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Overview

Introduction: Classical results for autonomous systems

. Small random perturbations of dynamical systems

. Exponential asymptotics for first-exit times (Wentzell–Freidlin)

. Subexponential asymptotics

Slowly time-dependent systems and stochastic resonance

. The motion of a Brownian particle in a double-well potential

. Simulations

. Rigorous results

. Deterministic dynamics

. Stochastic dynamics for noise intensities below threshold

. Stochastic dynamics for noise intensities above threshold

General slow–fast systems

. Dynamics near slow manifolds

. Bifurcations and reduced dynamics
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Autonomous dynamical systems: ODEs

Deterministic ODE

ẋdet
t = f(xdet

t ) , xdet
0 ∈ R d

with

f : R d → R d , f “well-behaved”

(Existence and uniqueness of solution)

Assumptions on deterministic dynamics

. Attractors A1,A2, . . .

. Domains of attraction B1,B2, . . .
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Small random perturbations of autonomous systems

dxt = f(xt) dt+ σ dWt , x0 = xdet
0 ∈ R d

. f : R d → R d “well-behaved”

. {Wt}t≥0 d-dim. (standard-) Brownian motion

. σ > 0 small

Noise enables transitions

between

domains of attraction

Questions

Transition times?

Transition probabilities?

Where do typical transitions occur?
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Diffusion exit from a domain: Exit problem

Bounded domain D 3 x0 (with smooth boundary)

. first-exit time τ = τD = inf{t > 0: xt 6∈ D}

. first-exit location xτ ∈ ∂D

Distribution of τ and xτ ?

Interesting case

D positively invariant

under deterministic flow

Approaches

. Mean first-exit times and locations via PDEs

. Exponential asymptotics via Wentzell–Freidlin theory
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Exponential asymptotics: Large deviations

Large-deviation rate function

I[0,t](ϕ) =
1

2

∫ t
0
‖ϕ̇s − f(ϕs)‖2 ds for ϕ ∈ H1

I[0,t](ϕ) = +∞ otherwise

Large-deviation principle

Probability ∼ exp{−I(ϕ)/σ2} to observe sample paths close to ϕ

Assumptions (for the next two slides)

. D positively invariant

. unique, asymptotically stable equilibrium point at 0 ∈ D

. ∂D ⊂ basin of attraction of 0 (non-characteristic boundary)
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Wentzell–Freidlin theory I

Quasipotential

. Quasipotential with respect to 0:

Cost to go against the flow from 0 to z

V (0, z) = inf
t>0

inf{I[0,t](ϕ): ϕ ∈ C([0, t],R d), ϕ0 = 0, ϕt = z}

. Minimum of quasipotential on boundary ∂D :

V := min
z∈∂D

V (0, z)

Gradient case (reversible diffusion)

Drift coefficient deriving from potential:

f = −∇V

. Cost for leaving potential well: V = 2H

. Attained for paths against the flow:

ϕ̇t = −f(ϕt)

H

6



Wentzell–Freidlin theory II

Theorem [Wentzell & Freidlin > ’70,’84] (under above assumptions)

For arbitrary initial condition x0 ∈ D

. Mean first-exit time

Ex0{τ} ∼ eV /σ
2

as σ → 0

. Concentration of first-exit times

Px0

{
e(V−δ)/σ2

6 τ 6 e(V+δ)/σ2
}
→ 1 as σ → 0 (δ > 0 )

. Concentration of exit locations near minima of quasipotential

Px0
{
‖xτ − z?‖ < δ

}
→ 1 as σ → 0 (δ > 0 )

(z? unique minimum of z 7→ V (0, z) on ∂D)
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Refined results in the gradient case

Simplest case: V double-well potential

First-hitting time τhit of deeper well

. Ex1{τhit} = c(σ) e2 [V (z)−V (x1)] / σ2

. lim
σ→0

c(σ) =
2π

|λ1(z)|

√√√√|det∇2V (z)|
det∇2V (x1)

exists !

λ1(z) unique negative e.v. of ∇2V (z)

([Eyring ’35], [Kramers ’40]; [Bovier, Gayrard, Eckhoff, Klein ’02–’05],

[Helffer, Klein, Nier ’04])

. Subexponential asymptotics known; related to geometry
at well and saddle / small eigenvalues of the generator

. τhit ≈ exp. distributed: lim
σ→0

P
{
τhit > tE τhit

}
= e−t

([Day ’82], [Bovier et al ’02])
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Slowly time-dependent systems

Overdamped motion of a Brownian particle

dxs = −
∂

∂x
V (xs, εs) ds+ σ dWs

in a periodically modulated potential

V (x, εs) = −
1

2
x2 +

1

4
x4 + (λc − a0) cos(2πεs)x

←−−→√
a0

↑↓ a
3/2
0

V (x,0) V (x,1/4) = V (x,3/4) V (x,1/2)
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Sample paths

Amplitude of modulation A = λc − a0
Speed of modulation ε
Noise intensity σ

A = 0.00, σ = 0.30, ε = 0.001 A = 0.10, σ = 0.27, ε = 0.001

A = 0.24, σ = 0.20, ε = 0.001 A = 0.35, σ = 0.20, ε = 0.001
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Different parameter regimes and stochastic resonance

Synchronisation I

. For matching time scales:
2π/ε = Tforcing = 2TKramers � e2H/σ2

. Quasistatic approach: Transitions twice per period likely
(physics’ literature; [Freidlin ’00], [Imkeller et al, since ’02])

. Requires exponentially long forcing periods

Synchronisation II

. For intermediate forcing periods: Trelax � Tforcing � TKramers
and close-to-critical forcing amplitude: A ≈ Ac

. Transitions twice per period with high probability

. Subtle dynamical effects: Effective barrier heights [Berglund & G ’02]

SR outside synchronisation regimes

. Only occasional transitions

. But transition times localised within forcing periods

. Cycling: Distribution of first-exit locations doesn’t converge
([Day ’92], [Maier & Stein ’96], [Berglund & G ’04], [Berglund & G ’05])
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Synchronisation regime II

Characterised by 3 small parameters:

0 < σ � 1 , 0 < ε� 1 , 0 < a0 � 1

Recall: Motion of a Brownian particle

dxs = −
∂

∂x
V (xs, εs) ds+ σ dWs

V (x, εs) = −
1

2
x2 +

1

4
x4 + (λc − a0) cos(2πεs)x , λc = 2

3
√

3

Rewrite in slow time t = εs :

dxt =
1

ε
f(xt, t) dt+

σ
√
ε

dWt

with drift term

f(x, t) = −
∂

∂x
V (x, t) = x− x3 − (λc − a0) cos(2πt)
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Small-barrier-height regime
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Effective barrier heights and scaling of small parameters

Theorem [ Berglund & G, Annals of Appl. Probab. ’02 ]

(informal version; exact formulation uses first-exit times from space–time sets)

∃ threshold value σc = (a0 ∨ ε)3/4

Below: σ ≤ σc

. Transitions unlikely

. Sample paths concentrated in one well

. Typical spreading �
σ(

|t|2 ∨ a0 ∨ ε
)1/4

�
σ(

curvature
)1/2

. Probability to observe a transition ≤ e−const σ2
c/σ

2

Above: σ � σc

. 2 transitions per period likely (back and forth)

. with probabilty ≥ 1− e−const σ4/3/ε|logσ|

. Transtions occur near instants of minimal barrier height;

. Transition window � σ2/3
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Step 1: Deterministic dynamics

xdet
t

x?+(t)

x?0(t)

x?−(t)

. For t ≤ −const :

xdet
t reaches ε-nbhd of x?+(t)

in time � ε|log ε| (Tihonov ’52)

. For −const ≤ t ≤ −(a0 ∨ ε)1/2 :

xdet
t − x?+(t) � ε/|t|

. For |t| ≤ (a0 ∨ ε)1/2 :

xdet
t − x?0(t) � (a0 ∨ ε)1/2 ≥

√
ε

(effective barrier height)

. For (a0 ∨ ε)1/2 ≤ t ≤ +const :

xdet
t − x?+(t) � −ε/|t|

. For t ≥ +const :

|xdet
t − x?+(t)| � ε
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Step 2: Below threshold σ ≤ σc = (a0 ∨ ε)3/4

Behaviour of yt = xt − xdet
t ?

Linearizing the drift coefficent −→ nonautonomous linear SDE

dy0
t =

1

ε
a(t)y0

t dt+
σ
√
ε

dWt , y0 = 0

a(t) = ∂xf(xdet
t , t) = curvature ; α(t, s) :=

∫ t
s
a(u) du

Solution y0
t =

σ
√
ε

∫ t
0

eα(t,s)/ε dWs is a Gaussian process

Variance v(t) =
σ2

ε

∫ t
0

e2α(t,s)/ε ds ∼
σ2

curvature

Concentration result for y0
t : P{|y0

t | > δ} ≤ e−δ
2/2v(t)

Aim: Analogous resultat for the whole sample path {yt}t≥0
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Step 2: Below threshold σ ≤ σc = (a0 ∨ ε)3/4

v(t) ∼
σ2

curvature
∼

σ2

(|t|2 ∨ a0 ∨ ε)1/2

ζ(t) :=
v(t)

σ2

B(h) :=
{

(x, t): |x− xdet
t | < h

√
ζ(t)

}

τB(h) = first-exit time of (xt, t) from B(h)
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Step 2: Below threshold σ ≤ σc = (a0 ∨ ε)3/4

Theorem ([Berglund & G ’02], [Berglund & G ’05])

∃ h0, c1, c2, c3 > 0 ∀h ≤ h0

C(h/σ, t, ε) e−κ−h
2/2σ2

≤ P
{
τB(h) < t

}
≤ C(h/σ, t, ε) e−κ+h

2/2σ2

with κ+ = 1− c1h , κ− = 1 + c1h+ c1 e−c2t/ε ;

C(h/σ, t, ε) =

√
2

π

|α(t)|
ε

h

σ

[
1 +O

(
σ

h

)
+
t

ε
e−c3h

2/σ2
+ e−c1t/ε+ε

]

Basic idea

local approximation of yt by y0
t ; Gaussian process is a rescaled Brownian motion;

results on the density of the first-passage time for BM through nonlinear curves
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Step 3: Above threshold σ � σc = (a0 ∨ ε)3/4

. Typical paths stay below
xdet
t + h

√
ζ(t)

. For t� −σ2/3 :
Transitions unlikely;
as below threshold

. At time t = −σ2/3 :
Typical spreading satisfies
σ2/3 � xdet

t − x?0(t) ;
Transitions become likely

. Near saddle:
Diffusion dominated dynamics

. Levels δ1 > δ0 with f � −1 ;
δ0 in domain of attr. of x?−(t) ;
Drift dominated dynamics

. Below δ0: beh. as for small σ
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Step 3: Above threshold σ � σc = (a0 ∨ ε)3/4

Idea of the proof

With probability ≥ δ > 0, in time � ε|logσ|/σ2/3,
the path reaches

. xdet
t if above

. then the saddle

. finally the level δ1

In time σ2/3 there are
σ4/3

ε|logσ|
attempts possible

During a subsequent time span of length ε, level δ0

is reached (with probability ≥ δ )

Finally, the path reaches the new well

Result

P
{
xs > δ0 ∀s ∈ [−σ2/3, t]

}
≤ e−const σ4/3/ε|logσ| (t ≥ −γσ2/3, γ small)
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General slow–fast systems

Fully coupled SDEs on well-separated time scales
dxt =

1

ε
f(xt, yt) dt+

σ
√
ε
F (xt, yt) dWt (fast variables ∈ R n)

dyt = g(xt, yt) dt+ σ′ G(xt, yt) dWt (slow variables ∈ Rm)

. {Wt}t≥0 k-dimensional (standard) Brownian motion

. D ⊂ R n × Rm

. f : D → R n, g : D → Rm drift coefficients, ∈ C2

. F : D → R n×k, G : D → Rm×k diffusion coefficients, ∈ C1

Small parameters

. ε > 0 adiabatic parameter (no quasistatic approach)

. σ, σ′ ≥ 0 noise intensities; may depend on ε:
σ = σ(ε), σ′ = σ′(ε) and σ′(ε)/σ(ε) = %(ε) ≤ 1
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Near slow manifolds: Assumptions on the fast variables

Existence of a slow manifold: ∃D0 ⊂ Rm ∃x? : D0 → R n

s.t (x?(y), y) ∈ D and f(x?(y), y) = 0 for y ∈ D0

Slow manifold is attracting: Eigenvalues of A?(y) := ∂xf(x?(y), y)

satisfy Reλi(y) ≤ −a0 < 0 , uniformly in D0

Theorem ([Tihonov ’52], [Fenichel ’79])

There exists an adiabatic manifold:

∃ x̄(y, ε) s.t.

. x̄(y, ε) is invariant manifold for

deterministic dynamics

. x̄(y, ε) attracts nearby solutions

. x̄(y,0) = x?(y) and x̄(y, ε) = x?(y) +O(ε)

y1
y2

x x?(y)

x̄(y, ε)

Consider now stochastic system under these assumptions
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Typical neighbourhoods of adiabatic manifolds

. Consider deterministic process (xdet
t = x̄(ydet

t , ε), ydet
t )

on (invariant) adiabatic manifold
. Dev. ξt :=xt − xdet

t of fast variables from adiabatic manifold
. Linearize SDE for ξt ; resulting process ξ0

t is Gaussian

Key observation
1

σ2
Cov ξ0

t is a particular sol. of the det. slow–fast system


εẊ(t) = A(ydet

t )X(t) +X(t)A(ydet)T + F0(ydet)F0(ydet)T

ẏdet
t = g(x̄(ydet

t , ε), ydet
t )

with A(y) = ∂xf(x̄(y, ε), y) and F0 0th-order approximation to F

. System admits an adiabatic manifold X(y, ε)

Typical neighbourhoods

B(h) :=
{

(x, y):
〈[
x− x̄(y, ε)

]
, X(y, ε)−1

[
x− x̄(y, ε)

]〉
< h2

}
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Concentration of sample paths near adiabatic manifolds

Define (random) first-exit times

τD0
:= inf{s > 0: ys /∈ D0}

τB(h) := inf{s > 0: (xs, ys) /∈ B(h)}

x̄(y, ε)

(xdet
t , ydet

t )

B(h)

Theorem [Berglund & G, J. Differential Equations, 2003]

Assume: ‖X(y, ε)‖, ‖X(y, ε)−1‖ uniformly bounded in D0

Then: ∃ ε0 > 0 ∃h0 > 0 ∀ ε 6 ε0 ∀h 6 h0

P
{
τB(h) < min(t, τD0

)
}

6 Cn,m(t) exp

{
−
h2

2σ2

[
1−O(h)−O(ε)

]}

where Cn,m(t) =
[
Cm + h−n

](
1 +

t

ε2

)
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Bifurcations

Question

What happens if (xt, yt) approaches a bifurcation

point (x̂, ŷ) for the deterministic dynamics?

Ex.: Saddle–node bifurcation General approach

x?(y)

(xdet
t , ydet

t )x

y1
y2

. Apply centre-manifold theorem

. Concentration results for deviation
from centre manifold
([Berglund & G, 2003])

. Consider reduced dynamics
on centre manifold

. Concentration results for deviation
of reduced system from original
variables [Berglund & G, 2003]
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