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General slow–fast systems

Fully coupled SDEs on well-separated time scales
dxt =

1

ε
f (xt , yt) dt +

σ√
ε
F (xt , yt) dWt (fast variables ∈ Rn)

dyt = g(xt , yt) dt + σ′ G (xt , yt) dWt (slow variables ∈ Rm)

. {Wt}t≥0 k-dimensional (standard) Brownian motion

. D ⊂ Rn × Rm

. f : D → Rn, g : D → Rm drift coefficients, ∈ C2

. F : D → Rn×k , G : D → Rm×k diffusion coefficients, ∈ C1

Small parameters

. ε > 0 adiabatic parameter (no quasistatic approach)

. σ, σ′ ≥ 0 noise intensities; may depend on ε:

σ = σ(ε), σ′ = σ′(ε) and σ′(ε)/σ(ε) = %(ε) ≤ 1
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Singular limits for deterministic slow–fast systems

In slow time t

εẋ = f (x , y)

ẏ = g(x , y)

y ε→0

Slow subsystem

0 = f (x , y)

ẏ = g(x , y)

Study slow variable y on slow
manifold f (x , y) = 0

t 7→s
⇐⇒

⇐⇒/

In fast time s = t/ε

x ′ = f (x , y)

y ′ = εg(x , y)

y ε→0

Fast subsystem

x ′ = f (x , y)

y ′ = 0

Study fast variable x for frozen
slow variable y
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Near slow manifolds: Assumptions on the fast variables

. Existence of a slow manifold f (x , y) = 0:

∃D0 ⊂ Rm ∃ x? : D0 → Rn

s.t. (x?(y), y) ∈ D and f (x?(y), y) = 0 for y ∈ D0

. Slow manifold is attracting:

Eigenvalues of A?(y) := ∂x f (x?(y), y) satisfy Reλi (y) ≤ −a0 < 0

(uniformly in D0)
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Fenichel’s theorem

Theorem [Tihonov 1952, Fenichel 1979]

There exists an adiabatic manifold :
∃ x̄(y , ε) s.t.

. x̄(y , ε) is invariant manifold for deterministic dynamics

. x̄(y , ε) attracts nearby solutions

. x̄(y , 0) = x?(y)

. x̄(y , ε) = x?(y) +O(ε)

y1

y2

x x?(y)

x̄(y , ε)

Consider now stochastic system under these assumptions
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Random slow–fast systems: Slowly driven systems
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Typical neighbourhoods for the stochastic fast variable

Special case: One-dimensional slowly driven systems

dxt =
1

ε
f (xt , t) dt +

σ√
ε

dWt , x ∈ R

Stable slow manifold / stable equilibrium branch x?(t):

f (x?(t), t) = 0 , a?(t) = ∂x f (x?(t), t) 6 −a0 < 0

Linearize SDE for deviation xt − x̄(t, ε) from adiabatic solution x̄(t, ε) ≈ x?(t)

dzt =
1

ε
a(t)zt dt +

σ√
ε

dWt

We can solve the non-autonomous SDE for zt

zt = z0e
α(t)/ε +

σ√
ε

∫ t

0

eα(t,s)/ε dWs

where α(t) =

∫ t

0

a(s) ds, α(t, s) = α(t)− α(s) and a(t) = ∂x f (x̄(t, ε), t)
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Typical spreading

zt = z0e
α(t)/ε +

σ√
ε

∫ t

0

eα(t,s)/ε dWs

zt is a Gaussian r.v. with variance

v(t) = Var(zt) =
σ2

ε

∫ t

0

e2α(t,s)/ε ds ≈ σ2

|a(t)|

For any fixed time t, zt has a typical spreading of
√

v(t), and a standard estimate
shows

P{|zt | ≥ h} ≤ e−h
2/2v(t)

Goal: Similar concentration result for the whole sample path

Define a strip B(h) around x̄(t, ε) of width ' h/
√
|a(t)|

B(h) =
{

(x , t) : |x − x̄(t, ε)| < h/
√
|a(t)|

}
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Concentration of sample paths

x̄(t, ε)

xt

x?(t)

B(h)

Theorem [Berglund & G 2002, 2006]

P
{

(xs)s leaves B(h) before time t
}
'
√

2

π

1

ε

∣∣∣∫ t

0

a(s) ds
∣∣∣ h
σ

e−h
2[1−O(ε)−O(h)]/2σ2
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Fully coupled random slow–fast systems
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Typical spreading in the general case
dxt =

1

ε
f (xt , yt) dt +

σ√
ε
F (xt , yt) dWt (fast variables ∈ Rn)

dyt = g(xt , yt) dt + σ′ G (xt , yt) dWt (slow variables ∈ Rm)

. Consider deterministic process (xdet
t = x̄(ydet

t , ε), ydet
t ) on adiabatic manifold

. Deviation ξt := xt − xdet
t of fast variables from adiabatic manifold

. Linearize SDE for ξt ; resulting process ξ0
t is Gaussian

Key observation

1

σ2
Cov ξ0

t is a particular solution of the deterministic slow–fast system

(∗)

{
εẊ (t) = A(ydet

t )X (t) + X (t)A(ydet)T + F0(ydet)F0(ydet)T

ẏdet
t = g(x̄(ydet

t , ε), ydet
t )

with A(y) = ∂x f (x̄(y , ε), y) and F0 0th-order approximation to F
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Typical neighbourhoods in the general case

Typical neighbourhoods

B(h) :=
{

(x , y) :
〈[
x − x̄(y , ε)

]
,X (y , ε)−1

[
x − x̄(y , ε)

]〉
< h2

}
where X (y , ε) denotes the adiabatic manifold for the system (∗)

y1
y2

x

x̄(y , ε)

B(h)
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Concentration of sample paths

Define (random) first-exit times

τB(h) := inf{s > 0: (xs , ys) /∈ B(h)}

τD0
:= inf{s > 0: ys /∈ D0}

Theorem [Berglund & G 2003]

Assume ‖X (y , ε)‖, ‖X (y , ε)−1‖ uniformly bounded in D0

Then ∃ ε0 > 0 ∃ h0 > 0 ∀ ε 6 ε0 ∀ h 6 h0

P
{
τB(h) < min(t, τD0 )

}
6 Cn,m(t) exp

{
− h2

2σ2

[
1−O(h)−O(ε)

]}

where Cn,m(t) =
[
Cm + h−n

](
1 +

t

ε2

)
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Reduced dynamics

Reduction to adiabatic manifold x̄(y , ε):

dy0
t = g(x̄(y0

t , ε), y0
t ) dt + σ′G (x̄(y0

t , ε), y0
t ) dWt

Theorem [Berglund & G 2006] (informal version)

y0
t approximates yt to order σ

√
ε up to Lyapunov time of ẏdet = g(x̄(ydet, ε)ydet)

Remark

For
σ′

σ
<
√
ε, the deterministic reduced dynamics provides a better approximation
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Longer time scales

Behaviour of g or behaviour of yt and ydet
t becomes important

Example

ydet
t following a stable periodic orbit

y1

y2

x

. yt ∼ ydet
t for t 6

const

σ ∨ %2 ∨ ε

linear coupling → ε

nonlinear coupling → σ

noise acting on slow variable → %

. On longer time scales: Markov property allows to restart

yt stays exponentially long in a neighbourhood of the periodic orbit
(with probability close to 1)
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The main idea of deterministic averaging
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Which timescale should be studied?

Simple example

ẏεs = εb(yεs , ξs) , yε0 = y ∈ Rm . b : Rm × Rn → Rm

. ξ : [0,∞)→ Rn

. 0 ≤ ε� 1

If b is not increasing too fast then

yεs → y0
s ≡ y as ε→ 0 uniformly on any finite time interval [0,T ]

Not the relevant timescale! . . . need to look at time intervals of length ≥ 1/ε

. Introduce slow time t = εs

. Note that t ∈ [0,T ] ⇔ s ∈ [0,T/ε]

. Rewrite equation

ẏεt = b(yεt , ξt/ε) , yε0 = y ∈ Rm
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Deterministic averaging

Assumptions (simplest setting)

. ‖b(y1, ξ)− b(y2, ξ)‖ ≤ K‖y1 − y2‖ for all ξ ∈ Rn (Lipschitz condition)

. lim
T→∞

1

T

∫ T

0

b(y , ξt) dt = b(y) uniformly in y ∈ Rm (e.g. periodic ξt)

Can we obtain an autonomous equation for yεt ? Can we replace b by b?

For small time steps ∆: Freeze yεt

yε∆ − y =

∫ ∆

0

b(yεt , ξt/ε) dt =

∫ ∆

0

b(y , ξt/ε) ds +

∫ ∆

0

[
b(yεt , ξt/ε)− b(y , ξt/ε)

]
dt

1. integral = ∆
ε

∆

∫ ∆/ε

0

b(y , ξs) ds ≈ ∆b(y) as ε/∆→ 0

2. integral = O(∆2) (using Lipschitz continuity and leading order)

With a little work: yεt converges uniformly on [0,T ] towards solution of ẏ t = b(y t)
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Averaging principle

Slow variable yεt and fast variable ξεt (now allowed to depend on yε
t )

ẏεt = b1(yεt , ξ
ε
t ) , yε0 = y ∈ Rm

ξ̇εt =
1

ε
b2(yεt , ξ

ε
t ) , ξε0 = ξ ∈ Rn

Freeze slow variable y and consider

ξ̇t(y) = b2(y , ξt(y)) , ξ0(y) = ξ

Assume lim
T→∞

1

T

∫ T

0

b1(y , ξt(y)) dt = b1(y) exists (and is independent of ξ)

Averaging principle

The slow variable yεt is well approximated by ẏ t = b1(y t), y0 = y
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Random fast motion:

The main idea of stochastic averaging
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Random fast motion

Consider again assumption form last slide

lim
T→∞

1

T

∫ T

0

b1(y , ξt(y)) dt = b1(y) exists

Convergence of time averages: Resembles Law of Large Numbers!

Our goal: Consider ξt given by a random motion

Reduced Dynamics Barbara Gentz SNU, 17 March 2014 22 / 31



Deterministic Slow–Fast Systems Slowly driven systems Fully coupled systems Deterministic averaging Random fast motion The end

The general setting

ẏεt = b(ε, t, yεt , ω) , yε0 = y ∈ Rm

ω ∈ Ω indicates the random influence; underlying probability space (Ω,F ,P)

Assumptions

. (t, y) 7→ b(ε, t, y , ω) is continuous for almost all ω and all ε

. supε>0 supt≥0 E‖b(ε, t, y , ω)‖2 <∞

. ‖b(ε, t, x , ω)− b(ε, t, y , ω)‖ ≤ K‖x − y‖
for almost all ω, all x , y ∈ Rm, all t ≥ 0 and ε > 0

. There exists b(y , t), continuous in (y , t), s.t. ∀δ > 0 ∀T > 0 ∀y ∈ Rm

lim
ε→0

P
{∥∥∥∥∫ t0+T

t0

b(ε, t, y , ω) dt −
∫ t0+T

t0

b(t, y) dt

∥∥∥∥ ≥ δ} = 0

uniformly in t0 ≥ 0
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Stochastic averaging

Theorem (c.f. [WF 1984])

Under the assumptions on the previous slide,

ẏ t = b(t, y t) , y0 = y

has a unique solution, and

lim
ε→0

P
{

max
t∈[0,T ]

‖yεt − y t‖ ≥ δ
}

= 0

for all T > 0 and all δ > 0.

Remarks

. Convergence in probability is a rather weak notion

. Stronger assumptions yield stronger result
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Idea of the proof I

‖yεt − y t‖ ≤
∫ t

0

‖b(ε, s, yεs , ω)− b(ε, s, y s , ω)‖ ds

+

∥∥∥∥∫ t

0

[b(ε, s, y s , ω)− b(s, y s)] ds

∥∥∥∥
Using Lipschitz condition

m(t) := sup
s∈[0,t]

‖yεs − y s‖ ≤ K

∫ t

0

m(s) ds + sup
s∈[0,t]

∥∥∥∥∫ s

0

[b(ε, u, yu, ω)− b(u, yu)] ds

∥∥∥∥
Gronwall’s lemma: Sufficient to estimate

P
{

sup
s∈[0,T ]

∥∥∥∥∫ s

0

[b(ε, u, yu, ω)− b(u, yu)] ds

∥∥∥∥ ≥ δ̃}
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Idea of the proof II

. b Lipschitz continuous ⇒ b Lipschitz continuous

. On short time intervals [kT/n, (k + 1)T/n] replace yu by ykT/n

. Total error accumulated over all time intervals is still O(1/n)

. Apply assumption on b to∫ (k+1)T/n

kT/n

[b(ε, u, ykT/n, ω)− b(u, ykT/n)] ds

. It remains to deal with upper integration limits not of the form (k + 1)T/n

. Use: interval short, Tchebyschev’s inequality, assumption on second moment
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Deviation from the averaged process

Deviations of order
√
ε

If b is sufficiently smooth & other conditions . . .

1√
ε

(yεt − y t) ⇒ Gaussian Markov process

Here ⇒ denotes convergence in distribution on [0,T ]
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Averaging for stochastic differential equations

 dyεt = b(yεt , ξ
ε
t ) dt + σ(yεt ) dWt (slow variable ∈ Rm)

dξεt =
1

ε
f (yεt , ξ

ε
t ) dt +

1√
ε
F (yεt , ξ

ε
t ) dWt (fast variable ∈ Rn)

σ = σ(yεt , ξ
ε
t ) depending also on ξεt can be considered

(we refrain from doing so since this would require to introduce additional notations)

Introduce Markov process ξy ,ξt for frozen slow variable y

dξy ,ξt = f (y , ξy ,ξt ) dt + F (y , ξy ,ξt ) dWt , ξy ,ξ0 = ξ
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Averaging Theorem for SDEs

Assume there exist functions b̄(y) and κ(T ) s.t. for all t0 ≥ 0, ξ ∈ Rn, y ∈ Rm:

E
∥∥∥∥ 1

T

∫ t0+T

t0

b(y , ξy ,ξs ) ds − b̄(y)

∥∥∥∥ ≤ κ(T )→ 0 as T →∞

Let ȳt denote the solution of

dȳt = b̄(ȳt) + σ(ȳt) dWt , ȳ0 = y

Theorem

For all T > 0, δ > 0 and all initial conditions ξ ∈ Rn, y ∈ Rm

lim
ε→0

P
{

sup
0≤t≤T

‖yεt − ȳt‖ > δ

}
= 0

(convergence in probability)
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