W I A S

 $W\,eierstra \$-Institut\,f\"ur\,Angewandte\,Analysis\,und\,Stochastik$

Colloquium Equations Différentielles Stochastiques

Toulon, October 20, 2003

Barbara Gentz

Large deviations and Wentzell–Freidlin theory

Mohrenstr. 39 – 10117 Berlin – Germany gentz@wias-berlin.de

www.wias-berlin.de/people/gentz

- ▷ Large deviations
 - Introduction
 - Sample-path large deviations for Brownian motion
 - Sample-path large deviations for stochastic differential equations
- Diffusion exit from a domain
 - Introduction
 - Relation to PDEs (reminder)
 - The concept of a quasipotential
 - Asymptotic behaviour of first-exit times and locations
- \triangleright References

Slides available at http://www.wias-berlin.de/people/gentz/misc.html

Introduction: Small random perturbations

Consider small random perturbation

$$\mathrm{d}x_t^\varepsilon = b(x_t^\varepsilon) \,\mathrm{d}t + \sqrt{\varepsilon} \,g(x_t^\varepsilon) \,\mathrm{d}W_t,$$

of ODE

 $\dot{x}_t = b(x_t)$

 $x_0^{\varepsilon} = x_0$

(with same initial cond.)

We expect $x_t^{\varepsilon} \approx x_t$ for small ε .

Depends on

▷ deterministic dynamics

 \triangleright noise intensity ε

 \triangleright time scale

Introduction: Small random perturbations

Indeed, for b Lipschitz continuous and g = Id

$$||x_t^{\varepsilon} - x_t|| \leqslant L \int_0^t ||x_s^{\varepsilon} - x_s|| \,\mathrm{d}s + \sqrt{\varepsilon} \,||W_t||$$

Gronwall's lemma shows

$$\sup_{0 \leqslant s \leqslant t} \|x_s^{\varepsilon} - x_s\| \leqslant \sqrt{\varepsilon} \sup_{0 \leqslant s \leqslant t} \|W_s\| e^{Lt}$$

Remains to estimate $\sup_{0 \leq s \leq t} ||W_s||$

 \triangleright d = 1: Use reflection principle

$$\mathbb{P}\left\{\sup_{0\leqslant s\leqslant t}|W_s|\geqslant r\right\}\leqslant 2\,\mathbb{P}\left\{\sup_{0\leqslant s\leqslant t}W_s\geqslant r\right\}\leqslant 4\,\mathbb{P}\left\{W_t\geqslant r\right\}\leqslant 2\,\mathrm{e}^{-r^2/2t}$$

 $\triangleright d > 1$: Reduce to d = 1 using independence

$$\mathbb{P}\left\{\sup_{0\leqslant s\leqslant t}\|W_s\|\geqslant r\right\}\leqslant 2d\ \mathrm{e}^{-r^2/2dt}$$

Introduction: Small random perturbations

For $\Gamma \subset \mathcal{C} = \mathcal{C}([0,T], \mathbb{R}^d)$ with $\Gamma \subset B((x_s)_s, \delta)^c$ (\mathcal{C} equipped with sup norm $\|\cdot\|_{\infty}$)

$$\mathbb{P}\left\{x^{\varepsilon} \in \Gamma\right\} \leqslant \mathbb{P}\left\{\sup_{0 \leqslant s \leqslant t} \|x^{\varepsilon}_{s} - x_{s}\| \ge \delta\right\} \leqslant \mathbb{P}\left\{\sup_{0 \leqslant s \leqslant t} \|W_{s}\| \ge \frac{\delta}{\sqrt{\varepsilon}} e^{-Lt}\right\} \leqslant 2d \exp\left\{-\frac{\delta^{2} e^{-2Lt}}{2\varepsilon dt}\right\}$$

and

$$\mathbb{P}\big\{x^{\varepsilon} \in \Gamma\big\} \to 0 \qquad \text{as } \varepsilon \to 0$$

- \triangleright Event $\{x^{\varepsilon} \in \Gamma\}$ is atypical: Occurrence a large deviation
- \triangleright Question: Rate of convergence as a function of Γ ?
- Generally not possible, but exponential rate can be found

Aim: Find functional $I : \mathcal{C} \to [0, \infty]$ s.t.

$$\mathbb{P}\{\|x^{\varepsilon} - \varphi\|_{\infty} < \delta\} \approx e^{-I(\varphi)/\varepsilon} \quad \text{for } \varepsilon \to 0$$

Provides local description

Large deviations for Brownian motion: The endpoint

Special case: Scaled Brownian motion, d = 1

$$\mathrm{d}W_t^\varepsilon = \sqrt{\varepsilon} \, \mathrm{d}W_t, \qquad \Longrightarrow \qquad W_t^\varepsilon = \sqrt{\varepsilon} \, W_t$$

Consider endpoint instead of whole path

$$\mathbb{P}\{W_t^{\varepsilon} \in A\} = \int_A \frac{1}{\sqrt{2\pi\varepsilon t}} \exp\{-x^2/2\varepsilon t\} \, \mathrm{d}x$$

▷ Use Laplace method to evaluate integral

$$\varepsilon \log \mathbb{P}\{W_t^{\varepsilon} \in A\} \sim -\frac{1}{2} \inf_{x \in A} \frac{x^2}{t}$$
 as $\varepsilon \to 0$

Caution

- \triangleright |A| = 1: l.h.s. $= -\infty < \text{r.h.s.} \in (-\infty, 0]$
- Limit does not necessarily exist
- **Remedy:** Use interior and closure \implies Large deviation principle

$$-\frac{1}{2}\inf_{x\in A^{\circ}}\frac{x^{2}}{t}\leqslant\liminf_{\varepsilon\to 0}\varepsilon\log\mathbb{P}\{W_{t}^{\varepsilon}\in A\}\leqslant\limsup_{\varepsilon\to 0}\varepsilon\log\mathbb{P}\{W_{t}^{\varepsilon}\in A\}\leqslant-\frac{1}{2}\inf_{x\in\bar{A}}\frac{x^{2}}{t}$$

Large deviations for Brownian motion: Schilder's theorem

Schilder's Theorem (1966)

Scaled BM satisfies a (full) large deviation principle with good rate function

$$I(\varphi) = I_{[0,T],0}(\varphi) = \begin{cases} \frac{1}{2} \|\varphi\|_{H_1}^2 = \frac{1}{2} \int_{[0,T]} \|\dot{\varphi}_s\|^2 \, \mathrm{d}s & \text{if } \varphi \in H_1 \text{ with } \varphi_0 = 0 \\ +\infty & \text{otherwise} \end{cases}$$

That is

- ▷ Rate function: $I : C_0 = \{ \varphi \in C : \varphi_0 = 0 \} \rightarrow [0, \infty]$ is lower semi-continuous
- \triangleright Good rate function: *I* has compact level sets
- ▷ Upper and lower large-deviation bound:

$$-\inf_{\Gamma^{\circ}} I \leqslant \liminf_{\varepsilon \to 0} \varepsilon \log \mathbb{P}\{W^{\varepsilon} \in \Gamma\} \leqslant \limsup_{\varepsilon \to 0} \varepsilon \log \mathbb{P}\{W^{\varepsilon} \in \Gamma\} \leqslant -\inf_{\overline{\Gamma}} I \qquad \text{for all } \Gamma \in \mathcal{B}(\mathcal{C}_0)$$

Remarks

Infinite-dimensional version of Laplace method

- $\triangleright W^{\varepsilon} \not\in H^1 \implies I(W^{\varepsilon}) = +\infty$ (almost surely)
- $\triangleright I(0) = 0$ reflects $W^{\varepsilon} \to 0$ ($\varepsilon \to 0$)

Large deviations for Brownian motion: Examples

Example I: Endpoint again ... (d = 1) $\Gamma = \{\varphi \in C_0 : \varphi_t \in A\}$

 $\inf_{\Gamma} I = \inf_{x \in A} \frac{1}{2} \int_{0}^{t} \left| \frac{\mathrm{d}}{\mathrm{d}s} \left(\frac{xs}{t} \right) \right|^{2} \mathrm{d}s = \inf_{x \in A} \frac{x^{2}}{2t} = \text{cost to force BM to be in } A \text{ at time } t$ $\implies \mathbb{P} \{ W_{t}^{\varepsilon} \in A \} \sim \exp \{ - \inf_{x \in A} \frac{x^{2}}{2t\varepsilon} \}$

Note: Typical spreading of W_t^{ε} is $\sqrt{\varepsilon t}$

Example II: BM leaving a small ball $\Gamma = \{\varphi \in C_0 \colon \|\varphi\|_{\infty} \ge \delta\}$

 $\inf_{\Gamma} I = \inf_{0 \leqslant t \leqslant T} \inf_{\varphi \in \mathcal{C}_0 : \|\varphi_t\| = \delta} I(\varphi) = \inf_{0 \leqslant t \leqslant T} \frac{\delta^2}{2t} = \frac{\delta^2}{2T} = \text{cost to force BM to leave } B(0, \delta) \text{ before } T$

$$\implies \mathbb{P}\big\{\exists t \leqslant T, \ \|W_t^{\varepsilon}\| \ge \delta\big\} \sim \exp\big\{-\delta^2/2T\varepsilon\big\}$$

Example III: BM staying in a cone (similarly ...)

Large deviations for Brownian motion: Lower bound

To show: Lower bound for open sets

$$\liminf_{\varepsilon \to 0} \varepsilon \log \mathbb{P}\{W^{\varepsilon} \in G\} \ge -\inf_{G} I \qquad \text{for all open } G \subset \mathcal{C}_{0}$$

Lemma (local variant of lower bound)

 $\liminf_{\varepsilon \to 0} \varepsilon \log \mathbb{P}\{W^{\varepsilon} \in B(\varphi, \delta)\} \ge -I(\varphi) \quad \text{ for all } \varphi \in \mathcal{C}_0 \text{ with } I(\varphi) < \infty, \text{ all } \delta > 0$

 \triangleright Lemma \implies lower bound

Standard proof of Lemma: uses Cameron–Martin–Girsanov formula

Cameron–Martin–Girsanov formula (special case, d = 1)

 $\{W_t\}_t \mathbb{P}-\mathsf{BM} \implies \{\widehat{W}_t\}_t \mathbb{Q}-\mathsf{BM}$

where

$$\widehat{W}_t = W_t - \int_0^t h(s) \, \mathrm{d}s, \qquad h \in \mathcal{L}_2$$
$$\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}}\Big|_{\mathcal{F}_t} = \exp\left\{\int_0^t h(s) \, \mathrm{d}W_s - \frac{1}{2}\int_0^t h(s)^2 \, \mathrm{d}s\right\}$$

Large deviations for Brownian motion: Proof of Cameron–Martin–Girsanov formula

First step

$$X_t = \exp\left\{\int_0^t h(s) \, \mathrm{d}W_s - \frac{1}{2}\int_0^t h(s)^2 \, \mathrm{d}s\right\} \qquad h \in \mathcal{L}_2$$

$$Y_t = \exp\left\{\int_0^t (\gamma + h(s)) \, \mathrm{d}W_s - \frac{1}{2} \int_0^t (\gamma + h(s))^2 \, \mathrm{d}s\right\} = X_t \, \exp\left\{\gamma \widehat{W}_t - \frac{1}{2} \gamma^2 t\right\} \qquad \gamma > 0$$

are exponential martingales wrt. $\ \mathbb P$

Second step

$$\mathbb{E}_{\mathbb{Q}}\left\{Z\exp\left\{\gamma(\widehat{W}_{t}-\widehat{W}_{s})\right\}\right\} = \mathbb{E}_{\mathbb{P}}\left\{ZX_{t}\exp\left\{\gamma(\widehat{W}_{t}-\widehat{W}_{s})\right\}\right\} = \mathbb{E}_{\mathbb{P}}\left\{Z\exp\left\{-\gamma\widehat{W}_{s}+\frac{1}{2}\gamma^{2}t\right\}\mathbb{E}_{\mathbb{P}}\left\{Y_{t}\mid\mathcal{F}_{s}\right\}\right\}$$
$$= \mathbb{E}_{\mathbb{P}}\left\{ZX_{s}\exp\left\{\frac{1}{2}\gamma^{2}(t-s)\right\}\right\} = \mathbb{E}_{\mathbb{Q}}\left\{Z\right\}\exp\left\{\frac{1}{2}\gamma^{2}(t-s)\right\} \qquad \forall Z\in\mathcal{F}_{s}$$

 $\triangleright \widehat{W}_t - \widehat{W}_s$ is \mathbb{Q} -independent of $\mathcal{F}_s \implies$ increments are independent \triangleright Increments are Gaussian

 $\implies \widehat{W}_t$ is BM with respect to \mathbb{Q}

Large deviations for Brownian motion: Proof of the lower bound

$$d=1$$
, $\delta>0$, $\varphi\in\mathcal{C}_0$ with $I(\varphi)<\infty$, $\widehat{W}_t=W_t-\varphi_t/\sqrt{\varepsilon}$

$$\mathbb{P}\{\|W^{\varepsilon} - \varphi\|_{\infty} < \delta\} = \mathbb{P}\{\|\widehat{W}\|_{\infty} < \delta/\sqrt{\varepsilon}\} = \int_{\widehat{W} \in B(0,\delta/\sqrt{\varepsilon})} \exp\left\{-\frac{1}{\sqrt{\varepsilon}}\int_{0}^{T} \dot{\varphi}_{s} \,\mathrm{d}W_{s} + \frac{1}{2\varepsilon}\int_{0}^{T} \dot{\varphi}_{s}^{2} \,\mathrm{d}s\right\} \,\mathrm{d}\mathbb{Q}$$

Estimate integral by Jensen's inequality

$$\begin{split} \dots &= \exp\left\{-\frac{I(\varphi)}{\varepsilon}\right\} \mathbb{Q}\left\{\widehat{W} \in B(0, \delta/\sqrt{\varepsilon})\right\} \times \frac{1}{\mathbb{Q}\left\{\dots\right\}} \int_{\widehat{W} \in B(0, \delta/\sqrt{\varepsilon})} \exp\left\{-\frac{1}{\sqrt{\varepsilon}} \int_{0}^{T} \dot{\varphi}_{s} \, \mathrm{d}\widehat{W}_{s}\right\} \, \mathrm{d}\mathbb{Q} \\ &\geqslant \exp\left\{-\frac{I(\varphi)}{\varepsilon}\right\} \mathbb{P}\left\{W \in B(0, \delta/\sqrt{\varepsilon})\right\} \times \exp\left\{-\frac{1}{\sqrt{\varepsilon} \mathbb{P}\left\{\dots\right\}} \int_{W \in B(0, \delta/\sqrt{\varepsilon})} \int_{0}^{T} \dot{\varphi}_{s} \, \mathrm{d}W_{s} \, \mathrm{d}\mathbb{P}\right\} \\ &= \exp\left\{-\frac{I(\varphi)}{\varepsilon}\right\} \mathbb{P}\left\{W \in B(0, \delta/\sqrt{\varepsilon})\right\} \times 1 \end{split}$$

Finally note

$$\mathbb{P}\left\{W \in B(0, \delta/\sqrt{\varepsilon})\right\} \nearrow 1 \quad (\varepsilon \searrow 0) \qquad \Longrightarrow \qquad \liminf_{\varepsilon \to 0} \varepsilon \log \mathbb{P}\left\{\|W^{\varepsilon} - \varphi\|_{\infty} < \delta\right\} \ge -I(\varphi)$$

Large deviations for Brownian motion: Approximation by polygons (upper bound)

Approximate W^{ε} by the random polygon $W^{n,\varepsilon}$ joining $(0, W_0^{\varepsilon}), (T/n, W_{T/n}^{\varepsilon}), \ldots, (T, W_T^{\varepsilon})$ **To show:** $W^{n,\varepsilon}$ is a good approximation to W^{ε}

$$\mathbb{P}\left\{\|W^{\varepsilon} - W^{n,\varepsilon}\|_{\infty} \ge \delta\right\} \leqslant n \mathbb{P}\left\{\sup_{0 \leqslant s \leqslant T/n} \|W^{\varepsilon}_{s} - W^{n,\varepsilon}_{s}\| \ge \delta\right\} \leqslant n \mathbb{P}\left\{\sup_{0 \leqslant s \leqslant T/n} \|W^{\varepsilon}_{s}\| \ge \frac{\delta}{2}\right\}$$
$$= n \mathbb{P}\left\{\sup_{0 \leqslant s \leqslant T/n} \|W_{s}\| \ge \frac{\delta}{2\sqrt{\varepsilon}}\right\} \leqslant 2nd \exp\left\{-\frac{n\delta^{2}}{8\varepsilon dT}\right\} \qquad \text{(standard estimate)}$$

\Rightarrow Difference is negligible:

$$\limsup_{n \to \infty} \limsup_{\varepsilon \to 0} \varepsilon \log \mathbb{P} \{ \| W^{\varepsilon} - W^{n,\varepsilon} \|_{\infty} \ge \delta \} = -\infty \quad \text{for all } \delta > 0$$

Large deviations for Brownian motion: Proof of the upper bound

$$F \subset \mathcal{C}_0 \text{ closed}, \quad \delta > 0, \quad \ell_{\delta} = \inf_{F^{(\delta)}} I = \inf \left\{ I(\varphi) \colon \varphi \in F^{(\delta)} \right\}, \quad n \in \mathbb{N}$$
$$\mathbb{P}\left\{ W^{\varepsilon} \in F \right\} \leqslant \mathbb{P}\left\{ W^{n,\varepsilon} \in F^{(\delta)} \right\} + \mathbb{P}\left\{ \|W^{\varepsilon} - W^{n,\varepsilon}\|_{\infty} \ge \delta \right\} \leqslant \mathbb{P}\left\{ I(W^{n,\varepsilon}) \ge \ell_{\delta} \right\} + \text{negligible term}$$

 $W^{n,\varepsilon}\;$ being a polygon yields

$$I(W^{n,\varepsilon}) = \frac{1}{2} \int_0^T \|\dot{W}_s^{n,\varepsilon}\|^2 \,\mathrm{d}s = \frac{1}{2} \sum_{k=1}^n \frac{T}{n} \left\| \frac{n}{T} \left(W_{kT/n}^{n,\varepsilon} - W_{(k-1)T/n}^{n,\varepsilon} \right) \right\|^2 \stackrel{(\mathcal{D})}{=} \frac{\varepsilon}{2} \sum_{k=1}^{nd} \xi_i^2 \qquad (\xi_i \sim \mathcal{N}(0,1) \text{ i.i.d.})$$

By Chebychev's inequality, for $\ \gamma < 1/2$

$$\mathbb{P}\left\{I(W^{n,\varepsilon}) \ge \ell_{\delta}\right\} = \mathbb{P}\left\{\sum_{k=1}^{nd} \xi_{i}^{2} \ge \frac{2\ell_{\delta}}{\varepsilon}\right\} \leqslant \exp\left\{-\frac{2\gamma\ell_{\delta}}{\varepsilon}\right\} \left(\mathbb{E}\exp\left\{\gamma\xi_{1}^{2}\right\}\right)^{nd} = \exp\left\{-\frac{2\gamma\ell_{\delta}}{\varepsilon}\right\} \left(1-2\gamma\right)^{-nd/2}$$

 $\gamma < 1/2\;$ being arbitrary and the lower semi-continuity of $\;I\;$ show

$$\limsup_{\varepsilon \to 0} \varepsilon \log \mathbb{P} \{ W^{\varepsilon} \in F \} \leqslant \limsup_{n \to \infty} \limsup_{\varepsilon \to 0} \varepsilon \log \mathbb{P} \{ I(W^{n,\varepsilon}) \ge \ell_{\delta} \} \leqslant -\ell_{\delta} = -\inf_{F^{(\delta)}} I \searrow -\inf_{F} I$$

Large deviations for solutions of SDEs: Special case

 $dx_t^{\varepsilon} = b(x_t^{\varepsilon}) dt + \sqrt{\varepsilon} dW_t, \qquad x_0^{\varepsilon} = x_0$ (b Lipschitz, bounded growth, $g(x) \equiv$ identity matrix)

Define $F: \mathcal{C}_0 \to \mathcal{C}$ by $\varphi \mapsto F(\varphi) = f$, f being the unique solution in \mathcal{C} to

$$f(t) = x_0 + \int_0^t b(f(s)) \,\mathrm{d}s + \varphi(t).$$

 $\triangleright \ F(W^{\varepsilon}) = x^{\varepsilon}$

 \triangleright F is continuous (use Gronwall's lemma)

Define $J: \mathcal{C} \to [0, \infty]$ by $J(f) = \inf \{ I(\varphi) \colon \varphi \in \mathcal{C}_0, F(\varphi) = f \}$

Contraction principle (trivial version)

I good rate fct, governing LDP for $W^{\varepsilon} \implies J$ good rate fct, governing LDP for $x^{\varepsilon} = F(W^{\varepsilon})$

Identify J:
$$J(f) = J_{[0,T],x_0}(f) = \begin{cases} \frac{1}{2} \int_{[0,T]} ||\dot{f}_s - b(f_s)||^2 \, \mathrm{d}s & \text{if } f \in H_1 \text{ with } f_0 = x_0 \\ +\infty & \text{otherwise} \end{cases}$$

$$\mathrm{d}x_t^{\varepsilon} = b(x_t^{\varepsilon}) \,\mathrm{d}t + \sqrt{\varepsilon} \,g(x_t^{\varepsilon}) \,\mathrm{d}W_t, \qquad x_0^{\varepsilon} = x_0$$

Assumptions

- \triangleright b, g Lipschitz continuous
- ▷ bounded growth: $||b(x)|| \le M (1 + ||x||^2)^{1/2}$, $a(x) = g(x)g(x)^T \le M (1 + ||x||^2)$ Id ▷ ellipticity: a(x) > 0

Theorem (Wentzell–Freidlin)

 $x^{\varepsilon}\;$ satisfies a LDP with good rate function

$$J(f) = J_{[0,T],x_0}(f) = \begin{cases} \frac{1}{2} \int_{[0,T]} \left\| a(f_s)^{-1/2} \left[\dot{f}_s - b(f_s) \right] \right\|^2 \, \mathrm{d}s & \text{if } f \in H_1 \text{ with } f_0 = x_0 \\ +\infty & \text{otherwise} \end{cases}$$

Remark

If a(x) is only positive semi-definite: LDP remains valid with good rate function but identification of J may fail;

$$J(f) = \inf \left\{ I(\varphi) \colon \varphi \in H_1, \ f_t = x_0 + \int_0^t b(f_s) \, \mathrm{d}s + \int_0^t a(f_s)^{1/2} \dot{\varphi}_s \, \mathrm{d}s, \ t \in [0, T] \right\}$$

Large deviations for solutions of SDEs: Sketch of the proof for the general case

- ▷ Difficulty: Cannot apply contraction principle directly
- Introduce Euler approximations

$$x_t^{n,\varepsilon} = x_0 + \int_0^t b(x_s^{n,\varepsilon}) \, \mathrm{d}s + \sqrt{\varepsilon} \int_0^t g(x_{T_n(s)}^{n,\varepsilon}) \, \mathrm{d}W_s, \qquad T_n(s) = \frac{[ns]}{n}$$

 \triangleright Schilder's Theorem and contraction principle imply LDP for $x^{n,\varepsilon}$ with good rate function J^n

$$J^{n}(f) = \begin{cases} \frac{1}{2} \int_{[0,T]} \|a(f_{T_{n}(s)})^{-1/2} [\dot{f}_{s} - b(f_{s})] \|^{2} ds & \text{if } f \in H_{1} \text{ with } f_{0} = x_{0} \\ +\infty & \text{otherwise} \end{cases}$$

▷ To show:

(1) $x^{n,\varepsilon}$ is a good approximation to x^{ε} (not difficult but tedious, uses Itô's formula) (2) J^n approximates J: $\lim_{n\to\infty} \inf_{\Gamma} J^n = \inf_{\Gamma} J$ for all Γ

Large deviations for solutions of SDEs: Varadhan's Lemma

Assumptions

 $\triangleright \phi : \mathcal{C} \to \mathbb{R} \quad \text{continuous}$ $\triangleright \text{ Tail condition}$

$$\lim_{L\to\infty}\limsup_{\varepsilon\to 0}\,\varepsilon\,\log\,\int_{\phi(x^\varepsilon)\geqslant L}\exp\big\{\phi(x^\varepsilon)/\varepsilon\big\}\,\,\mathrm{d}\mathbb{P}=-\infty$$

Theorem (Varadhan's Lemma)

$$\lim_{\varepsilon \to 0} \varepsilon \log \int \exp\{\phi(x^{\varepsilon})/\varepsilon\} d\mathbb{P} = \sup_{\varphi} \left[\phi(\varphi) - J(\varphi)\right]$$

Remarks

Moment condition

$$\sup_{0<\varepsilon\leqslant 1} \left(\int \exp\{\alpha\,\phi(x^{\varepsilon})/\varepsilon\}\,\,\mathrm{d}\mathbb{P}\right)^{\varepsilon} < \infty \qquad \text{for some } \alpha\in(1,\infty)$$

implies tail condition.

- Infinite-dimensional analogue of Laplace method
- \triangleright Holds in great generality as long as $~x^{\varepsilon}~$ satisfies a LDP with a good rate function ~J

Diffusion exit from a domain: Introduction

Noise-induced exit from a domain \mathcal{D} (bounded, open, smooth boundary)

Consider small random perturbation

$$\mathrm{d}x_t^\varepsilon = b(x_t^\varepsilon) \,\mathrm{d}t + \sqrt{\varepsilon} \,g(x_t^\varepsilon) \,\mathrm{d}W_t,$$

of ODE

 $\dot{x}_t = b(x_t)$

(with same initial cond.)

 $x_0^{\varepsilon} = x_0 \in \mathcal{D}$

First-exit time

 $\tau^{\varepsilon} = \inf \left\{ t \ge 0 \colon x_t^{\varepsilon} \notin \mathcal{D} \right\}$

Questions

 \triangleright Does x_t^{ε} leave \mathcal{D} ?

- ▷ If so: When and where?
- ▷ Expected time of first exit?
- Concentration of first-exit time and location?

Towards answers

- \triangleright If x_t leaves \mathcal{D} , so will x_t^{ε} . Use LDP to estimate deviation $x_t^{\varepsilon} x_t$.
- \triangleright Later on: Assume x_t does *not* leave \mathcal{D} . Study noise-induced exit.

Diffusion exit from a domain: Relation to PDEs

Assumptions (from now on)

- \triangleright *b*, *g* Lipschitz cont., bounded growth
- $\triangleright a(x) = g(x)g(x)^T \ge (1/M)$ Id (uniform ellipticity)
- $\triangleright \ \mathcal{D} \ \ \text{bounded domain, smooth boundary}$

Infinitesimal generator $\mathcal{L}^{\varepsilon}$ of diffusion x^{ε}

$$\mathcal{L}^{\varepsilon} v(t,x) = \frac{\varepsilon}{2} \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} v(t,x) + \langle b(x), \nabla v(t,x) \rangle$$

Theorem

For $f: \partial \mathcal{D} \to \mathbb{R}$ continuous

 $\triangleright \mathbb{E}_{x}\{\tau^{\varepsilon}\} \text{ is the unique solution of the PDE} \qquad \begin{cases} \mathcal{L}^{\varepsilon} u = -1 & \text{in } \mathcal{D} \\ u = 0 & \text{on } \partial \mathcal{D} \end{cases}$

 $\triangleright \mathbb{E}_x \{ f(x_{\tau^{\varepsilon}}^{\varepsilon}) \}$ is the unique solution of the PDE

$$\left\{ \begin{array}{ll} \mathcal{L}^{\varepsilon} \, w = 0 & \mbox{ in } \mathcal{D} \\ w = f & \mbox{ on } \partial \mathcal{D} \end{array} \right.$$

Remarks

Information on first-exit times and exit locations can be obtained *exactly* from PDEs
 In principle . . .

 \triangleright Smoothness assumption for ∂D can be relaxed to "exterior-ball condition"

October 20, 2003 18 (24)

Diffusion exit from a domain: An example

Overdamped motion of a Brownian particle in a single-well potential

d=1, potential U deriving from b, b(0)=0, x b(x) < 0 for $x \neq 0$, $g(x) \equiv 1$

- Drift pushes particle towards bottom
- \triangleright Probability of x^{ε} leaving $\mathcal{D} = (\alpha_1, \alpha_2) \ni 0$?

Solve the (one-dimensional) Dirichlet problem

$$\begin{cases} \mathcal{L}^{\varepsilon} w = 0 & \text{in } \mathcal{D} \\ w = f & \text{on } \partial \mathcal{D} \end{cases} \quad \text{with} \quad f(x) = \begin{cases} 1 & \text{for } x = \alpha_1 \\ 0 & \text{for } x = \alpha_2 \end{cases}$$

$$w(x) = \mathbb{P}_x \left\{ x_{\tau^{\varepsilon}}^{\varepsilon} = \alpha_1 \right\} = \mathbb{E}_x f(x_{\tau^{\varepsilon}}^{\varepsilon}) = \int_x^{\alpha_2} e^{2U(y)/\varepsilon} \, \mathrm{d}y \, \Big/ \int_{\alpha_1}^{\alpha_2} e^{2U(y)/\varepsilon} \, \mathrm{d}y$$

$$\begin{split} \lim_{\varepsilon \to 0} \mathbb{P}_x \{ x_{\tau^{\varepsilon}}^{\varepsilon} = \alpha_1 \} &= 1 & \text{if } U(\alpha_1) < U(\alpha_2) \\ \lim_{\varepsilon \to 0} \mathbb{P}_x \{ x_{\tau^{\varepsilon}}^{\varepsilon} = \alpha_1 \} &= 0 & \text{if } U(\alpha_2) < U(\alpha_1) \\ \lim_{\varepsilon \to 0} \mathbb{P}_x \{ x_{\tau^{\varepsilon}}^{\varepsilon} = \alpha_1 \} &= \frac{1}{|U'(\alpha_1)|} \left/ \left(\frac{1}{|U'(\alpha_1)|} + \frac{1}{|U'(\alpha_2)|} \right) & \text{if } U(\alpha_1) = U(\alpha_2) \end{split}$$

Corollary (to LDP for x^{ε})

$$\lim_{\varepsilon \to 0} \varepsilon \log \mathbb{P}_x \big\{ \tau^{\varepsilon} \leqslant t \big\} = -\inf \big\{ V(x, y; s) \colon s \in [0, t], \ y \notin \mathcal{D} \big\},\$$

where

$$V(x,y;s) = \inf \left\{ J_{[0,s],x}(\varphi) \colon \varphi \in \mathcal{C}([0,s], \mathbb{R}^d), \ \varphi_0 = x, \ \varphi_s = y \right\}$$
$$= \inf \left\{ \frac{1}{2} \int_0^s ||h_u||^2 \ \mathrm{d}u \colon h \in \mathcal{L}_2([0,s], \mathbb{R}^d) \text{ such that} \right.$$
$$\varphi_v = x + \int_0^v b(\varphi_u) \ \mathrm{d}u + \int_0^v g(\varphi_u) h_u \ \mathrm{d}u, \ v \in [0,s], \text{ and } \varphi_s = y \right\}$$

x = cost of forcing a path to connect x and y in time s

Remarks

 \triangleright Upper and lower LDP bounds coincide \implies limit exists

- Calculation of asymptotical behaviour reduces to variational problem
- \triangleright V(x,y;s) is solution to a Hamilton–Jacobi equation; extremals solution to an Euler equation

Diffusion exit from a domain: Assumptions and the concept of quasipotentials

Assumptions

- $\triangleright \dot{x}_t = b(x_t)$ has a unique stable equilibrium point $x^* = 0$ in \mathcal{D} , x^* is asymptotically stable
- $\triangleright \overline{D}$ is contained in the basin of attraction of $x^* = 0$ (for the deterministic dynamics)
- $\triangleright \ \overline{V} = \inf_{z \in \partial D} V(0,z) < \infty$

with quasipotential

 $V(0,y) = \inf_{t>0} V(0,y;t) = \text{cost of forcing a path starting in } x^* = 0$ to reach y eventually

Remarks

- \triangleright Similar if \mathcal{D} contains for instance a stable periodic orbit
- Conditions exclude characteristic boundary
- > Uniform-ellipticity condition can be relaxed; requires additional controllability condition
- \triangleright Were $\ \overline{V}=\infty$, all possible exit points would be equally unlikely
- ▷ If *b* derives from a potential *U*, g = Id: Quasipotential satisfies V(0, y) = 2 [U(y) - U(0)] for all $y \in \overline{D}$ such that $U(y) \leq \min_{\partial D} U$

Arrhenius law: For *b* deriving from a potential, g = Id

The average time to leave potential well is $\exp\{\text{twice the barrier height}/\text{noise intensity}\}$

Diffusion exit from a domain: Main results

Theorem

For all initial conditions $x \in \mathcal{D}$ and all $\delta > 0$

▷ First-exit time:

$$\lim_{\varepsilon \to 0} \mathbb{P}_x \Big\{ \exp\{(\overline{V} - \delta)/\varepsilon\} < \tau^{\varepsilon} < \exp\{(\overline{V} + \delta)/\varepsilon\} \Big\} = 1$$

and

$$\lim_{\varepsilon \to 0} \varepsilon \log \mathbb{E}_x \{ \tau^\varepsilon \} = \overline{V}$$

▷ **First-exit location:** For any closed subset $N \subset \partial D$ satisfying $\inf_{z \in N} V(0, z) > \overline{V}$

$$\lim_{\varepsilon \to 0} \mathbb{P}_x \big\{ x_{\tau^{\varepsilon}}^{\varepsilon} \in N \big\} = 0$$

If $V(0, \cdot)$ has a unique minimum z^* on $\partial \mathcal{D}$, then

$$\lim_{\varepsilon \to 0} \mathbb{P}_x \big\{ \| x_{\tau^{\varepsilon}}^{\varepsilon} - z^* \| < \delta \big\} = 1$$

Remarks

- $\triangleright x^{\varepsilon}$ favours exit near boundary points where $V(0, \cdot)$ is minimal
- ▷ If $V(0, \cdot)$ has multiple minima on ∂D : corresponding weights cannot be obtained by largedeviation techniques

First step

 $\forall \mu$

 x^{ε} cannot remain in \mathcal{D} arbitrarily long without hitting a small neighbourhood $B(0,\mu)$ of 0:

$$\lim_{t \to \infty} \limsup_{\varepsilon \to 0} \varepsilon \log \sup_{x \in \mathcal{D}} \mathbb{P}_x \Big\{ x_s^{\varepsilon} \in \mathcal{D} \setminus B(0, \mu) \text{ for all } s \leqslant t \Big\} = -\infty$$

 \implies Restrict to initial conditions in $B(0,\mu)$

Second step

Lower bound on probability to leave \mathcal{D} :

- $\triangleright \mbox{ Construct piecewise a continuous exit path } \varphi \mbox{ connecting } x \mbox{, } 0 \mbox{, } \partial \mathcal{D} \mbox{ and some point } y \mbox{ at distance } \mu \mbox{ from } \overline{\mathcal{D}} \mbox{ with } I(\varphi) \leqslant \overline{V} + \eta$
- \triangleright Use LDP to estimate probability of x^{ε} remaining in $\mu/2$ -neighbourhood of exit path

Third step

More lemmas in the same spirit ... (involving exit locations)

Fourth step

Prove Theorem by considering successive attempts to leave \mathcal{D} using strong Markov property

The end: References

- A. Dembo and O. Zeitouni
 Large deviations techniques and applications
 Second ed., Springer-Verlag, New York, 1998
- J.-D. Deuschel and D. W. Stroock
 Large deviations
 Academic Press, 1989 (Reprinted by the American Mathematical Society, 2001)
- M. I. Freidlin and A. D. Wentzell
 Random perturbations of dynamical systems
 Second ed., Springer-Verlag, New York, 1998
- S. R. S. Varadhan
 Diffusion problems and partial differential equations
 Tata Institute of Fundamental Research
 Springer-Verlag, Heidelberg, 1980