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Chapter 1

Introduction

Lecture 1

13.09.10
1.1 Empirical probability

It is assumed that a reader knows already elementary probability theory with coin

flipping, gambler games etc. The purpose of this course is to provide a rigorous

background of probability theory as a part of mathematics, and to show its close

relations to other fields, especially Analysis.

Probability theory deals with random events and their probabilities. A classical

example of a random event is a coin flip. The outcome of each flip may be heads or

tails:  or  .

Figure 1.1: Heads and tails of a british pound

If the coin is fair then after  trials,  occurs approximately 2 times, and so

does  . It is natural to believe that if  →∞ then #


→ 1

2
so that one says that 

occurs with probability 12 and writes P() = 12. In the same way P( ) = 12.
If a coin is biased then P() may different from 12, let

P() =  and P( ) =  := 1−  (1.1)

Let us show here a curious example how the random events  and  satisfying (1.1)

can be used to prove the following purely deterministic inequality:

(1− )

+ (1− ) ≥ 1 (1.2)

1



2 CHAPTER 1. INTRODUCTION

where 0     1, +  = 1, and  are positive integers. This inequality has an

algebraic proof which however is more complicated than the probabilistic argument

below.

Let us flip the biased coin  =  times independently and write down the

outcome of the trials in a × table putting in each cell  or  :



⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
    

    

    

    | {z }


Then, using the elementary probability theory, we obtain:

 = P {a given column contains only ’}
1−  = P { a given column contains at least one } 

It follows that

(1− ) = P {any column contains at least one  } (1.3)

and similarly

(1− ) = P {any row contains at least one }  (1.4)

Let us show that one of the events (1.3) and (1.4) will always take place, which would

imply that the sum of their probabilities is at least 1, and hence prove (1.2). Indeed,

assume that the event (1.3) does not take place, that is, some column contains only

’:








Then one easily sees that  exists in any row so that the event (1.4) takes place,

which was to be proved.

Is this proof rigorous? It may leave impression of a rather empirical argument

than a mathematical proof. The point is that we have used in this argument the

existence of events with certain properties: firstly,  should have probability  where

 a given number in (0 1) and secondly, there must be sufficiently many independent

events like that. Certainly, mathematics cannot rely on the existence of biased coins

(or even fair coins!). In order to make the above argument rigorous, one should have

a mathematical notion of events and their probabilities.

One of the purposes of this course is to introduce such notions and, based on

them, to prove the classical results of probability theory such as laws of large num-

bers, central limit theorems etc.
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1.2 Algebras of sets

Let Ω be any set. We consider the following set theoretic operations over subsets

 of Ω: the union  ∪ , the intersection  ∩ , the difference  \  and a

particular case of the latter: the complement  = Ω \.
Definition. Given a set Ω and a family F of its subsets, we say that F is algebra if

1. ∅ ∈ F and Ω ∈ F
2. if  ∈ F then  ∩ ∈ F
3. if  ∈ F then  ∈ F

Lemma 1.1 If F is algebra and  ∈ F then ∪ ∈ F and  \ ∈ F . Hence,
F is closed under the operations ∩∪ \.

Proof. Indeed, we have

( ∪) =  ∩ ∈ F

whence  ∪ ∈ F . For the difference, we have

 \ =  ∩ ∈ F 

A simplest example of an algebra is the family 2Ω of all subsets of Ω.

Definition. Given a set Ω and a family F of its subsets, we say that F is semi-

algebra if

1. ∅ ∈ F and Ω ∈ F
2. if  ∈ F then  ∩ ∈ F
3. if  ∈ F then  is a finite disjoint union of sets from F .

Clearly, any algebra is also a semi-algebra.

Example. Let Ω = R and F is the family of all intervals in R, that is, the sets of
one of the form

( ) = { ∈ R :     }
[ ) = { ∈ R :  ≤   }
( ] = { ∈ R :    ≤ }
[ ] = { ∈ R :  ≤  ≤ }

where   are either reals or±∞. Clearly, F contains ∅ = (0 0) andR = (−∞+∞),
the intersection of any two intervals is again an interval, and the complement of any
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interval is either an interval or a disjoint union of two intervals. Hence, F is a

semi-algebra (but not algebra).

The same is true if Ω is any interval in R and F is the family of all subintervals
of Ω.

Definition. Given a set Ω and a family F of its subsets, we say that F is -algebra
if F is an algebra and F admits the following property: if {} is a countable
sequence of sets from F then

∞\
=1

 ∈ F 

Lemma 1.2 If F is a -algebra and  ∈ F then

∞[
=1

 ∈ F 

Proof. Indeed, we have Ã ∞[
=1



!

=

∞\
=1


 ∈ F

whence the claim follows.

Hence, -algebra is closed under the following operations: unions and inter-

sections of at most countable number of sets as well as subtractions (and taking

complement). The difference between an algebra and a -algebra is that the former

is closed under those operations with finite numbers of sets.

Example. Let Ω = N = {1 2 3 } and F be the family of all subsets of Ω that

are finite or their complements are finite. It is easy to see that F is an algebra.

However, F is not a -algebra because F contains the singletons {1}  {3}  {5}  
(that is, the subset containing a single odd number) but not their union {1 3 5 } 

1.3 The notion of a measure

Let us recall the familiar from the elementary mathematics notions, which are all

particular cases of a measure.

1. Length of intervals in R: if  is a bounded interval with the endpoints  
(that is,  is one of the intervals ( ), [ ], [ ), ( ]) then its length is defined

by

 () = |− | 
The useful property of the length is the additivity : if an interval  is a disjoint union

of a finite family {}=1 of intervals, that is,  =
F

 , then

 () =

X
=1

 ()
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Indeed, let {}=0 be the set of all distinct endpoints of the intervals  1  
enumerated in the increasing order. Then  has the endpoints 0  while each

interval  has necessarily the endpoints  +1 for some  (indeed, if the endpoints

of  are  and  with    + 1 then the point +1 is an interior point of ,

which means that  must intersect with some other interval ). Conversely, any

couple , +1 of consecutive points are the end points of some interval  (indeed,

the interval ( +1) must be covered by some interval ; since the endpoints of 
are consecutive numbers in the sequence {}, it follows that they are  and +1).

We conclude that

 () =  − 0 =

−1X
=0

(+1 − ) =

X
=1

 () 

(See also the proof of Theorem 2.10 below).

2. Area of domains in R2. The full notion of area can constructed only within
the general measure theory, that will be partly discussed in this course. However,

for rectangular domains the area is defined easily. A rectangle  in R2 is defined as
the direct product of two intervals   from R:

 =  ×  =
©
( ) ∈ R2 :  ∈   ∈ 

ª


Then set

area () =  ()  () 

We claim that the area is also additive: if a rectangle  is a disjoint union of a finite

family of rectangles 1  , that is,  =
F

 , then

area () =

X
=1

area () 

For simplicity, let us restrict the consideration to the case when all sides of all

rectangles are semi-open intervals of the form [ ). Consider first a particular case,

when the rectangles 1   form a regular tiling of ; that is, let  = × where

 =
F

  and  =
F

 , and assume that all rectangles  have the form  × .

Then

area () =  ()  () =
X


 ()
X


 () =
X


 ()  () =
X


area () 

Now consider the general case when  is an arbitrary disjoint union of rectangles

. Let {} be the set of all -coordinates of the endpoints of the rectangles 

put in the increasing order, and {} be similarly the set of all the  -coordinates,
also in the increasing order. Consider the rectangles

 = [ +1)× [ +1)
Then the family {} forms a regular tiling of  and, by the first case,

area () =
X


area () 
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On the other hand, each  is a disjoint union of some of , and, moreover, those

 that are subsets of , form a regular tiling of , which implies that

area() =
X

⊂

area () 

Combining the previous two lines and using the fact that each  is a subset of

exactly one set , we obtainX


area () =
X


X
⊂

area () =
X


area () = area () 

3. Volume of domains in R3. The construction of volume is similar to that of
area. Consider all boxes in R3, that is, the domains of the form  =  ×  × 

where   are intervals in R, and set

vol () =  ()  ()  () 

Then volume is also an additive functional, which is proved as above.

4. Probability provides another example of an additive functional. In probability

theory, one considers a set Ω of elementary events, and certain subsets of Ω are

called events. For each event  ⊂ Ω, one assigns the probability, which is denoted

by P () and which is a real number in [0 1]. A reasonably defined probability must
satisfy the additivity: if the event  is a disjoint union of a finite sequence of evens

1   then

P () =
X

=1

P () 

The fact that  and  are disjoint, when  6= , means that the events  and 

cannot occur at the same time.

The common feature of all the above example is the following. We are given

a non-empty set Ω, a family F of its subsets (the families of intervals, rectangles,

boxes, events), and a function  : F → R+ := [0+∞) (length, area, volume,
probability) with the following property: if  ∈ F is a disjoint union of a finite

family {}=1 of sets from F then

 () =

X
=1

 () 

A function  with this property is called a finitely additive measure. Hence, length,

area, volume, probability are all finitely additive measures.

Now let us introduce an abstract notion of a measure. Fix a set Ω and a let F
be a family of subsets of Ω. Let  : F → R+ be a non-negative function on F .
Definition. The function  is called -additive (or countably additive) if, for any

finite or countable sequence {} of pairwise disjoint sets  ∈ F ,

(
S


) =
X


() (1.5)
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provided
S

 ∈ F . Any -additive function  : F → R+ is called a measure.
The function  is called finitely additive (or a finitely additive measure) if the

property (1.5) holds only for finite sequences {}.

Remark. If F is an algebra and (1.5) holds for two disjoint sets 1 2 then it

holds also for any finite sequence {}=1, which is proved by induction in .

If F contains ∅ and (1.5) holds for countable sequences {} then it holds also
for any finite sequences. Indeed, one first observes that  (∅) = 0; then any finite
sequence can be extended to a countable sequence by adding empty sets.

1.4 Probability measures

Definition. A measure  is said to be a probability measure if Ω ∈ F and (Ω) = 1.

Example. Let F be the family of all subintervals of the interval Ω = [0 1] and

 () be the length of . Then  is a probability measure.
Lecture 2

14.09.10Consider a class of probability measures that are called discrete. Let Ω be a finite

or countable set and {}∈Ω be a stochastic sequence, that is,  are non-negative
reals such that

P
  = 1 For any subset  ⊂ Ω define

P () =
X
∈

 (1.6)

Claim. The identity (1.6) defines a probability measure P on F = 2Ω Conversely,
any probability measure on 2Ω is given by (1.6) for some stochastic sequence {} 
Proof. Let {} be a disjoint sequence subsets of Ω, finite or countable. We

have

P
µ ∞S
=1



¶
=

X
∈
F




 =
X


X
∈

 =
X


P ()

so that P is -additive. Clearly, P is a probability measure because

P (Ω) =
X


 = 1

If P is any probability measure on Ω then define  = P ({})  Then (1.6) holds
for all  ⊂ Ω by -additivity. In particular, for  = Ω, we obtain

P
  = 1

If the set Ω is finite and |Ω| =  then the simplest probability measure on Ω

is given by the sequence  =
1

. The measure P defined in this way is called the

uniform distribution on Ω and is denoted by  ()  In this case, for any set  ⊂ Ω,

we have

P () =
||
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Let Ω = {0 1  }. The binomial distribution  ( ) on Ω is the probability

measure P on Ω that is determined by the stochastic sequence

 =

µ




¶
 (1− )

−
  = 0 1  

where  ∈ (0 1) is a given parameter and ¡


¢
= !

!(−)! is the binomial coefficient.
This sequence is stochastic because by the binomial formula

X
=0

 =

X
=0

µ




¶
− = (+ )


= 1

where  = 1− 

Let Ω = {0 1 2 } be countable. The Poisson distribution  () with param-

eter   0 is defined by the stochastic sequence

 = −


!
  = 0 1 

The exponential (or geometric) distribution with parameter  ∈ (0 1) is defined by

 = (1− )  = 0 1 

Definition. A probability space is a triple (ΩF P) where Ω is any set, F is a

-algebra of subsets of Ω and P is a probability measure on F . Elements of Ω are
called elementary events. Elements of F are called events. For any event  ∈ F ,
P() is called its probability.

Example. Let Ω be a finite or countable set and P be a probability measure
on F = 2Ω given by a stochastic sequence as above. Then the triple (ΩF P) is a
probability space, since F is obviously a -algebra. We refer to such spaces (ΩF P)
as discrete probability spaces.

Example. Let Ω = [0 1] and P be the length defined on the family F of all

subintervals of Ω. One can show that P is indeed a probability measure. However,
the triple (ΩF P) is not a probability space because F is not a -algebra (but

a semi-algebra). As we will see later, the domain F of P can be extended to a
-algebra.

The same applies to the unit square Ω = [0 1]
2
with F being the family of

rectangles in Ω and P being the area. The domain F of P can be extended to a
-algebra so that (ΩF P) becomes a probability space.



Chapter 2

Construction of measures

2.1 Extension of families of subsets

Given any family F of subsets of Ω, there exists at least one algebra containing F ,
for example, the family of all subsets of Ω. Note that if F are algebras (where the

parameter  runs over any set of indices) then\


F

is again algebra (and the same is true for -algebras). Hence, by taking the inter-

section of all the algebras, containing F , we obtain the minimal algebra containing
F that will be denoted by (F); that is,

 (F) = TA
where A runs over all algebras of subsets of Ω, containing F . In the same way, one
defines the minimal -algebra (F) containing F :

 (F) = TA
where now A runs over all -algebras of subsets of Ω, containing F .
One says that the family F generates the algebra (F) and the -algebra (F)

Example. (Exercise 1) If F consists of a single subset, say F = {}  then  (F) =
{∅Ω }. If F consists of two subsets, say F = {} then  (F) consists of
all possible unions of the following four disjoint sets:

 ∩  \  \ ( ∪) 

Theorem 2.1 If F is semi-algebra then (F) consists of all finite disjoint unions
of elements of F .

9
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Proof. We denote disjoint union by using the sign
F
. Denote by F 0 the family

of sets each of which is a finite disjoint union of sets from F . We want to prove
F 0 = (F). Since (F) is an algebra containing F , (F) must contain also finite
unions of sets from F and, hence, (F) ⊃ F 0.
We need then only to verify (F) ⊂ F 0, and for that it suffices to show that F 0 is

algebra. Clearly, ∅ and Ω are in F 0. Let us prove that if  ∈ F 0 then ∩ ∈ F 0.
By definition of F 0,  and  can be represented in the form

 =

G
=1

 and  =

G
=1



where  and  are in F . Then

 ∩ =
ÃG





!
∩
ÃG





!
=
G


( ∩)

Since  ∩ ∈ F , we conclude that  ∩ is a finite disjoint union of sets from F
and, hence,  ∩ ∈ F 0.
We are left to verify that if  ∈ F 0 then  ∈ F 0. Indeed, we have

 =

ÃG




!

=
\



 

Since  ∈ F , we have that 
 is a finite disjoint union of sets from F and hence


 ∈ F 0. As we have already proved, intersection of two sets from F 0 is again in
F 0. By induction, this extends to intersection of a finite numbers of sets. Hence,T

 ∈ F 0.

Example. Let Ω = [0 1] and F be a family of all intervals on [0 1]. As we have

already seen, F is a semi-algebra. Hence, by Theorem 2.1, the family of all finite

disjoint unions of intervals is an algebra.

A similar construction works in higher-dimensional spaces. Let Ω be a unit

square [0 1]2, and F be a set of all rectangles in Ω (by rectangle we mean here a

product 1 × 2 where 1 and 2 are intervals). Then again F is semi-algebra (see

Exercise 6) and the family of all finite disjoint unions of rectangles is an algebra.

The same applies to the -dimensional cube Ω = [0 1].

Theorem 2.2 Let F be a family of subsets of Ω that contains Ω. Then (F) con-
sists of all sets that can be obtained from the elements of F by using at most countable
number of operations ∩∪ and \.

Proof. Denote by F 0 the family of all subsets of Ω, that can be obtain from
elements of F by using at most countable number of operations ∩∪ and \. Clearly,

F 0 ⊂  (F) 
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On the other hand, F 0 is a -algebra because applying those operations on the sets
from F 0, we obtain sets which can also be obtained from F by at most countable

number of ∩∪ and \. Since  (F) is the minimal -algebra containing F , it follows
that

 (F) ⊂ F 0
whence F 0 =  (F) 

RemarkWe should warn that the term “at most countable number of operations” is somewhat

ambiguous (in contrast to “at most finite number of operations” which can be defined inductively).

Its rigorous meaning requires considering orders on countable sets of operations (because the

operations are performed in certain orders), and countable sets may be ordered in many non-

isomorphic ways. For example, consider the following two orders of a countable set:

1 2 3 [all positive integers] (2.1)

and

1 2 3 [all positive integers]123 [all bold positive integers] (2.2)

They are non-isomorphic because the bold 1 in (2.2) is preceded by infinite many elements, whereas

in (2.1) no elements possesses this property.

Orders of countable sets are called transfinite numbers. A careful description of the term “at

most countable number of operations” requires the theory of transfinite numbers, in particular,

the transfinite induction principle that extends the usual induction principle for integers.
Lecture 3

20.09.10

2.2 Extension of measures

Important problem in the measure theory is extension of measures from semi-

algebras to -algebras. Let  be a (countably additive) measure on a semi-algebra

F . Let us extend  to (F) as follows. Given  ∈ (F), by Theorem 2.1, it can be

represented in the form

 =

G
=1



where  ∈ F . Then define
() =

X
=1

() (2.3)

Theorem 2.3 If  is a countably additive measure on a semi-algebra F then its

extension (2.3) to (F) is well-defined and is also countably additive. Moreover, if
 is -additive on F then  is -additive on (F) as well.

Proof. The first part is the contents of Exercise 7. Let us prove the second part,

that is, the -additivity of  on  (F). Let  = F∞=1 where  ∈  (F). We
need to prove that

 () =

∞X
=1

 ()  (2.4)
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Represent the given sets in the form  =
F

  and  =
F

 where the

summations in  and  are finite and the sets  and  belong to F . Set also

 =  ∩

and observe that  ∈ F . Also, we have

 =  ∩ =  ∩
G


 =
G


( ∩) =
G




and

 =  ∩ =  ∩
G


 =
G


( ∩) =
G




By the -additivity of  on F , we obtain

 () =
X


 ()

and

 () =
X


 () 

On the other hand, we have by definition of  on  (F) that

 () =
X


 ()

and

 () =
X


 ()

Combining the above lines, we obtain

 () =
X


 () =
X


 () =
X


 () =
X


 () 

which finishes the proof.

The next step is extension from an algebra to -algebra. It is covered by the

following deep theorem which belongs to measure theory courses.

Theorem 2.4 (Carathéodory’s extension theorem) Let  be a -additive measure

on an algebra F . Then it can be uniquely extended to a -additive measure on (F)

We do not prove the existence part here. The uniqueness part will be proved

below after introducing necessary tools.

Clearly, if  has the total mass 1 then this is preserved by any extension. Hence,

we obtain the following corollary.

Corollary 2.5 If  is a probability measure on a semi-algebra F then it can be

uniquely extended to a probability measure on (F).
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2.3 Equivalent definitions of -additivity

Let F be a family of subsets of a set Ω and  be non-negative function on F .
Definition. We say that  is -subadditive if whenever  ⊂ S

=1 where  and

all  are elements of F and  is either finite or infinite, then

 () ≤
X

=1

 ()  (2.5)

If this property is true only for finite  then  is called finitely subadditive.

Theorem 2.6 Let F be a semi-algebra and  be a finitely additive measure on F .

()  is finitely subadditive.

()  is -additive if and only if it is -subadditive

Proof. () By Theorem 2.3 measure  can be extended to the algebra  (F) so
that  is finitely additive on  (F). Let  ⊂ S

=1 where  ∈ F and  is

finite. Consider the sets {}=1 defined by

 = ( ∩) \ (1 ∪  ∪−1)  (2.6)

Clearly,  ∈  (F),  ⊂ , the sequence {} is disjoint, and

 =
F

=1

 (2.7)

Indeed, the inclusion  ⊃ F

=1 is obvious. To prove the opposite inclusion,

consider an element  ∈  and let  be the smallest index such that  ∈ . Then

we see from (2.6) that also  ∈  and, hence,  ∈
F∞

=1, which proves (2.7). By

the finite additivity of  on  (F), we obtain

 () =

X
=1

 () 

On the other hand,  () =  ( \)+ () whence  () ≤  () and (2.5)

follows.

() The fact that -additivity implies -subadditivity is proved exactly in the

same way as above by replacing everywhere a finite  by  =∞.
Let us show that -subadditivity implies -additivity. Let  and {}∞=1 be

elements of F such that  =
F∞

=1, and let us prove that

 () =

∞X
=1

 () 
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The upper bound

 () ≤
∞X
=1

 ()

holds by the -additivity of . To prove the lower bound, it suffices to show that,

for any positive integer ,

 () ≥
X

=1

 () 

Since the sets  and
F

=1 are the elements of  (F) and

 ⊃
F

=1



we have

 () ≥ 

µ
F

=1



¶
=

X
=1

 () 

where in the last equality we have used the finite additivity of .

Definition. We say that a sequence of sets {} is monotone increasing if  ⊂
+1 for all , and monotone decreasing if  ⊃ +1 for all .

Theorem 2.7 Let F be a -algebra and  be a finitely additive measure on F . The
following conditions are equivalent.

()  is -additive.

() For any monotone increasing sequence {} of elements of F ,



µ ∞S
=1



¶
= lim

→∞
 () 

() For any monotone decreasing sequence {} of elements of F ,



µ ∞T
=1



¶
= lim

→∞
 () 

() For any monotone decreasing sequence {} of elements of F such that
T∞

=1 =

∅,
lim
→∞

 () = 0

Definition. A finitely additive measure  on a -algebra F is called continuous if

it satisfies one of the equivalent properties ()  ()  ().

Hence, a finitely additive measure is -additive if and only if it is continuous.

If {} is a monotone sequence of sets then define its limit by

lim =

½ S
, if {} is monotone increasing.T
, if {} is monotone decreasing.
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The the continuity property of  can be stated also as follows: for any monotone

sequence of sets {} ⊂ F ,

³
lim
→∞



´
= lim

→∞
 () 

which justifies this terminology.

Proof. ()⇒ () Denote  =
S∞

=1 and observe that

 = 1 ∪ (2 \1) ∪  ∪ ( \−1) ∪  =
∞F
=1

( \−1) 

where 0 = ∅. By the -additivity of , we have

 () =

∞X
=1

 ( \−1) =
∞X
=1

( ()−  (−1)) = lim
→∞

 () 

()⇒ () Let  =
T∞

=1. The sequence {
} is monotone increasing and

 =
S





whence

 () = lim
→∞

 (
) 

It follows that

 () =  (Ω)−  () = lim
→∞

( (Ω)−  (
)) = lim

→∞
 () 

()⇒ () This is trivial because

lim
→∞

 () = 

µ ∞T
=1



¶
=  (∅) = 0

()⇒ () Let {} be a sequence of disjoint sets from F and set

 =
∞S
=1



Consider the sets

 =  \
S

=1

 =
∞S

=+1



so that {} is a decreasing sequence and
T

 = ∅ Then we have  ()→ 0 as

→∞. On the other hand, since  is a disjoint union of  and the sets 1  ,

we obtain by the finite additivity of  that

 () =  () +

X
=1

 () 

whence it follows that

 () = lim
→∞

X
=1

 () =

∞X
=1

 () 
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2.4 Monotone class theorem

Given any family F of subsets of Ω and an operation ∗ on subsets of Ω, denote F∗
the minimal extension of F , which is closed under ∗. More precisely, consider all
families of subsets containing F and closed under ∗. For example, the family 2Ω of
all subsets of Ω satisfies always this condition. Then F∗ is the intersection of all
such families. If ∗ is an operation over a finite number of elements then F∗ can be
obtained from F by applying all possible finite sequences of operations ∗.
The operations to which we apply this notion are the following:

1. Intersection “∩” of two sets, that is  7→  ∩

2. Monotone difference “−” defined as follows: if  ⊃  then − =  \.

3. Monotone limit lim defined on sequences {}∞=1 as follows: if the sequence
is increasing, that is +1 ⊃  then

lim
→∞

 =

∞[
=1



and if  is decreasing that is +1 ⊂  then

lim
→∞

 =

∞\
=1



Theorem 2.8 (Monotone Class Theorem of Dynkin)

() If F contains Ω and is closed under ∩ (for example, if F is a semi-algebra)

then (F) = F−

() If F is algebra then (F) = F lim
Lecture 4

21.09.10 As a consequence we see that if F is any family of subsets containing Ω then

(F) = (F∩)− (2.8)

(F) =
³
(F∩)−

´lim
 (2.9)

Indeed, F∩ satisfies the hypotheses of Theorem 2.8, whence (2.8) and (2.9) follow

by successive application of two parts of the theorem.

The most non-trivial part is (2.8). Indeed, it says that any subset that can be

obtained from F by a finite number of operations ∩∪ \, can also be obtained by
first applying a finite number of ∩ and then applying finite number of “−”. This is
not quite obvious even for the simplest case

F = {Ω } 
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Then (2.8) implies that the union ∪ can be obtained from the elements of F∩ =
{Ω  ∩} by applying only monotone difference “−”. However, Theorem 2.8
does not say how exactly one can do that. The answer in this particular case is

 ∪ = Ω− ((Ω−)− ( − ∩))

(see Exercise 8 for further details).

Proof. () Assuming that F contains Ω and is closed under ∩, let us show that
F− is algebra, which will settle the claim. Indeed, as an algebra. F− must contain
(F) On the other hand, (F) is closed under “−” so it contains F−, whence
(F) = F−.
Clearly, Ω ∈ F− and ∅ = Ω− Ω ∈ F−. If  ∈ F− then also  ∈ F− because

 = Ω− is a monotone difference of sets from F−. We are left to show that F−
is closed under intersection, that is, to prove that

 ∈ F− ⇒  ∩ ∈ F− (2.10)

Assume first that  ∈ F and define the family  of suitable subsets  as follows:

 =
©
 ⊂ Ω :  ∩ ∈ F−ª

(where  is considered as fixed). Clearly,  contains F because F is closed under

intersections. Let us verify that  closed under monotone difference. Indeed, if

1 2 ∈  and 1 ⊂ 2 then

 ∩ (2 −1) = ( ∩2)− ( ∩1) ∈ F−

so that 2−1 ∈ . Hence,  contains F and is closed under “−” which implies that
it contains F−, that is, (2.10) holds under the additional assumption that  ∈ F .
Now let us drop this assumption. Fix  ∈ F− and consider a new family of

suitable sets :

 =
©
 ⊂ Ω :  ∩ ∈ F−ª 

As we have just proved,  contains F and is closed under “−”. Therefore,  contains
F−, which proves (2.10) in full generality.
() We have  (F) ⊃ F lim because  (F) is closed under countable unions and

intersectionsThe opposite inclusion will follow if we prove that F lim is a -algebra.
Let us first prove that F lim is an algebra. That Ω ∅ ∈ F lim follows from Ω ∅ ∈ F .
Let us prove that

 ∈ F lim ⇒  ∈ F lim (2.11)

Consider the family of suitable sets

 =
©
 ∈ Ω :  ∈ F limª 

Then  ⊃ F and  is closed under lim because if  = lim→∞ and  ∈  then


 ∈ F lim and

 = lim
 ∈ F lim
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Hence,  ⊃ F lim, which proves (2.11).
Let us prove that

 ∈ F lim ⇒  ∩ ∈ F lim (2.12)

Fix first  ∈ F and consider the family of suitable sets

 =
©
 ⊂ Ω :  ∩ ∈ F limª 

Then  ⊃ F and let us show that  is closed under lim  If  = lim where

 ∈ , then  ∩ ∈ F lim and
 ∩ = lim ( ∩) ∈ F lim

so that  ∈ . Hence,  contains F lim, which proves (2.12) under the additional
assumption  ∈ F .
Let us now drop the assumption  ∈ F . For any fixed  ∈ F lim consider the

following family suitable sets :

 =
©
 ⊂ Ω :  ∩ ∈ F limª 

By the above argument, we have  ⊃ F and  is closed under lim, whence  ⊃ F lim,
which finishes the proof of (2.12).

Hence, F lim is an algebra, and we are left to show that F lim is a -algebra. The
latter follows from the next lemma.

Lemma 2.9 If an algebra A is closed under monotone limits then A is a -algebra
(in other words, an algebra is a -algebra if and only if it is closed under monotone

lim).

It suffices to prove that if {}∞=1 if a sequence of elements of A, then
∞T
=1

 ∈ A

Indeed, consider the sets

 =
T
=1



and observe that  ∈ A as a finite intersection of elements of A. Since the sequence
{} is monotone decreasing, we obtain

∞T
=1

 =
∞T
=1

 = lim
→∞

 ∈ A

which was to be proved.

Theorem 2.8 has numerous applications. For example, it is used in the following

proof.

Proof of the uniqueness in Theorem 2.4. Let 0 and 00 be two -additive
extensions of measure  to  (F)  and let us prove that 0 = 00, that is, 0 () =
00 () for all  ∈  (F)  Consider the following family of suitable sets

 = { ∈  (F) : 0 () = 00 ()} 
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By hypothesis, we have  ⊃ F because for any  ∈ F

0 () =  () = 00 () 

We need to show that  ⊃  (F), and for that it suffices to verify that  is a

-algebra. Observe that  is closed under monotone limit. Indeed, if {} is a
monotone sequence from  and  = lim then by Theorem 2.7

0 () = lim0 () = lim00 () = 00 () 

Then we obtain by Theorem 2.8

 = lim ⊃ F lim =  (F) 

which finishes the proof.

2.5 Measures on R

Let F be the family of all intervals on R. Then the -algebra (F) is called the
Borel -algebra of R and is denoted by B (R). The elements of B (R) are called Borel
sets. The Borel -algebra B (R) contains all open and closed subsets of R (Exercise
2) as well as all possible their countable unions and intersections.

The necessity of considering the Borel sets appears naturally in measure theory,

in function theory and in probability theory. Although the structure a particular

Borel set may be rather complicated, we will never need to consider fancy Borel

sets. What we need is the fact that all “nice” sets as intervals, open sets and closed

sets can be considered as elements of this -algebra. Lecture 5

27.09.10Our purpose here is to describe all probabilities measures on B (R)  For any
probability measure  on B (R), define its distribution function  () by the identity

 () = (−∞ ]  ∈ R (2.13)

Theorem 2.10 If  () is the distribution function of a probability measure  on

B (R) then  possesses the following properties:

()  is monotone increasing;

()  (−∞) = 0 and  (+∞) = 1 (in the sense of limits);
()  is right continuous.

Moreover, if  is a function satisfying ()-() then  is the distribution function

of a unique probability measure on B (R).

Any function  satisfying ()-() is called a distribution function. Before the

proof consider some examples of distribution functions.
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Absolutely continuous measures.

Let  be a continuous or piecewise continuous function on R such that  () ≥ 0
and Z +∞

−∞
 ()  = 1 (2.14)

Define function  by

 () =

Z 

−∞
()() (2.15)

Then  satisfies the conditions ()-() and, hence, is a distribution function.

Any measure  that has a distribution function of type (2.15) is called absolutely

continuous. The function  () is called the density of .

By (2.13) we have for all  ≤ 

 (( ]) =  ((−∞ ])−  ((−∞ ]) =  ()−  () =

Z 



 () 

In particular,  ({}) = 0 whence it follows that

 (( ]) =  ([ ]) =  (( )) =  ([ )) =

Z 



 ()  (2.16)

Consider some specific examples.

Example. Let

 () =

½
1  ∈ [0 1] 
0,  ∈ [0 1] 

Then measure  is supported on [0 1] because  (R \ [0 1]) = 0 For any interval

 ⊂ [0 1] with endpoints   , we have by (2.16)

 () = − 

This measure  is called Lebesgue measure on [0 1] and is denoted by . Clearly, 

is the unique extension of the notion of length from intervals in [0 1] to the Borel

-algebra B ([0 1]). The latter is the minimal -algebra that contains all intervals
in [0 1]. It is possible to show that length cannot be extended to -algebra 2[01] of

all subsets of [0 1] as a -additive measure.

Similarly, one can define Lebesgue measure  on any interval [ +1] using the

density function

 () =

½
1  ∈ [ + 1] 
0,  ∈ [ + 1] 

Then one extends  to all Borel subsets of R by setting

 () =

+∞X
=−∞

 ( ∩ [ + 1]) 
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One can show that this extension of  is a measure on B (R) with values in [0+∞]
(but not a probability measure). It is also referred to as Lebesgue measure.

Example. Consider the function

 () =
1√
2

−
22

(see Fig. 2.1).

420-2-4

0.3

0.2

0.1

0

x

y

x

y

Figure 2.1: Function 1√
2
−

22

It is known from Analysis thatZ +∞

−∞
−

22 =
√
2

so that this function  satisfies (2.14). The measure  with the density  () is

called the Gauss measure on R For any interval  with endpoints   , we have

 () =

Z 



1√
2

−
22

Discrete measures.

Fix a (finite or countable) sequence {} of distinct reals and a stochastic sequence
{}. As we know from Section 1.4, the stochastic sequence defines a probability

measure  on the set {} by
 ({}) = 

and this measure extends to a probability measure on all subsets of R by

 () =
X

{:∈}
 (2.17)
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In particular,  is defined for all Borel sets  ⊂ R. Setting here  = (−∞ ], we

obtain the distribution function of this measure

 () =  ((−∞ ]) =
X
≤

  (2.18)

This function  jumps at  by , and stays constant otherwise.

Any measure  defined by (2.17) is called a discrete measure and the values of

 are called the atoms of this measure. Obviously,  is supported in the set {}.

Singular measures.

There is a third type of measures whose distribution function is given neither by

(2.15) nor by (2.18). We give an example of such a distribution function called

the Cantor function. Outside interval [0 1] the Cantor function takes the values

 () = 0 if   0 and  () = 1 if   1. Inside [0 1]  () is defined as the

limit of a sequence of continuous piecewise linear functions {}∞=0 as follows. Set
0 () = . If  is already constructed then define +1 by modifying  on all

maximal intervals where  is non-constant. Namely, if [ ] is such an interval

then set +1 to be equal to the
1
2
(() + ()) in the middle third of [ ], and

to be equal to  at the endpoints  and . In the other two thirds of [ ], define

+1 by linear interpolation. Obviously, each function  is continuous, monotone

increasing, and  (0) = 0,  (1) = 1. It is possible to prove that the sequence {}
converges uniformly to a distribution function  , and the corresponding measure 

is neither absolutely continuous, nor discrete.

Let us show that the sequence {} is uniformly convergent as →∞. Denote by [ ] an
interval, where  is non-constant and where the difference  () −  () is maximal possible;

set

 =  ()−  () 

Then by the above construction 0 = 1 and

+1 =
1

2
(() + ())−  () =

1

2


whence it follows that  = 2
−. On the other hand, we have

max | − +1| = 1

3
 () +

2

3
 ()− 1

2
(() + ()) =

1

6
( ()−  ()) =

1

6
  2−

It follows that for all   

max | − | ≤ max | − +1|+max |+1 − +2|+ +max |−1 − |
≤ 2− + 2−(+1) + + 2−(−1)

 2−(−1)

whence max | − | → 0 as  → ∞. Hence, the sequence {} is Cauchy and converges
uniformly to a function  on [0 1] that is hence continuous and monotone increasing.

Denote by  the union of all intervals in [0 1] where  is constant. By construction

0 = ∅ 1 =
∙
1

3

2

3

¸
 2 =

∙
1

9

2

9

¸
∪
∙
1

3

2

3

¸
∪
∙
7

9

8

9

¸
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and  ⊂ +1 for all . Set  = 1−  (), that is,  is the total length of the intervals where

 is non-constant. By construction, we have

+1 =
2

3


whence  = (23)
 → 0 as  → ∞. It follows that  () → 1 as  → ∞ and, hence, the limit

function  () stays constant on the set  =
S∞
=1  of the Lebesgue measure 1. Nevertheless,

the function  is continuous and changes it values from 0 to 1 on the set  = [0 1]\ of Lebesgue
measure 0. In fact,  is the Cantor set, and the corresponding probability measure  is supported

on the Cantor set. Measure  is not discrete, because  has no jumps, and is not absolutely

continuous because  () = 1 while  () = 0

Proof of Theorem 2.10. Let  be a distribution function of a measure 

For all    we have

 () = (−∞ ] ≤ (−∞ ] =  ()

so that  is monotone increasing. Using the continuity of the measure, we obtain,

for any sequence  ↓ −∞,

 (−∞) = lim
→∞

(−∞ ] = 

Ã\


(−∞ ]

!
= (∅) = 0

Similarly, for any sequence  ↑ +∞,

 (+∞) = lim
→∞

(−∞ ] = 

Ã[


(−∞ ]

!
= (R) = 1

Finally, let us prove the right continuity of  , that is,

lim
↓

 () =  ()

Indeed, we have

lim
↓

 () = lim
↓

(−∞ ] = 

Ã\


(−∞ ]

!
= (−∞ ] =  ()

Now let us prove that for any distribution function  there exists a unique

probability measure  on B (R) such that

(−∞ ] =  () (2.19)

Let F be the family of all semi-closed intervals of the form ( ] in R where   ∈ [
−∞+∞]. It is easy to check that F is a semi-algebra. If  satisfies (2.19) then it

follows that for any interval ( ]

( ] = (−∞ ]− (−∞ ] =  ()−  ()
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so that  is uniquely defined on F . By the uniqueness part of Corollary 2.5,  is
uniquely defined on  (F) = B (R) 
To prove the existence of , first define  on the intervals from F by

( ] =  ()−  ()

and check that  is indeed a probability measure on F . Then by the existence part
of Corollary 2.5,  extends to a probability measure on  (F) = B (R) 
Hence, let us prove that  is a probability measure on F . The value ( ] is

non-negative by the monotonicity of  . The total mass is 1 since

(R) =  (+∞)−  (−∞) = 1

Let us prove that  is -additive on F . By Theorem 2.6, it suffices to prove that 

is finitely additive and -subadditive.

Let us first show that  is finitely additive. Let an interval  ⊂ F be a disjoint

union of a finite number of intervals  ⊂ F   = 1  . Let {}=0 be the set of all
distinct endpoints of all the intervals  1   enumerated in an increasing order.

Then  = (0  ] while each interval  has necessarily the form (−1 ] for some
. Indeed, if  = ( ] with    − 1 then −1 ∈ , which means that  must

intersect with some other interval . Conversely, any interval (−1 ] coincides
with some interval . Indeed, the point  must be covered by some interval ;

since  = (−1 ] for some , it follows that  =  and, hence,  = (−1 ].
Hence, the intervals 1   are in fact (0 1] (−1  ] (and  = ) whence

it follows that

X
=1

 () =

X
=1

( ()−  (−1)) =  ()−  (0) =  () 

We are left to show that  is -subadditive. Assume that

( ] ⊂
∞S
=1

( ]

and prove that

( ] ≤
∞X
=1

( ] (2.20)

If  = +∞ then it suffices to prove this inequality for any finite value of , so we

assume in the sequel that  is finite. Replacing  by min { }, we can assume
that all  are also finite.

Fix some   0 and using the right continuity of  choose 0 ∈ ( ) such that
 (0)   () + , whence

( ]  (0 ] + 

Similarly, choose 0   so that

 (0)   () + 2
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whence

( 
0
]  ( ] + 2

We have then

[0 ] ⊂ ( ] ⊂
∞S
=1

( ] ⊂
∞S
=1

( 
0
) 

that is, the bounded closed interval [0 ] is covered by a sequence {( 0)} of
open intervals. By the Borel-Lebesgue lemma, there is a finite subsequence of such

intervals that also covers [0 ], say

[0 ] ⊂
S
=1

¡
 

0


¢
for some finite  . It follows that also

(0 ] ⊂
S
=1

( 
0

]

By Theorem 2.6, the finitely additive measure  is finitely subadditive. It follows

that

(0 ] ≤
X
=1

( 
0

] ≤

∞X
=1

( ]

whence

( ] ≤ +(0 ] ≤ +

∞X
=1

( 
0
] ≤ +

∞X
=1

³
( ] +



2

´
= 2+

∞X
=1

( ]

Since   0 is arbitrary, we obtain (2.20) by letting → 0.
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Chapter 3

Probability spaces

Lecture 6

28.09.103.1 Events

Given a probability space (ΩF P), we can assign the exact meaning to the notion
of (a random) event. Recall that an elementary event is any element  from Ω.

An elementary event can be identified with the outcome of a particular series of

trials. An event is any element from F , that is a subset  of Ω, that belongs to the
-algebra F . The probability of the event  is the value P(). The elements of F
are also called P-measurable subsets of Ω to emphasize the fact that the value P ()
is defined only for  ∈ F .
The fact that an event  occurs in a given series of trials  means that  ∈ ;

that is

 occurs⇔  ∈ 

The logical operations on events correspond to the set theoretic operations on sets

as follows:

( and ) =  ∩
( or ) =  ∪
(not ) = 

Indeed, for example, we have

( and ) = { :  ∈  and  ∈ } =  ∩

Example. Consider a series of  trials of coin flipping. In this case each elementary

event  is a sequence of letters  and  of length , and Ω is the set of all such

sequences, that is,

Ω = { = {}=1 :  ∈ {} for all  = 1  } 
Set F = 2Ω. For example, the event “ occurs exactly  times” (where  = 1  

is given) is the set

 = { ∈ Ω :  =  for exactly  values of }  (3.1)

27
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For example, if  = 3 then

2 = { } 

One can introduce a probability measure on Ω in different ways. For example,

consider a uniform distribution on Ω (which corresponds to independent tossing of

a fair coin, as we will see below). Since |Ω| = 2, we obtain that for any  ∈ Ω,

P ({}) = 2−

Let us compute the probability of the above event (3.1). For that, we only need

to evaluate the number of sequences  ∈ Ω where  occurs exactly  times. It is

known from combinatorics that || =
¡




¢
. It follows that

P () =

µ




¶
2−

Consider the event ”the outcome of the -th trial is ”. Denote it by , that is

 = { ∈ Ω :  = } 

For example, if  = 3 then

2 = {  } 

Since in a sequence {1    } ∈  every element except for  can take

two values and  takes only one value, we obtain || = 2−1 Hence,

P () = 2
−12 =

1

2


3.2 Conditional probability

Let (ΩF P) be a probability space and  be an event with a positive probability.

For any event  define the conditional probability of  with respect to  by

P (|) = P ( ∩)
P ()



that is also referred to as “the probability of  given ”.

Theorem 3.1 () Let P ()  0 Then the function  7→ P (|) is a probability
measure on F  Hence, (ΩF P (·|)) is a probability space.

() (Bayes’ formula) If  and  events with positive probability, then

P (|) = P (|)P ()
P ()

 (3.2)
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Furthermore, if {} is a sequence of events that form a partition of Ω, that

is, if Ω =
F

, then

P (|) = P (|)P ()P
 P (|)P ()

 (3.3)

provided all the probabilities P () and P () are positive.

Proof. () Let us show that the conditional probability is -additive. If {}
is a disjoint sequence of events then

P (
S
|) = P ((

S
) ∩)
P ()

=
P (
S

 ( ∩))
P ()

=
X


P ( ∩)
P ()

=
X


P (|) 

The conditional probability is a probability measure since

P (Ω|) = P (Ω ∩)
P ()

= 1

() We have

P (|) = P ( ∩)
P ()

=
P ( ∩)
P ()

P ()
P ()

= P (|) P ()
P ()

 (3.4)

which proves (3.2). If {} is a partition of Ω then
P () =

X


P ( ∩) =
X


P (|)P ()  (3.5)

Using (3.4) and (3.5), we obtain

P (|) = P (|)P ()

P ()
=

P (|)P ()P
 P (|)P ()



An example of a partition is a pair {}. For this partition (3.3) becomes

P (|) = P (|)P ()
P (|)P () + P (|)P ()

 (3.6)

The identities (3.2), (3.3), (3.6) are referred to as Bayes’ formulas. As we have seen,

its proof is very simple, but these formulas find numerous of application in applied

probability. Let us consider an example.

Example. A treasure chest has been buried in one of  islands of an archipelago.
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Someone tries to find the chest by digging on the islands. Due to environmental

conditions, the probability to find the chest on the -th island, given that the chest

is buried on this island, is  ∈ (0 1). The chest is buried equally likely in any of
the islands. After digging on the first island the result of the search was negative.

What is the probability that the chest is buried on -th island?

An elementary event in this problem is any point  on the archipelago (where

the chest could be buried). The even  that the chest is buried on the -th island

is the set of all points  on the -th island. It is given that the events 1  

form a partition of the whole space Ω and P () =
1

for all  = 1  . The event

 that the chest was found consists of all points  where one actually digs. It is

given that

P (|) = 

The event  that the chest was not found on the first island is equal to

 = ( ∩1) 

The question is to evaluate P (|)  By Bayes’ formula

P (|) = P ( |)P ()P

=1 P ( |)P ()


Let us evaluate all terms here. We have

P ( |1) = 1− P ( ∩1|1) = 1− P (|1) = 1− 1

while

P ( |1) = 1− P ( ∩1|) = 1   1

It follows that

X
=1

P ( |)P () = (1− 1)
1


+

− 1


=
− 1




Therefore,

P (1|) = P ( |1)P (1)
−1


=
(1− 1)

1


−1


=
1− 1

− 1

and for   1

P (|) = P ( |)P ()
−1


=
1
−1


=
1

− 1


For example, if  = 4 and 1 = 05 then P (|) = 2
7
for any  = 2 3 4

Let us extend this question as follows. Suppose that after digging on the islands 1 2 

the result is still negative. Let us evaluate the probability that the chest is on -th island. Denote

by  the event that the chest was not found on the islands 1 2 . The event 
 that the

chest was found on one of the islands 1 2  is given by


 =  ∩ (1 ∪2 ∪  ∪) 
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The conditional probability P (|) can be evaluated as follows: for  ≤ 

P (|) = 1− P (
|) = 1− P ( ∩ (1 ∪2 ∪  ∪) |) = 1− P (|) = 1− 

and for   

P (|) = 1− P ( ∩ (1 ∪2 ∪  ∪) |) = 1

It follows that

X
=1

P (|)P () =
1− 1


+ +

1− 


+

−


=

− 1 − − 




By Bayes’ formula we obtain: for  ≤ 

P (|) =
P (|)P ()

−1−−


=
(1− )

1


−1−−


=
1− 

− 1 − − 

and for   

P (|) =
P (|)P ()

−1−−


=
1


−1−−


=
1

− 1 − − 


In particular, the probability that the chest is buried in one of the − remaining islands given

that the search on the first  islands was unsuccessful is equal to

−

− 1 − − 


For example, if  = 4,  = 2 and  = 05 then the above probability is equal to 2
3


3.3 Product of probability spaces

3.3.1 Product of discrete probability spaces

Let (Ω0F 0P0) and (Ω00F 00P00) be two discrete probability spaces. Consider the
product space (ΩF P) that is defined as follows:

Ω = Ω0 ×Ω00 = {( ) :  ∈ Ω0 and  ∈ Ω00} 

F = 2Ω, and P is defined by the stochastic sequence

() = 0
00
 

where 0 and 
00
 are the stochastic sequences of P

0 and P00, respectively. The sequence
() is stochastic becauseX



() =
X


0
00
 =

X


0
X


00 = 1

Hence, the product space (ΩF P) is a discrete probability space.
Claim. For all  ⊂ Ω0 and  ⊂ Ω00, we have

P (×) = P0 ()P00 ()  (3.7)
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Proof. We have

P (×) =
X

()∈×
() =

X
∈∈

0
00
 =

X
∈

0
X
∈

00 = P
0 ()P00 () 

The above probability measure P is called the product of P0 and P00 and is denoted
by P0 × P00.
Example. Let P0 ∼  () and P00 ∼  (). Then P0 × P00 ∼  ()  because

() =
1

1

= 1




By induction one can consider the product of finitely many discrete probability

spaces: if
©¡

Ω()F ()P()¢ª
=1
is a finite sequence of discrete probability spaces then

their product is the discrete probability space (ΩF P) where

Ω = Ω(1) × Ω(2) × ×Ω() =
©
(1  ) :  ∈ Ω() for all  = 1  

ª


F = 2Ω, and P is given by the stochastic sequence

(1) = 
(1)

1

(2)

2


()




where 
()

 is the stochastic sequence of P(). If  ⊂ Ω() then it follows from (3.7)

that

P (1 × ×) = P(1) (1) P() () 

3.3.2 Product of general probability spaces

Let (Ω0F 0P0) and (Ω00F 00P00) be two arbitrary probability spaces. We would like
to define a probability space on the product set Ω = Ω0 × Ω00 Consider the family
of subsets of Ω

F 0 ×F 00 = {× :  ∈ F 0  ∈ F 00} 
that is by Exercise 6 a semi-algebra (but not necessarily an algebra). Define function

P on F 0 ×F 00 by
P (×) = P0 ()P00 ()  (3.8)

Theorem 3.2 Function P is a probability measure on F 0 ×F 00

This theorem is hard and is proved in measure theory courses. The difficult part

is to prove the -additivity of P (for the finite additivity see Exercise 13). That
P (Ω) = 1 is trivial since

P (Ω) = P (Ω0 ×Ω00) = P0 (Ω0)P00 (Ω00) = 1
Lecture 7

04.10.10 The probability measure P is called the product of P0 and P00 and is denoted by
P0 × P00.
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Corollary 3.3 The probability measure P defined on F 0 × F 00 by (3.8) uniquely
extends to the -algebra F =  (F 0 ×F 00) 

Proof. Indeed, this is a direct consequence of Theorem 3.2 and Corollary 2.5.

Definition. The probability space (ΩF P), where Ω = Ω0×Ω00, F =  (F 0 ×F 00),
and P = P0 × P00 is called the product of the probability spaces (Ω0F 0P0) and
(Ω00F 00P00).
The product of discrete probability spaces is a particular case of this construction.

Of course, by induction the notion of the product extends to any finite number of

probability spaces.

Example. Consider the probability space ([0 1] B ), where B is the Borel -
algebra of the unit interval [0 1] and  is the Lebesgue measure. The product of 

copies of this space yields a -algebra B on the unit cube [0 1] and a probability
measure  on B, which is called the -dimensional Lebesgue measure. More

precisely, one first obtains a semi-algebra F that consists of all boxes 1 × × 
where  are subintervals of [0 1]. One defines  on F by

 (1 × × ) =  (1)  () =  (1)  () 

that is,  (1 × × ) is the -dimensional volume of the box. Then by Theorem

2.4 measure  extends from the semi-algebra F to the minimal -algebra  (F).

The latter is called the Borel -algebra of the unit cube [0 1]

and is denoted by

B ([0 1])  One can show that it is the minimal -algebra containing all open and
closed subsets of [0 1]


(see Exercise 2). The elements of B ([0 1]) are called Borel

subsets of [0 1]

.

Define the Borel -algebra B (R) as the minimal -algebra containing all boxes

in R, or equivalently, all open subsets of R. By splitting the space R into a

countable union of unit cubes, one extends the Lebesgue measure  from B ([0 1])
to B (R), although the latter is allowed to take ∞ values.

3.4 Independent events

Independence is one of the most important notions of Probability Theory, that

distinguishes it from Measure Theory.

3.4.1 Definition and examples

Definition. Two events  in a probability space (ΩF P) are called independent
if

P ( ∩) = P () ()  (3.9)
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The motivation for the identity is as follows. It is natural to say that  is

independent of , if

P (|) = P ()  (3.10)

that is, event  occurs with the same probability regardless of whether  is given

or not. Using the definition

P (|) = P ( ∩)
P ()

we obtain that (3.10) is equivalent to (3.9). However, (3.9) has advantage because

it is explicitly symmetric in  and does not require that P () 6= 0. Hence, one
takes (3.9) as the definition of the independence of  and . The above argument

shows that (3.10) is equivalent to the independence provided P () 6= 0
Example. If  and  are two events and P () = 0 or 1 then  and  are

independent. Indeed, if P () = 0 then also P ( ∩) = 0 whence the identity (3.9)
follows. If P () = 1 then P () = 0 and

P ( ∩) = 1− P ( ∪) = 1− P () = P () = P ()P () 

In particular,  and ∅ are always independent as well as  and Ω.

Example. (0-1 law) Suppose that the events  and  are independent. We claim

that P() = 0 or 1, which follows from

P() = P( ∩) = P()2

Example. Let Ω = { ∈ Z: 0 ≤  ≤ 99} and let P be the uniform distribution

on Ω We consider each integer in Ω as a two-digit decimal number and define the

following two events:

 = { ∈ Ω : the first digit of  is 1}
 = { ∈ Ω: the second digit of  is 2} 

The number of integers in Ω with the first digit 1 is 10 so that P () = 10
100

= 1
10


The number of integers in Ω with the second digit 2 is also 10, so that P () = 1
10


The only element in  ∩ is 12, so that

P ( ∩) = 1

100
= P ()P () 

Hence,  and  are independent.

Example. Let Ω = [0 1]
2
be the unit square and P be the area (=two dimensional

Lebesgue measure) defined on Borel -algebra F . Let  and  be two subintervals

of [0 1] and consider the rectangles

 =  × [0 1]   = [0 1]× 
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I

J 

A

B A∩B

Figure 3.1: Independent events  and 

(see Fig. 3.1). We claim that  and  are independent.

Indeed, we have P () =  ()  P () =  (), whence

P ( ∩) = P ( × ) =  ()  () = P ()P () 

This example shows how to construct two independent events with prescribed prob-

abilities.

Definition. Let {} be an indexed family of events, where the index  varies in

an arbitrary set. The family {} is called independent (or the events in this family
are called independent) if, for any finite sequence of distinct indices 1  ,

P (1 ∩  ∩) = P (1) P () 

For example, three events  are independent if the following identities are

satisfied:

P ( ∩) = P ()P ()  P ( ∩ ) = P ()P ()  P ( ∩ ) = P ()P ()
and

P ( ∩ ∩ ) = P ()P ()P ()  (3.11)

In other words, three events are independent if they are pairwise independent

and in addition satisfy (3.11) (see Exercises 21, 22, 26 for various examples).

Many examples of independent events can be constructed by using products

of probability spaces. Let
©¡
Ω()F ()P()¢ª

=1
be a finite sequence of probability

spaces and let (ΩF P) be their product. In particular,
Ω = Ω(1) × × Ω() =

©
(1  ) :  ∈ Ω() for all  = 1  

ª
and

P (1 × ×) = P(1) (1) P() () (3.12)

for all  ∈ F ()
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Theorem 3.4 Chose one event  in each F and consider the following cylindrical

events in F for all  = 1  :

 = {(1  ) ∈ Ω :  ∈ }
= Ω(1) × ×Ω(−1) × ×Ω(+1) × ×Ω() (3.13)

Then the sequence {}=1 is independent and

P () = P() ()  (3.14)

Proof. The identity (3.14) follows immediately from (3.12). To prove the inde-

pendence, we need to verify that, for any 1 ≤  ≤  and for any sequence of indices

1 ≤ 1  2     ≤ ,

P (1 ∩ 2 ∩  ∩ ) = P (1)P (2) P () 

For simplicity of notation, take 1 = 1 2 = 2   =  (the same argument

applies to a general sequence). Then we have

1 ∩ 2 ∩  ∩  = {(1  ) ∈ Ω : 1 ∈ 1 2 ∈ 2   ∈ }
= 1 ×2 × × ×Ω(+1) × × Ω()

It follows from (3.7) that

P (1 ∩ 2 ∩  ∩ ) = P(1) (1)P(2) (2) P() ()P(+1)
¡
Ω(+1)

¢
P()

¡
Ω()

¢
= P(1) (1)P(2) (2) P() ()

Finally using (3.14) we obtain

P (1 ∩ 2 ∩  ∩ ) = P (1)P (2) P () 

Example. Let Ω be the set { ∈ Z : 0 ≤  ≤ 10 − 1} where  is a positive integer,
and let P be the uniform distribution on Ω, so that

¡
Ω 2

ΩP
¢
is a discrete

probability space. Each integer  ∈ Ω can be regarded as an -digit decimal (by

adding zeros in front if necessary). Choose a sequence {}=1 of decimal digits, that
is,  = 0 1  9 and consider the events

 = { ∈ Ω: the -th decimal digit of  is } 

where  = 1  . We claim that the events 1   are independent. Observe

that the space
¡
Ω 2

ΩP
¢
is the product of  copies of

¡
Ω1 2

Ω1 P1
¢
where Ω1 =

{0 1  9} and P1 is the uniform distribution on Ω1 (because the product of uniform
distributions is again a uniform distribution). The event  has the form (3.13) with

 = {} so that the sequence 1   is independent by Theorem 3.4.

Example. Theorem 3.4 allows to construct an arbitrarily long sequences of in-

dependent events with prescribed probabilities. Indeed, suppose we would like
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to construct a sequence of  independent events 1   such that P () = 
where 1   are given values from [0 1]. Then we first chose  probability spaces©¡

Ω()F ()P()¢ª
=1
and events  ∈ F such that P() () = . Then by Theorem

3.4 we obtain in the product space a sequence {}=1 of independent events, having
the probabilities  respectively.

Of course, one still has to show the existence of the initial events  with the

required property. For example, one can choose Ω() to consist of two elements,

say {1 2}, and P() to be a discrete probability measure defined by the stochastic
sequence { 1− }. Then the event  = {1} has P()-probability . Alternatively,
take Ω() to be the unit interval [0 1] and P() to be the Lebesgue measure on the
Borel -algebra. Then the event  = [0 ] has the probability 

3.4.2 Operations with independent events I

It is natural to expect that independence is preserved by certain operations on

events. For example, let  be independent events, and try to understand

why the following couples of events are independent:

1.  ∩ and  ∩

2.  ∪ and  ∪

3.  and  = ( ∩) ∪ ( \)

It is easy to show that  ∩ and  ∩ are independent. Indeed, we have

P (( ∩) ∩ ( ∩)) = P()P()P()P() = P( ∩)P( ∩)

It is less obvious why  ∪ and  ∪ are independent. This will follow from the

following statement.

Lemma 3.5 Let A be a sequence of independent events. Suppose that a sequence

A0 is obtained from A by one (or finite number) of the following procedures:

1. Adding to A the event ∅ or Ω.

2. Two events  ∈ A are replaced by  ∩, and the rest is the same.

3. An event  ∈ A is replaced by , and the rest is the same.

4. Two events  ∈ A are replaced by  ∪, and the rest is the same.

5. Two events  ∈ A are replaced by  \, and the rest is the same.

Then the sequence A0 is independent.
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As a consequence, we see that if  are independent then ∪ and ∪
are independent. However, Lemma 3.5 is not yet enough to prove the independence

of  and  as above, because  is involved twice in the formula defining . A

general theorem will be proved below that covers all such cases. Lecture 8

05.10.10Proof. Each of the above procedures adds to A a new event 0 and removes
from A some of the events. In order to prove that A0 is independent, it suffices to
show that, for any events 1 2   with distinct indices which remain in A,

P(0 ∩1 ∩  ∩) = P(0)P(1)P() (3.15)

Case 1. 0 = ∅ or Ω. Both sides of (3.15) vanish if 0 = ∅ If 0 = Ω then it

can be removed from both sides of (3.15), so (3.15) follows from the independence

of 1 2  ..

Case 2. 0 =  ∩. We have
P(( ∩) ∩1 ∩2 ∩  ∩) = P()P()P(1)P(2)P()

= P( ∩)P(1)P(2)P()

Case 3. 0 =  Then

P( ∩1 ∩2 ∩  ∩) = P(1 ∩2 ∩  ∩)− P( ∩1 ∩2 ∩  ∩)

= P(1)P(2)P()− P()P(1)P(2)P()

= P()P(1)P(2)P()

Case 4. 0 =  ∪ Suffice to note that by the identity
( ∪) = ( ∩)

this case amounts to the previous two.

Case 5. 0 =  \ Use the identity
 \ =  ∩

and the previous cases.

Lemma 3.5 allows to complete the justification of the argument in Introduction

for the proof of the inequality

(1− )

+ (1− ) ≥ 1 (3.16)

where  ∈ [0 1] and  = 1 − . Indeed, we need for the proof  independent

events each having the given probability . These events can be constructed as was

explained above. Denote them by  where  = 1 2   and  = 1 2 . Define

a random × matrix () where  is the row index and  is the column index,

as follows:

 = 1 if  occurs, and  = 0 otherwise.

More precisely,  is a function of  such that

 () =

½
1  ∈ 

0  ∈ 
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Denote by  the event that the -th column contains only 1, that is,

 = { = 1 for all  = 1  } = { occurs for all  = 1  } 

Since  =
T

=1 and {} are independent, we obtain

P() =

Y
=1

P () = 

By Lemma 3.5, events {} are independent so
©



ª
are also independent, whence

P(
T
=1


 ) = (1− )

Similarly, considering the events  that the -th row contains only 0, we obtain

that

P(
T
=1


) = (1− )

The desired inequality (3.16) follows then from the subadditivity of probability and

the following identity ÃT





!SµT





¶
= Ω

To prove this identity, observe that it is equivalent toÃS




!TµS




¶
= ∅

The left hand side here is the event

{some column contains only 1} ∩ {some row contains only 0} 

that can never occur, because the matrix entry at the intersection of the said row

and column must be simultaneously 0 and 1.

3.4.3 Operations with independent events II

Let us generalize the notion of independence as follows.

Definition. Let {A} be a sequence of families of events. We say that the sequence
{A} is independent if, for all choices of  ∈ A the sequence {} is independent.
Example. As follows from Lemma 3.5, the sequence of events {1 2 } is inde-
pendent if and only if the following sequence of families is independent:½µ

1

1

¶


µ
2

2

¶
 

¾
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Theorem 3.6 Let each family A be closed under ∩. If the sequence {A} is inde-
pendent then the sequence of the algebras {(A)} is also independent. Moreover,
the sequence of -algebras {(A)} is independent, too.

Proof. By adding Ω to each of the familiesA we do not change the independence

of the sequence {A}, so we can assume Ω ∈ A.

In order to check the independence of the sequence { (A)}, we need to test
finite sequences of events chosen from those families. Hence, it suffice to restrict

consideration to the case when this sequence is finite, say  = 1 2  . Also,

it suffices to prove that the independence of {A1 A} implies that the sequence
{(A1)A2 A} is independent. If we know that then we can by induction replace
A2 by (A2) etc.
To show the independence of { (A1) A2 A}, it suffices to verify that, for

arbitrary events 1 ∈ (A1) 2 ∈ A2   ∈ A, the following identity holds:

P(1 ∩2 ∩  ∩) = P(1)P(2)P() (3.17)

Indeed, by the definition of the independent events, one needs to check this property

also for subsequences {} but this amounts to the full sequence {} by choosing
the missing events to be Ω.

Denote for simplicity  = 1 and  = 2 ∩3 ∩ ∩. Since {2 3  }
are independent, (3.17) is equivalent to

P( ∩) = P()P() (3.18)

In other words, we are left to prove that  and  are independent, for any  ∈ (A1)
and  being an intersection of events from A2A3 A.

Fix such an event  and consider the family  of suitable events  that satisfy

(3.18), that is,

 = { ∈ (A1) : P( ∩) = P()P()} 
We need to show that  = (A1). Observe that all events from A1 are suitable,
that is,  ⊃ A1. Let us prove that  is closed under the monotone difference “−”.
Indeed, if 0 ∈  and  ⊃ 0 then

P((−0) ∩) = P( ∩)− P(0 ∩)
= P()P()− P(0)P()
= P(−0)P()

It follows that

 = − ⊃ A−1 =  (A1)
where the last identity holds by Theorem 2.8, whence  =  (A1) follows.
The independence of -algebras {(A)} is proved in the same way. It amounts

to veryfiyng that, for any  ∈ A2 ∩  ∩A, the family of suitable events

 = { ∈  (A1) : P( ∩) = P()P()}
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coincides with  (A1). By the first part, we have  ⊃  (A1). Let us show that
 is closed under monotone limits. Indeed, if  = lim→∞() where

©
()

ª
is a

monotone sequence of events from  then  ∩ = lim→∞() ∩ whence by the

continuity of P

P ( ∩) = lim
→∞

P
¡
() ∩¢ = lim

→∞
P
¡
()

¢
P () = P ()P ()

so that  ∈ . It follows that

 = lim ⊃  (A1)lim =  (A1) 
which finishes the proof.

The next statement illustrates how one applies Theorem 3.6.

Corollary 3.7 Suppose that {} is a sequence of independent events parametrized
by two indices  and . Denote by A the family of all events {} with a fixed 

and arbitrary . Then the sequence of -algebras {(A)} is independent.

For example, if the sequence {} is represented by a matrix with a row index
 and a column index 

A1 A2       A   ⎛⎜⎜⎜⎜⎝
11 12            

21 22            

                 

1 2          

                 

⎞⎟⎟⎟⎟⎠
then A consists of all the events in the column , and the claim is that the algebras

generated by different columns, are independent. Clearly, the same applies to the

rows.

Proof. Observe that the extended families
©A∩ ª are also independent. Indeed,

each event  ∈ A∩ is an intersection of a finite number of events from A, that is,

has the form

 = 1 ∩2 ∩  ∩ 

Hence, the sequence {} can be obtained by replacing in the double sequence
{} some elements by their intersections (and throwing away the rest), and the
independence of {} follows by Lemma 3.5 from the independence of {} across
all  and 

The sequence
©A∩ ª satisfies the hypotheses of Theorem 3.6, whence it follows

that the sequence {(A)} is independent.
Example. Let apply Corollary 3.7 to the aforementioned example of the events 

and  = ( ∩ ) ∪ ( \ ) assuming that  are independent. Indeed, in

the matrix ⎛⎝  

 Ω

 Ω

⎞⎠
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all events are independent. Therefore, the algebras () and (ΩΩ) are

independent. Since  ∈  (), we conclude that  and  are independent.

Example. (Exercise 17) If three events  are independent then also  and

 are independent for any  ∈  (). Indeed, consider the matrixµ
 

 Ω

¶
where all entries are independent. By Corollary 3.7, the algebras  () and

 (Ω) are independent, whence the claim follows. Note that in Exercise 17 one is

asked to prove the same directly, without using Corollary 3.7.



Chapter 4

Lebesgue integration

4.1 Null sets and complete measures

Let  be a measure on a -algebra F of subsets of Ω. Recall that all elements of F
are also called (- or F-) measurable subsets of Ω.
Definition. We say that a set  ⊂ Ω is a null set if  ⊂ for some measurable

set  with  () = 0

Note that the set  itself may be not measurable so that  () is not defined.

It is difficult to construct an explicit example of such sets but the existence can be

proved as follows. Consider the probability space ([0 1] B ), where B = B [0 1] is
the Borel -algebra on [0 1] and  is the Lebesgue measure. It is possible to prove

that |B| = |R| where |·| denotes the cardinality of a set. Denote by  the Cantor

set on [0 1] so that  () = 0 and || = |R|. Hence, any subset of  is a null set,

and the family of subsets of  has the cardinality¯̄
2
¯̄
=
¯̄
2R
¯̄
 |R| = |B| 

Hence, there are subsets of  that are not Borel sets, while they are nevertheless

null sets.

For many applications it is desirable that the null sets are measurable. For

example, if P () = 0 for some event , then it would be natural to conclude that
P () = 0 for any event  ⊂ , while strictly speaking this is not always the case.

To avoid such abnormal situations, we introduce the following definition.

Definition. A measure  is said to be complete if  () = 0 implies that all subsets

of  are -measurable. In other words,  is complete if all null sets are measurable.

Of course, any discrete probability space is always complete. However, the

Lebesgue measure is not complete on the Borel -algebra. Lecture 9

11.10.10

Theorem 4.1 Let  be a measure on a -algebra F of subsets of Ω. Denote by N
the family of all null sets of  and by F 0 the family of all subsets  of Ω that satisfy
the condition

4 ∈ N for some  ∈ F  (4.1)

43
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Then F 0 is a -algebra. Furthermore, for any  ∈ F 0 define 0 () by

0 () =  () 

where  is a set from (4.1). Then 0 is a complete measure on F 0.

Measure 0 is called the completion of measure , and the -algebra F 0 is called
the completion of F .
For example, the completion of the Borel -algebra (on intervals or on R) with

measure  is a larger -algebra that is called Lebesgue -algebra. The elements

of the Lebesgue -algebra are called Lebesgue measurable sets. The extension of

the Lebesgue measure  from the Borel -algebra to the Lebesgue -algebra is also

called the Lebesgue measure and is denoted also by . The same applies to the

Lebesgue measure  in R.

Proof of Theorem 4.1. The proof consists of a series of claims. Let us first prove some

properties of symmetric difference. Recall that 4 is defined by

4 = ( \) ∪ ( \) = ( ∪) \ ( ∩) 

Then condition  ∈ 4 means that  belongs to exactly one of the sets .

Claim 0. () For any sets ,

4 = 4

() For any sequences {} and {}, set  =
S
  and  =

S
. Then

4 ⊂ S


( 4)  (4.2)

() For any sets 1 2

1 42 ⊂ (41) ∪ (42) 

To prove (), observe that the condition  ∈ 4 means that  belongs to exactly one of

the sets  , that is,  belongs to exactly one of the sets , which is equivalent to  ∈ 4.

To prove (), assume that  ∈  and  ∈ , and show that  ∈ S ( 4)  By the

definition of union,  belongs to one of the sets  and to none of . Hence,  ∈  4  for

some , whence the claim follows. The case  ∈  and  ∈  is treated similarly.

To prove (), assume that  ∈ 1 and  ∈ 2, and show that  ∈  := (41)∪ (42).

If  ∈  then  ∈ 42 and, hence,  ∈  . If  ∈  then  ∈ 41 whence  ∈  . The case

 ∈ 1,  ∈ 2 is treated in the same way.

Claim 1. F 0 is a -algebra and F 0 ⊃ F.
Every set  ⊂ F belongs also to F 0 because 4 = ∅ is a null set. Hence, F 0 ⊃ F . It follows

that ∅Ω ∈ F 0.
If  ∈ F 0 then, using the set  from (4.1) and Claim 0, we obtain

4 = 4 ∈ N .

Since  ∈ F , it follows that  ∈ F 0.
Let {} be a finite or countable sequence of sets from F 0. Let us prove that  :=

S
  ∈ F 0.

For any  there exists a set  ∈ F that satisfies condition (4.1), that is,

 4 ⊂  (4.3)
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where  () = 0. Setting  =
S
, we obtain by Claim 0

4 ⊂ S


( 4) ⊂
S


 =:  (4.4)

Since  ∈ F and  () = 0, we conclude that  ∈ F 0.
Claim 2. 0 is a measure.

First of all, 0 is well-defined in the following sense: if the condition (4.1) is satisfied for two
different sets , say for  = 1 and  = 2 then  (1) =  (2) so that 

0 () does not depend
on a particular choice of . Indeed, we have by Claim 0

1 42 ⊂ (41) ∪ (42) ∈ N 

whence it follows that  (142) = 0 and

 (1) =  (1 ∩2) =  (2) 

Let us prove that 0 is -additive. Let {} be a disjoint sequence of sets from F 0 and let
{} and {} be as in the previous Claim. Set as above

 =
S


  =
S


  =
S




It follows from (4.4) that

0 () =  () = 

µS




¶
= 

µS


( \ )

¶
 (4.5)

where the last equality holds because the setµS




¶
\
µS



( \ )

¶
⊂ S



 = 

has measure 0. Observe also that the condition (4.3) implies that

 \  ⊂ 

It follows that all the sets  \  are disjoint, whence by the -additivity of 



µS


( \)

¶
=
X


 ( \ ) =
X


 () =
X


0 ()  (4.6)

Comparing (4.5) and (4.6) we obtain that 0 is -additive.

Claim 3. Measure 0 is complete.

Let us first show that 0 () = 0 if and only if  ∈ N (which will imply the completeness of

0 since any subset of a null set is a null set). Indeed, if 0 () = 0 then there is a set  ∈ F such

that  () = 0 and 4  ∈ N . The latter means that 4  ⊂  for some set  ∈ F with

 () = 0 It follows that  ⊂  ∪ . Since  ( ∪) = 0, we conclude that  is a null set,

which finishes the proof.

4.2 Measurable functions

Let Ω be an arbitrary non-empty set and F be a -algebra of subsets of Ω. Recall

that a set  ⊂ Ω is called measurable (or F-measurable) if  ∈ F .
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Definition. We say that a function  : Ω→ R is F-measurable (or simply measur-
able if the choice of F is obvious) if, for any  ∈ R, the set { ∈ Ω :  () ≤ } is
F-measurable, that is, belongs to F .
Of course, the measurability of sets and functions depends on the choice of the -

algebra F . For example, in R we distinguish Borel (measurable) sets and functions,

that are measurable with respect to the Borel -algebra, and Lebesgue measurable

sets and functions, that are measurable with respect to the Lebesgue -algebra.

The measurability of a function  can be also restated as follows. Since

{ ≤ } = −1(−∞ ]

we can say that a function  is measurable if, for any  ∈ R, the set −1(−∞ ] is

measurable.

Example. For any subset  ⊂ Ω, its indicator function 1 is defined by

1 () =

½
1  ∈ 

0  ∈ 

Then set  is measurable if and only if function 1 is measurable. Indeed, for any

real , we have

{1 ≤ } =
⎧⎨⎩ ∅   0

 0 ≤   1

Ω  ≥ 1
The sets ∅ and Ω are always measurable, and  is measurable if and only if  is

measurable, whence the claim follows.

Example. Any continuous function  : R → R is Borel. Indeed, the set −1(−∞ ]

is a closed subset of R as the preimage of a closed set (−∞ ] in R. Since closed
sets are Borel, we conclude that  is Borel.

Example. Any monotone function  : R → R is Borel. Indeed, the monotonicity
implies that the set { ≤ } an interval, that is a Borel set.
Definition. A mapping  : Ω→ R is called measurable (or F-measurable) if, for
all 1 2   ∈ R, the set

{ ∈ Ω : 1 () ≤ 1 2 () ≤ 2   () ≤ }
is measurable. Here  is the -th component of  .

In other words, consider an infinite box in R of the form:

 = (−∞ 1]× (−∞ 2]× × (−∞ ] (4.7)

and call it a special box. Then a mapping  : Ω → R is measurable if, for any

special box , the preimage −1 () is a F-measurable subset of Ω.

Theorem 4.2 A mapping  : Ω→ R is F-measurable if and only if, for any Borel
set  ⊂ R, the preimage −1 () is an F-measurable set.
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Proof. If −1 () is measurable for any Borel set  ⊂ R then −1 () is
measurable for special boxes  and, hence, the mapping  is measurable.

To prove the opposite implication, denote byA the family of all sets  ⊂ R

such that −1 () is measurable. By hypothesis, A contains all special boxes. Let

us prove that A is a -algebra (this follows also from Exercise 4 since in the notation
of that exercise A =  (F)). If  ∈ A then −1() is measurable whence

−1() =
¡
−1()

¢ ∈ F 
whence  ∈ A. Also, if {} is a finite or countable sequence of sets from A then
−1 () is measurable for all  whence

−1
µT





¶
=
T


−1 () ∈ F 

which implies that
T
 ∈ A. Finally, A contains R because R is the countable

union of the intervals (−∞ ] where  ∈ N, and A contains ∅ = R.

Hence, A is a -algebra containing all special boxes. It remains to show that A
contains all the boxes in R, which will imply that A contains all Borel sets in R.

In fact, it suffices to show that any box in R can be obtained from special boxes

by a countable sequence of set-theoretic operations.

Assume first  = 1 and consider different types of intervals. If  = (−∞ ] then

 ∈ A by hypothesis.
Let  = ( ] where   . Then  = (−∞ ] \ (−∞ ], which proves that 

belongs to A as the difference of two special intervals.
Let  = ( ) where    and   ∈ R. Consider a strictly increasing sequence

{}∞=1 such that  ↑  as  → ∞. Then the intervals ( ] belong to A by the

previous argument, and the obvious identity

 = ( ) =
∞S
=1

( ]

implies that  ∈ A.
Let  = [ ). Consider a strictly increasing sequence {}∞=1 such that  ↑ 

as  →∞. Then ( ) ∈ A by the previous argument, and the set

 = [ ) =
∞T
=1

( )

is also in A.
Finally, let  = [ ]. Observing that  = R \ (−∞ ) \ (+∞) where all the

terms belong to A, we conclude that  ∈ A.
Consider now the general case   1 We are given that A contains all boxes of

the form

 = 1 × 2 × × 

where  are special intervals of the form (−∞ ], and we need to prove that A
contains all boxes of this form with arbitrary intervals . If 1 is an arbitrary
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interval and 2   are special intervals then one shows that  ∈A using the same
argument as in the case  = 1 since 1 can be obtained from the special intervals by a

countable sequence of set-theoretic operations, and the same sequence of operations

can be applied to the product 1×2××. Now let 1 and 2 be arbitrary intervals
and 3   be special. We know that if 2 is special then  ∈ A. Obtaining an
arbitrary interval 2 from special intervals by a countable sequence of operations,

we obtain that  ∈ A also for arbitrary 1 and 2. Continuing the same way, we

obtain that  ∈ A if 1 2 3 are arbitrary intervals while 4   are special, etc.
Finally, we allow all the intervals 1   to be arbitrary.

Example. If  : Ω→ R is a measurable function then the set

{ ∈ Ω :  () is irrational}
is measurable, because this set coincides with −1(Q), and Q is Borel since Q is

Borel as a countable set.

Theorem 4.3 Let 1   be measurable functions from Ω to R and let Φ be a

Borel function from R to R. Then the function

 = Φ (1  ) : Ω→ R

is measurable.

In other words, the composition of a Borel function with measurable functions

is measurable. Note that Borel functions cannot be replaced here by Lebesgue

measurable functions.

Example. It follows from Theorem 4.3 that if 1 and 2 are two measurable func-

tions on Ω then their sum 1 + 2 is also measurable. Indeed, consider the func-

tion Φ (1 2) = 1 + 2 in R2, which is continuous and, hence, is Borel. Then
1 + 2 = Φ (1 2) and this function is measurable by Theorem 4.3. A direct proof

by definition may be difficult: the fact that the set {1 + 2 ≤ } is measurable, is
not immediately clear how to reduce this set to the measurable sets {1 ≤ } and
{1 ≤ } 
In the same way, the functions 12, 12 (provided 2 6= 0) are measurable.

Also, the functions max (1 2) and min (1 2) are measurable, etc.

Proof of Theorem 4.3. Consider the mapping  : Ω→ R whose components

are . This mapping is measurable because for any  ∈ R, the set

{ ∈ Ω : 1 () ≤ 1   () ≤ } = {1 () ≤ 1}∩{2 () ≤ 2}∩∩{ () ≤ }
is measurable as the intersection of measurable sets. Let us show that −1 () is
a measurable set for any special interval , which will prove that  is measurable.

Indeed, since  () = Φ ( ()), we obtain that

−1 () = { ∈ Ω :  () ∈ }
= { ∈ Ω : Φ ( ()) ∈ }
=

©
 ∈ Ω :  () ∈ Φ−1 ()

ª
= −1

¡
Φ−1 ()

¢
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Since Φ−1 () is a Borel set, we obtain by Theorem 4.2 that −1 (Φ−1 ()) is measur-
able, which proves that −1 () is measurable.

Example. If 1 2   is a finite sequence of measurable sets then the function

 = 111 + 212 + + 1

is measurable for any choice of real constants . Indeed, each of the function 1
is

measurable, whence the claim following upon application of Theorem 4.3 with the

function

Φ () = 11 + + 

4.3 Sequences of measurable functions

As before, let Ω be an arbitrary set and F be a -algebra on Ω.

Definition. We say that a sequence {}∞=1 of functions on Ω converges to a

function  on Ω pointwise and write  →  if  () →  () as  → ∞ for any

 ∈ Ω.

Theorem 4.4 Let {}∞=1 be a sequence of measurable functions that converges
pointwise to a function  . Then  is measurable, too.

Proof. Fix some real . Using the definition of a limit and the hypothesis that

 () →  () as  → ∞, we obtain that the inequality  () ≤  is equivalent to

the following condition:

∀  0 ∃ ∈ N ∀ ≥   () ≤ + 

This can be written in the form of set-theoretic inclusion as follows:

{ ≤ } = T
0

∞S
=1

∞T
=

{ ≤ + } 

The values of  can be restricted to rationals so that the set { ≤ } is obtained from
the measurable sets { ≤ + } by countable unions and intersections. Therefore,
the set { ≤ } is measurable, which finishes the proof.
Corollary 4.5 Let {}∞=1 be a sequence of Lebesgue (or Borel) measurable func-
tions on R that converges pointwise to a function  . Then  is Lebesgue (resp.,

Borel) measurable as well.

4.4 The Lebesgue integral

Let Ω be an arbitrary set, F be a -algebra on Ω and  be a complete measure

on F . We will define the notion of the integral R
Ω
 for an appropriate class of

functions  .
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4.4.1 Simple functions

Definition. A function  : Ω → R is called simple if it is measurable and the set
of its values is at most countable.

Let {} be the sequence of all distinct values of a simple function  . Observe

that the sets

 = { ∈ Ω :  () = } (4.8)

are measurable and form a partition of Ω, that is,

Ω =
F


 (4.9)

Clearly, we have the identity

 =
X


1
(4.10)

for all  ∈ Ω. Indeed, for each  ∈ Ω, there is exactly one value of  such that

 ∈  so that the series in the right hand side of (4.10) amounts to a single term

, that is exactly  ().

Conversely, any partition {} of Ω with measurable sets and any sequence of

distinct reals {} determine by (4.10) a function  () that satisfies also (4.8),

which means that all simple functions have the form (4.10).

Definition. For any non-negative simple function  : Ω → R define the Lebesgue
integral

R
Ω
 by Z

Ω

 :=
X


 ()  (4.11)

Lecture 10

12.10.10 Note that the value on the right hand side of (4.11) is always defined as the sum

of a non-negative series, and can be either a non-negative real number or infinity,

that is, the integral
R
Ω
  takes values in [0+∞].

Note also that in order to be able to define  (), the sets  must be measur-

able, which is equivalent to the measurability of  .

If  a signed simple function then one still can define
R
Ω
 by (4.11) assuming

in addition that the series in the right hand side of (4.11) absolutely converges.

However, we do not use this case.

The expression
R
Ω
 has the full title “the integral of  over Ω against measure

”. The notation
R
Ω
 should be understood as a whole, since we do not define

what  means. This notation is traditionally used and has certain advantages.

Remark. In probability theory one uses a different notation for the integral. If

(ΩF P) is a probability space then one writes

E =
Z
Ω

P

and refers to E as the expectation of  . If the space (ΩF P) is discrete then every
function  on Ω is simple, which means that E is then defined for all non-negative
functions  on Ω.
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Example. If  ≡ 1 for some measurable set  then the decomposition (4.10)

becomes

 = 1 + 01 

whence it follows that Z
Ω

 =  () 

We will extend the notion of integral to more general measurable functions.

However, first we prove some properties of the integral of simple functions.

Lemma 4.6 Let Ω =
F

  where {} is a finite or countable sequence of mea-
surable sets. Define a function  by

 =
X


1

where {} is a sequence of non-negative reals, not necessarily distinct (note that
 =  on ). Then Z

Ω

 =
X


 () 

Proof. Let {} be the sequence of all distinct values in {}, that is, {} is
the sequence of all distinct values of  . Set

 = { = } 
Then

 =
F

{:=}


and

 () =
X

{:=}
 () 

whenceZ
Ω

 =
X


 () =
X



X

{:=}
 () =

X


X
{:=}

 () =
X


 () 

Lemma 4.7 For all non-negative simple functions  , the following is true.

() For any positive constant ,Z
Ω

 = 

Z
Ω



() Z
Ω

( + )  =

Z
Ω

+

Z
Ω
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() If  ≤  then Z
Ω

 ≤
Z
Ω



() Z
Ω

min ( ) →
Z
Ω

  as →∞ (4.12)

Proof. () Let

 =
X


1 (4.13)

where
F

  = Ω. Then

 =
X


1

whence Z
Ω

 =
X


 () = 
X


 () 

() Let  be as in (4.13) and  =
P

 1
where

F
  = Ω. Then

Ω =
F


( ∩)

and on the set  ∩ we have  =  and  =  so that  +  =  + . Hence,

 +  is a non-negative simple function,

 +  =
X


( + )1∩


whence by Lemma 4.6Z
Ω

( + )  =
X


( + ) ( ∩) 

Applying the same formula to functions  and , we obtainZ
Ω

 =
X


 ( ∩)

and Z
Ω

 =
X


 ( ∩) 

whence the claim follows.

() Clearly,  −  is a non-negative simple functions so that by ()Z
Ω

 =

Z
Ω

( − ) +

Z
Ω

 ≥
Z
Ω
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() Let  be as in (4.13). Then we have

min ( ) =
X

{:≤}
1

+
X

{:}
1

≥
X

{:≤}
1



whence by Lemma 4.6X
{:≤}

 () ≤
Z
Ω

min ( )  ≤
Z
Ω

 =
X


 ()  (4.14)

We are left to observe that, when →∞, the series in the left hand side of (4.14)
converges to the full series

P
  () (because for any index  the condition  ≤ 

is fulfilled for large enough ), whence (4.12) follows.

4.4.2 Non-negative measurable functions

Definition. Let {}∞=1 be a sequence of real valued functions on Ω. We say that

{} converges to a function  uniformly and write  ⇒  if

sup
Ω

| −  |→ 0 as →∞

Of course, the uniform convergence implies the pointwise convergence.

Definition. Let  be any non-negative measurable function on Ω. The Lebesgue

integral of  is defined by Z
Ω

 = lim
→∞

Z
Ω



where {} is any sequence of non-negative simple functions such that  ⇒  on

Ω.

To justify this definition, we prove the following statement.

Lemma 4.8 For any non-negative measurable functions  , there is a sequence of

non-negative simple functions {} such that  ⇒  on Ω. Moreover, for any such

sequence the limit

lim
→∞

Z
Ω



exists with value in [0+∞] and does not depend on the choice of the sequence {}.
Proof. Fix the index  ∈ N and, for any non-negative integer , consider the

set

 =

½
 ∈ Ω :




≤  () 

 + 1



¾


Clearly, Ω =
F∞

=0. Define function  by

 =
X





1
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that is,  =


on . Then  is a non-negative simple function and, on the set

, we have

0 ≤  −  
 + 1


− 


=
1



so that

sup
Ω

| − | ≤ 1




It follows that  ⇒  on Ω, which proves the existence of such sequences.

Let now {} be any sequence of non-negative simple functions such that  ⇒  .

Let us show that

lim
→∞

Z
Ω

 (4.15)

exists. The condition  ⇒  on Ω implies that

sup
Ω

| − |→ 0 as →∞

In particular, sup | − | is finite provided  large enough. Since

 ≤  + sup
Ω

| − | 

we obtain by Lemma 4.7Z
Ω

 ≤
Z
Ω

+ sup
Ω

| − | (Ω)  (4.16)

If Z
Ω

 ∞

for all large enough , then it follows from (4.16) and the analogous inequality with

switched  that ¯̄̄̄Z
Ω

−
Z
Ω



¯̄̄̄
≤ sup

Ω

| − | (Ω) 

Therefore, the numerical sequence ½Z
Ω



¾
is Cauchy and, hence, has a limit.

If Z
Ω

 = +∞

for some , then (4.16) implies that
R
Ω
 = +∞ for all large enough , whence

it follows that

lim
→∞

Z
Ω

 = +∞
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Hence, in the both cases the limit (4.15) exists.

Let now {} and {} be two sequences of non-negative simple functions such
that  ⇒  and  ⇒  . Let us show that

lim
→∞

Z
Ω

 = lim
→∞

Z
Ω

 (4.17)

Indeed, consider a mixed sequence {1 1 2 2 }. Obviously, this sequence con-
verges uniformly to  . Hence, by the previous part of the proof, the sequence of

integrals Z
Ω

1

Z
Ω

1

Z
Ω

2

Z
Ω

2 

converges, which implies (4.17).

Hence, if  is a non-negative measurable function then the integral
R
Ω
 is

well-defined and takes value in [0+∞] Lecture 11

18.10.10
Example. Let Ω = [ ] where    and let  be the Lebesgue measure on [ ].

Let  be a non-negative continuous function on [ ]. Then  is measurable so that

the Lebesgue integral
R
[]

 is defined. Let us show that it coincides with the

Riemann integral
R 

 () . Let  = {}=0 be a partition of [ ] that is,

 = 0  1  2     = 

and let  = {}=1 be a sequence of tags such that  ∈ [−1 ]. The Riemann
integral sum is defined by

∗ (  ) =
X
=1

 () ( − −1) 

and the Riemann integral is defined byZ 



 ()  = lim
()→0

 (  ) (4.18)

where  () = max | − −1| is the mesh of the partition, provided the above limit
exists. It is known that the latter is the case for any continuous function  on [ ].

Consider now a simple function  defined by

 =

X
=1

 ()1(−1]

Then we have Z
[]

 =

X
=1

 ()(−1 ] =  (  ) 
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On the other hand, by the uniform continuity of function  , we have  ⇒  as

 ()→ 0, which implies by the definition of the Lebesgue integral thatZ
[]

 = lim
()→0

Z
[]

 = lim
()→0

 (  ) 

Comparing with (4.18) we obtain the identityZ
[]

  =

Z 



 () 

Example. Consider on [0 1] the Dirichlet function

 () =

½
1  ∈ Q
0  ∈ Q

This function is not Riemann integrable because if one chooses the tags  to be

rational then  (  ) = 1 while for irrational  we have  (  ) = 0 so that

the limit (4.18) does not exist. However, the function  is non-negative and simple

since it can be represented in the form  = 1 where  = Q ∩ [0 1] is a Borel
set. Therefore, the Lebesgue integral

R
[01]

  is defined. Moreover, since  is a

countable set, we have  () = 0 and, hence,
R
[01]

  = 0.

The following statement extends Lemma 4.7 to non-negative measurable func-

tions.

Theorem 4.9 For all non-negative measurable functions  , the following is true.

() For any positive constant ,Z
Ω

 = 

Z
Ω



() Z
Ω

( + )  =

Z
Ω

+

Z
Ω



() If  ≤  then Z
Ω

 ≤
Z
Ω



() Z
Ω

min ( ) →
Z
Ω

 as →∞ (4.19)

Proof. () By Lemma 4.8, there is a sequence {} of non-negative simple
functions such that  ⇒  on Ω. Then  ⇒  and by Lemma 4.7,Z

Ω

 = lim
→∞

Z
Ω

 = lim
→∞



Z
Ω

 = 

Z
Ω
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() Using sequences {} and {} of non-negative simple functions that converge
uniformly to  and , respectively, we obtain that

 +  ⇒  + 

Therefore, by Lemma 4.7,Z
Ω

( + )  = lim
→∞

Z
Ω

( + )  = lim
→∞

µZ
Ω

+

Z
Ω



¶
=

Z
Ω

+

Z
Ω



() Clearly,  −  is a non-negative simple functions so that by ()Z
Ω

 =

Z
Ω

( − ) +

Z
Ω

 ≥
Z
Ω



() Let {} be a sequence of non-negative simple functions such that  ⇒ 

on Ω. By construction of Lemma 4.8, we can assume that  ≤  .

Using () and Lemma 4.7, we obtain

lim
→∞

Z
Ω

min ( )  ≥ lim
→∞

Z
Ω

min ( )  =

Z
Ω



Passing to the limit as  →∞, we obtain

lim
→∞

Z
Ω

min ( )  ≥
Z
Ω

 

Since the opposite inequality is satisfied by (), we obtain (4.19).

4.4.3 Integrable functions

To define the integral of a signed measurable function  on Ω, let us introduce the

notation

+ () =

½
 ()  if  () ≥ 0
0 if  ()  0

and − () =

½
0 if  () ≥ 0
− ()  if  ()  0



The function + is called the positive part of  and − is called the negative part of
 . Note that + and − are non-negative functions,

 = + − − and | | = + + −

It follows that

+ =
| |+ 

2
and − =

| |− 

2


In particular, if  is measurable then both functions + and − are measurable.

Definition. A measurable function  on Ω is called (Lebesgue) integrable ifZ
Ω

+ ∞ and

Z
Ω

− ∞
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For any integrable function, define its Lebesgue integral byZ
Ω

 :=

Z
Ω

+−
Z
Ω

−

Note that the integral
R
Ω
 takes values in (−∞+∞).

In particular, if  ≥ 0 then + =  , − = 0 and  is integrable if and only ifZ
Ω

 ∞

Lemma 4.10 Let  be a measurable function on Ω.

() The following conditions are equivalent:

()  is integrable.

() + and − are integrable,

() | | is integrable.

() If  is integrable then ¯̄̄̄Z
Ω



¯̄̄̄
≤
Z
Ω

| | 

Proof. () The equivalence ()⇔ () holds by definition. Since | | = + + −,
we have by Theorem 4.9 Z

Ω

| |  =
Z
Ω

++

Z
Ω

−

It follows that Z
Ω

| |  ∞ ⇔
Z
Ω

+ ∞ and

Z
Ω

− ∞

that is, ()⇔ ().

() We have¯̄̄̄Z
Ω



¯̄̄̄
=

¯̄̄̄Z
Ω

+−
Z
Ω

−

¯̄̄̄
≤
Z
Ω

++

Z
Ω

− =
Z
Ω

| | 

Example. Let us show that if  is a continuous function on an interval [ ] and 

is the Lebesgue measure on [ ] then  is Lebesgue integrable. Indeed, + and 

are non-negative and continuous so that they are Lebesgue integrable by the above

Example. Hence,  is also Lebesgue integrable. Moreover, we haveZ
[]

  =

Z
[]

+ −
Z
[]

−  =
Z 



+ −
Z 



−  =
Z 



 

so that the Riemann and Lebesgue integrals of  coincide.
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Theorem 4.11 Let   be integrable functions on Ω.

() For any real , function  is also integrable andZ
Ω

 = 

Z
Ω



() Function  +  is integrable andZ
Ω

( + )  =

Z
Ω

+

Z
Ω

 (4.20)

() If  ≤  then Z
Ω

 ≤
Z
Ω



()

(inf ) (Ω) ≤
Z
Ω

  ≤ (sup ) (Ω) 

Proof. () If  = 0 then there is nothing to prove. Let   0. Then ()+ = +
and ()− = − whence by Theorem 4.9Z

Ω

 =

Z
Ω

+−
Z
Ω

− = 

Z
Ω

+− 

Z
Ω

− = 

Z
Ω



If   0 then ()+ = || − and ()− = || + whenceZ
Ω

 =

Z
Ω

|| −−
Z
Ω

|| + = − ||
Z
Ω

 = 

Z
Ω



() Note that ( + )+ is not necessarily equal to + + + so that the previous

simple argument does not work here. Using the triangle inequality

| + | ≤ | |+ || 

we obtain Z
Ω

| + |  ≤
Z
Ω

| | +
Z
Ω

||  ∞

which implies that the function  +  is integrable.

To prove (4.20), observe that

+ + + − − − − =  +  = ( + )+ − ( + )−

whence

+ + + + ( + )− = ( + )+ + − + −

Since all the functions in the last identity are non-negative and measurable, we

obtain by Theorem 4.9Z
Ω

++

Z
Ω

++

Z
Ω

( + )−  =
Z
Ω

( + )+ +

Z
Ω

−+
Z
Ω

−
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It follows thatZ
Ω

( + )  =

Z
Ω

( + )+ −
Z
Ω

( + )− 

=

Z
Ω

++

Z
Ω

+−
Z
Ω

−−
Z
Ω

−

=

Z
Ω

+

Z
Ω



() Using the identity  = ( − ) +  and that −  ≥ 0, we obtain by part ()Z
Ω

  =

Z
Ω

( − ) +

Z
Ω

  ≥
Z
Ω

 

() Consider a constant function  ≡ sup  so that  ≤  on Ω. Since  is a

constant, we have Z
Ω

  ≤
Z
Ω

 = (sup ) (Ω) 

In the same way one proves the lower bound.

4.5 Relation “almost everywhere”

Definition. We say that two measurable functions   are equal almost everywhere

and write  =  ae if

 { 6= } = 0
In the same way we say that inequality  ≤  is true almost everywhere and write

 ≤  ae if

 {  } = 0

The following statement shows the connection of integration to the notion  = 

ae

Theorem 4.12 Let  be a non-negative measurable function. Then
R
Ω
  = 0 is

equivalent to  = 0 ae

Proof. Let  = 0 aeWe have by definitionZ
Ω

 = lim
→∞

Z
Ω



where  is a simple function defined by

 =

∞X
=0




1
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where

 =

½



≤  

 + 1



¾


The set  has measure 0 if   0 whence it follows thatZ
Ω

 =

∞X
=0




 () = 0

Hence, also
R
Ω
 = 0.

Now assume that  = 0 ae is not true, that is,

 {  0}  0
Since

{  0} = S
0

{  } 

where  can be assumed rational, there exists   0 such that

 {  }  0
Since  ≥  := 1{}, it follows thatZ

Ω

 ≥
Z
Ω

 =  (  )  0

which finishes the proof.

Corollary 4.13 If  is a measurable function,  is integrable, and  =  ae then

 is also integrable and Z
Ω

  =

Z
Ω

  (4.21)

Proof. Since − = 0 ae it follows that also | − | = 0 aewhence by Theorem
4.12

R
Ω
| − |  = 0 By Lemma 4.10,  −  is integrable and

R
Ω
( − )  = 0

Finally, by Theorem 4.11, function  =  + ( − ) is integrable and (4.21) holds.

Hence, the functions that are equal almost everywhere, are indistinguishable for

the Lebesgue integral.

Corollary 4.14 If   are integrable and  ≤  ae thenZ
Ω

  ≤
Z
Ω

 

Proof. Since ( − )− = 0 ae we obtain using Theorem 4.12Z
Ω

  =

Z
Ω

 +

Z
Ω

( − ) 

=

Z
Ω

 +

Z
Ω

( − )+ −
Z
Ω

( − )−  ≥
Z
Ω
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Chapter 5

Random variables

Lecture 12

19.10.10Let us fix a probability space (ΩF P) 
Definition. A function : Ω→ R is called a random variable if is F-measurable.

5.1 The distribution of a random variable

The events have probabilities P(). The analogue of that for random variables is

the notion of a distribution. For any Borel set  ⊂ R, the set
−1 () = { :  () ∈ }

is measurable by Theorem 4.2. Hence, this set is an event, and we denote is shortly

by { ∈ }. Define the quantity
() := P( ∈ )

Theorem 5.1 () For any random variable ,  is a probability measure on

B (R) 
() Conversely, if  is any probability measure on B (R), then there exists a prob-

ability space and a random variable  on it such that  = .

Proof. () By definition, we have () = P(−1()) Since −1 preserves all
set-theoretic operations, by this formula the probability measure P on F induces a

probability measure on B (R) (see Exercise 4). Note also that
(R) = P(−1(R)) = P(Ω) = 1

() Consider the probability space

(ΩF P) = (RB )
and the random variable on it

() = 

63
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Then

() = P( ∈ ) = P( : () ∈ ) = ()

Definition. The measure  is called the distribution of .

Recall that by Theorem 2.10, any probability measure  on B (R) is characterized
by its distribution function

 () = (−∞ ]

Definition. For any random variable  define its distribution function  () as

the distribution function of measure  , that is,

 () = (−∞ ] = P ( ≤ ) 

Recall that there is a class of absolutely continuous distributions on B (R) that
are given by their densities. After having learned the Lebesgue integration, we can

give the following definition.

Definition. We say that a distribution function  () (and the corresponding

measure ) is absolutely continuous if there is a non-negative measurable function

 () on R such that, for all  ∈ R,

 () =

Z
(−∞]

 (5.1)

where  is the Lebesgue measure on R. The function  is called the density of .

If function  is continuous (or piecewise continuous) then the Lebesgue integral

in (5.1) coincides with the Riemann integral
R 
−∞  () 

Here are some well-known examples of distributions on B (R) that are defined
by their densities (some of them we have seen already).

1. A uniform distribution U( ) on [ ] :

() =
1

− 
on [ ] and 0 otherwise.

(It is obvious that
R +∞
−∞  ()  = 1).

2. A normal distribution: N (0 1)

() =
1√
2
exp

µ
−

2

2

¶


Here is the plot of this density function:
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More generally, the normal distribution N ( ) with parameters  ∈ R and
  0 is defined by the density

() =
1√
2

exp

µ
−(− )2

2

¶


Note that the identityZ +∞

−∞

1√
2

exp

µ
−(− )2

2

¶
 = 1

follows from Z +∞

−∞

1√
2
exp

µ
−

2

2

¶
 = 1

by the change  = −√



3. A Cauchy distribution

() =
1

(2 + 1)


Here is the plot of this function:
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More generally, a Cauchy distribution with parameter  is given by the density

() =


(2 + 2)


Observe that
R +∞
−∞


(2+2)

 = 1


R +∞
−∞



2+1
= 1


[arctan ]

+∞
−∞ = 1.

4. Exponential distribution with parameter   0:

() =

½
−   0

0  ≤ 0 
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The case  = 1 is plotted here:

3.752.51.250-1.25
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5. Gamma distribution with parameters    0:

() =

½


−1 exp(−)   0

0  ≤ 0 

where

 =
1

Γ()


Observe that the gamma function Γ is defined by

Γ () =

Z ∞

0

−1 exp(−)

Hence, it follows from definition thatZ ∞

−∞
 ()  =

1

Γ () 

Z ∞

0

−1 exp(−) = 1

Γ ()

Z ∞

0

−1 exp (−)  = 1

so that  is indeed a density function. Note that Γ () = (− 1)! if  is a
positive integer. This follows from Γ (1) = 1 and from the identity Γ (+ 1) =

Γ () that holds for all   0.

For the case  = 2 and  = 1, we have  = 1 and  () = −, which is
plotted below.

3.752.51.250-1.25
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y
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5.2 Absolutely continuous measures

Let  be a measure on a -algebra F on Ω. For any non-negative measurable or

integrable function  on Ω and for any set  ∈ F define the integral of  over  byZ


 =

Z
Ω

1

If  is a fixed non-negative integrable function then
R

 can be regarded as a non-negative

function of . By one of the Exercises, this function is a measure on F ; that is, if  = F∞=1

then Z


 =

∞X
=1

Z




Another useful observation is that if  () = 0 then
R

 = 0 which follows from Theorem 4.12.

For what follows we will use the integration against the Lebesgue measure  on B (R). For any
bounded interval  ⊂ R, measure  is finite on B () and, hence, one can use the general definition
of the Lebesgue integration. Hence, for any non-negative Borel function  on R, the following
integral Z





is defined. Then set Z
R
 :=

+∞X
=−∞

Z
(+1]



For any Borel set  ⊂ R, setZ


 :=

Z
R
1 =

+∞X
=−∞

Z
(+1]

1∩(+1]

Theorem 5.2 Let  be an absolutely continuous probability measure on B (R) with
the density  . Then, for any Borel set  ⊂ R

 () =

Z


 (5.2)

Moreover, for any non-negative Borel function  on R,Z
R
 =

Z
R
 (5.3)

One writes therefore  = 

Proof. For any  ∈ B (R) denote by  () the right hand side of (5.2), that is,

 () =

Z
R
1

We need to prove that  () =  ().

If  = (−∞ ] then by Definition of the density

(−∞ ] =

Z
(−∞]

 =  () = (−∞ ]
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Denote by F the semi-algebra of all intervals of the form ( ]. For any such interval we have

( ] =  ()−  () = ( ]

that is,  =  on F .
Let us now prove  () =  () for all Borel sets  that are contained in some bounded interval

. Indeed,  is a measure on B () as was remarked above, and so is . Since  and  coincide on

all subintervals ( ] ⊂ , it follows by the uniqueness part of the Carathéodory extension theorem,

that  and  coincide on B (). Finally, for any  ∈ B (R) we have

 () =

Z
R
1 =

X


Z
(+1]

1

=
X


 ( ∩ ( + 1])

=
X


 ( ∩ ( + 1])

=  () 

5.3 Expectation and variance

Definition. If  is a random variable on a probability space (ΩF P) then its
expectation is defined by

E =

Z
Ω

P (5.4)

provided the Lebesgue integral in the right hand side is defined.

Recall that there are two cases when the Lebesgue integral is defined. If  ≥ 0
then E is always defined and takes values in [0+∞]. If  is signed then then E
is defined by

E = E+ − E−
provided is integrable, that is, when both E+, E− are finite, which is equivalent
to

E || ∞

The quantity E || is called the first moment of . Similarly, the quantity E ||
is called the -th moment of .

By simple properties of Lebesgue integration (Theorems 4.9, 4.11) and a proba-

bility measure, we have the following properties of E (for integrable or non-negative
random variables, whichever is appropriate):

1. E () = E

2. E( +  ) = E + E

3. E1 = P ()  in particular, E1 = 1
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4. If  ≤  then E ≤ E ; in particular inf ≤ E ≤ sup and |E| ≤
E || 

5. Emin ()→ E as → +∞

Definition. Given a random variable , its variance is defined by

var  = E
¡
( − E)2¢  (5.5)

assuming that E || ∞.
Clearly, the variance measures the quadratic mean deviation of  from its mean

value E. Another useful expression for variance is the following:

Lemma 5.3 If E || ∞ then

var  = E
¡
2
¢− (E)2  (5.6)

Proof. Indeed, from (5.5), we obtain

var  = E2 − 2E(E) + (E)2 = E2 − 2(E)2 + (E)2 = E2 − (E)2

Corollary 5.4 If E || ∞ then

(E)2 ≤ E(2) (5.7)

Proof. Indeed, (5.5) implies var  ≥ 0 so that (5.7) follows from (5.6).

Alternatively, (5.7) follows from a more general inequality.

Theorem 5.5 (Cauchy-Schwarz inequality) For any two random variables  and

 ,

(E | |)2 ≤ E(2)E( 2) (5.8)

Proof. Without loss of generality, we may assume  ≥ 0 and  ≥ 0. If one of
the expectations E(2), E( 2) is infinite then there is nothing to prove. If both are

finite then also

E( ) ∞
which follows from the elementary inequality

 ≤ 1
2
(2 +  2)

For any real , consider the identity

2 + 2 + 2 2 = ( +  )2
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Since the right hand here is non-negative and the left hand side has finite expecta-

tion, we obtain

E2 + 2E( ) + 2E 2 ≥ 0
The left hand side here can be regarded as a quadratic polynomial in , which is

non-negative for all real . Hence, it discriminant is non-positive, which is exactly

(5.8).

If we take in (5.8)  = 1, we obtain

(E ||)2 ≤ E(2) (5.9)

which implies (5.7).

Remark. It follows from (5.6) and (5.9) that  has a finite variance if and only if

2 is integrable (that is,  is square integrable). Indeed, if  has a finite variance

then by definition  is integrable, and (5.6) implies E2 ∞ Conversely, if  is

square integrable then by (5.9)  is integrable and by (5.6) the variance is finite.

The definition of expectation is convenient to prove the properties of E but no
good for computation. For the latter, there is the following theorem.

Theorem 5.6 For any random variable , we have

E =

Z
R
 () (5.10)

assuming that either E || ∞ or
R +∞
−∞ || () ∞. Also, denoting  = E,

we have

var  =

Z
R
(−)2 =

Z
R
2 −

µZ
R


¶2
 (5.11)

Hence, to evaluate the expected value and the variance of a random variable, it

suffices to know its distribution. If  has density  then using Theorem 5.2 we

obtain

E =

Z
R
 ()  () 

If  is continuous or piecewise continuous then the Lebesgue integral amounts to

the Riemann integral:

E =

Z +∞

−∞
 ()  (5.12)

Let  be a discrete distribution with the stochastic sequence {} and with
atoms {}. In other words,  takes only values  and P ( = ) = . Then 

is a simple function on Ω, and (5.4) yields

E =

∞X
=0

 (5.13)

which can also be seen from (5.10).
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Example. We claim that if  ∼ N ( ) then E =  and var = . Indeed,

since

 () =
1√
2

exp

Ã
−(− )

2

2

!


we have by (5.12)

E =

Z +∞

−∞

√
2

exp

Ã
−(− )

2

2

!


=

Z +∞

−∞

 + √
2

exp

µ
−

2

2

¶


=

Z +∞

−∞

√
2

exp

µ
−

2

2

¶
 + 

Z +∞

−∞

1√
2

exp

µ
−

2

2

¶


= 0 +  = 

Then by (5.11)

var =

Z +∞

−∞

(− )
2

√
2

exp

Ã
−(− )

2

2

!


=

Z +∞

−∞

2√
2

exp

µ
−

2

2

¶


Denote  = 1 and recall the following identityZ +∞

−∞

1√
2
exp

µ
−

2

2

¶
 = −12 (5.14)

Differentiating it in , we obtainZ +∞

−∞

2

2
√
2
exp

µ
−

2

2

¶
 =

1

2
−32

Substituting  = 1 and dividing by 1
2
12 we obtainZ +∞

−∞

2√
2

exp

µ
−

2

2

¶
 = 

whence var =  follows.

Example. We claim that if  ∼  () (that is,  has the Poisson distribution

with parameter   0) then E = var =  Since  is given by the stochastic

sequence
n


!
−
o∞
=0

with atoms  = , we obtain (5.13)

E =

∞X
=0




!
− = 

∞X
=1

(− 1)
(− 1)! 

− = 
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Similarly, we have

E ( ( − 1)) =
∞X
=0

 (− 1) 


!
− = 2

∞X
=2

−2

(− 2)!
− = 2

and

var = E2 − (E)2 = E ( ( − 1)) + E − E2 = 2 + − 2 = 

Theorem 5.6 follows from a more general one.

Theorem 5.7 Let  be a random variable and  be a non-negative Borel function

on R Then () is also a random variable and

E(()) =
Z
R
  (5.15)

Proof. Note that the function  () is F-measurable by Theorem 4.3. Consider
first a particular case when  is a simple function on R, say

 =

∞X
=1

1


where  are Borel subsets of R that form a partition of R and  ≥ 0. By definition,
we have Z

R
 =

∞X
=1

 () 

Observe that the function

 () =

∞X
=1

1
() =

∞X
=1

1{∈}

is a simple function on Ω, whence it follows that

E() =
Z
Ω

 () P =
∞X
=1

P ( ∈ ) 

Since

P ( ∈ ) =  ()

by the definition of distribution measure  , we obtain (5.15) for simple functions.

Let  be any non-negative Borel function. Then by Lemma 4.8 there is a sequence

{} of simple non-negative Borel functions on R such that  ⇒  as →∞ Then

 () is a non-negative simple function on Ω and  () ⇒  () as  → ∞ By

the previous part of the proof we have

E () =
Z
R
 

Passing to the limit as  → ∞ and using again Lemma 4.8, we obtain the same

identity for , that is, (5.15).



5.4. RANDOM VECTORS AND JOINT DISTRIBUTIONS 73

Corollary 5.8 Let  be a random variable and  be a Borel function on R Then
the identity (5.15) is satisfied provided either

E | ()| ∞ or

Z
R
||  ∞ (5.16)

Proof. Applying Theorem 5.7 to || we obtain that both conditions (5.16) are
satisfied. Applying (5.15) for + and − we obtain the same identity for .
Finally, Theorem 5.6 follows upon application of (5.15) with functions  () = ,

 () = (−)
2
,  () = 2. Lecture 13

25.10.10

5.4 Random vectors and joint distributions

Let us generalize the notion of a random variable as follows.

Definition. A mapping  : Ω→ R is called a random vector (or a vector-valued

random variable) if  is F-measurable.
By Theorem 4.2,  is a random vector if, for any Borel set  ∈ B(R), we have

−1() ∈ F .
The relation between the notions of random variables and random vectors is

given by the following statement.

Lemma 5.9 () If 1 2  are random variables on Ω then the vector-

valued function

 = (12 ) : Ω→ R (5.17)

is a random vector.

() Conversely, if  is a random vector then all its components are random vari-

ables.

Proof. () By the definition of measurability, we need to check that, for all

1  , the set

 = { ∈ Ω :  () ∈ (−∞ 1]× (−∞ 2]× × (−∞ ]}

is F-measurable. Since

 = {1 ≤ 12 ≤ 2  ≤ }

=

\
=1

{ ≤ }

and each set { ≤ } is F-measurable, we obtain that  is also F-measurable.
() Let us show that 1 is measurable. We have

{1 ≤ } = {1 ∈ (−∞ ]2 ∈ (−∞+∞)   ∈ (−∞+∞)}
= { ∈ (−∞ ]× (−∞+∞)× × (−∞+∞)}
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and the latter set is F-measurable by the measurability of .
Hence, considering several random variables is equivalent to considering a ran-

dom vector.

Similarly to the one-dimensional case, we introduce a distribution measure 

on B(R) by

() = P { ∈ } 
In particular, a distribution  of a random vector (5.17) can be regarded as a joint

distribution of the random variables 1 2 . Sometimes it is convenient to

use the notation

 = 12


Theorem 5.10 () If  is a random vector then  is a probability measure on

B(R).

() Conversely, if  is any probability measure on B(R) then there exists a random

vector  such that  = .

The proof is similar to the proof of Theorem 5.1. The probability space in part

() is Ω = R, F = B (R) and P = .

As in the one-dimensional case, we say that a measure  on B (R) is absolutely

continuous with respect to the Lebesgue measure  if there is a non-negative Borel

function  such that, for all Borel sets ,

() =

Z




The function  is called the density of  with respect to , and one writes  =

.

If the distribution  of a random vector has the density function then it is also

referred to as the density of  and is normally denoted by  . If  = (1 )

then the density of  is called the joint density of 1   is is denoted by 1
.

Similarly to Theorems 5.2 and 5.7, we have the following statement.

Theorem 5.11 If  : Ω → R is a random vector and  is a Borel function

 : R → R, then () is a random variable and

E() =
Z
R

  (5.18)

provided  is either non-negative or integrable with respect to .

If in addition  has the density  then

E() =
Z
R

  (5.19)
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Before we can use these formulas, let us state some properties of integration

with respect to the Lebesgue measure. In the next theorem, we identify R with the

product R ×R− and represent any point  ∈ R in the form  = (0 00) where
0 = (1  ) and 00 = (+1  ).

Theorem 5.12 (Fubini’s theorem)

() Let  be a non-negative measurable (or integrable) function on R Then the

following identity is true for any integer 1 ≤   :Z
R

 =

Z
R−

µZ
R

 (0 00)  (
0)

¶
− (

00) 

() Let (Ω0F 0 0) and (Ω00F 00 00) be two probability spaces and consider their
product (ΩF  ) where Ω = Ω0 × Ω00, F =  (F 0 ×F 00) and  = 0 × 00. Then for
any non-negative F-measurable (or integrable) function  on Ω,Z

Ω

 =

Z
Ω00

µZ
Ω0
 (0 00) 0 (0)

¶
00 (00) 

Both statements include the claims that the functions under integration in the

right hand side are measurable (respectively, integrable). In fact, the function

0 7→  (0 00)

is measurable for almost all 00, and the function

00 7→
Z
R

 (0 00) 0 (0)

is also measurable.

The proof of Theorem 5.12 requires some advanced tools from measure theory

and will not be given here.

For the next theorem we need the following notion. A mapping Φ : R → R is

called a diffeomorphism if it is a bijection and both Φ and the inverse mapping Φ−1

are continuously differentiable. Recall also that if Φ is continuously differentiable

then its total derivative Φ0 at any point  ∈ R coincides with the Jacobi matrix,

that is,

Φ0 () =

µ
Φ


()

¶

=1



Theorem 5.13 (Change of variables in Lebesgue integral) Let Φ : R → R be

a diffeomorphism. Then for any non-negative measurable (or integrable) function

 : R → R, the function  ◦ Φ : R → R is measurable (resp. integrable) andZ
R

  =

Z
R
( ◦ Φ) |detΦ0|  (5.20)
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Using the notation  = Φ (), we can rewrite (5.20) as follows:Z
R

 ()  () =

Z
R

 ( ()) |det 0 ()|  () 

For example, in the case  = 1 we obtainZ
R
 ()  () =

Z
R
 ( ()) |0|  (5.21)

Recall that for the Riemann integral one has the following formula for the change

of variables Z (+∞)

(−∞)
 ()  =

Z +∞

−∞
 ( ()) 0 (5.22)

Assuming that  =  () is a diffeomorphism of R it is easy to see that (5.22)

amounts to (5.21). Indeed, if  is an increasing diffeomorphism then 0 ≥ 0 and

 (∞) = +∞  (−∞) = −∞. Hence, both integrals in (5.22) are identical with the
corresponding integrals in (5.21). If  is a decreasing diffeomorphism then 0 ≤ 0
and  (∞) = −∞  (−∞) = +∞. Hence, after changing the signs of the both sides
of (5.22) we obtain (5.21).

Let us return to random variables.

Corollary 5.14 If the random variables 1  have the joint density function

 then the variables 1  where    have the joint density function

1
(1  ) =

Z
R−

(1 2  ) − (+1  )  (5.23)

In particular, 1 has the density function

1
() =

Z
R−1

( 2  ) −1 (2  )  (5.24)

Similar formulas hold for other components.

Proof. Fix a Borel set  ∈ B (R) and consider function

(1    ) = 1{(1)∈}

For this function we have

E(1 ) = P (1  ∈ ) = 1
()

On the other hand, since

{(1  ) ∈ } = ©(1   +1  ) ∈ ×R−ª
we have

 = 1×R− 
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Applying (5.19) to compute the above expectation we obtain

1
() =

Z
R
1×R− (1  ) (1 2  ) (1  )

=

Z
×R−

 (1  )  (1  )

=

Z


µZ
R−−1

 (1  ) − (+1  )

¶
 (1  ) 

Hence, the function in the brackets (as a function of 1 ) is the joint density of

1 , which proves (5.23). Lecture 14

26.10.10
Example. Assume that random variables  have the joint density function

( ) =
1

2
exp

µ
−

2 + 2

2

¶
 (5.25)

which is called the 2-dimensional normal distribution. Note thatZ
R2
 ( )  =

Z
R

µZ
R

1

2
exp

µ
−

2 + 2

2

¶


¶


=
1

2

Z
R

µ
exp

µ
−

2

2

¶Z
R
exp

µ
−

2

2

¶


¶


=

√
2

2

Z
R
exp

µ
−

2

2

¶


=
2

2
= 1

so that indeed  is a density function. Then the random variable random vector 

has the density

() =

Z
R
( ) =

1√
2
exp

µ
−

2

2

¶


which is the one-dimensional normal distribution.

Example. Let random variables  have the joint density function

 ( ) =

½
1
2
(+ ) exp (−− )    ≥ 0
0 otherwise.

This is indeed a density function sinceZ
R2
 ( )  =

1

2

Z ∞

0

µZ ∞

0

(+ )−−

¶


=
1

2

Z ∞

0

µZ ∞

0

−−

¶


+
1

2

Z ∞

0

µZ ∞

0

−−

¶


=
1

2

Z ∞

0

¡
− + −

¢


= 1



78 CHAPTER 5. RANDOM VARIABLES

This calculation also shows that

() =

Z
R
( ) =

1

2

¡
− + −

¢


This function is plotted below:

6420-2

1

0.75

0.5

0.25

0

x

y

x

y

Theorem 5.15 Let  : Ω→ R be a random vector with the density function .

Let Φ : R → R be a diffeomorphism. Then the random vector  = Φ () has the

following density function

 =  ◦ Φ−1
¯̄̄
det

¡
Φ−1

¢0 ¯̄̄


Proof. We have for any Borel set  ⊂ R

P (Φ () ∈ ) = P
¡
 ∈ Φ−1 ()

¢
=

Z
Φ−1()

 ()  ()

=

Z
R
1Φ−1() ()  () 

Substituting  = Φ−1 () we obtain by Theorem 5.13 that the above integral is equal
to Z

R
1

¡
Φ−1 ()

¢ ¯̄̄
det

¡
Φ−1 ()

¢0 ¯̄̄
 ()

=

Z



¡
Φ−1 ()

¢ ¯̄̄
det

¡
Φ−1 ()

¢0 ¯̄̄
 ()

whence the claim follows.

Example. If has the density  then, for any non-zero real , the random variable

 =  has the density

 () = 

³


´
||− 
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Indeed, using

Φ () = 

and noticing that Φ−1 () = 1

 and det (Φ−1)0 = 1


, we obtain the claim.

In particular, if  ∼ N ( ), that is,

 () =
1√
2

exp

Ã
−(− )

2

2

!


then

 () =
1√
2

1

|| exp
Ã
−(− )

2

2

!

=
1√
22

exp

Ã
−(− )

2

22

!
so that  ∼ N ( 2) 
Example. Given random variables  consider a random variable  =  +  .

The distribution function  can be obtain as follows:

() = P ( +  ≤ ) = E1{+≤} = E ( ) 

where  = 1{+≤}. Hence, we obtain from (5.18)

() =

Z
R2
1{+≤} =

Z
{+≤}

 

Assume in addition that  have the joint density  ( ). Then by (5.19)

() =

Z
R2
1{+≤} ( ) 2 ( ) 

Consider the new coordinates

 = +   =  (5.26)

that is

 = −   = 

Noticing that the Jacobi matrix of the latter transformation isµ













¶
=

µ
1 −1
0 1

¶
and its determinant is 1, we obtain by (5.20)

() =

Z
R2
1{≤} (−  ) 2 ( )

=

Z
{≤}

µZ
R
 (−  )  ()

¶
 ()  (5.27)
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Since the density function  () is determined by the identity

 () =

Z
(−∞]



we see that the interior integral in (5.27) is  (), that is,

 () =

Z
R
 (−  )  ()  (5.28)

Similarly,  =  −  has the density

 () =

Z
R
 (+  )  () 

Alternatively, we can use instead of (5.26) another change

 = +   = − 

that is equivalent to

 =
+ 

2
  =

− 

2


Then the Jacobi matrix µ














¶
=

µ
12 12

12 −12
¶

has determinant −1
2
, whence it follows that

() =
1

2

Z
R2
1{≤}

µ
+ 

2

− 

2

¶
2 ( ) 

Hence, we obtain another formula for the density function of  :

 () =
1

2

Z
R


µ
+ 

2

− 

2

¶
 ()  (5.29)

Similarly, we have

 () =
1

2

Z
R


µ
+ 

2

− 

2

¶
 () (5.30)

Example. Let  be again random vectors with joint density (5.25). Then by

(5.29) we obtain the density of  =  +  :

 () =
1

2

Z ∞

−∞

1

2
exp

Ã
−(+ )

2
+ (− )

2

8

!


=
1

4

Z ∞

−∞
exp

µ
−

2

4
− 2

4

¶


=
1√
4

−
1
4
2
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Hence,  +  ∼ N (0 2) and in the same way  −  ∼ N (0 2).
Example. Similarly one can handle the sum of  random variables 1 .. Indeed, the

distribution function of the random variable  = 1 +2 + + can be obtained as follows:

 () = P (1 +2 + + ≤ ) = E1{1+2++≤} = E (1 )

where  = 1{1+2++≤}. Hence, we obtain from (5.18)

 () =

Z
R
1{1+2++≤}1

=

Z
{1+2++≤}

1


Assume in addition that 1  have the joint density  (1  ). Then by (5.19)

 () =

Z
R
1{1+2++≤} (1 )  (1  ) 

Passing to the new coordinates

1 = 1 + +  2 = 2   = 

and noticing that the determinant of this change is 1, we obtain

 () =

Z
R
1{1≤} (1 − 2 − −  2  )  (1  )

=

Z
{1≤}

µZ
R−1

 (1 − 2 − −  2  ) −1 (2  )
¶
 (1) 

whence we obtain

 () =

Z
R−1

 (− 2 − −  2  ) −1 (2  ) 

5.5 Independent random variables

Let (ΩF P) be a probability space as before.
Definition. Two random vectors  : Ω → R and  : Ω → R are called

independent if, for all Borel sets  ∈ B (R) and  ∈ B (R), the events { ∈ }
and { ∈ } are independent, that is

P ( ∈  and  ∈ ) = P( ∈ )P( ∈ )

Similarly, a sequence {} of random vectors  : Ω → R is called independent

if, for any sequence {} of Borel sets  ∈ B (R), the events { ∈ } are inde-
pendent. Here the index  runs in any index set (which may be finite, countable, or

even uncountable).

If 1   is a finite sequence of random vectors, such that  : Ω→ R then

we can form a vector  = (1 ) whose components are those of all ; that

is,  is an -dimensional random vector where  = 1 + + . The distribution

measure  of  is called the joint distribution of the sequence 1   and is

also denoted by 1
.

A particular case of the notion of a joint distribution for the case when all 

are random variables, that is,  = 1, was considered above.
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Theorem 5.16 Let  be a -dimensional random vector,  = 1  . The se-

quence 1 2   is independent if and only if their joint distribution 1

coincides with the product measure of 1
 2

  
, that is

1
= 1

× × 
 (5.31)

If 1 2  are independent and in addition  has the density function 
()

then the sequence 1   has the joint density function

() = 1
(1)2

(2)
()

where  ∈ R and  = (1  ) ∈ R.

Proof. If (5.31) holds then, for any sequence {}=1 of Borel sets  ⊂ R

consider their product

 = 1 ×2 × × ⊂ R (5.32)

and observe that

P (1 ∈ 1   ∈ ) = P ( ∈ )

=  ()

= 1
× × 

(1 × ×)

= 1
(1) 

()

= P (1 ∈ 1) P ( ∈ ) 

Hence, 1   are independent.

Conversely, if 1  are independent then, for any set  of the product form

(5.32), we obtain

 () = P ( ∈ )

= P (1 ∈ 1 2 ∈ 2   ∈ )

= P (1 ∈ 1 )P(2 ∈ 2)P( ∈ )

= 1
× × 

() 

Hence, the measure  and the product measure 1
× ×

coincide on the sets

of the form (5.32). Since B (R) is the minimal -algebra containing the sets (5.32),

the uniqueness part of the Carathéodory extension theorem implies that these two

measures coincide on B (R), which was to be proved.

To prove the second claim, observe that, for any set  of the form (5.32), we

have by Fubini’s theorem

P () = 1
(1) 

()

=

Z
1

1
(1) 1 (1) 

Z



()  ()

=

Z
1××

1 (1)  ()  ()

=

Z


 ()  ()

= :  () 
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where  = (1  ) ∈ R. By Exercise 44,  () is a measure on B (R). Hence,

the two measures  () and  () coincide on all boxes, which implies by the

uniqueness part of the Carathéodory extension theorem that they coincide on all

Borel sets  ⊂ R. It follows that the function  () is indeed the joint density. Lecture 15

08.11.10

Corollary 5.17 Let {}=1 be a sequence probability measures on the spaces B (R) 

Then there is a probability space (ΩF P) and a sequence {}=1 of random vectors
such that  : Ω→ R, 

= , and {}=1 are independent.

Proof. Consider product measure  = 1 ×  ×  that is defined on B (R)

with  = 1 + + . Since  is a probability measure, by Theorem 5.10 there is

a probability space (ΩF P) and a random vector  : Ω → R such that  = .

We can represent  in the form  = (1  ) where 1 is a vector that consists

of the first 1 components of , 2 consists of the next 2 components, etc. Then

1   are random vectors with the joint distribution . Let us show that 
=

. For example, for  = 1 we have for any  ∈ B (R1)

P1
() = P (1 ∈ ) = P (1 ∈ 2 ∈ Ω  ∈ Ω)

= P ( ∈ × Ω× ×Ω)

=  (×Ω× ×Ω)

= 1 ()

In the same way one treats arbitrary . Since  is the product of 1  , it follows

that  is the product of 1
  

. By Theorem 5.16 we obtain that 1  

are independent.

In fact, the statement of Corollary 5.17 is true also for infinite sequences {}∞=1,
although the proof is much harder since one has to consider infinite products of prob-

ability measures and, hence, infinite dimensional probability spaces. Nevertheless,

this can be done and results in the existence of an infinite sequence of independent

random vectors with prescribed distributions.

In the next statement, we collect some more useful properties of independent

random variables.

Theorem 5.18 () If  : Ω → R is a sequence of independent random vectors

and  : R → R is a sequence of Borel functions then the random vectors {()}
are independent.

() If {12  1 2  } is a sequence of independent random variables
then the random vectors

 = (1 2  ) and  = (1 2  )

are independent.

() Under conditions of (), for all Borel functions  : R → R and  : R → R,
the random variables  (1 ) and  (1  ) are independent.
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Proof. () Let {} be a sequence of Borel sets,  ∈ B (R). We need to show

that the events { () ∈ } are independent. Since

{ () ∈ } =
©
 ∈ −1 ()

ª
= { ∈ } 

where  = −1 () ∈ B (R), these sets are independent by the definition of the

independence of {}.
() We have by Theorem 5.16

 = 1
× × 

× 1 × ×  =  ×  

Hence,  and  are independent. Here we have used the fact that the product of

measures is associative.

() The claim is an obvious combination of () and () 

Theorem 5.19 If  and  are independent integrable random variables then

E( ) = E E (5.33)

and

var( +  ) = var + var (5.34)

Proof. Let us first show that  is integrable, that is, E | | ∞. Applying
Theorem 5.11 with  ( ) = ||, Theorem 5.16, and Fubini’s theorem, we obtain

E | | =
Z
R2
||  =

Z
R2
|| ||  ( ×  ) =

µZ
R
||
µZ

R
|| 

¶


¶
=

µZ
R
|| 

¶µZ
R
|| 

¶
= E || E | | ∞

Now repeating the same computation with  ( ) = , we obtain (5.33).

To prove the second claim, first observe that var ( + ) = var for any constant

. Hence, subtracting constants from  and  , we can assume that E = E = 0.
In this case, we have var = E2 and var = E 2. Using (5.33) we obtain

var( +  ) = E( +  )2 = E2 + 2E( ) +E 2 = E2 +E 2 = var + var

Remark. As it follows from the proof, the identity (5.33) holds for all independent

non-negative random variables  .

The identities (5.33) and (5.34) extend by induction to arbitrary finite sequence

of independent integrable random variables 1  as follows:

E (1) = E1E

var (1 + +) = var1 + + var 
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Example. Without independence the identities (5.33) and (5.34) do not hold.

Indeed, choose  to be a random variable with E = 0 and E2 = 1 and set

 = . Then E ( ) = E2 = 1 whereas E E = 0 Similarly,

var ( +  ) = E ( +  )
2
= E (2)2 = 4

whereas var + var = E2 + E 2 = 2.

Example. Recall that if  ∼ N ( ) then E =  and var = . Let  another

random variable such that  and  are independent and  ∼ N (0 0). Then we
have

E ( +  ) = E + E = + 0

and, using the independence of  and (5.34),

var ( +  ) = var + var = + 0

In fact, one can prove that

 +  ∼ N (+ 0 + 0)

(see Exercise 42). In other words, the sum of two independent normally distributed

random variables is again a normal random variable.

Example. A random variable  is called a Bernoulli random variable with param-

eter  ∈ [0 1] if
P ( = 0) = 1−  and P ( = 1) = 

This is equivalent to say that  is a discrete distribution with atoms 0 and 1 and

with stochastic sequence {1−  }, that is,  ∼  ( 1)  We have then

E = 1 · + 0 · (1− ) = 

var = E2 − (E)2 = − 2

Consider a sequence {}=1 of independent Bernoulli variables with the same pa-
rameter  (recall that such a sequence exists by Corollary 5.17). Set  = 1++

and prove that  has the binomial distribution  ( ), that is, for any  = 0 1  

P ( = ) =

µ




¶
(1− )− (5.35)

Indeed, the sum  is equal to  if and only if exactly  of the values 1   are

equal to 1 and  −  are equal to 0. The probability, that the given  variables

from {}, say 1  are equal to 1 and the rest are equal to 0, is equal to

 (1− )
−
. Since the sequence (1  ) can be chosen in

¡




¢
ways, we obtain

(5.35). Hence,  ∼ ( )

On the other hand, we have

E =
X
=1

E = 
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and by Theorem 5.19

var =

X
=1

var =  (1− ) 

Hence, the above argument allows to obtain easily the expectation and variance of

the binomial distribution  ( ).

5.6 Sequences of random variables

Let {}∞=1 be a sequence of random variables on a space (ΩF P). By Theorem
4.4, if the sequence { ()} converges for any  ∈ Ω then the limit function

 () = lim
→∞

 ()

is F-measurable and, hence, is a random variable. In this case we say that 

converges pointwise to  and write  → .

There are other modes of convergence of a sequence {} to a random variable

, which will be investigated here.

Definition. We say that  converges to  in probability and write


P−→ 

if, for any   0,

P (| −|  )→ 0 as →∞

If some event  has probability 1 then one says that  occurs almost surely

(write as) or  occurs for almost all  ∈ Ω (write aa).

Definition. We say that  converges to  almost surely and write


as−→  

if

P
³
lim
→∞

 = 
´
= 1

In other words, 
as−→  if

()→ () as →∞ for almost all .

Clearly, the pointwise convergence  →  implies the convergence as.

Definition. We say that  converges to  in the sense of Borel-Cantelli and

write 
BC−→  if, for any   0

∞X
=1

P (| −|  ) ∞ (5.36)
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The condition (5.36) is called the Borel-Cantelli condition.

It is clear from comparison of the definitions that


BC−→  ⇒ 

P−→ 
Lecture 16

09.11.10The following theorem states more detailed relations between the above modes

of convergence.

Theorem 5.20 The following is true:

() if 
BC−→  then 

as−→ 

() if 
as−→  then 

P−→ 

Before we prove the theorem, consider the following example.

Example. Let us show that in general


P−→  6⇒ 

as−→  6⇒ 
BC−→ 

Let Ω = [0 1], F be -algebra of Borel sets and P be the Lebesgue measure on [0 1]
Let  be an interval in [0 1] and define  = 1. For any  ∈ (0 1) we have

P (||  ) =  () 

It follows that


P−→ 0⇔ lim

→∞
 () = 0


BC−→ 0⇔

∞X
=1

 () ∞

and 
as−→ 0 if almost all points  ∈  are covered by finitely many intervals .

Choose the sequence of intervals  as follows:

[0 1]

[0 1
2
] [1

2
 1]

[0 1
4
] [1

4
 2
4
] [2

4
 3
4
] [3

4
 1]



[0 1
2
]  [ 

2
 +1
2+1

]  [2
−1
2

 1]



Clearly,  () → 0 as  → ∞ so that 
P−→ 0. On the other hand, each point

 ∈ [0 1] is covered by infinitely many of the intervals  so that () does not

converge to 0, that is, the convergence 
as−→ 0 fails.

Consider another sequence of intervals  = [0 1]. Since  () → 0, we have


P−→ 0, but since

P
  () =∞, the convergence 

BC−→ 0 fails.

Before the proof of Theorem 5.20, we prove two lemmas.
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Lemma 5.21 (1st Lemma of Borel-Cantelli) Let {} be a sequence of events and
consider the event

 = { occurs infinitely often}
= { ∈ Ω :  ∈  for infinitely many values of } 

If
∞X
=1

P () ∞ (5.37)

then P () = 0.

Remark. This lemma is equivalent to Exercise 12().

Remark. Exercise 38 contains the 2nd lemma of Borel-Cantelli: if events  are

independent and
∞X
=1

P () =∞

then P () = 1. Hence, for independent events {}, the event “ occurs infinitely

often” has the probability either 0 or 1.

For applications in this section we need only 1st lemma of Borel-Cantelli.

Proof of Lemma 5.21 It follows from the definition of  that

 = { ∈ Ω : ∀ ∈ N ∃ ≥   ∈ } =
T

∈N

S
≥

 (5.38)

Since the sequence of events
n S

≥ 

o∞
=1

is monotone decreasing, we obtain by the continuity

of P

P

ÃT


S
≥



!
= lim

→∞
P

Ã S
≥



!


By the condition (5.37), we have

P

Ã S
≥



!
≤
∞X

=

P ()→ 0 as  →∞

whence it follows that P () = 0, which was to be proved.

Lemma 5.22 Given   0, define for any positive integer  the event

() = {| −|  } = { ∈ Ω : |()−()|  }  (5.39)

as well as the event

() = {() occurs infinitely often}  (5.40)

Then convergence 
as−→  is equivalent to the fact that P(()) = 0 for any   0.
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Proof. We have by the definition of limit

{ → } = {∀  0 ∃ ∀ ≥  |()−()| ≤ }

whence by (5.39), (5.40) and (5.38)

{ 6→ } = {∃  0 ∀ ∃ ≥  |()−()|  }
= {∃  0 ∀ ∃ ≥   () occurs}
= {∃  0  () occurs}
=

S
0

 () 

Since  () is monotone decreasing in , the union in all   0 can be replaced by

the union in all rational  so that it is a countable union. Hence,


as−→  ⇔ P ( 6→ ) = 0⇔ P

µS
0

 ()

¶
= 0⇔ P ( ()) = 0 for all   0,

which was to be proved.

Proof of Theorem 5.20. We use in the proof the notation of Lemma 5.22.

In these terms, we have the following equivalences:


BC−→  ⇔

∞X
=1

P ( ()) ∞ (5.41)


as−→  ⇔ P ( ()) = 0 for all   0 (5.42)


P−→  ⇔ lim

→∞
P ( ()) = 0 for all   0 (5.43)

() By Lemma 5.21, (5.41) implies (5.42).

() By (5.42) and (5.38), we have

P

ÃT


S
≥

 ()

!
= 0 (5.44)

that is,

lim
→∞

P

Ã S
≥

 ()

!
= 0 (5.45)

which clearly implies (5.43).

A partial converse to Theorem 5.20 is given in the following statement.

Theorem 5.23 If 
P−→  then there exists a subsequence {} such that



BC−→ ; in particular, 

as−→ 
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Proof. For any positive integer , we have by (5.43)

lim
→∞

P
µ
| −|  1



¶
= 0

It follows that, for any  ∈ N there exists  such that

P
µ
| −|  1



¶
 2− for all  ≥ 

Therefore, there exists a sequence of positive integers 1  2       such that

P
µ
| −|  1



¶
 2− for all  = 1 2 

(indeed, just set  = 1 +2 + +). Let us show that



BC−→  as  →∞

For any   0, we have

∞X
=1

P (| −|  ) =

⎛⎝ X
≤1

+
X
1

⎞⎠P (| −|  )  (5.46)

The first sum is finite, and the second sum converges because

X
1

P (| −|  ) ≤
X
1

P
µ
| −|  1



¶
≤
∞X
=1

2− ∞

Hence, the series (5.46) converges, which was to be proved.

As an example of application of Theorem 5.20, let us prove the following useful

theorem.

Theorem 5.24 (The bounded convergence theorem) If 
as−→  and the sequence

{} is bounded as then E | −|→ 0 and, hence, E → E.

Proof. The boundedness of the sequence {} as means that, for some con-
stant , the inequality || ≤  holds as for every  Note that also || ≤  as,

which follows from the observation that, for any   0,

P (||   + ) ≤ P (||  ) + P (| −|  )→ 0 as →∞

where we have used that, by Theorem 5.20, 
P−→ . Denoting  = | −|

and noticing that 0 ≤  ≤ 2 as, we obtain using the monotonicity of expectation

E = E
¡
1{}

¢
+ E

¡
1{≤}

¢ ≤ 2P (  ) +  (5.47)

where   0 is arbitrary. Letting →∞ and using that P (  )→ 0, we obtain

lim sup
→∞

E ≤ 
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Since   0 is arbitrary, it follows that E → 0, that is, E | −|→ 0. Since

|E − E| = |E ( −)| ≤ E | −| 

we obtain that E → E.

Remark. In general (without boundedness) the condition 
as−→  or even


BC−→  does not imply that E → E Indeed, consider the following ran-

dom variables on the interval [0 1]:

 = 2
1(02−)

Then 
BC−→ 0 because, for any   0, P (||  ) ≤ 2− so that (5.36) is satisfied.

However, E = 1 while E = 0
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Chapter 6

Laws of large numbers

Lecture 17

15.11.10In this chapter we will be concerned with sums

 := 1 +2 + +

where {} is a sequence of independent random variables. The sums of indepen-

dent random variables arise in many application, and their investigation constitutes

a large portion of Probability Theory.

Consider some examples.

1. Suppose  = 1 if at -th flipping the coin shows heads, and  = 0

otherwise. Assuming that heads show with probability  and tails with 1 − ,

we see that {} is independent sequence of Bernoulli variables, having the same
distribution:  = 1 with probability  and  = 0 with probability 1−. Then 
is just a number of heads in a series of  trials. One may conjecture that  ≈ ,

which will be justified below.

2. Assume that one gambles on coin flipping and wins  euro each time the coin

shows heads and looses  euro in the case of tails. Then define the random variable

 as follows:  =  in if the -th flipping shows heads and  = − in the
case of tails. Then the sum  is the amount won after  flips (or lost if   0).

Obviously, the behavior of  for large  determines the outcome of gambling.

3. Consider a random walk on the set of integers Z, which is a simple model
of Brownian motion. A particle moves on the nodes of Z as follows. At time 0 it
is at 0. At each integer time  ≥ 1, it jumps from the current position  to  + 1

with probability , and to  − 1 with probability 1 − . Let us say that  = 1

for the first possibility, and  = −1 for the second. Then  is a current position

of a particle at time . Investigating the sums , we may be able to predict the

behavior of the random walk as →∞.
4. Suppose that a computer performs a task of adding up a long sequence of  real

numbers. At each operation there is a rounding error; denote by  the error after

-th operation. Then the error after  operations is . Assuming that || ≤  for

all , normally one estimates  very roughly by || ≤  However, if the errors

at different operations are independent (which seems a reasonable assumption) then

 can be significantly smaller than  due to cancellations. As we will see later, it

is reasonable to expect || ≈
√
.

93
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In this Chapter we investigate the behavior of  for large  for general random

variables  and prove the results that are referred to as laws of large numbers.

6.1 The weak law of large numbers

The first result about the sums of independent random variables is the following.

Theorem 6.1 Let {} be independent sequence of random variables having a com-
mon finite expectation E =  and a common finite variance var = 2. Then





P−→  as →∞ (6.1)

Recall that, by the definition of convergence in probability, (6.1) is equivalent to

the following: for any   0

lim
→∞

P
µ¯̄̄̄




− 

¯̄̄̄
 

¶
= 0 (6.2)

The latter can be equivalently rewritten in one of the following forms:

lim
→∞

P (| − |  ) = 0

or

lim
→∞

P ((− ) ≤  ≤ (+ )) = 1 (6.3)

On can interpret (6.3) as follows: for large  one has  ≈  with the error ≤ .

For example, in the case of coin flipping, we have  =  so that  ≈ . In the

case of random walk (or a long computation) we have  = 0 and (6.3) says that it

is likely that || ≤ . In other words, even if a particle can move away, the rate

of that is sublinear.

Example. Assume that all  have the same normal distribution N (0 1), that is,
E = 0 and var = E2

 = 1 Then  ∼ N (0 ) so that

 () =
1√
2

exp

µ
−2

2

¶


It follows that

P (||  ) = 2

Z ∞



1

(2)
12
exp

µ
−2

2

¶


¡
change  = 

√

¢

= 2

Z ∞


√


1

(2)
12
exp

µ
−

2

2

¶


→ 0 as →∞

whence (6.1) follows. Moreover, for any   0, we have in the same way

P
¡||  12+

¢
= 2

Z ∞



1

(2)
12
exp

µ
−

2

2

¶
 → 0 as →∞
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so that also


12+
P−→ 0 as →∞

For example, if is the computational error at step  then, assuming that all errors

are independent and identically normally distributed, we obtain that the error of the

sum is 
¡
12+

¢
for any   0. However, √


does not go to 0 as →∞ because

P
¡||  12

¢
= 2

Z ∞



1

(2)
12
exp

µ
−

2

2

¶
 = const  0

Example. Recall that a Cauchy distribution  () with parameter  has the

density

 () =
1





2 + 2


Note that the Cauchy distribution has no expectation but nevertheless in some sense

its mean is 0 because it is even. It is possible to prove that if  ∼  () and

 ∼  () and  are independent then  +  ∼  (+ ). Assume

now that all  ∼  (1). Then  ∼  (). Then

P (||  ) =
2



Z ∞





2 + 2
 (change  = )

=
2



Z ∞



1

1 + 2
 = const  0

Hence, 

does not converge to 0 as →∞ It is easy to see that in fact



1+
P−→ 0 as →∞

for any   0.

Before the proof of Theorem 6.1, let us prove the following lemma.

Lemma 6.2 (Chebyshev inequality) Let  be a random variable. Then, for all

positive  and ,

P(| | ≥ ) =
1


E | |  (6.4)

Recall that the quantity E | | is called the -th moment of  .
Proof. Renaming | | to  , we can assume that  is non-negative. Let us prove

(6.4) first in the case  = 1, that is,

P ( ≥ ) ≤ 1

E (6.5)

Indeed, we have

 ≥ 1{≥} ≥ 1{≥}
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whence it follows that

E ≥ E ¡1{≥}¢ = P ( ≥ ) 

which proves (6.5). Applying (6.5) to   instead of  and to  instead of , we

obtain

P ( ≥ ) = P
¡
  ≥ 

¢ ≤ 1


E 

which was to be proved.

Proof of Theorem 6.1. We have

E =
X

=1

E = 

and, by Theorem 5.19,

var =

X
=1

var = 2

Let us apply (6.4) with  = | − | and the second moment. Observing that

E 2 = E ( − )
2
= var

we obtain

P
µ¯̄̄̄




− 

¯̄̄̄
≥ 

¶
= P ( ≥ ) ≤ 1

()
2
E 2 =

var

()
2
=

2

()
2
=

2

2


Hence,

P
µ¯̄̄̄




− 

¯̄̄̄
≥ 

¶
≤ 2

2
 (6.6)

whence (6.2) follows.

The weak law of large numbers has the following more sophisticated version

which will be proved in Section 8.8.

Theorem . If {} are independent identically distributed random variables with

a common finite expectation  then





P−→  as →∞

The difference with Theorem 6.1 is that one does not need here the finiteness of

the variance, at the expense of having the same distribution function for all random

variables .
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6.2 The Weierstrass approximation theorem

Here we show how the weak law of large numbers allows to prove the following

purely analytic theorem.

Theorem 6.3 (The Weierstrass approximation theorem) Let  be a continuous

function on a bounded closed interval [ ]. Then, for any   0, there exists a

polynomial  () such that

sup
∈[]

|()−  ()|  

Proof. Suffices to consider the case of the interval [0 1] Consider the sequence

{} of independent Bernoulli variables taking 1 with probability , and 0 with

probability 1 − . As we know, the sum  = 1 +  +  has the binomial

distribution ( ), that is,

P ( = ) =

µ




¶
(1− )−  = 0 1 

It follows that

E(



) =

X
=0

(



)P( = ) =

X
=0

(



)

µ




¶
 (1− )

−


The right hand side here can be considered as a polynomial in  Denote it by

() =

X
=0

(



)

µ




¶
 (1− )

−


The polynomial () is called the Bernstein polynomial of  . It turns out to be a

good approximation for  (). The idea is that  converges in some sense to 

as →∞. Therefore, we may expect that E(

) converges to (). To be precise,

we will prove that

lim
→∞

sup
∈[01]

|()−()| = 0 (6.7)

which will settle the claim.

To prove (6.7), first observe that any continuous function  on [0 1] is uniformly

continuous, that is, for any   0 there exists   0 such that if

|− | ≤  ⇒ |()− ()| ≤ 

Using the binomial theorem, we obtain

() =  () (+ (1− ))

=

X
=0

()

µ




¶
 (1− )

−
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Therefore,

|()−()| ≤
X

=0

¯̄̄̄
()− (




)

¯̄̄̄ µ




¶
 (1− )

−

=

⎛⎜⎝ X
| −|≤

+
X
| −|

⎞⎟⎠ ¯̄̄̄()− (



)

¯̄̄̄ µ




¶
 (1− )

−


In the first sum, we have by the choice of  that¯̄̄̄
()− (




)

¯̄̄̄
≤ 

so that the sum is bounded by 

In the second sum, we use the fact that  is bounded, that is,  := sup | | ∞,
whence ¯̄̄̄

()− (



)

¯̄̄̄
≤ 2

Therefore, the second sum is bounded by

2
X
| −|

µ




¶
 (1− )

−
= 2

X
| −|

P ( = ) = 2P
µ¯̄̄̄




− 

¯̄̄̄
 

¶


Using the estimate (6.6) and E = , we obtain

P
µ¯̄̄̄




− 

¯̄̄̄
 

¶
≤ 2

2


where 2 = var = (1− )  1

Hence, for all  ∈ [0 1],

|()−()| ≤ +
2

2


Letting →∞, we obtain
lim sup
→∞

| ()− ()| ≤ 

Since   0 is arbitrary, it follows that

lim
→∞

| ()− ()| = 0
which was to be proved.

Remark. An upper bound for the sumX
| −|

µ




¶
 (1− )

−

can be proved also analytically, which gives also another proof of the weak law of

large numbers in the case when all  are Bernoulli variables. Such a proof was

found by Jacob Bernoulli and historically was the first proof of the weak law of large

numbers (in this particular case).
Lecture 18

16.11.10
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6.3 The strong law of large numbers

As before, let {} be a sequence of random variables and

 = 1 +2 + +

Theorem 6.4 (The strong law of large numbers) Let {} be independent iden-
tically distributed random variables with a finite expectation E =  and a finite

variance var = 2. Then




as−→ 

The term “identically distributed” means that all random variables  have the

same distributions. This of course implies that they have the same expectation and

the same variance.

The statement of Theorem 6.4 remains true if one drops the assumption of the

finiteness of var. Moreover, the finiteness of the mean E is not only sufficient

but also necessary condition for the existence of the limit lim 

a.s. Another pos-

sibility to relax the hypotheses is to drop the assumption that  are identically

distributed but still require that  have a common finite mean and a common

finite variance.

The proofs of these stronger results are much longer and will be omitted.

Proof of Theorem 6.4. By Theorem 5.20, it would be sufficient to know that





BC−→ 

that is, for any   0,
∞X
=1

P
µ¯̄̄̄




− 

¯̄̄̄
 

¶
∞ (6.8)

In the proof of Theorem 6.1, we have obtained the estimate (6.6)

P
µ¯̄̄̄




− 

¯̄̄̄
≥ 

¶
≤ 2

2
 (6.9)

that however is not enough to prove (6.8), because

∞X
=1

1


=∞

However, taking in (6.9)  to be a perfect square 2, we obtain

∞X
=1

P
µ¯̄̄̄

2

2
− 

¯̄̄̄
 

¶
≤

∞X
=1

const

2
∞

which implies by Theorem 5.20 that

2

2
as−→  (6.10)
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Now we need to extend this convergence to the whole sequence , that is to “fill

gaps” between perfect squares. Assume first that all  ≥ 0. Then the sequence 
is increasing. For any positive integer , find  so that

2 ≤   ( + 1)2

Then
2

( + 1)2
≤ 2


≤ 


≤ (+1)2


≤ (+1)2

2


and since 2 ∼ ( + 1)2 as  →∞, we see that by (6.10)
2

( + 1)2
as−→  and

(+1)2

2
as−→  

whence




as−→ 

Finally, we get rid of the restriction  ≥ 0. For a general , consider its

positive and negative parts +
 and −

 . More precisely, set

+
 = () and −

 = ()

where

() = max( 0) and () = max(− 0)
Note that  = +

 −−
 and || = +

 +−
 .

We claim that the sequence {+
 } (and similarly {−

 }) satisfies the hypothesis
of the present theorem. Firstly, the sequence {+

 } is independent by Theorem 5.18
just because +

 = () For the same reason, all 
+
 are identically distributed.

Also, +
 is square integrable by 

+
 ≤ || so that +

 has a finite variance.

By the first part of the proof, we have

+
1 + ++





as−→ E+
1

−
1 + +−





as−→ E−
1 

Subtracting these two identities, we obtain

1 + +



as−→ E1 = 

which was to be proved.

6.4 Random walks

Let us apply the strong law to a random walk. Let {} be independent sequence
random variables taking values 1 and −1 with probabilities  and 1−, respectively.
Define 0 = 0 and

 = 1 +2 + +
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Then  can be interpreted as a position at time  of a particle performing a random

walk on integers. Since E = 2− 1 and var ∞, Theorem 6.4 says that





as−→ 2− 1 (6.11)

If  6= 1
2
then this means that  behaves approximately as (2 − 1) for large ,

which can be interpreted as the particle moving towards the infinity with a constant

speed 2− 1.
If  = 1

2
then E = 0 and E = 0. In this case  is called the simple random

walk. For the simple random walk, (6.11) implies

 = () a.s.

By a more careful analysis, one can say much more about the asymptotic behavior

of .

Theorem. (Khinchin’s law of the iterated logarithm) Let  be the simple random

walk. Then

lim sup
→∞

√
2 log log 

= 1 and lim inf
→∞

√
2 log log 

= −1

The proof of this theorem is rather long and is outside the scope of this course.

Instead, we will prove the following result, which although weaker than Khinchin’s

theorem, still introduces the
√
.

Theorem 6.5 (Hausdorff’s theorem) Let {} be independent random variables

with a common expectation E = 0 and a common finite -th moment  =

E || for all  = 1 2 3  Then, for all   0,

 = (
1
2
+) as

The hypothesis of finiteness of all moments is trivially satisfied for all random

variables taking finitely many values as well as for normal distribution. Hence,

Theorem 6.5 applies to such random variables.

We first prove the following lemma.

Lemma 6.6 (The Hölder inequality) Let    1 be such that

1


+
1


= 1 (6.12)

Then, for all random variables  ,

E | | ≤ (E ||)1 (E | |)1 (6.13)

(the undefined product 0 ·∞ is understood as 0).
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Remark. Numbers   satisfying (6.12) are called the Hölder conjugate, and the

couple ( ) is called a Hölder couple. In particular, for  =  = 2 we obtain the

Cauchy-Schwarz inequality.

Proof. If E || = 0 then by Theorem 4.12 we have  = 0 aeso that the left

hand side of (6.13) vanishes and, hence, (6.13) is trivially satisfied. In the same

way (6.13) is satisfied if E | | = 0. Let us assume in the sequel that E || and
E | | are positive. If one of these values is equal to∞ then again (6.13) is trivially

satisfied. Hence, we can assume that both E || and E | | are positive and finite.
Next, observe that inequality (6.13) is scaling invariant: if  is replaced by 

when  ∈ R, then the validity of (6.13) does not change (indeed, when multiplying
 by , the both sides of (6.13) are multiplied by ||). Hence, by normalizing 
and  we can assume that E || = 1 = E | |. Then it remains to prove that

E | | ≤ 1

For that we use the Young inequality:

 ≤ 


+




 (6.14)

which is true for all non-negative reals   and all Hölder couples  . Indeed,

consider the graph of function  = −1 over the interval  ∈ [0 ]. The area of the
subgraph is

 =

Z 

0

−1 =





Consider the inverse function  = 
1

−1 = −1 over the interval  ∈ [0 ]. The area
of its subgraph is

 =

Z 

0

−1 =





It is easy to see that the two subgraphs cover the rectangle [0 ]× [0 ]: if ( ) is
not in the first subgraph, that is,   −1 then   

1
−1 = −1 so that ( ) is in

the second subgraph. Since the area of the rectangle is , it follows that  ≤ +,

whence (6.14) follows.

Applying (6.14) to ||  | | and integrating against P, we obtain

E | | ≤ 1

E || + 1


E | | = 1


+
1


= 1

which finishes the proof.

Taking  = 1 in (6.13) we obtain

E || ≤ (E ||)1

for any  ≥ 1. Replacing  by || and setting  = , we obtain

E || ≤
³
E ||

´
(6.15)
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for all  ≥   0.

Proof of Theorem 6.5. We will use the Chebyshev’s inequality (6.4) in the

form

P (||  ) ≤ 1

2
E2  (6.16)

where   0 and an integer  will be chosen later. Let us first estimate E
¡
2
¢
.

Denote for simplicity  = 2 and observe that


 =

Ã
X

1=1

1

!Ã
X

2=1

2

!


Ã
X

=1



!
=

X
12

12  (6.17)

Here 1 2   are indices varying between 1 and . In particular, the total number

of terms in the sum (6.17) is equal to .

Let us call a term 12 in the sum (6.17) trivial if the value of one of

the indices 1   is different from all the others. For example, 213322

is trivial whereas 121323 is non-trivial. Observe that the expectation of

any trivial term is 0. For example, if the value of 1 is different from 2   then,

using the independence of {} we obtain

E (12 ) = E (1)E (2) = 0

because E1 = 0.

Let us estimate the expectation of any non-trivial term. Denote by  the number

of occurrences of the value  = 1   in the sequence 1 2  . Then

1 + 2 + +  = 

and

|E (12 )| =
¯̄
E
¡
 1
1 

2
2 




¢¯̄
=

¯̄
E 1

1 E
2
2 E




¯̄
≤ (E

1 )
1 (E

2 )
2  (E

 )


= 
1++




= 

where  = E
 . Here we have used the Hölder inequality (6.15)¯̄

E 
¯̄
≤ (E)



and the fact that  is even, which simplifies notation.

Now let us estimate the number of non-trivial sequences 1  , that is, the

sequences where each value of the index is repeated at least twice. The number of

different values of indices 1 2   in a non-trivial sequence is at most 2 = .

Let us mark all positions in the sequence 1   with the distinct values and then
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mark also some other positions so that the total number of the marked positions is

exactly  Here is an example of marking with  = 4 = 8:

1 2 3
×
 4
×
 5 6

×
 7
×
 8

In each of  marked position the index can take any value from 1 to . In each of

 unmarked position the value of the index must repeat one of the marked values,

hence, giving at most  values. Hence, the number of non-trivial sequences with fixed

marking is at most . Since the marked  position can chosen by
¡




¢
=
¡
2



¢
ways, the total number of non-trivial sequences 1   is bounded from above by¡
2



¢
 = 

 where  =
¡
2



¢
. For comparison, let us recall that the total

number of all sequences 1   is 
2, which means that the number of non-trivial

terms is a very small fraction of all terms if  is large enough.

Given that the number of non-trivial terms is at most 
 and the expectation

of each of then is bounded by 2, we can estimate E
¡
2
¢
as follows:

E
¡
2
¢ ≤2

 =  0




where  0
 =2. By Chebyshev’s inequality (6.16), we have for any   0,

P (||  ) ≤  0




2


Fix some    0 and choose  = 
1
2
+. Then we have

P
µ¯̄̄̄




1
2
+

¯̄̄̄
 

¶
= P

³
||  

1
2
+
´
≤  0




2+2
=
const

2


Choosing   1
2
, we see that

∞X
=1

P
µ¯̄̄̄



12+

¯̄̄̄
 

¶
∞

which means that


12+
BC−→ 0

By Theorem 5.20, we conclude that



12+
as−→ 0

which was to be proved.Lecture 19

22.11.10

6.5 The tail events and Kolmogorov’s 0− 1 law
Definition. For any family {}∈ of random variables define  ({}) as the
minimal -algebra containing all the events of the form { ≤ } where  ∈  and
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 ∈ R In other words,  ({}) is the minimal -algebra such that all  are

measurable with respect to it. One says that  ({}) is the -algebra generated by
the family {}.
Let {}∞=1 be a sequence of random variables. For any  ∈ N, set

 =  (+1 ) 

Clearly, 1 is -algebra generated by the whole sequence {}, and the sequence
{} is decreasing in .

Definition. The tail -algebra of {} is defined by

∞ =
∞\

=1

 = lim
→∞



The elements of ∞ are called tail events. A function on Ω that is ∞-measurable,
is called a tail function.

Since ∞ ⊂ F , all tail events are events, and all tail functions are random
variables. Here are some examples of tail events and functions.

Example. We claim that the setn
lim
→∞

 exists
o

(6.18)

is a tail event. Let us first understand why it is in 1. Indeed, the existence of the

limit is equivalent to the fact that the sequence {} is Cauchy, that isn
lim
→∞

 exists
o
= {∀  0 ∃ ∀  ≥  | −|  }
=

\
0

[


\
≥

{| −|  } 

Since  and  are 1-measurable, | −| is also 1-measurable, whence it

follows that n
lim
→∞

 exists
o
∈ 1

The event (6.18) is defined by the tail of the sequence, that is, the existence of the

limit of the sequence 12  and of the shifted sequence  +1  is the same

event. Hence, applying the above argument to the shifter sequence, we obtainn
lim
→∞

 exists
o
∈ 

Intersecting over all , we obtain the claim.

Example. We claim that the function lim sup→∞ is a tail function. Indeed, for

that it suffices to verify that the set½
lim sup
→∞

 ≤ 

¾
(6.19)
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is a tail event for any real . Using the definition of lim sup, we have½
lim sup
→∞

 ≤ 

¾
= {∀  0 ∃ ∀ ≥    + }

=
\
0

[


\
≥

{  + } 

which is in 1. Since the event (6.19) is defined by the tail of the sequence, we

obtain as in the previous example, that (6.19) is a tail event.

Example. Denote  = 1 +2 + , and let  ∈ [−∞+∞]. In general, the
event n

lim
→∞

 = 
o

is not a tail event1 because it cannot be expressed without using, say, 1. However,

we claim that the event ½
lim
→∞




= 

¾
is a tail event. Indeed, one proves as above that lim is 1-measurable. To

prove that this event is defined by the tail, observe that, for any index ,

lim
→∞




= lim

→∞

µ
−1


+
 ++1 + +



¶
= lim

→∞
 ++1 + +

−+ 1


because −1→ 0 and  ∼ −+ 1 as →∞.
In the same way, one can prove that the following are tail events (for   0):½

lim
→∞




exists

¾
and

½
lim
→∞




= 

¾


In particular, in the strong law of large numbers, we considered the tail event

{→ }, and in the Hausdorff theorem — the tail event  = (
1
2
+). Basically,

most limit theorems have to do with some tail events.

Here are some example of tail functions that arise in this way:

lim sup
→∞




and lim inf

→∞





Theorem 6.7 (Kolmogorov’s 0− 1 law) If the sequence {} is independent then
the tail -algebra ∞ of {} is trivial, that is, each event in ∞ has probability 0

or 1.

1More precisely, {lim = } is not a tail event for the sequence {} but is a tail event for
the sequence {}.
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Proof. Let us first prove the following claim.

Claim. If {1   1  } is a sequence of independent random variables

then the following two -algebras

 (1  ) and  (1  )

are independent.

Denote by A the family of events of the form

 = {1 ≤ 12 ≤ 2  ≤ }

where  ∈ R and by B the family of events of the form

 = {1 ≤ 1 2 ≤ 2   ≤ }

where  ∈ R. By hypotheses, every two events  ∈ A and  ∈ B are independent.
Indeed, since the events

{1 ≤ 1}   { ≤ }  {1 ≤ 1}   { ≤ }

are independent, the events  and  are independent by Lemma 3.5.

Since both families A, B are closed under finite intersection, by obtain by

Theorem 3.6 that  (A) and  (B) are also independent. By definition we have
 (1  ) =  (A) and  (1  ) =  (B) whence the claim follows.

Fix some index  and observe that the sequence of -algebras

 (+1  +)   = 1 2 

increases with . It follows that their union

U =
∞[
=1

 (+1  +)

is an algebra (but not necessarily a -algebra). By the above claim,  (1 )

and  (+1  +) are independent, whence it follows that  (1  ) and

U are independent. By Theorem 3.6, also  (1  ) and  (U) are independent.
Since  (U) is the -algebra generated by the infinite sequence {+1 +2 },
that is,

 (U) =  (+1+2 ) = +1

we see that  (1 ) and +1 are independent.

Since ∞ ⊂ +1, it follows that  (1 ) and ∞ are independent for all

. Then also the union

V =
∞[

=1

 (1  ) (6.20)

and ∞ are independent. Since  (V) = 1, we obtain that 1 and ∞ are indepen-
dent. Since ∞ ⊂ 1, it follows that ∞ and ∞ are independent. Hence, every
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event  ∈ ∞ is independent of itself, whence P () = 0 or 1 (cf. Example in Section
3.4).

As a consequence, we see that the events liken
lim
→∞

 exists
o


½
lim
→∞




= 

¾

n
 = (

1
2
+)
o
 etc.,

occur with probability either 0 or 1, provided {} are independent.
Theorem 6.7 implies that if  is a tail function of independent random variables

1 2  then  = const as (see Exercises). For example, we see that such random

variables as

lim sup lim sup



 lim sup ||1 

are constants as



Chapter 7

Convergence of sequences of

random variables

7.1 Measurability of limits as

Recall that by Theorem 4.4 the pointwise limit of a sequence of measurable functions

is measurable. The following lemma extends this property to convergence as.

Lemma 7.1 Let {} be a sequence of random variables such that the sequence

{ ()} converges for almost all  ∈ Ω. Define

 () =

½
lim→∞ ()  if { ()} converges
0 otherwise.

Then  is a random variable.

Proof. Let us first recall that the set

 = { ∈ Ω : { ()} converges}

is measurable, because it is a tail event. Consider the sequence  = 1 and

observe that, firstly,  is measurable as the product of two measurable functions;,

and secondly  →  asas →∞ pointwise. Indeed, if  ∈  then

 () =  ()→  ()

and if  ∈  then

 () = 0→  () 

Hence, by Theorem 4.4,  is measurable as the pointwise limit of a sequence of

measurable functions.

The point of Lemma 7.1 is that if a sequence {} converges as then there is
a random variable  such that 

as−→ .

109
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7.2 Convergence of the expectations

In the next theorem we collect convenient conditions under which the operations E
and lim can be interchanged.

Theorem 7.2 Let {}∞=1 be a sequence of random variables such that 
as−→ .

() (The monotone convergence theorem) If  ≥ 0 as and the sequence {}
is monotone increasing as then

E = lim
→∞

E (7.1)

() (Fatou’s lemma) If  ≥ 0 as then

E ≤ lim inf
→∞

E (7.2)

() (The dominated convergence theorem) If here exists an integrable random vari-

able  such that || ≤  as for all , then (7.1) is satisfied.

Remark. In part () the identity (7.1) may fail. Indeed, consider on [0 1] the

following sequence of functions

 = 1(0 1

)

Then  → 0 pointwise on [0 1] while E = 1 6→ 0.

Remark. The condition || ≤  in part () is called the domination condition.

Theorem 7.2 provides two sufficient conditions for the validity of (7.1): either the

sequence {} must be non-negative and monotone increasing, or it should satisfy
the domination condition.

The bounded convergence theorem of Corollary 5.24 is clearly a consequence of

the dominated convergence theorem with  = const  However, we use the bounded

convergence theorem to prove Theorem 7.2.

Proof. () For any positive integer , define () = min () and 
()
 =

min ()  Since

0 ≤ () −()
 ≤  −

we obtain that 
()


as−→ () as →∞ for any . Since the sequence
n

()


o∞
=1

is uniformly bounded by , we obtain by the bounded convergence theorem (Corol-

lary 5.24) that

E() = lim
→∞

E()
 ≤ lim

→∞
E

Letting →∞ and using

lim
→∞

E() = E
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(see Theorem 4.9), we obtain

E ≤ lim
→∞

E

Since the opposite inequality is trivially satisfied by  ≥ , we obtain the equality

(7.1).Lecture 20

23.11.10 () Consider the sequence

 = inf
≥

 = lim
→∞

min {+1  } 

Then {} is a monotone increasing sequence of random variables,  ≥ 0 as and


as−→ . It follows from part () that

E = lim
→∞

E

On the other hand,  ≤  implies

lim
→∞

E ≤ lim inf
→∞

E

whence (7.2) follows.

() Since  +  ≥ 0 as and  + 
as−→  +  , we obtain by Fatou’s lemma

E ( +  ) ≤ lim inf
→∞

E ( +  ) = lim inf
→∞

E + E

Since  is integrable, cancelling out E we obtain

E ≤ lim inf
→∞

E (7.3)

Applying the same argument to the sequence {−}, we obtain

E (−) ≤ lim inf
→∞

E (−) = − lim sup
→∞

E

whence

E ≥ lim sup
→∞

E

Combining with (7.3) we obtain (7.1).

Alternative proof of (). Replacing  by + +  where   0, we can assume that  is

strictly positive. By dividing all random variables    by the constant E , we can assume
that E = 1 Then  determines a new probability measure P0 on F given by P0 =  P, that is,
for any event ,

P0 () =
Z


 P = E (1 ) 

In particular, if P () = 0 then also P0 () = 0. For the associated expectation E0 we have

E0 =
Z
Ω

P0=
Z
Ω

 P = E ( ) 
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Consider random variables  0 =  and  0
 =  . By hypothesis, the sequence { 0

} is
uniformly bounded as Since  0



as−→  0, applying the bounded convergence theorem in the space
(ΩF P0), we obtain

E0 0 = lim
→∞

E0 0


that is

E ( 0 ) = lim
→∞

E ( 0
 ) 

which is equivalent to (7.1).

Although we have stated and proved Theorem 7.2 for probability measures, sim-

ilar statement (with the same proof) is true for an arbitrary measure  defined on

a -algebra F of subsets of a set Ω. Let us restate Theorem 7.2 in this case using

different notation.

Theorem. Let {} be a sequence of measurable functions on Ω and  be a

measurable function such that 
as−→  .

() (The monotone convergence theorem) If  ≥ 0 as and the sequence {} is
monotone increasing as thenZ

Ω

 = lim
→∞

Z
Ω

 (7.4)

() (Fatou’s lemma) If  ≥ 0 as thenZ
Ω

 ≤ lim inf
→∞

Z
Ω



() (The dominated convergence theorem) If there exists an integrable function 

such that || ≤  as for all , then (7.4) is satisfied.

For example, the convergence theorems hold for the Lebesgue measure  on

bounded boxes in R. By taking exhaustion of R by bounded boxes, one can show

that the convergence theorems remain true for the Lebesgue measure  on entire

R.

7.3 Weak convergence of measures

Definition. Given a sequence {} of probability measures on B (R) and a prob-

ability measure  on B(R), we say that  converges weakly to  and write

 ⇒ 

if, for any bounded continuous function  on R,Z
R

 →
Z
R
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It would be natural to say that  converges to  and write  →  if

()→ () (7.5)

for all Borel sets  ∈ B (R). However, this would be a stronger condition than we

need. Consider the following example.

Example. For any point  ∈ R define the Dirac measure  on B (R) by

 () =

½
1  ∈ 

0  ∈ 


Let {} be a sequence of points in R that converges to a point  and such that

 6=  for all . We claim that  ⇒  but in general  6→ . Indeed, taking

 = {} we see that  () = 0 while  () = 1 so that  () 6→  (), which

proves the second claim. On the other hand, for any bounded continuous function

 on R, Z
R

 = ()→ () =

Z
R



which proves the first claim.

Next we give another characterization of the weak convergence of measures in

one-dimensional case. Let  be a probability measure on B (R). Recall that the
distribution function  of measure  is defined by

() = (−∞ ]

Recall also that, by Theorem 2.10, function  is monotone increasing and right

continuous.

Theorem 7.3 Let {} and  be probability measures on B(R). Then the following
conditions are equivalent:

()  ⇒ ;

() 
()→ () for any  ∈ R where  is continuous.

In other words,  ⇒  is equivalent to the pointwise convergence of the distri-

bution functions at all the points of continuity of .

Remark. Observe that the set of points of discontinuity of  is at most countable,

because  is monotone. Indeed, for any point  at which  is discontinuous, there

corresponds a non-empty open interval ((−) (+)). All such intervals are

disjoint, which implies that the set of them is at most countable.

Note also that a monotone right continuous function  is uniquely determined

by its values outside a countable set  (in particular,  is uniquely determined by

its values at all points of continuity). Indeed, for any real , there is a sequence {}
which converges to  from above and such that all  are outside . Therefore, the

values  () are given, whence  () can be determined by  () = lim→∞  ().
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Example. For a Dirac measure  we have  = 1[+∞) so that the only point of
discontinuity of  is . Let {} be a strictly monotone decreasing sequence of
reals that converges to . As we have seen above,  ⇒ . On the other hand, we

have

lim
→∞


= lim

→∞
1[+∞) = 1(+∞)

so that 
→  in R \ {}, while at the point 

lim
→∞


() 6=  () 

Proof of Theorem 7.3. Denote for simplicity  = 
and  = . Denote

by  the set of points of continuity of  .

() =⇒ (). Fix a point  ∈  and prove that ()→  () Given any   0,

find a continuous function  such that

1(−∞] ≤  ≤ 1(−∞+] (7.6)

For example, we can define  by

() =

½
1  ≤ 

0   + 

and () is linear in [ + ]. It follows from (7.6) that

() =  ((−∞ ]) =

Z
R
1(−∞] ≤

Z
R


and

 (+ ) =  ((−∞ + ]) =

Z
R
1(−∞+] ≥

Z
R


By hypothesis, we have Z
R
 →

Z
R
 as →∞

whence it follows that

lim sup
→∞

 () ≤
Z
R
 ≤

Z
R
1(−∞+] =  (+ )  (7.7)

Similarly, considering a continuous function  such that

1(−∞−] ≤  ≤ 1(−∞]

we obtain

lim inf
→∞

 () ≥ lim
→∞

Z
R
 =

Z
R
 ≥

Z
R
1(−∞−] =  (− )  (7.8)
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Since  is continuous at  and   0 is arbitrary, we obtain from (7.7) and (7.8)

that

lim
→∞

() =  ()

() =⇒ () Let () →  () for all  ∈ . We need to prove that, for any

bounded continuous function  ,Z
R
 →

Z
R
 (7.9)

We first prove (7.9) for some simpler functions (not necessarily continuous).

Let  = 1(−∞] where  ∈  ThenZ
R
 = ()→  () =

Z
R


so that (7.9) holds for such functions. By additivity, (7.9) extends to any function

of the form

 = 1(] = 1(−∞] − 1(−∞]

where   ∈  and   . Moreover, if ( ] is a finite sequence of intervals where

all   ∈  then (7.9) holds for any function of the form

 =
X


1(] (7.10)

Let now  be a bounded continuous function on R Choose a bounded closed
interval [ ] and consider a partition  = {}=0 of [ ], that is, a sequence such
that

0 =   1  2     = 

Associated with this partition is a simple function

 =

X
=1

 ()1(−1]

Consider now a sequence of partitions  as ()→ 0 where () := max | − −1|
is the mesh of . Since  is uniformly continuous on [ ], we have  ⇒  on [ ]

that is,

sup
[]

| − |→ 0 as  ()→ 0

Now assume in addition that the points   ∈  and that all the points  in all

partitions are also chosen from  (which is possible because  is dense in R). Then
any function  has the form (7.10) whence we conclude thatZ

R
 →

Z
R
 as →∞ (7.11)
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Splitting the domain R of integration in (7.9) into the intervals (−∞ ] ( ],

(+∞], we obtain¯̄̄̄Z
R
 −

Z
R


¯̄̄̄
≤

¯̄̄̄Z
(]

 −
Z
(]



¯̄̄̄
(7.12)

+

¯̄̄̄Z
(−∞]

 −
Z
(−∞]



¯̄̄̄
(7.13)

+

¯̄̄̄Z
(+∞)

 −
Z
(+∞)



¯̄̄̄
(7.14)

Let us estimate separately all the terms on the right hand side of (7.12)-(7.14). For

the term (7.12) we have¯̄̄̄Z
(]

 −
Z
(]



¯̄̄̄
≤

¯̄̄̄Z
(]

( − ) 

¯̄̄̄
+

¯̄̄̄Z
(]

 −
Z
(]



¯̄̄̄
+

¯̄̄̄Z
(]

( − ) 

¯̄̄̄
≤ 2 sup

[]

| − |+
¯̄̄̄Z
R
 −

Z
R


¯̄̄̄


where we have used that the total mass of  and  is 1. It follows from (7.11) that

lim sup
→∞

¯̄̄̄Z
(]

 −
Z
(]



¯̄̄̄
≤ 2 sup

[]

| − | 

Since the right hand side here → 0 as  ()→ 0, we obtain that

lim
→∞

¯̄̄̄Z
(]

 −
Z
(]



¯̄̄̄
= 0 (7.15)

Lecture 21

29.11.10 For the term (7.13) we have¯̄̄̄Z
(−∞]

 −
Z
(−∞]



¯̄̄̄
≤

Z
(−∞]

| |  +
Z
(−∞]

| | 

≤ sup | | ( () +  ())

and for the term (7.14)¯̄̄̄Z
(+∞]

 −
Z
(+∞]



¯̄̄̄
≤

Z
(+∞]

| |  +
Z
(+∞]

| | 

≤ sup | | (1−  () + 1−  ()) 

Fix some   0. Since  ()→ 0 as → −∞, we can choose  ∈  so that

 ()  
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Since  ()→ 1 as → +∞, we can choose  ∈  so that

1−  ()  

Since  ()→  () and  ()→  () as →∞, we have for large enough 

 ()   and 1−  ()  

Hence, for large enough , the terms (7.13) and (7.14) are bounded by 2 each.

Combining with (7.15) we obtain from (7.12)-(7.14) that

lim sup
→∞

¯̄̄̄Z
R
 −

Z
R


¯̄̄̄
≤ 4 sup | | 

Since   0 is arbitrary, we obtain (7.9).

7.4 Convergence in distribution

Definition. We say that a sequence of random variables  converges in distribu-

tion (or in law) to a random variable  and write


D−→ 

if


⇒  

Recall that  is a probability measure on B(R) defined by () = P ( ∈ ).

So, the convergence in distribution can be applied even if the random variables {}
and  are all defined on different probability spaces. Sometimes we will use also

notation


D−→  

which is short for


⇒ 

where  is a probability measure on B(R).

Theorem 7.4 The following are equivalent:

() 
D−→  ;

() E()→ E(), for any bounded continuous function  on R.

() 
()→ (), for any point  where  is continuous.
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Figure 7.1: Functions  () and  ()

Proof. Assuming that  is any bounded continuous function on R, we have, by
the definition of weak convergence and Theorem 5.7


D−→  ⇐⇒ 

⇒ 

⇐⇒
Z
R


→
Z
R


⇐⇒ E()→ E()

which means that () ⇔ (). On the other hand by Theorem 7.3 
⇒  is

equivalent to ().

Example. Let  be a random variable taking the values
©
1

 2

  



ª
each with

probability 1

. Let us show that 

D−→  where  is uniformly distributed on

[0 1]. The distribution functions 
and  are equal to 0 for  ≤ 0 and to 1 for

 ≥ 1. For  ∈ (0 1), we have


() = P ( ≤ ) =

1


#

½
 ∈ N : 


≤ 

¾
=
[]


−→
→∞

 = ()

(see Fig. 7.1).

Hence, 
() → () for all  ∈ R, whence the claim follows by Theorem

7.4(). Alternatively, 
D−→  follows from Theorem 7.4() because for any

bounded continuous function 

E () =
1



X
=1



µ




¶
−→
→∞

Z 1

0

 ()  = E () 

which is true by the Riemann integrability of  .
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This example can be used to show that in general 
D−→  does not imply that


P−→ . Indeed, let us specify  on [0 1] as follows:

 () =



if  ∈ ( − 1






]

where  = 1  . Clearly,  takes each the values
1

 2

  


with probability 1


.

It is obvious that, for all  ∈ [0 1],

lim
→∞

 () = 

10.750.50.250

1

0.75
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0.25

0
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y
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y

Random variables  and 

Consider the random variable  () = 1 −  that is uniformly distributed in

[0 1] because for any  ∈ [0 1]

P ( ≤ ) = P (1−  ≤ ) = P ( ≥ 1− ) = 1− P (  1− ) = 1− (1− ) = 

Then  cannot converge in probability to  because no subsequence of {}
converges to  as (cf. Theorem 5.23).

The convergence in distribution is the weakest mode of convergence of random

variables, as is stated by the following theorem.

Theorem 7.5 Let {} and  be random variables.

() If 
P−→  then 

D−→ .

() If  is a constant then 
D−→  implies 

P−→ .

Proof. () Denote for simplicity  = 
and  =  . By Theorem 7.4, it

suffices to prove that

()→  ()
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for any point  of continuity of  . We use the following general inequality: if  and

 are two events then

P ()− P () ≤ P ( ∩)  (7.16)

which follows from

P () = P ( ∩) + P( ∩) ≤ P () + P ( ∩) 

Then we have, for any   0,

()−  (+ ) = P( ≤ )− P ( ≤ + )

≤ P( ≤  and   + )

≤ P (| −|  ) 

As →∞, the right hand side → 0 by hypothesis, whence

lim sup
→∞

() ≤  (+ ) (7.17)

Similarly,

 (− )− () = P( ≤ − )− P ( ≤ )

≤ P( ≤ −  and   )

≤ P (| −|  ) 

which implies

lim inf
→∞

() ≥  (− ) (7.18)

Since  is continuous at , (7.17) and (7.18) yield

lim
→∞

() =  ()

() The random variable  ≡  has the distribution function

 = 1[+∞) 

which is continuous at any  6= . Hence, by hypothesis, () →  () for any

 6= .

For any   0, we have

P (| − |  ) = P (  − ) + P (  + ) ≤ (− ) + (1− (+ )) 

As →∞, the right hand side converges to

 (− ) + (1−  (+ )) = 0

We conclude that

P (| − |  ) −→
→∞

0

which was to be proved.
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7.5 A limit distribution of the maximum

We give here a simple example of a statement involving a limit distribution of a

functional of random variables.

Theorem 7.6 Let {} be independent identically distributed random variables

with a common distribution function  such that

1−  () ∼ − as → +∞ (7.19)

where   0 and   0. Denote

 = max (1 2 ) 

Then


1
D−→   (7.20)

where  is the probability measure with the following distribution function

() =

½
exp (−−)    0

0  ≤ 0

Remark. The function  is a distribution function by Theorem 2.10. The density

function of  is

 () =  0
 () = −−1 exp

¡−−¢    0

(see Fig. 7.2). Note that if → +∞ then

() = 1− − + (−)

Hence,  satisfies (7.19) as well.

Remark. As it has been already explained, (7.20) means that

1
D−→ 

It follows from (7.20) that, for any   1,




D−→ 0

whence by Theorem 7.5 also



P−→ 0

Example. Let  have the Cauchy distribution, that is

 () =
1



Z 

−∞



1 + 2
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Figure 7.2: Functions  and  for  =  = 1.

If → +∞ then

1−  () =
1



Z ∞





1 + 2
∼ 1



Z ∞





2
=
1




Hence, (7.19) holds with  = 1 and  = −1. We conclude that 
D−→  where

 =

½
exp

¡− 1


¢
   0

0  ≤ 0

Example. If  ∼ N (0 1) then

 () =
1√
2

Z 

−∞
exp

µ
−

2

2

¶


If → +∞ then

1−  () =
1√
2

Z +∞



exp

µ
−

2

2

¶
 

Z +∞



exp (−)  = −

Since − =  (−) as → +∞ for any   0, Theorem 7.6 does not apply in this

case.Lecture 22

30.11.10 Proof of Theorem 7.6. Let us first evaluate the distribution function of :


() = P ( ≤ ) = P (1 ≤  2 ≤   ≤ ) =  ()

where we have used the independence of {}. Therefore, the distribution function
of

 :=


1
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is

() = P ( ≤ ) = P
¡
 ≤ 1

¢
= 

¡
1

¢


If  ≤ 0 then this is ≤  (0) → 0 as  → ∞ (note that  (0)  1, which follows

from (7.19)).

To treat the case   0 first rewriting (7.19) in the form

 () = 1− − + 
¡
−

¢
that is

ln () = −− + 
¡
−

¢
as  → +∞ Substituting  = 1, we obtain as →∞

ln() =  ln
¡
1

¢
= 

µ
−

−


+ 

µ
1



¶¶
= −− +  (1)

whence

() −→
→∞

exp
¡−−¢ 

Hence,  () −→  () for all  ∈ R. By Theorem 7.4 we conclude that  D−→ 

Example. Consider the case when all  ∼ N (0 1). Then as → +∞

1−  () =
1√
2

Z +∞



−
22 ∼ √

2
−

2

2 

Set  = 
√
ln and

 =
1



exp
¡
2



¢


Then  () = 0 for  ≤ 0 whereas for   0

 () = P ( ≤ ) = P
³
 ≤

p
ln ()

´
= 

³p
ln ()

´


As →∞, we obtain

 () =

Ã
1−

p
ln ()√
2


−
√

ln()
2
2
(1 +  (1))

!

=

Ã
1−

p
ln ()√
2

(1 +  (1))

!



Since



p
ln ()


∼ 
√
ln



1


∼ 
√
ln


√
ln

1


=
1




it follows that

 → exp

µ
− 1√

2

¶
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Hence,
1


√
ln

exp
¡
2



¢ D−→ 

where

 () =

(
exp

³
− 1√

2

´
   0

0  ≤ 0



Chapter 8

Characteristic function and

central limit theorem

8.1 Complex-valued random variables

In this Chapter we allow complex-valued random variables. Identifying C with R2,
we can say that a complex-valued random variable is the same as a random vector

with values in R2. Any complex-valued random variable  can be then represented
as a couple ( ) where  are real-valued random variables, which is equivalent

to  =  +  . Then  is called integrable if both  are integrable, and

E := E + E

Note that

E () = E

for any  ∈ C. Indeed, writing  = +  we obtain

E () = E (( −  ) +  ( + ))

= E − E + E + E

= (+ ) (E + E )

= E

Lemma 8.1  is integrable if and only if || is integrable. If  is integrable then

|E| ≤ E || 

Proof. Indeed, we have || = √2 +  2 whence

max (||  | |) ≤ || ≤ ||+ | | 

It follows that the integrability of both ||  | | is equivalent to that of ||.
To prove the inequality |E| ≤ E ||, consider first the case when E is a non-

negative real, that is, when E ≥ 0 and E = 0. Then we have

|E| = E = E + E = E ≤ E || ≤ E || 

125



126CHAPTER 8. CHARACTERISTIC FUNCTIONANDCENTRAL LIMIT THEOREM

In the general case E is complex valued, so let  be the polar angle of E. Then
E
¡
−

¢
is non-negative real, and by the above argument we obtain

|E| =
¯̄
−E

¯̄
=
¯̄
E
¡
−

¢¯̄ ≤ E ¯̄− ¯̄ = E || 
which finishes the proof.

Remark. Rewriting the inequality |E| ≤ E || in terms of  and  , we obtain the following

non-trivial inequality q
(E)2 + (E )2 ≤ E

p
2 +  2

8.2 Characteristic functions

Definition. Given a (real-valued) random variable , its characteristic function

() is a complex-valued function that is defined for all  ∈ R by the identity

() = E (exp ())  (8.1)

Note that the random variable exp () is integrable by Lemma 8.1 because

|exp ()| = 1. Using the distribution of , we can rewrite (8.1) as follows

 () =

Z
R
exp () () (8.2)

Given any measure  on B(R) with (R) ∞, one can similarly define a char-
acteristic function of  by

() =

Z
R
exp () () (8.3)

In Analysis, this function is called the Fourier transform1 of  and is denoted by b,
that is, b () = Z

R
exp () ()

For any integrable function  on R, define its Fourier transform by

b() = Z
R
exp () ()

where  stands for the Lebesgue measure. If  is the density function of measure

 then we clearly have b = b .
1Strictly speaking, to obtain the Fourier transform one should replace in (8.3) exp () by

exp (−), but we will neglect that.
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Example. Let  =  a.s. where  is a constant. Then

() = 

Alternatively, if  is a Dirac measure concentrated at  then b() = 

More generally, let  be a discrete random variable that takes values {}∞=0
with probabilities {}∞=0. Then

 () = E exp () =
X



 

Clearly, the right hand side here is a Fourier series. Similarly, if  is a discrete

probability measure with atoms  and with the stochastic sequence {} then

b () =X



 

In a particular case, when takes the values ±1 with probabilities 1
2
each, we obtain

() =
 + −

2
= cos

Example. Let  be the density of the normal distribution N (0 1), that is

() =
1√
2
exp

µ
−

2

2

¶


Then its Fourier transform is given by

b() =
1√
2

Z ∞

−∞
exp () exp

µ
−

2

2

¶


=
1√
2

Z ∞

−∞
exp

µ
−1
2

¡
2 − 2+ ()2¢− 1

2
2
¶


=
1√
2
exp

µ
−

2

2

¶Z ∞

−∞
exp

µ
−1
2
(− )

2


¶


By the change  = −  we obtainZ ∞

−∞
exp

µ
−1
2
(− )

2


¶
=

Z
Im =−

exp

µ
−

2

2

¶


where the latter integral is understood in the sense of contour integration in the

complex plane. For any   0, consider the straight-line segment

 = {+  :  ∈ [− ]   = −}
so that Z

Im =−
exp

µ
−

2

2

¶
 = lim

→+∞

Z


exp

µ
−

2

2

¶
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Consider also the following segments

 = {+  :  =   ∈ [− 0]}
 = {+  :  ∈ [− ]   = 0}
 = {+  :  = −  ∈ [− 0]}

and choose their orientation so that  +  +  +  is a closed contour (see Fig.

8.1).

 

y 

x 0 

-i 

Im z = - 

c -c 

-c-i c-i 

 c 

 c

 c c 

Figure 8.1: A closed contour  +  +  + 

Since the function exp (−22) is an holomorphic function on entire C, we obtain
by the Cauchy theorem Z

+++

exp

µ
−

2

2

¶
 = 0

whence Z


exp

µ
−

2

2

¶
 = −

Z
++

exp

µ
−

2

2

¶


If →∞ then Z


exp

µ
−

2

2

¶
 → 0 and

Z


exp

µ
−

2

2

¶
 → 0

because, for  = ± and for || ≤ ||,¯̄̄̄
exp

µ
−

2

2

¶¯̄̄̄
=

¯̄̄̄
exp

µ
−

2

2
−  +

2

2

¶¯̄̄̄
≤ exp

Ã
−

2

2
+
||2
2

!
−→
→∞

0
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2.51.250-1.25-2.5

1

0.75

0.5
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phi_X
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phi_X

Figure 8.2: The characteristic function of N (0 1)

while the lengths of  and  are equal to || and, hence, remain bounded. It follows
that Z ∞

−∞
exp

µ
−1
2
(− )

2


¶
= lim

→∞

Z


−
22

= − lim
→∞

Z


−
22

= lim
→∞

Z 

−
−

22

=

Z +∞

−∞
−

22 =
√
2

Finally, we conclude b() = expµ−2
2

¶


It follows that if  ∼ N (0 1) then

() = exp

µ
−

2

2

¶
(see Fig. 8.2).

Example. Let  be the density of the exponential distribution with parameter

  0, that is

() =

½
−   0

0  ≤ 0 

Then its Fourier transform can be computed as follows:

b () = Z ∞

0

− =
Z ∞

0

−(−) =


− 
 (8.4)
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Justification of the last identity in (8.4) can be done in two ways. Indeed, one can

change  = (− )  so thatZ ∞

0

−(−) =


− 

Z


−

where  is the image of the real half-axis { ≥ 0} under the transformation  7→
(− ), that is, the ray starting from 0 and going through the point − towards
∞. Since − → 0 as  → ∞ along , one obtains by the fundamental theorem of

calculus that Z


− =
£−−¤∞

0
= 1

Alternatively, one can use the fundamental theorem of calculus directly in (8.4)

because the integrand in (8.4) has the primitive function −−(−)
(−) 

Example. Let  be the density of the Cauchy distribution, that is

() =
1

 (1 + 2)


To compute its Fourier transform

b() = 1



Z ∞

−∞



1 + 2


denote

() =
1





1 + 2

and consider, for a large   0, a segment

 = {+  : − ≤  ≤   = 0}

and a semi-circle

 =
©
+  : 2 + 2 = 2  ≥ 0ª 

where  is oriented from the negative to positive  and  is oriented counter-

clockwise so that  +  is closed (see Fig. 8.3).

Since  +  bounds a semi-disk containing the point  =  that is a pole for ,

we have by the Cauchy theoremZ
+

() = 2 res
=
[()] 

To evaluate the residue, expand  into a power series in  =  − :

() =
exp 

 ( − ) ( + )
=
exp (−+ )

 (2+ )

=
−

2

1



exp ()

1 + 2
=

−

2

1



¡
1 + 1 + 2

2 + 
¢
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y 

x 0 r -r 
 r

 r 

i 

-i 

Figure 8.3: A closed contour  + 

where 1 + 1 + 2
2 +  is the Taylor expansion of the function

exp()

1+2
that is

holomorphic in a neighborhood of 0 and takes value 1 at 0. Since res= [()] is

equal to the coefficient in front of 1
− in the Laurent series of  (), we obtain

res
=
[()] =

−

2


and, hence, Z
+

() = −

If   0 then¯̄̄̄Z


()

¯̄̄̄
=
1



¯̄̄̄Z


−

1 + 2


¯̄̄̄

1



Z


1

2 − 1 ≤


2 − 1 −→→∞ 0

where we have used that  ≥ 0 on  and the length of  is . Therefore,Z


() −→
→∞

−

and b() = − If   0 then one obtains the same way b() =  by considering

a semi-circle in the negative part   0. Hence,

b() = −||

It follows that if  ∼Cauchy(1) then

() = −||

(see Fig. 8.4).
Lecture 23

06.12.10Let us prove some general properties of characteristic functions.
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2.51.250-1.25-2.5

0.8

0.6

0.4

0.2

lambda

phi_X

lambda

phi_X

Figure 8.4: The characteristic function of  (1)

Lemma 8.2 If  two independent complex-valued random variables and both

 are integrable then

E ( ) = E E

Recall that this property is true for real valued random variables by Theorem

5.19.

Proof. Let  =  +  and  =  +  , where   are real-valued

random variables. By Theorem 5.18, every component of  is independent of every

component of  . Using Theorem 5.19 we obtain

E ( ) = E (( +  ) ( +  ))

= E ( −   ) + E ( +  )

= E E − E E + E E + E E

= (E + E ) (E + E )

= E E

Theorem 8.3 For all real-valued random variables  the following is true:

() For any constant  6= 0,
() = ()

() If  and  are independent then

+ =  (8.5)

Proof. Indeed, we have

() = E
¡
()

¢
= E

¡
()

¢
= ()
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and

+ () = E
¡
(+ )

¢
= E

¡


¢
= E

¡


¢
E
¡


¢
= () ()

The introduction of characteristic functions is motivated by the property (8.5). As one sees

from the proof, (8.5) is a consequence of the property of the exponential function

exp (+ ) = exp () exp () 

One could have defined the characteristic function by

 () = E exp ()

with a real-valued constant , which would also satisfy (8.5). However, with a real-valued  the

random variable exp () is not necessarily integrable. The choice  =  has an advantage that

exp () is always integrable.

The identity (8.5) makes it easy to compute the characteristic function for the

sum of independent random variables. Using it inductively, one obtains that if

1   are independent random variables then


= 1

2


(8.6)

where  = 1 + +.

Characteristic functions will be used to prove the following main theorem (see

Section 8.8).

Central limit theorem. Let {} be a sequence of independent identically
distributed random variables with a common finite mean  and a common finite

variance . Then
 − √



D−→ N (0 1) as →∞ (8.7)

In other words, for large  the distribution of −√


is approximately N (0 1),
which means that  is approximately N ( )  That E =  and var = 

we have computed in the proof of the weak law of large numbers (Theorem 6.1). We

also know that if  ∼ N ( ) then  ∼ N ( ), that is,  is exactly normal.
The main point of the central limit theorem is that  is asymptotically normal as

→∞ regardless of the common distribution of . Hence, this theorem exhibits

a distinguished role and universality of the normal distribution.

The formula (8.6) allows to compute the characteristic function of  via the

common characteristic function of . Then one proves that 
() converges to

the characteristic function of a normal distribution as  → ∞ Using that, one

proves also the convergence (8.7) of distributions.

This approach to the proof of the central limit theorem requires first development

of a theory of characteristic functions. In addition to Theorem 8.3, we have to

establish the following properties of characteristic functions:

1.  determines uniquely its distribution measure  (the uniqueness theorem)
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Figure 8.5: The characteristic function of the uniform distribution on [−1 1]

2. if 
() →  () pointwise as  → ∞ then 

D−→  (the continuity theo-

rem).

After having proved these (and other) properties of characteristic functions, we

will come back to the proof of the central limit theorem.

Example. Let  ∼ N ( ). Then  = −√

∼ N (0 1) whence

() = +
√
 () = ()

³√

´
= exp

µ
− 2

2

¶


Example. Let ∼ ( ) To compute  recall that has the same distribution

as 1+ + where  are independent Bernoulli random variables (1 ). Since

 () = E
¡


¢
= + (1− ) 

we obtain

() = 1
()

() =
¡
+ (1− )

¢


Example. Let  ∼ U (−1 1)  Then

 () = E
¡


¢
=

Z
R
 =

1

2

Z 1

−1
 =

 − −

2
=
sin



(see Fig. 8.5).

Not every function can be a characteristic function. Consider some general prop-

erties of characteristic functions.
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Theorem 8.4 If  is the characteristic function of a random variable  then the

following is true.

() (0) = 1 and |()| ≤ 1 for all  ∈ R.
()  is uniformly continuous on (−∞+∞).
()  is non-negative definite in the following sense: for all reals 1 2   and

complex 1 2  ,
X

=1

( − ) ≥ 0 (8.8)

() If the distribution measure  =  is even (that is, for any Borel set  on R,
 () = (−) ), then () is real-valued.

Remark. The condition (8.8) means that the matrix (( − ))


=1
is non-

negative definite, for any choice of  ∈ R. By a theorem of Bochner, the conditions
()  ()  () are not only necessary but also sufficient for  to be a characteristic

function.

Example. As we already know from the previous examples, the following functions

are characteristic functions:

1 exp ()  cos exp

µ
−

2

2

¶
 exp (− ||)  1

1− 

sin




Let us show that the following functions are not characteristic functions:

sin exp ()  cos
¡
2
¢


Indeed, sin is not a characteristic function because  (0) = 0 6= 1. Function 

is not a characteristic function because it is unbounded. Function cos
¡
2
¢
is not

a characteristic function because it is not uniformly continuous, which follows from

the observation that its derivative 2 sin
¡
2
¢
is unbounded.

Proof of Theorem 8.4. () By (8.1), we have

(0) = E exp (0) = E1 = 1

By Lemma 8.1 we have

|()| =
¯̄
E

¯̄
≤ E ¡¯̄ ¯̄¢ = 1

() We have

|(+ )− ()| =
¯̄
E
¡
(+) − 

¢¯̄
≤ E

¯̄
(+) − 

¯̄
= E

¯̄


¡
 − 1¢¯̄

= E
¯̄
 − 1

¯̄
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Note that the right hand side here does not depend on , whence we obtain

sup
∈R

|(+ )− ()| ≤ E
¯̄
 − 1

¯̄
 (8.9)

We claim that

E
¯̄
 − 1

¯̄
→ 0 as → 0

Clearly,
¯̄
 − 1

¯̄
→ 0 pointwise as  → 0. The family of random variables¯̄

 − 1
¯̄
is uniformly bounded by 2. Therefore, by the bounded convergence the-

orem,

lim
→0

E
¯̄
 − 1

¯̄
= E lim

→0

¯̄
 − 1

¯̄
= 0

It follows from (8.9) that

sup
∈R

|(+ )− ()|→ 0 as → 0

that is,  is uniformly continuous.

() By (8.1), we have

X
=1

( − ) = E

"X


−

#

= E

"X



X


−

#

= E

"X



X




#

= E

¯̄̄̄
¯X





¯̄̄̄
¯
2

≥ 0

() If  is symmetric then, for any odd -integrable function (),Z ∞

−∞
 = 0

Applying this to () = sin, we obtain

() =

Z ∞

−∞
(cos+  sin)  =

Z ∞

−∞
cos

which implies that () is real.

8.3 Inversion theorems

8.3.1 Inversion theorem for measures

Let  be a finite measure on the -algebra B (R)  Recall that the distribution func-
tion of  is defined by

 () = (−∞ ]
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and that by Theorem 2.102 measure  is uniquely determined by . The Fourier

transform of  (= the characteristic function of ) is defined by

b() =  () =

Z ∞

−∞
()

(note that the function  7→  is -integrable for any real ). It turns out that 

can be recovered from b as follows.
Theorem 8.5 (The inversion theorem for measures) Let  be a finite measure on

B (R) and  be the distribution function of . If   are the points of continuity of

 and    then

()− () = 

Z +∞

−∞

− − −

2
b() (8.10)

Equivalently, for all real    which are not atoms for ,

( ] = 

Z +∞

−∞

− − −

2
b() (8.11)

Here  stands for the “principal value”, that is



Z ∞

−∞
 = lim

→∞

Z 

−
 

A point  is an atom for measure  if  ({})  0, which is equivalent to  being a
point of discontinuity of .

Before the proof of Theorem 8.5 let us obtain some consequences.

Corollary 8.6 () Two finite Borel measures  and  coincide if and only if their

characteristic functions coincide.

() Two random variables  and  have the same distribution if and only if they

have the same characteristic function.

Proof. () If b = b then (8.10) implies that for all points    at which both

 and  are continuous,

()− () = ()− ()

By letting → −∞, we obtain

() = ()

2More precisely, Theorem 2.10 was proved for probability measures, that is, when  (R) = 1

where now we consider a more general class of finite measure when  (R) ∞ However, the state-

ment (and the proof) of Theorem 2.10 remains valid with exception that the condition  (+∞) = 1
should be replaced by  (+∞) ∞.
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for all  at which both  and  are continuous. The set of points at which either 

or  is not continuous, is at most countable. Hence,  =  outside a countable

set, whence it follows form the right continuity that  =  at all points. By

Theorem 2.10 we obtain  = .

() Since  is the Fourier transform of measure  , we obtain by () that

 =  is equivalent to  =  .

Corollary 8.7 If b is integrable with respect to the Lebesgue measure, that is,Z ∞

−∞
|b()|  ∞

then  has the density function  as follows

() =
1

2

Z ∞

−∞
−b() (8.12)

Proof. Define function  by (8.12) and prove that  is a density function of .

For that, it suffice to show that, for all   ,Z 



() = ( ] (8.13)

Let us first verify (8.13) provided  and  are not atoms of . Indeed, the summability

of b implies that the function
( ) 7→ −b()

is integrable in [ ]×R. Then Fubini’s theorem givesZ 



() =

Z 



Z ∞

−∞

1

2
−b()

=
1

2

Z ∞

−∞

Z 



−b() = Z ∞

−∞

− − −

2
b()

By Theorem 8.5, the right hand side here is equal to ( ]

Since the both sides of (8.13) are right continuous and coincide outside a count-

able set, they coincide everywhere. Since the left hand side in (8.13) is continuous

in , this implies a posteriori that  has no atoms.

Remark. The right hand side of (8.12) is called the inverse Fourier transform of

the function b. Hence, we have the following relation between the density function
 (if it exists) and the characteristic function  of a finite measure (or of a random

variable):

 () =

Z ∞

−∞
() (8.14)

and

() =
1

2

Z ∞

−∞
−() (8.15)
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In other words,  is obtained from  by the Fourier transform, and  is obtained

from  by the inverse Fourier transform. Formulas (8.14) and (8.15) are true in

a slightly more general context provided both  and  are integrable on R (see

Theorem 8.8) below).
Lecture 24

07.12.10Proof of Theorem 8.5. Assuming that  and  are not atoms of , we need

to prove

( ] = lim
→∞

Z +

−

− − −

2

µZ ∞

−∞
()

¶
| {z }()

 (8.16)

Using Fubini’s theorem, the right hand side of (8.16), before taking lim, isZ +

−

− − −

2

µZ ∞

−∞
()

¶
 =

Z ∞

−∞

Z +

−

− − −

2
| {z }

Φ ()

()

(8.17)

The use of Fubini’s theorem is justified because the the integrand −−−
2

 is

a bounded function of   that is hence integrable on (−∞+∞) × [− ] with

respect to the measure × .

Since
− − −

2
=
1

2

Z 



−

the internal integral in (8.17) is equal to

Φ() =
1

2

Z 

−

µZ 



−

¶


=
1

2

Z 



µZ 

−
(−)

¶


=
1

2

Z 



µ
(−) − −(−)

 (− )

¶


=
1



Z 



sin (− )

− 


Changing  = (− ) we obtain

Φ() =
1



Z 



sin (− )

− 
 =

1



Z (−)

(−)

sin


 (8.18)

If  ∈ ( ) then (− )→ +∞ and (− )→−∞ as  →∞. Therefore, for
such ,

lim
→∞

Φ() =
1



Z ∞

−∞

sin


 = 1

If  is outside [ ] then Φ() → 0 since both ( − ) and (− ) go to +∞
or −∞. If  =  or  =  then in the same way

lim
→∞

Φ() =
1



Z ∞

0

sin


 = 12
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Hence, for all  ∈ R,

lim
→∞

Φ() = 1() +
1{}
2
+
1{}
2



The function Φ() is uniformly bounded for all  and   0, which follows from

(8.18) and the fact that the integralZ 



sin


 =

Z 

0

sin


−

Z 

0

sin




is uniformly bounded for all  ∈ R. The latter follows in turn from the continuity
of the function

 7→
Z 

0

sin




and the existence of its finite limits as → ±∞.
Therefore, the right hand side of (8.16) is

lim
→∞

Z ∞

−∞
Φ()() =

Z ∞

−∞
lim
→∞

Φ()()

=

Z ∞

−∞

∙
1() +

1{}
2
+
1{}
2

¸
()

= ( ) +
1

2
 () +

1

2
()

Here we have interchanged the integral and the limit by the bounded convergence

theorem, using the fact that Φ is uniformly bounded and measure  is finite.

Finally, since  and  are not atoms, () = () = 0 whence the claim follows.

8.3.2 Inversion theorem for functions

The following theorem is a version of Theorem 8.5 for functions.

Theorem 8.8 (The inversion theorem for functions). If  is a bounded continuous

function on R and, in addition,  and b are both integrable then
() =

1

2

Z ∞

−∞
− b() (8.19)

Remark. Note that if  is integrable then b is bounded and continuous (cf. the
proof of Theorem 8.4). Similarly, if b is integrable then by (8.19)  is bounded and
continuous.

The hypothesis that b is integrable may be not easy to verify in applications.
The following lemma is helpful for this purpose. Denote by 2 (R) the class of
functions on R that are twice continuously differentiable.
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Lemma 8.9 If  ∈ 2(R) and the functions   0  00 are integrable then  satisfies

all the hypotheses of Theorem 8.8 and, therefore, the inversion formula (8.19) holds

for such a function.

The proof of this lemma will be given later on in Corollary 8.14.

Proof of Theorem 8.8. We have

1

2

Z ∞

−∞
− b() = 1

2

Z ∞

−∞
−

µZ ∞

−∞
()

¶


We would like to interchange the order of integration. Since this is not possible, we

first introduce a regularizing factor () = exp
¡−22¢. Since ()→ 1 as → 0

and b is integrable, we have, by the dominated convergence theorem,Z ∞

−∞
− b() = lim

→0

Z ∞

−∞
− b() () 

Then we haveZ ∞

−∞
− b() ()  =

Z ∞

−∞
− ()

µZ ∞

−∞
()

¶


=

Z ∞

−∞
()

µZ ∞

−∞
(−) () 

¶
 [change 0 = ]

=

Z ∞

−∞
()b( − 


)
1


 [change  =

 − 


]

=

Z ∞

−∞
(+ )b()

As → 0, we have (+ )→ () pointwise. Also, we know that

b() = √2 exp ¡−22¢ 
Since  is bounded, we obtain by the dominated convergence theorem

lim
→∞

Z ∞

−∞
(+)b() = Z ∞

−∞
()b() = √2()Z ∞

−∞
exp

¡−22¢  = 2()
We conclude that

lim
→0

Z ∞

−∞
− b() ()  = 2()

whence the claim follows.

8.4 Plancherel formula

Denote the inverse Fourier transform by

e() := 1

2

Z ∞

−∞
−()
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assuming that function  is integrable. Clearly,

e() = 1

2
b(−) (8.20)

In particular, b is integrable if and only if e is integrable. By Theorem 8.8, we have
the identity eb = 

provided  is bounded and continuous, and both  and b are integrable. This and
(8.20) imply that be =  (8.21)

assuming that  is bounded and continuous, and both  and e are integrable.
Theorem 8.10 (The Plancherel formula) Let  be a finite Borel measure. Suppose

that  is a bounded continuous function such that  and e are integrable. Then the
following identity holds Z +∞

−∞
 =

Z +∞

−∞
e b (8.22)

Proof. Denote  = e . Then by (8.21)  = b so that (8.22) amounts toZ +∞

−∞
b = Z +∞

−∞
 b

Using definitions of b and b, we rewrite this asZ ∞

−∞

µZ ∞

−∞
()

¶
() =

Z ∞

−∞
()

µZ ∞

−∞
()

¶


which is true by Fubini because  is integrable and  is finite.

Since b coincides with the characteristic function  of measure , the identity

(8.22) can be rewritten in the formZ +∞

−∞
 =

Z +∞

−∞
e  (8.23)

If  is a random variable then applying this identity to  =  and using  = ,

we obtain the identity

E (()) =
Z ∞

−∞
e ()() 

If measure  has the density function  then (8.22) becomesZ +∞

−∞
 =

Z +∞

−∞
e b

This identity easily extends to any integrable function .
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8.5 The continuity theorem

The next theorem gives another characterization of weak convergence of probability

measures. Namely, it turns out that weak convergence of probability measures is

equivalent to a pointwise convergence of characteristic functions.

Theorem 8.11 Let {} be a sequence of probability measures  be another prob-
ability measure.

() If  ⇒  then 
()→ () for all  ∈ R.

() If 
()→ () for all  ∈ R, then  ⇒ 

Remark. The second statement can be strengthened as follows: if 
()→  ()

for some function  that is continuous at 0 then  is the characteristic function

of some probability measure , and  ⇒  (Lévy’s continuity theorem). How-

ever, in our applications of Theorem 8.11, the limit function  will obviously be a

characteristic function, so we will not have to justify that.

Proof. () By definition,  ⇒  if, for any bounded continuous function  ,Z ∞

−∞
 →

Z ∞

−∞
 (8.24)

In this definition  is a real-valued function but (8.24) holds also for bounded contin-

uous complex-valued function  because (8.24) holds separately for Re  and Im  .

Applying (8.24) for () =  we obtain ()→ (), for any  ∈ R.
() We need to verify (8.24) for all bounded continuous functions  . Assume first

that  is in addition integrable, and so be e . Using Plancherel’s formula (8.23) and
the hypothesis that 

→  pointwise, we obtainZ ∞

−∞
 =

Z ∞

−∞
e

→
Z ∞

−∞
e =

Z ∞

−∞


where the convergence takes place by the dominated convergence theorem because

all 
are uniformly bounded and e is integrable.

Let  be an arbitrary bounded continuous function. We approximate  by a

sequence {} of such functions that are in addition integrable, and e are also
integrable. Indeed, for any   0 find a function  ∈ 2 (R) with the following
properties:

• sup[−] | −  |  2−;

• supp  ⊂ [−( + 1)  + 1];

• supR || ≤ supR | |+ 1
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Lecture 25

13.12.10For example, by the Weierstrass approximation theorem (Theorem 6.3),  can

be uniformly approximated on [ ] by a polynomial. Multiplying the polynomial

by a cutoff function that is equal to 1 in [− ] and vanishes outside [−(+) +]

for sufficiently small   0, we obtain .

Clearly,  is bounded, continuous and integrable, and the same is true for the

derivatives  0 and  00 . Hence, e is also integrable by Lemma 8.9, and (8.24) holds
for each function .

For any such , we have¯̄̄̄Z ∞

−∞
  −

Z ∞

−∞
 

¯̄̄̄
≤
Z ∞

−∞
| − | +

¯̄̄̄Z ∞

−∞
 −

Z ∞

−∞


¯̄̄̄
+

Z ∞

−∞
| −  | 
(8.25)

The first (and the third term) on the right hand side is estimated as follows:Z ∞

−∞
| − |  =

Z 

−
| − |  +

µZ ∞



+

Z −

−∞

¶
| − | 

≤ 2− +  [1− (− )]
where  is an upper bound constant for all | − | (for example, can take  =

2 sup | |+ 1). Hence, we obtain from (8.25)¯̄̄̄Z ∞

−∞
  −

Z ∞

−∞
 

¯̄̄̄
≤ 2−+1 +  [1−  (− )] +  [1− (− )]

+

¯̄̄̄Z ∞

−∞
 −

Z ∞

−∞


¯̄̄̄


If  →∞ then 1−(− )→ 0. We need an upper bound for 1−(− ) which
would be uniform in . Such an estimate can be obtained using the following lemma

that will be proved after we finish the proof of Theorem 8.11.

Lemma 8.12 For any probability measure  and for any   0,

1− (− ) ≤ 

2

Z 2

−2
|1− ()|  (8.26)

Given any   0, we select  so large that¯̄
1− ()

¯̄
≤  for all  ∈ [ 2


−2


]

which is possible to do because (0) = 0 and  is continuous. Then



2

Z 2

−2

¯̄
1− ()

¯̄
 ≤ 

2

4


= 2

Since 
()→ () and all functions 

are uniformly bounded, we obtain thatZ 2

−2

¯̄
1− 

()
¯̄
→

Z 2

−2

¯̄
1− ()

¯̄
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as →∞. In particular, for all  large enough,



2

Z 2

−2

¯̄
1− 

()
¯̄
  3

whence by (8.26)

1− (− ) ≤ 2 and 1− (− )  3

Therefore, for any   0 there exists  such that, for all  large enough,¯̄̄̄Z ∞

−∞
  −

Z ∞

−∞
 

¯̄̄̄
≤ 2−+1 + 5+

¯̄̄̄Z ∞

−∞
 −

Z ∞

−∞


¯̄̄̄


As →∞, the last term goes to 0 as was proved above. Hence,

lim sup
→∞

¯̄̄̄Z ∞

−∞
  −

Z ∞

−∞
 

¯̄̄̄
≤ 2−+1 + 5

whence the claim follows because  can be made arbitrarily small and  can be made

arbitrarily large.

Now let us prove Lemma 8.12 (whereas Lemma 8.9 will be proved in the next

section).

Proof of Lemma 8.12. Denote for simplicity  = 2 Then we need to prove

that

1− (− ) ≤ 1


Z 

−
[1− ()]  (8.27)

We do not write the modulus on the right hand of (8.27) as the integral in (8.27)

will happen to be real and non-negative. Using the definition of  and (R) = 1,
the right hand side of (8.27) can be represented as

1



Z 

−

µZ ∞

−∞

¡
1− 

¢
()

¶
 =

1



Z ∞

−∞

Z 

−

¡
1− 

¢
()

= 2

Z ∞

−∞

µ
1− sin



¶
()

= 2

∙Z
(−)

+

Z
(−∞−]

+

Z
[∞)

¸µ
1− sin



¶
()

≥
∙Z

(−∞−]
+

Z
[∞)

¸
()

= (−∞ ] + [∞) = 1− (− )

Here we used the fact that the integrand
¡
1− sin



¢
is non-negative as well as

1− sin


≥ 1− 1

 || = 1−


2 || ≥
1

2
for || ≥ 
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8.6 Fourier transform and differentiation

Recall that the Fourier transform b () is defined for any integrable function  on

R and is a bounded continuous function of . Here we relate the differentiability
properties of b with the integrability properties of  and vice versa.
Theorem 8.13 Let  be a positive integer.

() Let  ∈ (R), and assume that all functions   0   () are integrable. Then

d


= (−) b (8.28)

() Let () be an integrable function on R, and assume that () is also inte-
grable. Then b ∈ (R) and

 b


=
\
()


 (8.29)

() Let  be a random variable with a finite -th moment, that is E
³
||

´
∞.

Then  ∈ (R) and




= E

³
 ()


´
 (8.30)

In particular,



(0) = E

¡

¢
 (8.31)

Remark. Denote by  the operation of differentiation, by  the Fourier transform

and by  the operation of multiplication by  (or  if the argument is ). Then

the formulas (8.28) and (8.29) can be rewritten as

 = (−)  and  = 

In particular, for the case  = 1 we have

 = − and  = 

In other words, in order to interchange  and  , one has to replace  by  or

− , respectively.
Remark. If distribution measure  has density  then (8.30) follows (8.29).

Indeed, in this case  =
b and

E
³
 ()


´
=

Z
R
 ()


() =

\
()
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Remark. Formula (8.31) can be used to compute the moments of  via its char-

acteristic functions. The important particular cases are

0(0) = E

00(0) = −E ¡2
¢


As a consequence, we see that

var = −00(0) + [0(0)]2 

Proof of Theorem 8.13. () It suffices to prove (8.28) for the case  = 1,

that is, c

= (−) b

assuming that  and  0 are integrable, which then implies (8.28) for all  by induc-
tion. For any reals   , we have

Z 



 0 ()  =
Z 



() =
£
()

¤

− 

Z 



()

so that

b 0() = Z ∞

−∞
 0() = lim

→−∞
→+∞

µ
()

¯̄

− 

Z 



()

¶


Since | | is integrable, there is a sequence of  → −∞ and  → +∞ such that

| ()|→ 0 and | ()|→ 0. Choosing  =  and  =  in the above computation

and letting  →∞, we obtain

b 0() = −Z ∞

−∞
() = (−) b()

which was to be proved.

() Note that if  and  are integrable then also  is integrable for any

 = 0 1 2   by the following inequality

|| ≤ 1 + || 
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Therefore, it suffices to prove (8.29) for  = 1 and then use induction in . Assume

that  () and  () are integrable. Differentiating b , we obtain



b = lim

→0

Z ∞

−∞

(+) − 


()

=

Z ∞

−∞
lim
→0

(+) − 


()

=

Z ∞

−∞




()

=

Z ∞

−∞
()

= d
The interchange of the order of lim→0 and integration is justified as follows. We
have ¯̄̄̄

(+) − 



¯̄̄̄
=

¯̄̄̄
 − 1


¯̄̄̄
|| ≤ ||

where we have used the inequality ¯̄̄̄
 − 1



¯̄̄̄
≤ 1

which follows from
¯̄̄¡

¢0 ¯̄̄ ≤ 1. Therefore,¯̄̄̄

(+) − 


()

¯̄̄̄
≤ | ()| 

Since function | ()| is integrable, the interchange of lim and integration follows

from the dominated convergence theorem.

Hence, we have obtained that b is differentiable at any real  and



b =d

Since the right hand side is a continuous function as a Fourier transform of an

integrable function, we conclude that b ∈ 1(R).
() The finiteness of -th moment implies the finiteness of all -th moments

with   . Similarly to part () we have




() =





Z ∞

−∞
 =

Z ∞

−∞




 =

Z ∞

−∞
 = E

¡


¢


which proves (8.30) for  = 1. By induction we obtain (8.30) for all .

Corollary 8.14 (=Lemma 8.9) Let  ∈ 2(R), and assume that all functions
  0  00 are integrable. Then  satisfies all the hypotheses of the inversion theo-

rem 8.8.
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Proof. We need to verify that  if bounded, continuous, and functions  and b
are integrable. Since the continuity and integrability of  are given, it remains to

show that  is bounded and that b is integrable. Since
 () =  (0) +

Z 

0

 0 () 

and

| ()| ≤ | (0)|+
Z +∞

−∞
| 0 ()| 

the boundedness of  follows from the integrability of  0.
Since the function b is continuous (as the Fourier transform of an integrable

function), it is integrable on any bounded interval. By (8.28), we have

b() = − 1
2
c 00()

Sincec 00 is bounded (as the Fourier transform of an integrable function), we conclude
that, for large , ¯̄̄ b()¯̄̄ ≤ 

2

whence we see that the function b is integrable at ∞ and, hence, on the entire R.

8.7 A summary of the properties of characteristic

functions

Let us now list all the properties of characteristic functions that have been estab-

lished above and that will be used in the next section to prove the central limit

theorem.

1. The characteristic function  of a random variable  is a uniformly contin-

uous function on R, such that  (0) = 1 and | ()| ≤ 1 (Theorem 8.4).

2. If 12   are independent random variables then

1++
= 1

2


(Theorem 8.3).

3.  determines uniquely its distribution measure  and, hence, its distribu-

tion function  (Corollary 8.6).

4. 
D−→  if and only if 

()→ () for any  ∈ R (Theorem 8.11).

5. If E || ∞ then  ∈ 1 and 0(0) = E.

If E ||2 ∞ then  ∈ 2 and 00(0) = −E2 (Theorem 8.13).
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8.8 The central limit theorem

The following theorem is one of the main results of this course.

Theorem 8.15 Let {} be a sequence of independent identically distributed ran-
dom variables with a common finite expectation  and a common finite variance .

Let  = 1 +2 + +. Then

 − √


D−→ N (0 1) as →∞ (8.32)

In particular, if  = 0 then

√


D−→ N (0 ) as →∞

Corollary 8.16 For all real ,

P
³
 ≤ + 

√

´
−→

Z 

−∞

1√
2
exp

µ
−

2

2

¶
 as →∞ (8.33)

Also, for all real  and  such that   ,

P
³
+ 

√
   ≤ + 

√

´
−→

Z 



1√
2
exp

µ
−

2

2

¶
 as →∞

(8.34)

Proof. Indeed, (8.32) and Theorem 7.3 imply that the distribution function

of −√


converges to  () - the distribution function of N (0 1) at the points of
continuity of  , that is, at all points, whence (8.33) follows. Obviously, (8.34) follows

from (8.33) by considering  ()−  ().

The central limit theorem can be regarded as a fundamental theorem of proba-

bility theory. Apart from numerous practical applications, based on the fact that 
has approximately the normal distribution N ( ) regardless of the distribution
of , the very fact of existence of the limit distribution has a far reaching conse-

quences for other branches of mathematics and science. One says that the normal

distribution is the law of attraction of sequences {} with finite second moment.
If the higher moments of  are finite then it is possible to estimate the rate of convergence

in (8.32). We state the following theorem without proof.

Theorem. Let {} be a sequence of independent identically distributed random variables with

a mean 0, a variance 1 and a finite third moment 3 Let  = 1 +2 + +. Then

sup
∈R

¯̄̄
 √



()− N (01)()
¯̄̄
≤ 3√




Lecture 26
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Proof of Theorem 8.15. Renaming −√

by , we may assume without loss

of generality that  = 0 and  = 1. Let () be the common characteristic function

of each . By Theorem 8.3, the characteristic function of √

is

 √


() = (
√

)

By Theorem 8.11, to prove that √


D−→ N (0 1), it suffices to show that  √


()

converges to the characteristic function of N (0 1) as →∞ that is, for any  ∈ R,

lim
→∞

(
√

) = exp

µ
−

2

2

¶


Let us apply Taylor’s formula to expand () near 0:

() = 1 + 0(0)+
00(0)
2

2 + (2) as → 0 (8.35)

Indeed, as follows from Theorem 8.13,  ∈ 2 because  has finite second moment.

Moreover, (8.31) yields

0(0) = E () = 0

00(0) = −E ¡2


¢
= −1

so that the expansion (8.35) amounts to

() = 1− 2

2
+ (2)

Replacing  by 
√
, we see that

(
√

) = 1− 2

2
+ (

1


)

provided  is fixed but →∞. Finally, we obtain

(
√

) =

∙
1− 2

2
+ (

1


)

¸
→ exp

µ
−

2

2

¶


which was to be proved.

In the last line we have used the following fact from analysis: if {} is a sequence of complex
numbers such that  →  then ³

1 +




´
→ exp () as →∞

We have ³
1 +





´
→ exp () as →∞



152CHAPTER 8. CHARACTERISTIC FUNCTIONANDCENTRAL LIMIT THEOREM

and
1 + 



1 + 


= 1 + 

where

 :=
 − 

+ 
= 

µ
1



¶
as →∞ (8.36)

Therefore, it suffices to prove that

(1 + )
 → 1 as →∞ (8.37)

By the binomial formula we have

(1 + )
 − 1 =  +

µ


2

¶
2 + +

µ




¶



By (8.36), for any   0 there is  ∈ N such that ||   for all  ≥  . Using the obvious

estimate
¡



¢ ≤ , we obtain, for all  ≥  ,

|(1 + )
 − 1| ≤  + ()

2
+ + ()

 ≤
∞X
=1

 =


1− 


whence (8.37) follows.

The history of the central limit theorem started in 1733 when de Moivre discov-

ered (8.32) for Bernoulli random variables  taking values 0 and 1 with probability

 = 1
2
. This was later extended by Laplace to general  and nowadays is referred to

as the Moivre-Laplace theorem. The original proof of that theorem was based on

a difficult analysis of the binomial distribution (indeed, as we know  ∼ ( )),

and some points of the proof were not quite rigorous. The modern rigorous proof

that works for an arbitrary distribution of  was discovered by Lyapunov in 1901.

For that proof, Lyapunov introduced the method of characteristic functions that has

become since a very powerful tool for many other problems. Lyapunov’s proof was

presented above.

The adjective “central” refers both to the central role this theorem plays in

probability theory, and to the following observation. Choose in (8.34)   0 and

 = − so that (8.34) becomes

P
³
| − | ≤ 

√

´
→
Z 

−

1√
2
exp

µ
−

2

2

¶
 (8.38)

as →∞. If  is large enough then the integral in the right hand side of (8.38) is
closed to 1. Then we obtain for large  that

P
³
| − | ≤ 

√

´
≈ 1

Hence,  concentrates near its central value  with the error of the order 
√


If  6= 0 then for large 

√
  

so that with high probability  concentrates in a relatively small neighborhood of

.
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Example. Consider a sequence of long computations performed by a computer. Let

 be a rounding error at step  and  = 1++ — the error after  steps (this

can be an absolute error by addition and relative error by multiplication). Assume

that  are independent and uniformly distributed on [− ] so that E = 0 and

 = var =
1
3
2. It follows from (8.38) that

P
³
|| ≤ 

√

´
≈
Z 

−

1√
2
exp

µ
−

2

2

¶


Taking  = 3 and noticing thatZ 3

−3

1√
2
exp

µ
−

2

2

¶
 ≈ 09973

we obtain

P
³
|| ≤

√
3

´
≈ 09973

Example. (A practical experiment). Suppose we are given a dice (see Fig. 8.6) displaying

numbers 1, 2, 3, 4, 5, 6 on its faces, but the dice is unfair: after rolling, it shows the numbers with

different (unknown) probabilities.

Figure 8.6: A dice

Let  be the rolled number after -th trial. Let us try to determine the unknown values  =

E and  = var by watching a long series of trial. Assuming that the trials are independent,

the sum  = 1 + + must satisfy the laws of large numbers and the central limit theorem.

By the strong law,




as−→  as →∞

so that  can be determined experimentally as  ≈ 

for large . Determining of the variance  is

more involved. Fix some large  and make a large number of sequences of dice rolling computing

each time . Let Φ () be the frequency function of , that is, Φ () is proportional to the

number of trials when  = , and Φ is normalized by the conditionZ
R
Φ ()  = 1

By the central limit theorem, Φ () must be almost N ( )  Knowing Φ (), one determines the

parameters   to provide the best match between Φ and N ( ).

Using the method of the proof of Theorem 8.15, we can prove the following

version of the weak law of large numbers.
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Theorem 8.17 If {} are independent identically distributed random variables

with a common finite mean E =  then





P−→ 

The difference with Theorem 6.1 is that in Theorem 8.17 we do not assume the

finiteness of the variance, but in return require that all have identical distribution.

Proof. Due to Theorem 7.5, it suffices to show that





D−→  (8.39)

Let  be the common characteristic function of  so that


= 

µ




¶

Since  is integrable, the characteristic function  is differentiable and

0(0) = E = 

It follows that, for a fixed  and →∞,



µ




¶

=

µ
1 + 0 (0)




+ (

1


)

¶

=

µ
1 +




+ (

1


)

¶

→ exp () 

Hence, 
()→  () whence (8.39) follows by Theorem 8.11.

Example. Recall that gamma distribution Γ ( 1) with parameters   0 and 1 is

given by the density function

() =
−1−

Γ()
   0

where

Γ () =

Z ∞

0

−1−

In particular, for  ∈ N we have Γ () = (− 1)!. The characteristic function of
Γ ( 1) can be computed as follows:

 () =

Z ∞

−∞
 () 

=
1

Γ ()

Z ∞

0

−1−(1−) [change  = (1− )]

=
1

Γ () (1− )


Z


−1−

= (1− )
−
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where  is the ray that starts at 0 and goes to∞ through the point 1− . We have

used here that Z


−1− = Γ () 

which can be justified using the Cauchy formula.

It follows that the product of the characteristic functions of Γ (1 1) and Γ (2 1)

is the characteristic function of Γ (1 + 2 1). Therefore, the sum of two indepen-

dent random variables with distributions Γ (1 1) and Γ (2 1) has the distribution

Γ (1 + 2 1).

Observe that Γ (1 1) coincides with the exponential distribution with density

 () = −  ≥ 0

Let {} be a sequence of independent identically distributed variables with  ∼
Γ (1 1). By the aforementioned property of the gamma distribution, we have  ∼
Γ ( 1), that is,

 () =
−1−

Γ ()
   0

and


() = (1− )

−


By Exercise 40, we have E = var = 1. For the normalized sum  =
−√


we

have by Theorem 5.15

 () =

√
 (+

√
)

−1
−(+

√
)

Γ ()
   −√ (8.40)

and by Theorem 8.3


() = 

− √


µ
1− 

√


¶−


By the (proof of the) central limit theorem, we obtain


()→ exp

µ
−

2

2

¶
as →∞ (8.41)

We claim that in the present setting we can integrate this convergence over R against
the Lebesgue measure. Indeed, we have

¯̄


()
¯̄
=

¯̄̄̄
1− 

√


¯̄̄̄−
=

µ
1 +

2



¶−2


Using Bernoulli’s inequality µ
1 +

2



¶2

≥ 1 + 2

2
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we obtain ¯̄


()
¯̄
≤ 1

1 + 2

2



Since the function 1

1+2

2

is integrable on R with respect to the Lebesgue measure, we

conclude by the dominated convergence theorem that (8.41) implies, for any  ∈ R,

1

2

Z
R
−

()  −→
→∞

1

2

Z
R
− exp

µ
−

2

2

¶


On the both sides we have the inverse Fourier transform whence by the inversion

theorem

 ()→
1√
2
exp

µ
−

2

2

¶
 (8.42)

(cf. Fig. 8.7).
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Figure 8.7: The graphs of  for  = 1 2 4 100 and that of
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´
(dotted)

The relation (8.42) is a particular case of a local central limit theorem, that

asserts convergence of the density functions of  to the normal density function

under certain assumptions. Substituting  from (8.40) and taking  = 0, we

obtain √
−1−

Γ ()
→ 1√

2
as →∞

that is nothing other than the Stirling formula

Γ () ∼
√
2−12− as →∞

Hence, the Stirling formula can be regarded as a manifestation of the local central

limit theorem.



8.8. THE CENTRAL LIMIT THEOREM 157

As we have seen above, the proofs of Theorem 8.15 and 8.17 make a strong use

of the finiteness of the first and the second moments of . Without that, other

limiting behavior may take place, as one can see from examples below.

Example. If  ∼  () that is  has the density



 (2 + 2)

then  =  ∼  (1) whence

() =  () =  () = exp (− ||) 
If  and  are two independent random variables such that  ∼  () and

 ∼  () then

+ () = () () = exp (− (+ ) ||)
so that  +  ∼ (+ ).

Let now {} be a sequence of independent identically distributed random vari-
ables such that  ∼  (1). Then we have

 := 1 +2 + + ∼ ()

which implies that, for all ,




∼ (1)

We see that the central limit theorem does not hold for this sequence. Under ap-

propriate assumptions about the distribution of  one can show that





D−→ (1)

One says that the Cauchy distribution is the law of attraction for such sequences.

Example. It is possible to prove that the function

() = exp (− ||)
is a characteristic function of a certain probability measure, provided  ∈ (0 2] and
  0. This measure is called a symmetric -stable distribution with parameter 

and is denoted by S() For example, () = S1() and N (0 ) = S2( 2)
If  and  are independent random variables such that  ∼ S() and  ∼

S() then
+ () = exp (− (+ ) ||)

whence it follows that  +  ∼ S( + ) Note also that if  ∼ S () then
 ∼ S (|| ) because

() =  () = exp (− ||) = exp (− ||  ||) 
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Let now {} be a sequence of independent identically distributed random variables
such that  ∼ S(1). Then  ∼ S () and, consequently



1
∼ S

³¡
−1

¢

´
= S (1) 

More generally, under appropriate assumptions about the distribution of  one can

show that


1
D−→ S(1)

This constitutes another type of the central limit theorem, where the law of attrac-

tion is S (1). Note that for the case  = 1 we obtain the previous example with
the Cauchy distribution, while for  = 2 — the classical central limit theorem where

the law of attraction is the normal distribution.

8.9 Appendix: the list of useful distributions

name notation
density or

stoch. sequence

characteristic

function
E var

normal N ( ) 1√
2
exp

³
− (−)2

2

´
exp

³
− 2

2

´
 

binomial  ( )

¡




¢
 (1− )

−

 = 0  

¡
+ (1− )

¢
  (1− )

Cauchy  ()
1





2 + 2
exp (− ||) − −

exponential  () −   0


− 
1 12

gamma Γ ( 1)
−1−

Γ ()
   0 (1− )

−
 

Poisson  () −


!
  = 0 1  exp

¡

¡
 − 1¢¢  

uniform U ( ) 1
−      

 − 

 (− )
+
2

1
12
(− )

2


