The Effect of Gaussian White Noise on Dynamical Systems

Part II: Reduced Dynamics

Barbara Gentz University of Bielefeld, Germany

Department of Mathematical Sciences, Seoul National University 17 March 2014

Barbara Gentz

gentz@math.uni-bielefeld.de

http://www.math.uni-bielefeld.de/~gentz

..........

-

.

.

i

.

.

.

.

.

 Deterministic averagin

Random fast motion 7

The end

Seminar BINGO!

To play, simply print out this bingo sheet and attend a departmental seminar.

Mark over each square that occurs throughout the course of the lecture.

The first one to form a straight line (or all four corners) must yell out BINGO!! to win!

	INAR			
B		Ν	G	Ο
Speaker bashes previous work	Repeated use of "um…"	Speaker sucks up to host professor	Host Professor falls asleep	Speaker wastes 5 minutes explaining outline
Laptop nalfunction	Work ties in to Cancer/HIV or War on Terror	"et al."	You're the only one in your lab that bothered to show up	Blatant typo
Entire slide filled with equations	"The data <i>clearly</i> shows"	FREE Speaker runs out of time	Use of Powerpoint template with blue background	References Advisor (past or present)
There's a Brad Student wearing ame clothes as yesterday	FOSI-GOC	"That's an interesting question"	"Beyond the scope of this work"	Master's student bobs head fighting sleep
Speaker forgets to thank collaborators	Cell phone goes off	You've no idea what's going on	"Future work will"	Results conveniently show improvement
ORGE CHAM @	2007			·

WWW. PHDCOMICS. COM

Reduced Dynamics

Barbara Gentz

SNU, 17 March 2014

1 / 31

General slow-fast systems

General slow-fast systems

Fully coupled SDEs on well-separated time scales

$$\begin{cases} dx_t = \frac{1}{\varepsilon} f(x_t, y_t) dt + \frac{\sigma}{\sqrt{\varepsilon}} F(x_t, y_t) dW_t & (\text{fast variables} \in \mathbb{R}^n) \\ dy_t = g(x_t, y_t) dt + \sigma' G(x_t, y_t) dW_t & (\text{slow variables} \in \mathbb{R}^m) \end{cases}$$

$$\begin{array}{l} & \{W_t\}_{t\geq 0} \ k\text{-dimensional (standard) Brownian motion} \\ & \mathcal{D} \subset \mathbb{R}^n \times \mathbb{R}^m \\ & \triangleright \ f: \mathcal{D} \to \mathbb{R}^n, \ g: \mathcal{D} \to \mathbb{R}^m \ \text{drift coefficients, } \in \mathcal{C}^2 \end{array}$$

 $\triangleright \ F: \mathcal{D} \to \mathbb{R}^{n \times k}, \ G: \mathcal{D} \to \mathbb{R}^{m \times k} \text{ diffusion coefficients}, \in \mathcal{C}^1$

Small parameters

 $\triangleright \varepsilon > 0$ adiabatic parameter (*no quasistatic* approach)

▷ $\sigma, \sigma' \ge 0$ noise intensities; may depend on ε :

$$\sigma = \sigma(\varepsilon), \ \sigma' = \sigma'(\varepsilon) \ \text{and} \ \sigma'(\varepsilon) / \sigma(\varepsilon) = \varrho(\varepsilon) \leq 1$$

Singular limits for deterministic slow-fast systems

In slow time t
$$\varepsilon \dot{x} = f(x, y)$$

 $\dot{y} = g(x, y)$ $t \mapsto s$ In fast time $s = t/\varepsilon$
 $x' = f(x, y)$
 $y' = \varepsilon g(x, y)$ $\downarrow \varepsilon \rightarrow 0$ $\downarrow \varepsilon \rightarrow 0$ Slow subsystem
 $0 = f(x, y)$
 $\dot{y} = g(x, y)$ \nleftrightarrow Fast subsystem
 $y' = 0$

Study fast variable x for frozen slow variable y

Study slow variable y on slow

manifold f(x, y) = 0

Near slow manifolds: Assumptions on the fast variables

• Existence of a slow manifold f(x, y) = 0:

 $\begin{aligned} \exists \mathcal{D}_0 \subset \mathbb{R}^m & \exists x^* : \mathcal{D}_0 \to \mathbb{R}^n \\ \text{s.t.} \ (x^*(y), y) \in \mathcal{D} \text{ and } f(x^*(y), y) = 0 \text{ for } y \in \mathcal{D}_0 \end{aligned}$

Slow manifold is attracting:

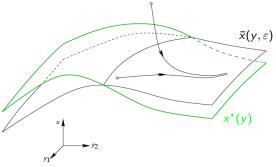
Eigenvalues of $A^*(y) := \partial_x f(x^*(y), y)$ satisfy $\operatorname{Re} \lambda_i(y) \le -a_0 < 0$ (uniformly in \mathcal{D}_0)

Fenichel's theorem

Theorem [Tihonov 1952, Fenichel 1979]

There exists an *adiabatic manifold*: $\exists \bar{x}(y, \varepsilon)$ s.t.

- ▷ $\bar{x}(y, \varepsilon)$ is invariant manifold for deterministic dynamics
- $\triangleright \ ar{x}(y,arepsilon)$ attracts nearby solutions
- $\triangleright \ \bar{x}(y,0) = x^{\star}(y)$
- $\triangleright \ \bar{x}(y,\varepsilon) = x^{\star}(y) + \mathcal{O}(\varepsilon)$



Consider now stochastic system under these assumptions

Random slow-fast systems: Slowly driven systems

Typical neighbourhoods for the stochastic fast variable

Special case: One-dimensional slowly driven systems

$$\mathsf{d} \mathsf{x}_t = rac{1}{arepsilon} f(\mathsf{x}_t, t) \; \mathsf{d} t + rac{\sigma}{\sqrt{arepsilon}} \; \mathsf{d} W_t \;, \qquad \mathsf{x} \in \mathbb{R}$$

Stable slow manifold / stable equilibrium branch $x^{*}(t)$:

 $f(x^{\star}(t),t)=0 \ , \qquad a^{\star}(t)=\partial_x f(x^{\star}(t),t)\leqslant -a_0<0$

Linearize SDE for deviation $x_t - \bar{x}(t,\varepsilon)$ from adiabatic solution $\bar{x}(t,\varepsilon) \approx x^*(t)$

$$\mathrm{d} z_t = rac{1}{arepsilon} \mathsf{a}(t) z_t \, \mathrm{d} t + rac{\sigma}{\sqrt{arepsilon}} \, \mathrm{d} W_t$$

We can solve the non-autonomous SDE for z_t

$$z_t = z_0 e^{\alpha(t)/\varepsilon} + \frac{\sigma}{\sqrt{\varepsilon}} \int_0^t e^{\alpha(t,s)/\varepsilon} \, \mathrm{d} W_s$$

where $\alpha(t) = \int_0^t a(s) ds$, $\alpha(t, s) = \alpha(t) - \alpha(s)$ and $a(t) = \partial_x f(\bar{x}(t, \varepsilon), t)$

Reduced Dynamics

Typical spreading

$$z_t = z_0 e^{\alpha(t)/\varepsilon} + \frac{\sigma}{\sqrt{\varepsilon}} \int_0^t e^{\alpha(t,s)/\varepsilon} \,\mathrm{d}W_s$$

 z_t is a Gaussian r.v. with variance

$$u(t) = \operatorname{Var}(z_t) = rac{\sigma^2}{arepsilon} \int_0^t e^{2lpha(t,s)/arepsilon} \, \mathrm{d}s pprox rac{\sigma^2}{|a(t)|}$$

For any fixed time t, z_t has a typical spreading of $\sqrt{v(t)}$, and a standard estimate shows

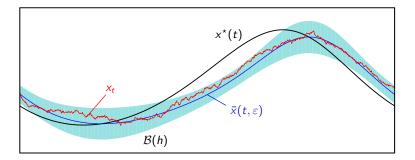
 $\mathbb{P}\{|z_t| > h\} < \mathrm{e}^{-h^2/2\nu(t)}$

Goal: Similar concentration result for the whole sample path

Define a strip $\mathcal{B}(h)$ around $\bar{x}(t,\varepsilon)$ of width $\simeq h/\sqrt{|a(t)|}$

$$\mathcal{B}(h) = \left\{ (x,t) \colon |x - \bar{x}(t,\varepsilon)| < h/\sqrt{|a(t)|} \right\}$$

Concentration of sample paths



Theorem [Berglund & G 2002, 2006]

$$\mathbb{P}\{(x_s)_s \text{ leaves } \mathcal{B}(h) \text{ before time } t\} \simeq \sqrt{\frac{2}{\pi}} \left. \frac{1}{\varepsilon} \right| \int_0^t a(s) \, \mathrm{d}s \left| \right. \frac{h}{\sigma} \left. \mathrm{e}^{-h^2 [1 - \mathcal{O}(\varepsilon) - \mathcal{O}(h)]/2\sigma^2} \right|$$

Fully coupled random slow-fast systems

Typical spreading in the general case

$$\begin{aligned} \int dx_t &= \frac{1}{\varepsilon} f(x_t, y_t) \, dt + \frac{\sigma}{\sqrt{\varepsilon}} F(x_t, y_t) \, dW_t & (\text{fast variables} \in \mathbb{R}^n) \\ dy_t &= g(x_t, y_t) \, dt + \sigma' \, G(x_t, y_t) \, dW_t & (\text{slow variables} \in \mathbb{R}^m) \end{aligned}$$

- ▷ Consider deterministic process $(x_t^{det} = \bar{x}(y_t^{det}, \varepsilon), y_t^{det})$ on adiabatic manifold
- ▷ Deviation $\xi_t := x_t x_t^{det}$ of fast variables from adiabatic manifold
- ▷ Linearize SDE for ξ_t ; resulting process ξ_t^0 is Gaussian

Key observation

 $\frac{1}{\sigma^2}$ Cov ξ_t^0 is a particular solution of the deterministic slow–fast system

$$(*) \quad \begin{cases} \varepsilon \dot{X}(t) = A(y_t^{\text{det}})X(t) + X(t)A(y^{\text{det}})^{\mathrm{T}} + F_0(y^{\text{det}})F_0(y^{\text{det}})^{\mathrm{T}} \\ \dot{y}_t^{\text{det}} = g(\bar{x}(y_t^{\text{det}},\varepsilon), y_t^{\text{det}}) \end{cases}$$

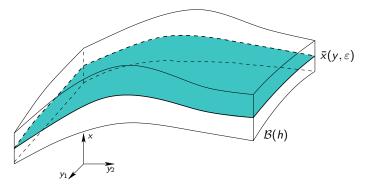
with $A(y) = \partial_x f(\bar{x}(y,\varepsilon), y)$ and F_0 0*th*-order approximation to F

Typical neighbourhoods in the general case

Typical neighbourhoods

$$\mathcal{B}(h) := \{(x, y) \colon \left\langle \left[x - \bar{x}(y, \varepsilon) \right], \overline{X}(y, \varepsilon)^{-1} \left[x - \bar{x}(y, \varepsilon) \right] \right\rangle < h^2 \}$$

where $\overline{X}(y,\varepsilon)$ denotes the adiabatic manifold for the system (*)



Concentration of sample paths

Define (random) first-exit times

- $\tau_{\mathcal{B}(h)} := \inf\{s > 0 \colon (x_s, y_s) \notin \mathcal{B}(h)\}$
- $\tau_{\mathcal{D}_0} := \inf\{s > 0 \colon y_s \notin \mathcal{D}_0\}$

Theorem [Berglund & G 2003] Assume $\|\bar{X}(y,\varepsilon)\|$, $\|\bar{X}(y,\varepsilon)^{-1}\|$ uniformly bounded in \mathcal{D}_0 Then $\exists \varepsilon_0 > 0 \quad \exists h_0 > 0 \quad \forall \varepsilon \leqslant \varepsilon_0 \quad \forall h \leqslant h_0$

$$\mathbb{P}\big\{\tau_{\mathcal{B}(h)} < \min(t, \tau_{\mathcal{D}_0})\big\} \leqslant C_{n,m}(t) \exp\bigg\{-\frac{h^2}{2\sigma^2}\big[1 - \mathcal{O}(h) - \mathcal{O}(\varepsilon)\big]\bigg\}$$

where $C_{n,m}(t) = \big[C^m + h^{-n}\big]\bigg(1 + \frac{t}{\varepsilon^2}\bigg)$

Reduced dynamics

Reduction to adiabatic manifold $\bar{x}(y,\varepsilon)$:

```
dy_t^0 = g(\bar{x}(y_t^0,\varepsilon), y_t^0) dt + \sigma' G(\bar{x}(y_t^0,\varepsilon), y_t^0) dW_t
```

Theorem [Berglund & G 2006] (informal version)

 y_t^0 approximates y_t to order $\sigma\sqrt{\varepsilon}$ up to Lyapunov time of $\dot{y}^{det} = g(\bar{x}(y^{det},\varepsilon)y^{det})$

Remark

For $\frac{\sigma'}{\sigma} < \sqrt{\varepsilon}$, the deterministic reduced dynamics provides a better approximation

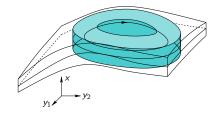
Longer time scales

Behaviour of g or behaviour of y_t and y_t^{det} becomes important

Example

 y_t^{det} following a stable periodic orbit

 $\triangleright \ y_t \sim y_t^{\mathsf{det}} \ \mathsf{for} \ t \leqslant \frac{\mathsf{const}}{\sigma \lor \varrho^2 \lor \varepsilon}$



▷ On longer time scales: Markov property allows to restart

 y_t stays exponentially long in a neighbourhood of the periodic orbit (with probability close to 1)

The main idea of deterministic averaging

Which timescale should be studied?

Simple example

$$\dot{y}_{s}^{\varepsilon} = \varepsilon b(y_{s}^{\varepsilon}, \xi_{s}), \quad y_{0}^{\varepsilon} = y \in \mathbb{R}^{m} \qquad > b : \mathbb{R}^{m} imes \mathbb{R}^{n} o \mathbb{R}^{m}$$

 $> \xi : [0, \infty) o \mathbb{R}^{n}$
 $> 0 < \varepsilon \ll 1$

If b is not increasing too fast then

 $y_s^{\varepsilon} \to y_s^0 \equiv y$ as $\varepsilon \to 0$ uniformly on any finite time interval [0, T]

Not the relevant timescale! ... need to look at time intervals of length $\geq 1/\varepsilon$

- ▷ Introduce slow time $t = \varepsilon s$
- ▷ Note that $t \in [0, T] \Leftrightarrow s \in [0, T/\varepsilon]$
- Rewrite equation

$$\dot{y}_t^{\varepsilon} = b(y_t^{\varepsilon}, \xi_{t/\varepsilon}), \qquad y_0^{\varepsilon} = y \in \mathbb{R}^m$$

Reduced Dynamics

Barbara Gentz

SNU, 17 March 2014

Deterministic averaging

Assumptions (simplest setting)

 $||b(y_1,\xi) - b(y_2,\xi)|| \le K ||y_1 - y_2|| \text{ for all } \xi \in \mathbb{R}^n \text{ (Lipschitz condition)}$ $| \lim_{T \to \infty} \frac{1}{T} \int_0^T b(y,\xi_t) dt = \overline{b}(y) \text{ uniformly in } y \in \mathbb{R}^m \text{ (e.g. periodic } \xi_t)$

Can we obtain an autonomous equation for y_t^{ε} ? Can we replace b by \overline{b} ?

For small time steps Δ : Freeze y_t^{ε}

$$y_{\Delta}^{\varepsilon} - y = \int_{0}^{\Delta} b(y_{t}^{\varepsilon}, \xi_{t/\varepsilon}) \, \mathrm{d}t = \int_{0}^{\Delta} b(y, \xi_{t/\varepsilon}) \, \mathrm{d}s + \int_{0}^{\Delta} \left[b(y_{t}^{\varepsilon}, \xi_{t/\varepsilon}) - b(y, \xi_{t/\varepsilon}) \right] \, \mathrm{d}t$$

1. integral = $\Delta \frac{\varepsilon}{\Delta} \int_{0}^{\Delta/\varepsilon} b(y, \xi_s) ds \approx \Delta \overline{b}(y)$ as $\varepsilon/\Delta \to 0$ 2. integral = $\mathcal{O}(\Delta^2)$ (using Lipschitz continuity and leading order)

With a little work: y_t^{ε} converges uniformly on [0, T] towards solution of $\dot{\overline{y}}_t = \overline{b}(\overline{y}_t)$

Averaging principle

Slow variable y_t^{ε} and fast variable ξ_t^{ε} (now allowed to depend on y_t^{ε})

$$egin{array}{lll} \dot{y}^arepsilon_t & = & b_1(y^arepsilon_t, \xi^arepsilon_t) \,, & y^arepsilon_0 & = y \in \mathbb{R}^m \ \dot{\xi}^arepsilon_t & = & rac{1}{arepsilon} b_2(y^arepsilon_t, \xi^arepsilon_t) \,, & \xi^arepsilon_0 & = & \xi \in \mathbb{R}^n \end{array}$$

Freeze slow variable y and consider

$$\dot{\xi}_t(y) = b_2(y, \xi_t(y)), \qquad \xi_0(y) = \xi$$

Assume $\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} b_1(y, \xi_t(y)) dt = \overline{b}_1(y)$ exists (and is independent of ξ)

Averaging principle

The slow variable y_t^{ε} is well approximated by $\dot{\overline{y}}_t = \overline{b}_1(\overline{y}_t), \ \overline{y}_0 = y$

Reduced Dynamics

Barbara Gentz

Random fast motion: The main idea of stochastic averaging

Reduced Dynamics

Random fast motion

Consider again assumption form last slide

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T b_1(y, \xi_t(y)) \, \mathrm{d} t = \overline{b}_1(y) \quad \text{exists}$$

Convergence of time averages: Resembles Law of Large Numbers!

Our goal: Consider ξ_t given by a random motion

The general setting

$$\dot{y}_t^{\varepsilon} = b(\varepsilon, t, y_t^{\varepsilon}, \omega) , \qquad y_0^{\varepsilon} = y \in \mathbb{R}^m$$

 $\omega \in \Omega$ indicates the random influence; underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$

Assumptions

- $\triangleright \ (t,y) \mapsto b(\varepsilon,t,y,\omega) \text{ is continuous for almost all } \omega \text{ and all } \varepsilon$
- ${}^{\triangleright} \ \sup_{\varepsilon > 0} \sup_{t \ge 0} \mathbb{E} \| b(\varepsilon, t, y, \omega) \|^2 < \infty$
- $||b(\varepsilon, t, x, \omega) b(\varepsilon, t, y, \omega)|| \le K ||x y||$ for almost all ω , all $x, y \in \mathbb{R}^m$, all $t \ge 0$ and $\varepsilon > 0$
- ▷ There exists $\overline{b}(y, t)$, continuous in (y, t), s.t. $\forall \delta > 0 \ \forall T > 0 \ \forall y \in \mathbb{R}^m$

$$\lim_{\varepsilon \to 0} \mathbb{P}\left\{\left\|\int_{t_0}^{t_0+T} b(\varepsilon, t, y, \omega) \,\mathrm{d}t - \int_{t_0}^{t_0+T} \overline{b}(t, y) \,\mathrm{d}t\right\| \ge \delta\right\} = 0$$

uniformly in $t_0 \ge 0$

Reduced Dynamics

Stochastic averaging

Theorem (c.f. [WF 1984])

Under the assumptions on the previous slide,

$$\frac{\overline{y}}{\overline{y}_t} = \overline{b}(t, \overline{y}_t), \qquad \overline{y}_0 = y$$

has a unique solution, and

$$\lim_{\varepsilon \to 0} \mathbb{P} \Big\{ \max_{t \in [0,T]} \| y_t^{\varepsilon} - \overline{y}_t \| \ge \delta \Big\} = 0$$

for all T > 0 and all $\delta > 0$.

Remarks

- Convergence in probability is a rather weak notion
- Stronger assumptions yield stronger result

Idea of the proof I

$$\begin{split} \|y_t^{\varepsilon} - \overline{y}_t\| &\leq \int_0^t \|b(\varepsilon, s, y_s^{\varepsilon}, \omega) - b(\varepsilon, s, \overline{y}_s, \omega)\| \, \mathrm{d}s \\ &+ \left\| \int_0^t [b(\varepsilon, s, \overline{y}_s, \omega) - \overline{b}(s, \overline{y}_s)] \, \mathrm{d}s \right\| \end{split}$$

Using Lipschitz condition

$$m(t) := \sup_{s \in [0,t]} \|y_s^{\varepsilon} - \overline{y}_s\| \le K \int_0^t m(s) \, \mathrm{d}s + \sup_{s \in [0,t]} \left\| \int_0^s [b(\varepsilon, u, \overline{y}_u, \omega) - \overline{b}(u, \overline{y}_u)] \, \mathrm{d}s \right\|$$

Gronwall's lemma: Sufficient to estimate

$$\mathbb{P}\left\{\sup_{s\in[0,T]}\left\|\int_{0}^{s}\left[b(\varepsilon,u,\overline{y}_{u},\omega)-\overline{b}(u,\overline{y}_{u})\right]\mathrm{d}s\right\|\geq\tilde{\delta}\right\}$$

Idea of the proof II

- ▷ *b* Lipschitz continuous $\Rightarrow \overline{b}$ Lipschitz continuous
- ▷ On short time intervals [kT/n, (k+1)T/n] replace \overline{y}_u by $\overline{y}_{kT/n}$
- \triangleright Total error accumulated over all time intervals is still $\mathcal{O}(1/n)$
- Apply assumption on \overline{b} to

$$\int_{kT/n}^{(k+1)T/n} [b(\varepsilon, u, \overline{y}_{kT/n}, \omega) - \overline{b}(u, \overline{y}_{kT/n})] ds$$

- ▷ It remains to deal with upper integration limits *not* of the form (k+1)T/n
- ▷ Use: interval short, Tchebyschev's inequality, assumption on second moment

Deviation from the averaged process

Deviations of order $\sqrt{\varepsilon}$

If b is sufficiently smooth & other conditions . . .

 $\frac{1}{\sqrt{\varepsilon}}(y_t^{\varepsilon} - \overline{y}_t) \quad \Rightarrow \quad \text{Gaussian Markov process}$

Here \Rightarrow denotes convergence in distribution on [0, T]

Averaging for stochastic differential equations

$$\begin{cases} dy_t^{\varepsilon} = b(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dt + \sigma(y_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dt + \frac{1}{\sqrt{\varepsilon}} F(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dt + \frac{1}{\sqrt{\varepsilon}} F(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dt + \frac{1}{\sqrt{\varepsilon}} F(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dt + \frac{1}{\sqrt{\varepsilon}} F(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dt + \frac{1}{\sqrt{\varepsilon}} F(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dt + \frac{1}{\sqrt{\varepsilon}} F(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dt + \frac{1}{\sqrt{\varepsilon}} F(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s \\ d\xi_t^{\varepsilon} = \frac{1}{\varepsilon} f(y_t^{\varepsilon}, \xi_t^{\varepsilon}) dW_t & (s$$

(slow variable $\in \mathbb{R}^m$) (fast variable $\in \mathbb{R}^n$)

 $\sigma = \sigma(y_t^{\varepsilon}, \xi_t^{\varepsilon})$ depending also on ξ_t^{ε} can be considered (we refrain from doing so since this would require to introduce additional notations)

Introduce Markov process $\xi_t^{y,\xi}$ for frozen slow variable y

 $\mathsf{d}\xi_t^{y,\xi} = f(y,\xi_t^{y,\xi}) \, \mathsf{d}t + F(y,\xi_t^{y,\xi}) \, \mathsf{d}W_t \,, \qquad \xi_0^{y,\xi} = \xi$

Reduced Dynamics

Averaging Theorem for SDEs

Assume there exist functions $\overline{b}(y)$ and $\kappa(\mathcal{T})$ s.t. for all $t_0 \ge 0$, $\xi \in \mathbb{R}^n$, $y \in \mathbb{R}^m$:

$$\mathbb{E}\left\|\frac{1}{T}\int_{t_0}^{t_0+T}b(y,\xi_s^{y,\xi})\,\mathrm{d} s-\bar{b}(y)\right\|\leq\kappa(T)\to0\quad\text{as }T\to\infty$$

Let \bar{y}_t denote the solution of

$$\mathrm{d}\bar{y}_t = \bar{b}(\bar{y}_t) + \sigma(\bar{y}_t) \,\mathrm{d}W_t \;, \qquad \bar{y}_0 = y$$

Theorem

For all T > 0, $\delta > 0$ and all initial conditions $\xi \in \mathbb{R}^n$, $y \in \mathbb{R}^m$

$$\lim_{\varepsilon \to 0} \mathbb{P}\left\{\sup_{0 \le t \le T} \|y_t^{\varepsilon} - \bar{y}_t\| > \delta\right\} = 0$$

(convergence in probability)

Reduced Dynamics

References

Deterministic slow-fast systems

- ▷ N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), pp. 53–98
- A. N. Tihonov, Systems of differential equations containing small parameters in the derivatives, Mat. Sbornik N. S. 31 (1952), pp. 575–586

Slow-fast systems with noise

- ▷ N. Berglund and B. Gentz, Pathwise description of dynamic pitchfork bifurcations with additive noise, Probab. Theory Related Fields 122 (2002), pp. 341–388
- N. Berglund and B. Gentz, Geometric singular perturbation theory for stochastic differential equations, J. Differential Equations 191 (2003), pp. 1–54
- N. Berglund and B. Gentz, Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach, Springer (2006)

Averaging

The presentation is based on

 M.I. Freidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems, Springer (1984) Slowly driven systems

Fully coupled systems

Deterministic averaging

Random fast motion The end

