant for transitions between wells

. Low-lying spectrum of generator of the diffusion (analytic approach)

[Helffer & Sjöstrand 85, Miclo 95, Mathieu 95, Kolokoltsov 96, . . . ]

. Potential theoretic approach [Bovier, Eckhoff, Gayrard & Klein 04]

Ex?−
τ+ =

2π

|λ1(z?)|

√
|det∇2V (z?)|
det∇2V (x?−)

e[V (z?)−V (x?−)]/ε [1 +O
(
ε1/2|log ε|

)
]

. Full asymptotic expansion of prefactor [Helffer, Klein & Nier 04]

. Asymptotic distribution of τ+ [Day 83, Bovier, Gayrard & Klein 05]

lim
ε→0

Px?−
{τ+ > t · Ex?−

τ+} = e−t

Metastable Lifetimes in Coupled Random Dynamical Systems SAMSI 31 August 2009 7 / 25



Metastability Reversible diffusions Timescales Why non-quadratic saddles? Transition times

Non-quadratic saddles

What happens if det∇2V (z?) = 0 ?

det∇2V (z?) = 0 ⇒ At least one vanishing eigenvalue at saddle z?

⇒ Saddle has at least one non-quadratic direction
⇒ Kramers Law not applicable

Quartic unstable direction Quartic stable direction

Why do we care about this
non-generic situation?

Parameter-dependent systems
may undergo bifurcations
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Example: Two harmonically coupled particles

Vγ(x1, x2) = U(x1) + U(x2) + γ
2 (x1 − x2)2

U(x) = x4

4
− x2

2

Change of variable: Rotation by π/4 yields

V̂γ(y1, y2) = −1

2
y 2

1 −
1− 2γ

2
y 2

2 +
1

8

(
y 4

1 + 6y 2
1 y 2

2 + y 4
2

)
Note: det∇2V̂γ(0, 0) = 1− 2γ ⇒ Pitchfork bifurcation at γ = 1/2

γ > 1
2

1
2
> γ > 1

3
1
3
> γ > 0
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Further examples: More particles

N particles with nearest-neighbour coupling : i ∈ Λ = Z/NZ

Vγ(x) =
∑
i∈Λ

U(xi ) +
γ

4

∑
i∈Λ

(xi+1 − xi )
2

Results [Berglund, G. & Fernandez 07]

. Bifurcation diagram

. Optimal transition paths

. Exponential asymptotics of transition times
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Weak coupling I

Without coupling γ = 0:

. Stationary points of global potential: S = {−1, 0, 1}N

. Global minima: S0 = {−1, 1}N

Theorem [Berglund, G. & Fernandez 07]

∀N ∃ γ?(N) > 0 s.t.

. For k ∈ N0: k-saddles x?(γ) ∈ Sk(γ) depend continuously on γ ∈ [0, γ?(N))

.
1

4
6 inf

N>2
γ?(N) 6 γ?(3) =

1

3

(√
3 + 2

√
3−
√

3
)

= 0.2701 . . .

For 0 < γ � 1:

Vγ(x?(γ)) = V0(x?(0)) +
γ

4

∑
i∈Λ

(x?i+1(0)− x?i (0))2 +O(γ2)

Dynamics minimizes # of interfaces (cf. Ising spin system with Glauber dynamics)
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Weak coupling II

Dynamics like in Ising spin system with Glauber dynamics:
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Figure 1

1

Potential seen along an optimal transition path:

Differences in potential height determine transition times
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Weak coupling III

Dynamics like in Ising spin system with Glauber dynamics

(1,1,1,...,1)

(−1,−1,−1,...,−1)

(1,1,1,...,−1)

(−1,1,1,...,−1)

Partial representation of the hypercube

(showing only edges contained in optimal transition paths)
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Strong coupling: Synchronisation

For all γ ≥ 0: I± = ±(1, 1, . . . , 1) ∈ S0 and O = (0, 0, . . . , 0) ∈ S

γ1 = γ1(N) :=
1

1− cos(2π/N)
=

N2

2π2

[
1 +O(N−2)

]
Theorem [Berglund, G. & Fernandez 07]

. Stationary points S = {I−, I +,O} ⇔ γ > γ1

. 1-saddles S1 = {O} ⇔ γ > γ1

(a) (b)I+

I−

I+

O

I−

Figure 1

1

Proof (using Lyapunov function W (x) = 1
2

X
(xi − xi+1)2 = 1

2
‖x − Rx‖2)

ẋ = Ax − F (x), A =


1−γ γ/2 ... γ/2

γ/2
. . .

...
...

. . . γ/2
γ/2 ... γ/2 1−γ

, Fi (x) = x3
i , Rx = (x2, . . . , xN , x1)

dW (x)
dt = 〈x − Rx , d

dt (x − Rx)〉 6 〈x − Rx ,A(x − Rx)〉 6 (1− γ
γ1

)‖x − Rx‖2
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Skip Intermediate coupling

Reduction via symmetry groups: Global potential Vγ is invariant under

. R(x1, . . . , xN) = (x2, . . . , xN , x1)

. S(x1, . . . , xN) = (xN , xN−1, . . . , x1)

. C (x1, . . . , xN) = −(x1, . . . , xN)

Vγ invariant under group G = DN × Z 2 generated by R,S ,C

Small lattices: N = 2
0 1/3 1/2 γ

(1, 1)

(0, 0)

(1,−1)

(1, 0)

[×2]

[×1]

[×2]

[×4]

(x, x)

(0, 0)

(x,−x)

(x, y)

A

Aa

I±

O

I+

Aa

A

Aa
I−

I+

A

I−

I+

O

I−

Figure 1

1
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Small lattices: N = 3

0 γ! 2/3 γ

(1, 1, 1)

(0, 0, 0)

(0, 0, 1)

(1,−1, 0)

(1, 1,−1)

(1, 1, 0)

[×2]

[×1]

[×6]

[×6]

[×6]

[×6]

(x, x, x)

(0, 0, 0)

(x, x, y)

(x,−x, 0)

(x, x, y)

(x, x, y)

I±

O

B

A

∂a

∂b

I+
∂b

A
∂a

I−

I+

A

I−

I+

O

I−

Figure 1

1
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Small lattices: N = 4

0 γ!

γ̃1 γ̃2

1
3

2
5

1
2

2
3 1 γ

(1, 1, 1, 1)

(0, 0, 0, 0)

(1,−1, 1,−1)

(1, 0, 1, 0)

(1, 0, 1,−1)

(1,−1, 0, 0)

(0, 1, 0, 0)

(1, 0,−1, 0)

(1, 1,−1,−1)

(1, 1, 0, 0)

(1, 1, 0,−1)

(1, 1, 1,−1)

(1, 1, 1, 0)

[×2]

[×1]

[×2]

[×4]

[×8]

[×8]

[×8]

[×4]

[×4]

[×8]

[×16]

[×8]

[×8]

(x, x, x, x)

(0, 0, 0, 0)

(x,−x, x,−x)

(x, y, x, y)

(x, y, x, z)

(x,−x, y,−y)

(x, y, x, z)

(x, 0,−x, 0)

(x, x,−x,−x)

(x, x, y, y)

(x, y, z, t)

(x, y, x, z)

(x, y, x, z)

I±

O

A(2)

B

A

Aa

Aaα

∂a

∂b
I+

A
∂a

∂b

Aaα

I−

I+

Aaα

A

I−

I+

Aa

A

I−

I+

A

I−

I+

O

I−

Figure 1

1
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Degenerate saddles

Recall: Only saddles with one unstable direction are relevant for transitions

Let z be a stationary point: ∇V (z) = 0

. Quadratic case det∇2V (z) 6= 0:

z saddle ⇔ ∇2V (z) has exactly one e.v. < 0

. Non-quadratic case det∇2V (z) = 0:

z saddle ⇒ ∇2V (z) has

{
at least one e.v. ≤ 0

at most one e.v. < 0

Most generic cases: One degenerate direction, ∇2V (z) having eigenvalues

. λ1 < 0 = λ2 < λ3 ≤ λ4 ≤ · · · ≤ λd (one stable direction non-quadratic)

. λ1 = 0 < λ2 ≤ λ3 ≤ · · · ≤ λd (the unstable direction non-quadratic)
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Degenerate saddles: An example

Assume z? = 0 and eigenvalues λ1 < 0 = λ2 < λ3 ≤ · · · ≤ λd of ∇2V (0)

V (x) = −1

2
|λ1|x2

1 +
1

2

d∑
j=3

λjx
2
j +

∑
1≤i≤j≤k≤d

Vijkxixjxk + . . .

Normal form: There exists a polynomial g(y) = O(‖y‖2) s.t.

V (y + g(y)) = −1

2
|λ1|y 2

1 + C3y 3
2 + C4y 4

2 +
1

2

d∑
j=3

λjy
2
j + higher-order terms

C3 = V222

C4 explicitly known
⇒

 C3 6= 0 or C4 < 0 : z = 0 is not a saddle
C3 = 0 and C4 > 0: z = 0 is a saddle
C3 = C4 = 0 : higher-order terms relevant

If z? = 0 is a saddle with C3 = 0 and C4 > 0, then

V (y + g(y)) = − 1

2
|λ1|y 2

1 + C4y 4
2 +

1

2

d∑
j=3

λjy
2
j + higher-order terms
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Main result
. Assume x?− is a quadratic local minimum of V

(non-quadratic minima can be dealt with)

. Assume x?+ is another local minimum of V

. Assume z? = 0 is the relevant saddle for passage from x?− to x?+

. Normal form near saddle

V (y) = −u1(y1) + u2(y2) +
1

2

d∑
j=3

λjy
2
j + . . .

. Assume growth conditions on u1, u2

Theorem [Berglund & G. (to appear in MPRF)]

Ex?−
τ+ =

(2πε)d/2 e−V (x?−)/ε√
det∇2V (x?−)

/
ε

∫ ∞
−∞

e−u2(y2)/ε dy2∫ ∞
−∞

e−u1(y1)/ε dy1

d∏
j=3

√
2πε

λj

×
[
1 +O((ε|log ε|)α)

]
where α > 0 depends on the growth conditions and is explicitly known
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Corollaries:
Quadratic saddles, quartic saddles, and worse than that . . .

. Quadratic saddle: V (y) = −1

2
|λ1|y 2

1 +
1

2

d∑
j=2

λjy
2
j + . . .

Ex?−
τ+ = 2π

√
λ2 . . . λd

|λ1| det∇2V (x?−)
e[V (z?)−V (x?−)]/ε[1 +O((ε|log ε|)1/2)]

. Quartic stable direction: V (y) = −1

2
|λ1|y 2

1 + C4y 4
2 +

1

2

d∑
j=3

λjy
2
j + . . .

Ex?−
τ+ =

2C
1/4
4 ε1/4

Γ(1/4)

√
(2π)3λ3 . . . λd

|λ1| det∇2V (x?−)
e[V (z?)−V (x?−)]/ε[1 +O((ε|log ε|)1/4)]
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Corollaries:
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2
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1

2
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2
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√
λ2 . . . λd
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. Quartic unstable direction: V (y) = −C4y 4
1 +

1

2

d∑
j=2

λjy
2
j + . . .

Ex?−
τ+ =

Γ(1/4)

2C
1/4
4 ε1/4

√
(2π)1λ2 . . . λd

det∇2V (x?−)
e[V (z?)−V (x?−)]/ε[1 +O((ε|log ε|)1/4)]
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Corollaries: Worse than quartic . . .

. Quartic unstable direction: V (y) = −C4y 4
1 +

1

2

d∑
j=2

λjy
2
j + . . .

Ex?−
τ+ =

Γ(1/4)

2C
1/4
4 ε1/4

√
2πλ2 . . . λd

det∇2V (x?−)
e[V (z?)−V (x?−)]/ε[1 +O((ε|log ε|)1/4)]

. Degenerate unstable direction: V (y) = −C2py 2p
1 +

1

2

d∑
j=2

λjy
2
j + . . .

Ex?−
τ+ =

Γ(1/2p)

pC
1/2p
2p ε1/2(1−1/p)

√
2πλ2 . . . λd

det∇2V (x?−)
e[V (z?)−V (x?−)]/ε[1 +O((. . . )1/2p)]
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Corollaries: Pitchfork bifurcation

Pitchfork bif.: V (y) = −1

2
|λ1|y 2

1 +
1

2
λ2y 2

2 + C4y 4
2 +

1

2

d∑
j=3

λjy
2
j + . . .

. For λ2 > 0 (possibly small wrt. ε):

Ex?−
τ+ = 2π

√
(λ2 +

√
2εC4)λ3 . . . λd

|λ1| det∇2V (x?−)

e[V (z?)−V (x?−)]/ε

Ψ+(λ2/
√

2εC4)
[1 + R(ε)]

where

Ψ+(α) =

√
α(1 + α)

8π
eα

2/16 K1/4

(α2

16

)
lim
α→∞

Ψ+(α) = 1

K1/4 = modified Bessel fct. of 2nd kind

. For λ2 < 0: Similar
(involving eigenvalues at new saddles and I±1/4)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

λ2 7→ prefactor

ε = 0.5, ε = 0.1, ε = 0.01
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Outlook

. Multiple zero eigenvalues (bifurcations of higher
codimension):
Obvious extension under certain assumptions, in progress

. Expand to SPDEs via Fourier variables:
In progress, first results published [Berglund & G. 09]

. Develop theory directly for SPDEs
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