Holonomy groups
 in Riemannian geometry

Lecture 1

Andriy Haydys

October 14, 2011

Parallel translation in \mathbb{R}^{n}

- $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ arbitrary (smooth) curve
- $v:[0,1] \rightarrow \mathbb{R}^{n}$ vector field along γ

Then v is parallel, if $\dot{v}=\frac{d v}{d t} \equiv 0$.

Parallel translation on curved spaces

- $S \subset \mathbb{R}^{n}$ oriented hypersurface (e.g. $S^{2} \subset \mathbb{R}^{3}$)
- n unit normal vector along S
- $\gamma:[0,1] \rightarrow S$ curve
- $v:[0,1] \rightarrow \mathbb{R}^{n}$ vector field along γ s.t.

$$
\begin{equation*}
v(t) \in T_{\gamma(t)} S \quad \Leftrightarrow \quad\langle v(t), n(\gamma(t))\rangle=0 \quad \forall t \tag{1}
\end{equation*}
$$

(1) $\Rightarrow v$ can not be constant in t. The eqn $\dot{v}=0$ is replaced by

$$
\operatorname{proj}_{T S} \dot{v}=0 \quad \Leftrightarrow \quad \dot{v}-\langle\dot{v}, n(\gamma)\rangle n(\gamma)=0 .
$$

Differentiating (1) we obtain a first order ODE for parallel v :

$$
\dot{v}+\left\langle v, \frac{d}{d t} n(\gamma)\right\rangle n(\gamma)=0
$$

Parallel transport

Parallel transport is a linear isomorphism

$$
P_{\gamma}: T_{\gamma(0)} S \rightarrow T_{\gamma(1)} S, \quad v_{0} \mapsto v(1)
$$

where v is the solution of the problem

$$
\dot{v}+\left\langle v, \frac{d}{d t} n(\gamma)\right\rangle n(\gamma)=0, \quad v(0)=v_{0} .
$$

P_{γ} is an isometry, since

$$
v, w \text { are parallel } \Rightarrow\langle v(t), w(t)\rangle \text { is constant in } t
$$

Holonomy group

- $s \in S$ basepoint
- $H_{o l}:=\left\{P_{\gamma} \mid \gamma(0)=s=\gamma(1)\right\} \subset S O\left(T_{s} S\right)$ based holonomy group
- $\mathrm{Hol}_{s^{\prime}}$ is conjugated to Hol_{s} ("Holonomy group does not depend on the choice of the basepoint")
- Holonomy group is intrinsic to S, i.e. depends on the Riemannian metric on S but not on the embedding $S \subset \mathbb{R}^{n}$
- Ex: $\operatorname{Hol}\left(S^{2}\right)=S O(2)$

Properties:
\diamond definition generalises to any Riemannian manifold (M, g)
\diamond encodes both local and global features of the metric
\diamond "knows" about additional structures compatible with metric

Classification of holonomy groups

Berger's list, 1955

Assume M is a simply-connected irreducible nonsymmetric Riemannian mfld of dimension n. Then $\operatorname{Hol}(M)$ is one of the following: Holonomy Geometry Extra structure

- $S O(n)$
- $U(n / 2)$

Kähler
complex

- $S U(n / 2) \quad$ Calabi-Yau
- $\quad S p(n / 4)$
hyperKähler
- $\operatorname{Sp}(1) S p(n / 4)$ quaternionic Kähler
- $G_{2}(\mathrm{n}=7) \quad$ exceptional
- $\operatorname{Spin}(7)(\mathrm{n}=8)$ exceptional
complex + hol. vol.
quaternionic
"twisted" quaternionic
"octonionic"
"octonionic"

Plan

- General theory (torsion, Levi-Civita connection, Riemannian curvature, holonomy)
- Proof of Berger's theorem (Olmos 2005)
- Properties of manifolds with non-generic holonomies (some constructions, examples, curvature tensors...)

Holonomy groups
 in Riemannian geometry

Lecture 2

October 27, 2011

Smooth manifold comes equipped with a collection of charts $\left(U_{\alpha}, \varphi_{\alpha}\right)$, where $\left\{U_{\alpha}\right\}$ is an open covering and the maps $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are smooth.
A Lie group G is a group which has a structure of a smooth mfld such that the structure maps, i.e. $m: G \times G \rightarrow G, .^{-1}: G \rightarrow G$, are smooth.
$\mathfrak{g}:=T_{e} G$ is a Lie algebra, i.e. a vector space endowed with a map $[\cdot, \cdot]: \Lambda^{2} \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying the Jacobi identity:

$$
[\xi,[\eta, \zeta]]+[\eta,[\zeta, \xi]]+[\zeta,[\xi, \eta]]=0
$$

Ex. | G | $G L_{n}(\mathbb{R})$ | $G L_{n}(\mathbb{C})$ | $S O(n)$ | $U(n)$ |
| :---: | :---: | :---: | :---: | :---: |
| \mathfrak{g} | End \mathbb{R}^{n} | End \mathbb{C}^{n} | $\left\{A^{t}=-A\right\}$ | $\left\{\bar{A}^{t}=-A\right\}$ |

Identification: $\mathfrak{g} \cong\{$ left-invariant vector fields on $G\}$

- ξ_{1}, \ldots, ξ_{n} a basis of \mathfrak{g}
- $\omega_{1}, \ldots, \omega_{n}$ dual basis
$\omega:=\sum \omega_{i} \otimes \xi_{i} \in \Omega^{1}(G ; \mathfrak{g})$ canonical 1-form with values in \mathfrak{g}, which satisfies the Maurer-Cartan equation

$$
d \omega+\frac{1}{2}[\omega \wedge \omega]=\sum_{i} d \omega_{i} \otimes \xi_{i}+\frac{1}{2} \sum_{i, j} \omega_{i} \wedge \omega_{j} \otimes\left[\xi_{i}, \xi_{j}\right]=0 .
$$

Vector bundles

A vector bundle E over M satisfies:

- E is a manifold endowed with a submersion $\pi: E \rightarrow M$
- $\forall m \in M E_{m}:=\pi^{-1}(m)$ has the structure of a vector space
- $\forall m \in M \quad \exists U \ni m$ s.t. $\quad \pi^{-1}(U) \cong U \times E_{m}$
$\Gamma(E)=\left\{s: M \rightarrow E \mid \pi \circ s=i d_{M}\right\}$ space of sections of E
Ex.

E	$\Gamma(E)$	
$T M$	$\mathfrak{X}(M)$	vector fields
$\Lambda^{k} T^{*} M$	$\Omega^{k}(M)$	differential k-forms
$T_{q}^{p}(M):=\bigotimes^{p} T M \otimes \bigotimes^{q} T^{*} M$	$?$	tensors of type (p, q)

de Rham complex

Exterior derivative $d: \Omega^{k} \rightarrow \Omega^{k+1}$ is the unique map with the properties:

- df is the differential of f for $f \in \Omega^{0}(M)=C^{\infty}(M)$
- $d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{p} \alpha \wedge d \beta$, if $\alpha \in \Omega^{p}$
- $d^{2}=0$

Thus, we have the de Rham complex:

$$
0 \rightarrow \Omega^{0} \rightarrow \Omega^{1} \rightarrow \cdots \rightarrow \Omega^{n} \rightarrow 0, \quad n=\operatorname{dim} M
$$

Betti numbers:

$$
b_{k}=\operatorname{dim} H^{k}(M ; \mathbb{R})=\operatorname{dim} \frac{\operatorname{Ker} d: \Omega^{k} \rightarrow \Omega^{k+1}}{\operatorname{im} d: \Omega^{k-1} \rightarrow \Omega^{k}}
$$

Lie bracket of vector fields

A vector field can be viewed as an \mathbb{R}-linear derivation of the algebra $C^{\infty}(M)$. Then $\mathfrak{X}(M)$ is a Lie algebra:

$$
[v, w] \cdot f=v \cdot(w \cdot f)-w \cdot(v \cdot f)
$$

The exterior derivative and the Lie bracket are related by

$$
2 d \omega(v, w)=v \cdot \omega(w)-w \cdot \omega(v)-\omega([v, w])
$$

Rem. "2" is optional in the above formula.

Lie derivative

For $v \in \mathfrak{X}(M)$ let φ_{t} be the corresponding 1-parameter (semi)group of diffeomorphisms of M, i.e.

$$
\frac{d}{d t} \varphi_{t}(m)=v\left(\varphi_{t}(m)\right), \quad \varphi_{0}=i d_{M}
$$

The Lie derivative of a tensor S is defined by

$$
\mathcal{L}_{v} S=\left.\frac{d}{d t}\right|_{t=0} \varphi_{t}^{*} S
$$

In particular, this means:

$$
\begin{array}{ll}
\mathcal{L}_{v} f(m)=\left.\frac{d}{d t}\right|_{t=0} f\left(\varphi_{t}(m)\right)=d f_{m}(v(m)), & \text { if } f \in C^{\infty}(M), \\
\mathcal{L}_{v} w(m)=\left.\frac{d}{d t}\right|_{t=0}\left(d \varphi_{t}\right)_{m}^{-1} w\left(\varphi_{t}(m)\right), & \text { if } w \in \mathfrak{X}(M)
\end{array}
$$

Properties of the Lie derivative

- $\mathcal{L}_{v}(S \otimes T)=\left(\mathcal{L}_{v} S\right) \otimes T+S \otimes\left(\mathcal{L}_{v} T\right)$
- $\mathcal{L}_{v} w=[v, w]$ for $w \in \mathfrak{X}(M)$
- $\left[\mathcal{L}_{v}, \mathcal{L}_{w}\right]=\mathcal{L}_{[v, w]}$
- Cartan formula

$$
\mathcal{L}_{v} \omega=\imath_{v} d \omega+d\left(\imath_{v} \omega\right) \quad \text { where } \omega \in \Omega(M) .
$$

- $\left[\mathcal{L}_{v}, d\right]=0$ on $\Omega(M)$

Connections on vector bundles

Def. A connection on E is a linear map
$\nabla: \Gamma(E) \rightarrow \Gamma\left(T^{*} M \otimes E\right)$ satisfying the Leibnitz rule:

$$
\nabla(f s)=d f \otimes s+f \nabla s, \quad \forall f \in C^{\infty}(M) \quad \text { and } \forall s \in \Gamma(E)
$$

For $v \in \mathfrak{X}(M)$ we write

$$
\nabla_{v} s=v \cdot \nabla s, \quad \text { where } " \cdot " \text { is a contraction. }
$$

Then

$$
\nabla_{\alpha v}(\beta s)=\alpha \nabla_{v}(\beta s)=\alpha(v \cdot \beta) \nabla_{v} s+\alpha \beta \nabla_{v} s .
$$

Curvature

Prop. For $v, w \in \mathfrak{X}(M)$ and $s \in \Gamma(E)$ the expression

$$
\nabla_{v}\left(\nabla_{w} s\right)-\nabla_{w}\left(\nabla_{v} s\right)-\nabla_{[v, w]} s
$$

is $C^{\infty}(M)$-linear in v, w, and s.

Def. The unique section $R=R(\nabla)$ of $\Lambda^{2} T^{*} M \otimes \operatorname{End}(E)$ satisfying

$$
R(\nabla)(v \wedge w \otimes s)=\nabla_{v}\left(\nabla_{w} s\right)-\nabla_{w}\left(\nabla_{v} s\right)-\nabla_{[v, w]} s
$$

is called the curvature of the connection ∇.

Choose local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ on M
$v_{i}:=\frac{\partial}{\partial x_{i}} \quad \Rightarrow \quad\left[v_{i}, v_{j}\right]=0$
Then $R\left(v_{i}, v_{j}\right) s=\nabla_{v}\left(\nabla_{w} s\right)-\nabla_{w}\left(\nabla_{v} s\right)$
Think of $\nabla_{v_{i}} s$ as "partial derivative" of s
Curvature measures how much "partial derivatives" of sections of E fail to commute.

Twisted differential forms

Denote $\Omega^{k}(E):=\Gamma\left(\Lambda^{k} T^{*} M \otimes E\right)$
Then $\nabla: \Omega^{0}(E) \rightarrow \Omega^{1}(E)$ extends uniquely to
$d^{\nabla}: \Omega^{k}(E) \rightarrow \Omega^{k+1}(E)$ via the rule

$$
d^{\nabla}(\omega \otimes s)=d \omega \otimes s+(-1)^{k} \omega \wedge \nabla s
$$

We obtain the sequence

$$
\begin{equation*}
\Omega^{0}(E) \xrightarrow{\nabla=d^{\nabla}} \Omega^{1}(E) \xrightarrow{d^{\nabla}} \Omega^{2}(E) \xrightarrow{d^{\nabla}} \ldots \xrightarrow{d^{\nabla}} \Omega^{n}(E) \tag{1}
\end{equation*}
$$

Then

$$
\left(d^{\nabla} \circ d^{\nabla}\right) \sigma=R(\nabla) \cdot \sigma
$$

Curvature measures the extend to which sequence (1) fails to be a complex.

Principal bundles

Let G be a Lie group
A principal bundle P over M satisfies:

- P is a manifold endowed with a submersion $\pi: P \rightarrow M$
- G acts on P on the right and $\pi(p \cdot g)=\pi(p)$
- $\forall m \in M$ the group G acts freely and transitively on $P_{m}:=\pi^{-1}(m)$. Hence $P_{m} \cong G$
- Local triviality: $\forall m \in M \quad \exists U \ni m$ s.t. $\quad \pi^{-1}(U) \cong U \times G$

Example: Frame bundle

Let $E \rightarrow M$ be a vector bundle. A frame at a point m is a linear isomorphism $p: \mathbb{R}^{k} \rightarrow E_{m}$.

$$
\operatorname{Fr}(E):=\bigcup_{m, p}\{(m, p) \mid p \text { is a frame at } m\}
$$

(i) $G L(k ; \mathbb{R})=\operatorname{Aut}\left(\mathbb{R}^{k}\right)$ acts freely and transitively on $F r_{m}(E)$:

$$
p \cdot g=p \circ g
$$

(ii) A moving frame on $U \subset M$ is a set $\left\{s_{1}, \ldots, s_{k}\right\}$ of pointwise linearly independent sections of E over U. This gives rise to a section s of $\operatorname{Fr}(E)$ over U :

$$
s(m) x=\sum x_{i} s_{i}(m), \quad x \in \mathbb{R}^{k}
$$

By (i) this defines a trivialization of $\operatorname{Fr}(E)$ over U.

Frame bundle: variations

If in addition E is

- oriented, i.e. $\Lambda^{\text {top }} E$ is trivial, $F r^{+}(E)$ is a principal $G L^{+}(k ; \mathbb{R})$-bundle
- Euclidean Fr_{O} is a principal $O(k)$-bundle
- Hermitian $F r_{U}$ is a principal $U(k)$-bundle
- quaternion-Hermitian is a principal $S p(k)$-bundle
-

Def. Let G be a subgroup of $G L(n ; \mathbb{R}), n=\operatorname{dim} M$. A G-structure on M is a principal G-subbundle of $\operatorname{Fr}_{M}=\operatorname{Fr}(T M)$.

- orientation $\Leftrightarrow G L^{+}(n ; \mathbb{R})$-structure
- Riemannian metric $\Leftrightarrow O(n)$-structure
\qquad

Associated bundle

$P \rightarrow M$ principal G-bundle $V G$-representation, i.e. a homomorphism $\rho: G \rightarrow G L(V)$ is given

$$
P \times{ }_{G} V:=(P \times V) / G, \quad \text { action: }(p, v) \cdot g=\left(p g, \rho\left(g^{-1}\right) v\right)
$$

is called the bundle associated to P with fibre V.
Ex. For $P=F r_{M}, G=G L(n ; \mathbb{R})$, and $E=P \times_{G} V$ we have

- $E=T M$ for $V=\mathbb{R}^{n}$ (tautological representation)
- $E=T^{*} M$ for $V=\left(\mathbb{R}^{n}\right)^{*}$
- $E=\Lambda^{k} T^{*} M$ for $V=\Lambda^{k}\left(\mathbb{R}^{n}\right)^{*}$

Sections of associated bundles correspond to equivariant maps:

$$
\begin{gathered}
\left\{f: P \rightarrow V \mid f(p g)=\rho\left(g^{-1}\right) f(p)\right\} \equiv \Gamma(E) \\
f \mapsto s_{f}, \quad s_{f}(m)=[p, f(p)], \quad p \in P_{m}
\end{gathered}
$$

Connection as horizontal distribution

For $\xi \in \mathfrak{g}$ the Killing vector at $p \in P$ is given by

$$
K_{\xi}(p):=\left.\frac{d}{d t}\right|_{t=0}(p \cdot \exp t \xi)
$$

$\mathcal{V}_{p}=\left\{K_{\xi}(p) \mid \xi \in \mathfrak{g}\right\} \cong \mathfrak{g}$ is called vertical space at p
Def. A connection on P is a subbundle \mathcal{H} of $T P$ satisfying
(i) \mathcal{H} is G-invariant, i.e. $\mathcal{H}_{p g}=\left(R_{g}\right)_{*} \mathcal{H}_{p}$
(ii) $T P=\mathcal{V} \oplus \mathcal{H}$
\mathcal{H} is called a horizontal bundle.

Connection as a 1-form

Given a connection on P, define $\omega \in \Omega^{1}(P ; \mathfrak{g})$ as follows

$$
T_{p} P \rightarrow \mathcal{V}_{p} \cong \mathfrak{g}
$$

ω is called the connection form and satisfies:
(a) $\omega\left(K_{\xi}\right)=\xi$
(b) $R_{g}^{*} \omega=a d_{g^{-1}} \omega$, where $a d$ denotes the adjoint representation

Prop. Every $\omega \in \Omega^{1}(P ; \mathfrak{g})$ satisfying (a) and (b) defines a connection via

$$
\mathcal{H}=\operatorname{Ker} \omega
$$

Horizontal lift

$\operatorname{Ker}\left(\pi_{*}\right)_{p}=\mathcal{V}_{p}$. Hence $\left(\pi_{*}\right)_{p}: \mathcal{H}_{p} \rightarrow T_{\pi(p)} M$ is an isomorphism. In particular, $\mathcal{H} \cong \pi^{*} T M$. Hence, we have

Prop. For any $w \in \mathfrak{X}(M)$ there exists $\tilde{w} \in \mathfrak{X}(P)$ s.t.
(i) \tilde{w} is G-invariant and horizontal
(ii) $\left(\pi_{*}\right)_{p} \tilde{w}=w(\pi(p))$

Vice versa, if $\tilde{w} \in \mathfrak{X}(P)$ is G-invariant and horizontal, then $\exists!w \in$ $\mathfrak{X}(M)$ s.t. $\pi_{*} \tilde{w}=w$.

Invariant and equivariant forms

$\tilde{\alpha} \in \Omega^{k}(P)$ is called basic if $\imath_{v} \tilde{\alpha}=0$ for any vertical vector field v.
Then $\forall \alpha \in \Omega^{k}(M)$ the form $\tilde{\alpha}=\pi^{*} \alpha$ is G-invariant and basic. On the other hand, any G-invariant and basic k-form $\tilde{\alpha}$ on P induces a k-form on M. Notice: no connection required here.
V is a representation of G
$\tilde{\alpha} \in \Omega^{k}(P ; V)$ is G-equivariant if $R_{g}^{*} \tilde{\alpha}=\rho\left(g^{-1}\right) \tilde{\alpha}$.
Ex. Connection 1-form is an equivariant form for $V=\mathfrak{g}$.

For basic and equivariant forms we have the identification

$$
\Omega_{G, b a s}^{k}(P, V) \cong \Omega^{k}(M ; E), \quad \pi^{*} \alpha \hookleftarrow \alpha
$$

Curvature tensor

Prop. Let ω be a connection form. The 2-form $\tilde{F}_{\omega}=d \omega+\frac{1}{2}[\omega \wedge \omega]$ is basic and G-equivariant, i.e. $R_{g}^{*} \tilde{F}=a d_{g^{-1}} \tilde{F}$.

Cor. Denote ad $P:=P \times_{G, a d} \mathfrak{g}$. Then there exists $F \in$ $\Omega^{2}(M ; a d P)$ s.t. $\pi^{*} F=\tilde{F}$.

The 2 -form F is called the curvature form of the connection ω. The defining equation for F is often written as

$$
d \omega=-\frac{1}{2}[\omega \wedge \omega]+F
$$

and is called the structural equation.

Covariant differentiation

$P \rightarrow M G$-bundle, $\rho: G \rightarrow G L(V), E:=P \times_{G} V$, $f: P \rightarrow V$ equivariant map, i.e. section of E.
Def. $\nabla f=d^{h} f=\left.d f\right|_{\mathcal{H}}$ is called the covariant derivative of f.

Rem. Denote $\tau=d \rho_{e}: \mathfrak{g} \rightarrow \mathfrak{g l}(V)=\operatorname{End} V$. Then for a vertical vector $K_{\xi}(p)$ we have: $d f\left(K_{\xi}(p)\right)=-\tau(\xi) f(p)$, that is all information about $d f$ is contained in $d^{h} f$.

Prop.

$$
\nabla f=d f+\omega \cdot f
$$

Here "." means the action of \mathfrak{g} on V via the map τ.

Prop. $\nabla f \in \Omega^{1}(P ; V)$ is G-equivariant and basic form.

Thus ∇f can be interpreted as an element of $\Omega^{1}(M ; E)$ and we have a diagram

Prop. ∇^{E} is a connection on E.

Bianchi identity

ω connection on P, F curvature
$a d P$ has an induced connection ∇

Theorem (Bianchi identity)

$$
d^{\nabla} F=0
$$

Proof. For $\tilde{\varphi} \in \Omega^{k}(P ; \mathfrak{g})$ denote $D \tilde{\varphi}=d \tilde{\varphi}+[\omega \wedge \tilde{\varphi}]$
Step 1. For any $\varphi \in \Omega^{k}(M ; a d P)$ we have $\widetilde{d^{\nabla} \varphi}=D \tilde{\varphi}$.
Can assume $\varphi=s \cdot \varphi_{0}$, where $\varphi_{0} \in \Omega^{k}(M)$ and

$$
\Gamma(a d P) \ni s \nLeftarrow \rightsquigarrow f \in \operatorname{Map}^{G}(P ; \mathfrak{g}) .
$$

Then

$$
\begin{aligned}
\widetilde{d^{\nabla} \varphi} & =\widetilde{\nabla s} \wedge \tilde{\varphi}_{0}+\tilde{s} \cdot d \tilde{\varphi}_{0} \\
& =(d f+[\omega, f]) \wedge \tilde{\varphi}_{0}+f d \tilde{\varphi}_{0} \\
& =d\left(f \tilde{\varphi}_{0}\right)+\left[\omega \wedge f \tilde{\varphi}_{0}\right] \\
& =D \varphi
\end{aligned}
$$

Proof of the Bianchi identity (continued)

Step 2. $D \tilde{F}=0$, where $\tilde{F}=d \omega+\frac{1}{2}[\omega \wedge \omega]$.

$$
\begin{aligned}
& d \tilde{F}=\frac{1}{2}([d \omega \wedge \omega]-[\omega \wedge d \omega]) \\
&=[d \omega \wedge \omega] \\
&=[\tilde{F} \wedge \omega]-\frac{1}{2}[[\omega \wedge \omega] \wedge \omega] \\
& \text { Jacobi identity } \Longrightarrow[[\omega \wedge \omega] \wedge \omega]=0
\end{aligned}
$$

Thus, $D \tilde{F}=0 \Longleftrightarrow d^{\nabla} F=0$.

Horizontal lift of a curve

$\gamma:[0,1] \rightarrow M$ (piecewise) smooth curve, $p_{0} \in P_{\gamma(0)}$.
Prop. [KN, Prop. II.3.1] For any γ there exists a unique horizontal lift of γ through p_{0}, i.e. a curve $\Gamma:[0,1] \rightarrow P$ with the following properties:
(i) $\dot{\Gamma}(t) \in \mathcal{H}_{\Gamma(t)}$ for any $t \in[0,1]$ (" Γ is horizontal")
(ii) $\Gamma(0)=p_{0}$
(iii) $\pi \circ \Gamma=\gamma$

Sketch of the proof. Let Γ_{0} be an arbitrary lift of $\gamma, \Gamma_{0}(0)=p_{0}$. Then $\Gamma=\Gamma_{0} \cdot g$ for some curve $g:[0,1] \rightarrow G$. Hence,

$$
\dot{\Gamma}=\dot{\Gamma}_{0} \cdot g+\Gamma_{0} \cdot \dot{g} \quad \Longrightarrow \quad \omega(\dot{\Gamma})=a d_{g^{-1}} \omega\left(\dot{\Gamma}_{0}\right)+g^{-1} \dot{g} .
$$

Then there exists a unique curve $g, g(0)=e$, such that $g^{-1} \dot{g}+a d_{g^{-1}} \omega\left(\dot{\Gamma}_{0}\right)=0 \quad \Longleftrightarrow \quad \omega(\dot{\Gamma})=0$.

Parallel transport

$\gamma:[0,1] \rightarrow M, \gamma(0)=m, \gamma(1)=n$
Parallel transport $\Pi_{\gamma}: P_{m} \rightarrow P_{n}$ is defined by

$$
\Pi_{\gamma}(p)=\Gamma(1)
$$

where Γ is the horizontal lift of γ satisfying $\Gamma(0)=p$.

Prop.

(i) Π_{γ} commutes with the action of G for any curve γ
(ii) Π_{γ} is bijective
(iii) $\Pi_{\gamma_{1} * \gamma_{2}}=\Pi_{\gamma_{1}} \circ \Pi_{\gamma_{2}}, \quad \Pi_{\gamma^{-1}}=\Pi_{\gamma}^{-1}$

Holonomy group

Denote $\Omega_{m}:=\{$ piecewise smooth loops in M based at $m\}$

$$
\operatorname{Hol}_{p}(\omega):=\left\{g \in G \mid \exists \gamma \in \Omega_{m} \text { s.t. } \Pi_{\gamma}(p)=p g\right\}
$$

Prop.

(i) Hol_{p} is a Lie group
(ii) $H o l_{p g}=A d_{g^{-1}}\left(H o l_{p}\right)$

Proof. Group structure follows from (iii) of the previous Prop. For the structure of Lie group see [Kobayashi-Nomizu, Thm 4.2]. Statement (ii) follows from the observation Γ is horizontal $\Longrightarrow \quad R_{g} \circ \Gamma$ is also horizontal.

Reduction of connections

Let $H \subset G$ be a Lie subgroup and $Q \subset P$ be a principal H-bundle ("structure group reduces to H ").

Def. A connection \mathcal{H} on P reduces to Q if $\mathcal{H}_{q} \subset T_{q} Q \quad \forall q \in Q$.

Prop. A connection reduces to $Q \Longleftrightarrow \imath^{*} \omega$ takes values in \mathfrak{h}, where $\imath: Q \hookrightarrow P$.

Proof. $(\Rightarrow): \quad T_{q} Q \cong \mathcal{H}_{q} \oplus \mathfrak{h} \xrightarrow{(0, i d)} \mathfrak{h}$

$(\Leftarrow): \imath^{*} \omega$ is a connection on Q, hence $T Q=\mathcal{H}^{Q} \oplus \mathfrak{h}$. Since
$\mathcal{H}^{Q} \subset \mathcal{H}^{P}$ and $\operatorname{rk} \mathcal{H}^{P}=\operatorname{dim} M=\operatorname{rk} \mathcal{H}^{Q}$, we obtain
$\mathcal{H}^{Q}=\mathcal{H}^{P}$.

Reduction theorem

For $p_{0} \in P$ define the holonomy bundle through p_{0} as follows:
$Q\left(p_{0}\right):=\left\{p \in P \mid \exists\right.$ a horizontal curve Γ s.t. $\left.\Gamma(0)=p_{0}, \Gamma(1)=p\right\}$.

Theorem ("Reduction theorem")

Put $H=\operatorname{Hol}_{p_{0}}(P, \omega)$. Then the following holds:
(i) Q is a principal H-bundle
(ii) connection ω reduces to Q

Proof. (i): $p \in Q, g \in H \Rightarrow p g \in Q \quad$ (by the def of H). Exercise: Show that $\operatorname{Hol}_{p}(\omega)=H \quad \forall p \in Q$.
From the def of Q follows, that H acts transitively on fibres. Local triviality: Use parallel transport over coordinate chart U wrt segments to obtain a local section of Q (see [KN, Thm II.7.1] for details).
(ii): Follows immediately from the def of Q.

Parallel transport and covariant derivative

Let $\Gamma:[0,1] \rightarrow P$ be a horizontal lift of γ
$\Gamma_{E}(t):=[\Gamma(t), v], \quad v \in V, E=P \times_{G} V$
$\Gamma_{E}:[0,1] \rightarrow E$ is called the horizontal lift of γ to E
$\Pi_{t}: E_{\gamma(t)} \rightarrow E_{m}$ parallel transport in $E, m=\gamma(0)$
Lem. $\quad \nabla_{w} s=\lim _{t \rightarrow 0} \frac{1}{t}\left(\Pi_{t} s(\gamma(t))-s(m)\right)$, where $w=\dot{\gamma}(0)$.

Proof. Let $s \longleftrightarrow f$, i.e. $[p, f(p)]=s(\pi(p))$. First observe that

$$
\Pi_{\gamma}^{E}[p, v]=\left[\Pi_{\gamma} p, v\right] .
$$

Since $[\Gamma(t), f(\Gamma(t))]=s(\gamma(t))$, we obtain

$$
\Pi_{t} s=[p, f(\Gamma(t))] .
$$

$\Downarrow \quad$ to be continued \Downarrow

Lem. $\quad \nabla_{w} s=\lim _{t \rightarrow 0} \frac{1}{t}\left(\Pi_{t} s(\gamma(t))-s(m)\right)$, where $w=\dot{\gamma}(0)$.

Proof. Let $s \nrightarrow f$, i.e. $[p, f(p)]=s(\pi(p))$. First observe that

$$
\Pi_{\gamma}^{E}[p, v]=\left[\Pi_{\gamma} p, v\right] .
$$

Since $[\Gamma(t), f(\Gamma(t))]=s(\gamma(t))$, we obtain

$$
\Pi_{t} s=[p, f(\Gamma(t))] .
$$

Then

$$
\begin{aligned}
\nabla_{w} s & =[p, d f(\tilde{w})] \\
& =\left[p,\left.\frac{d}{d t}\right|_{t=0} f \circ \Gamma(t)\right] \\
& =\lim _{t \rightarrow 0} \frac{1}{t}([p, f(\Gamma(t))]-[p, f(p)]) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(\Pi_{t} s(\gamma(t))-s(m)\right) .
\end{aligned}
$$

Rem. Let $w \in \mathfrak{X}(M)$. If $s \longleftrightarrow \nprec f$, then $\nabla_{w} s \longleftrightarrow d f(\tilde{w})$.

Lem. Let $s \in \Gamma(E), s_{0}=s(m)$. Assume $\nabla s=0$. Then for any loop γ based at m we have $\Pi_{\gamma}^{E} s_{0}=s_{0}$.

Proof. Let Γ be a horizontal lift of γ. Then $f \circ \Gamma=$ const. Hence $\Pi_{t} s(\gamma(t))=[p, f \circ \Gamma]$ does not depend on t.
V is a G-representation, $H=S t a b_{\eta}$, where $\eta \in V$.
$Q \subset P$ is a principal H-subbundle
The constant function $q \mapsto \eta$ can be extended to an equivariant function η on P

Theorem

ω reduces to $Q \quad \Longleftrightarrow \quad \nabla^{E} \eta=0$.

Proof. $(\Rightarrow):\left.\forall q \in Q d \eta\right|_{\mathcal{H}_{q}}=0$, since η is constant on Q and $\mathcal{H} \subset T Q$.
(\Leftarrow) : For any $q \in Q$ we have

$$
[q, \eta]=\Pi_{\gamma}^{E}[q, \eta]=\left[\Pi_{\gamma} q, \eta\right]=[q g, \eta]=\left[q, \rho\left(g^{-1}\right) \eta\right]
$$

Hence $\operatorname{Hol}_{q}(\omega) \subset H$. Then the holonomy bundle through q is contained in Q. Therefore, ω reduces to Q.

Ambrose-Singer theorem

Theorem (Ambrose-Singer)

Let Q be the holonomy bundle through $p_{0}, \tilde{F} \in \Omega^{2}(P ; \mathfrak{g})$ curvature of ω. Then

$$
\mathfrak{h o l} p_{p_{0}}=\operatorname{span}\left\{\tilde{F}_{q}\left(w_{1}, w_{2}\right) \mid q \in Q, w_{1}, w_{2} \in \mathcal{H}_{q}\right\}
$$

Sketch of the proof. Can assume $Q=P$. Denote

$$
\mathfrak{g}^{\prime}=\operatorname{span}\left\{\tilde{F}_{q}\left(w_{1}, w_{2}\right) \mid q \in Q, w_{1}, w_{2} \in \mathcal{H}_{q}\right\} \subset \mathfrak{g} .
$$

Further, $S_{p}:=\mathcal{H}_{p} \oplus\left\{K_{\xi}(p) \mid \xi \in \mathfrak{g}^{\prime}\right\}$. Then the distribution S is integrable. If $P_{0} \ni p_{0}$ is a maximal integral submanifold, then $P_{0}=P$, since each horizontal curve must lie in P_{0}. Then $\operatorname{dim} \mathfrak{g}=\operatorname{dim} P-\operatorname{dim} M=\operatorname{dim} P_{0}-\operatorname{dim} M=\operatorname{dim} \mathfrak{g}^{\prime}$. Hence $\mathfrak{g}=\mathfrak{g}^{\prime}$.

Lie groups Vector bundles

From now on $P=\operatorname{Fr}(M)$ is the principal $G=G L_{n}(\mathbb{R})$-bundle of linear frames

Def. A canonical 1-form $\theta \in \Omega^{1}\left(P ; \mathbb{R}^{n}\right)$ is given by

$$
\theta(v)=p^{-1}(d \pi(v)), \quad v \in T_{p} P
$$

Rem. θ is defined for bundles of linear frames only.
θ is G-equivariant in the following sense: $R_{g}^{*} \theta=g^{-1} \theta$. Indeed, for any $v \in T_{p} P$ we have

$$
R_{g}^{*} \theta(v)=(p g)^{-1}\left(d \pi\left(R_{g} v\right)\right)=g^{-1} p^{-1}(d \pi(v))=g^{-1} \theta(v)
$$

Torsion

ω is a connection on $\operatorname{Fr}(M)$. In particular, ω is $\mathfrak{g l}_{n}(\mathbb{R})$-valued. Thus, we have induced connections on $T M, T^{*} M, \Lambda^{k} T^{*} M \ldots$

Def. $\Theta=d \theta+\frac{1}{2}[\omega, \theta] \in \Omega^{2}\left(\operatorname{Fr}(M) ; \mathbb{R}^{n}\right)$ is called the torsion form of ω.

Rem. $[\omega, \theta](v, w)=\omega(v) \theta(w)-\omega(w) \theta(v)$.

Prop. Θ is horizontal and equivariant. Hence there exists $T \in$ $\Omega^{2}(M ; T M)$ s.t. $2 \Theta=\pi^{*} T$.
T can be viewed as a skew-symmetric linear map
$T M \otimes T M \rightarrow T M$ and is called the torsion tensor.

Theorem

For $v, w \in \mathfrak{X}(M)$ we have

$$
T(v, w)=\nabla_{v} w-\nabla_{w} v-[v, w]
$$

Proof. Represent v, w by equivariant functions $f_{v}, f_{w}: F r \rightarrow \mathbb{R}^{n}$. Then $\nabla_{v} w$ is represented by $d f_{w}(\tilde{v})$.
For the bundle of frames, $f_{w}=\theta(\tilde{w})$. Hence $\nabla_{v} w=p(\tilde{v} \cdot \theta(\tilde{w}))$. Therefore we obtain

$$
\begin{aligned}
T(v, w) & =p(2 \Theta(\tilde{v}, \tilde{w})) \\
& =p(\tilde{v} \cdot \theta(\tilde{w})-\tilde{w} \cdot \theta(\tilde{v})-\theta([\tilde{v}, \tilde{w}])) \\
& =\nabla_{v} w-\nabla_{w} v-[v, w] .
\end{aligned}
$$

The last equality follows from $[\tilde{v}, \tilde{w}]^{h}=\widetilde{[v, w]}$ (exercise).

Denote
$\Gamma\left(T^{*} M\right) \xrightarrow{\nabla} \Gamma\left(T^{*} M \otimes T^{*} M\right) \xrightarrow{\text { Alt }} \Omega^{2}(M), \quad \alpha \mapsto \operatorname{Alt}(\nabla \alpha)$.

Theorem

$$
\operatorname{Alt}(\nabla \alpha)=d \alpha-\alpha \circ T
$$

In particular, for torsion-free connections $\operatorname{Alt}(\nabla \alpha)=d \alpha$.

Proof. This follows from the previous Thm with the help of the formulae $v \cdot \alpha(w)=\nabla_{v}(\alpha(w))=\left(\nabla_{v} \alpha\right)(w)+\alpha\left(\nabla_{v} w\right)$.

Holonomy groups
 in Riemannian geometry

Lecture 3

November 3, 2011

Recap of the previous lecture

$\operatorname{Fr}(M):=\bigcup_{m, p}\left\{(m, p) \mid p: \mathbb{R}^{n} \xrightarrow{\cong} T_{m} M\right\} \quad$ frame bundle;
$\theta(v)=p^{-1}(d \pi(v)), v \in T_{p} \operatorname{Fr}(M) \quad$ canonical 1-form

$$
\Theta=d \theta+\frac{1}{2}[\omega, \theta] \in \Omega^{2}\left(F r(M) ; \mathbb{R}^{n}\right)
$$

torsion form
$\exists T \in \Omega^{2}(M ; T M)$, s.t. $\quad 2 \Theta=\pi^{*} T$,
torsion tensor
$T(v, w)=\nabla_{v} w-\nabla_{w} v-[v, w], \quad v, w \in \mathfrak{X}(M)$ $\operatorname{Alt}(\nabla \alpha)=d \alpha-\alpha \circ T, \quad \alpha \in \Omega^{1}(M)$

Curvature tensor

For $P=\operatorname{Fr}(M)$ we have $a d P=\operatorname{End}(T M)$. Then the curvature can be viewed as a skew-symmetric map

$$
T M \otimes T M \rightarrow \operatorname{End}(T M), \quad(v, w) \mapsto R(v, w)
$$

R is called the curvature tensor.

Theorem (KN, Thm. II.5.1)

For $v, w, x \in \mathfrak{X}(M)$ we have

$$
R(v, w) x=\left[\nabla_{v}, \nabla_{w}\right] x-\nabla_{[v, w]} x
$$

Theorem

For any G-bundle P the space $\mathcal{A}(P)$ of all connections is an affine space modelled on $\Omega^{1}(M ; a d P)$.

Proof. Pick an arbitrary connection ω on P. Then for any $\omega^{\prime} \in \mathcal{A}(P)$, the 1 -form $\xi=\omega-\omega^{\prime}$ is basic and $a d$-equivariant. Vice versa, for any basic and equivariant 1-form ξ, the form $\omega^{\prime}=\omega-\xi$ is a connection. Hence, the statement of the thm.

Assume $G \subset G L_{n}(\mathbb{R})$ and therefore $\mathfrak{g} \subset \mathfrak{g l}_{n}(\mathbb{R}) \cong\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n}$.
$\operatorname{Fr}(M) \supset P$ is a G-bundle, $\quad \omega, \omega^{\prime} \in \mathcal{A}(P), \quad \xi=\omega-\omega^{\prime}$.
For any $p \in P$, the map $\theta_{p}: \mathcal{H}_{p} \rightarrow \mathbb{R}^{n}$ is an isomorphism.
Therefore we can write

$$
\xi_{p} \in\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{g}, \quad T_{p}: \Lambda^{2} \mathbb{R}^{n} \cong \Lambda^{2} \mathcal{H}_{p} \xrightarrow{\Theta_{p}} \mathbb{R}^{n}
$$

Then

$$
\Theta^{\prime}-\Theta=\frac{1}{2}[\xi, \theta] \quad \Longleftrightarrow \quad\left(T_{p}^{\prime}-T_{p}\right) x \wedge y=\frac{1}{2}\left(\xi_{p}(x) y-\xi_{p}(y) x\right)
$$

Consider the G-equivariant homomorphism

$$
\delta:\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{g} \hookrightarrow\left(\mathbb{R}^{n}\right)^{*} \otimes\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n} \longrightarrow \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n}
$$

Then, $T^{\prime}-T=\delta \xi$.
Prop. P has a torsion-free connection if and only if $T_{p} \in \operatorname{Im} \delta$ for all $p \in P$.
(M, g) Riemannian manifold (by default, M is oriented)
$\operatorname{Fr}(M) \supset P$ is the $G=S O(n)$-bundle of orthonormal oriented frames
We have the commutative diagram of $S O(n)$-representations:

Prop. The $\operatorname{map} \delta_{\mathfrak{s o}(n)}: \mathbb{R}^{n} \otimes \Lambda^{2} \mathbb{R}^{n} \rightarrow \Lambda^{2} \mathbb{R}^{n} \otimes \mathbb{R}^{n}$ is an isomorphism.
Proof. For $a=\sum a_{i j k} e_{i} \otimes e_{j} \wedge e_{k}$ we have (exercise):

$$
\delta a=\frac{1}{2} \sum\left(a_{i j k}-a_{j i k}\right) e_{i} \wedge e_{j} \otimes e_{k}
$$

Hence, if $a \in \operatorname{Ker} \delta$, then $a_{i j k}=a_{j i k}=-a_{j k i}=-a_{k j i}=a_{k i j}=$ $a_{i k j}=-a_{i j k} \quad \Longrightarrow \quad a=0$.

The Levi-Civita connection

Theorem ("Fundamental theorem of Riemannian geometry")

Any $S O(n)$-subbundle of $\operatorname{Fr}(M)$ admits a unique torsion-free connection.

Theorem ("Fundamental theorem", reformulation)

For any Riemannian metric g there exists a unique torsion-free connection on $\operatorname{Fr}(M)$ such that $\nabla g=0$.

The unique connection in the "Fundamental thm" is called the Levi-Civita (or Riemannian) connection. The corresponding curvature tensor is called Riemannian curvature tensor.

For any $p \in P$ we have

$$
R_{p}: \Lambda^{2} \mathbb{R}^{n} \cong \Lambda^{2} \mathcal{H}_{p} \longrightarrow \mathfrak{s o}(n) \cong \Lambda^{2} \mathbb{R}^{n}
$$

Theorem ("algebraic Bianchi identity")

$R_{p}(x, y) z+R_{p}(y, z) x+R_{p}(z, x) y=0 \quad$ for all $x, y, z \in \mathbb{R}^{n}$.
Proof. $d \theta+\frac{1}{2}[\omega, \theta]=\Theta=0 \Rightarrow[d \omega, \theta]-[\omega, d \theta]=0$. This implies the first Bianchi identity:

$$
\begin{aligned}
{[R, \theta] } & =[d \omega, \theta]+\frac{1}{2}[[\omega \wedge \omega], \theta] \\
& =[\omega, d \theta]+\frac{1}{2}[[\omega \wedge \omega], \theta] \\
& =-\frac{1}{2}[\omega,[\omega, \theta]]+\frac{1}{2}[[\omega \wedge \omega], \theta] \\
& =0
\end{aligned}
$$

$[R, \theta](p x, p y, p z)=0 \Longleftrightarrow$ algebraic Bianchi identity.
Cor. $\left\langle R_{p}(x, y) z, t\right\rangle=\left\langle R_{p}(z, t) x, y\right\rangle$, i.e. $R_{p} \in S^{2}\left(\Lambda^{2} \mathbb{R}^{n}\right)$.
Proof. Exercise.

Observation: If $V=V_{1} \oplus V_{2}$ as G-representation, then $E=E_{1} \oplus E_{2}$, where $E_{i}:=P \times_{G} V_{i}$.

Determine irreducible components of the $S O(n)$-representation

$$
\mathfrak{R}=\left\{R \in \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{s o}(n) \mid R \text { satisfies alg. Bianchi id. }\right\} .
$$

We can decompose

$$
\text { End } \mathbb{R}^{n}=\mathfrak{s o}(n) \oplus \operatorname{Sym} \mathbb{R}^{n}=\mathfrak{s o}(n) \oplus \operatorname{Sym}_{0} \mathbb{R}^{n} \oplus \mathbb{R}
$$

where $\operatorname{Sym}_{0} \mathbb{R}^{n}=\operatorname{Ker}\left(\operatorname{tr}: \operatorname{Sym} \mathbb{R}^{n} \rightarrow \mathbb{R}\right)$. In other words,

$$
\begin{equation*}
\mathbb{R}^{n} \otimes \mathbb{R}^{n} \cong \Lambda^{2} \mathbb{R}^{n} \oplus S_{0}^{2} \mathbb{R}^{n} \oplus \mathbb{R} \tag{1}
\end{equation*}
$$

Prop. (1) is decomposition into irreducible components if $n \neq 4$. For $n=4$ we have in addition $\Lambda^{2} \mathbb{R}^{4}=\Lambda_{+}^{2} \mathbb{R}^{4} \oplus \Lambda_{-}^{2} \mathbb{R}^{4}$.

Here: $*: \Lambda^{m} \mathbb{R}^{2 m} \rightarrow \Lambda^{m} \mathbb{R}^{2 m}$ is the Hodge operator, $*^{2}=i d$ $\Lambda_{ \pm}^{m} \mathbb{R}^{2 m}$ are eigenspaces corresponding to $\lambda= \pm 1$.

LEvi-Civita CON-N

Think of $\bigotimes^{4} \mathbb{R}^{n}$ as the space of quadrilinear forms on $\left(\mathbb{R}^{n}\right)^{*}$.
Consider the map

$$
b(R)(\alpha, \beta, \gamma, \delta)=\frac{1}{3}(R(\alpha, \beta, \gamma, \delta)+R(\beta, \gamma, \alpha, \delta)+R(\gamma, \alpha, \beta, \delta))
$$

(cyclic permutation in the first 3 variables; Bianchi map). Then

- b is $S O(n)$-invariant
- $b^{2}=b$
- $b: S^{2}\left(\Lambda^{2} \mathbb{R}^{n}\right) \rightarrow S^{2}\left(\Lambda^{2} \mathbb{R}^{n}\right)$

Hence, we have

$$
S^{2}\left(\Lambda^{2} \mathbb{R}^{n}\right)=\operatorname{Ker} b \oplus \operatorname{Im} b=\mathfrak{R} \oplus \Lambda^{4} \mathbb{R}^{n}
$$

The Ricci contraction is the $S O(n)$-equivariant map

$$
c: S^{2}\left(\Lambda^{2} \mathbb{R}^{n}\right) \rightarrow S^{2} \mathbb{R}^{n}, \quad c(R)(x, y)=\operatorname{tr} R(x, \cdot, y, \cdot)
$$

The Kulkarni-Nomizu product of $h, k \in S^{2} \mathbb{R}^{n}$ is the 4-tensor $h \oplus k$ given by

$$
\begin{aligned}
h \otimes k(\alpha, \beta, \gamma, \delta) & =h(\alpha, \gamma) k(\beta, \delta)+h(\beta, \delta) k(\alpha, \gamma) \\
& -h(\alpha, \delta) k(\beta, \gamma)-h(\beta, \gamma) k(\alpha, \delta) .
\end{aligned}
$$

Prop.

- $h \otimes k=k \otimes h ;$
- $h \otimes k \in \operatorname{Ker} b=\mathfrak{R}$;
- $q \otimes q=2 i d_{\Lambda^{2} \mathbb{R}^{n}}$, where $q=$ standard scalar product on \mathbb{R}^{n}.

Lem. If $n \geq 3$, the $\operatorname{map} q \otimes \cdot: S^{2} \mathbb{R}^{n} \rightarrow \mathfrak{R}$ is injective and its adjoint is the restriction of the Ricci contraction $c: \mathfrak{R} \rightarrow S^{2} \mathbb{R}^{n}$.

Components of the Riemannian curvature tensor

Theorem

We have the following decomposition:

$$
\mathfrak{R} \cong \mathbb{R} \oplus S_{0}^{2} \mathbb{R}^{n} \oplus \mathcal{W}
$$

where $\mathcal{W}=\operatorname{Ker} c \cap \operatorname{Ker} b$. If $n \geq 5$, each component is irreducible.

Explicitly:

- $\frac{1}{n} \operatorname{tr} c(R)+c(R)_{0}$ are the components of R in $\mathbb{R} \oplus S_{0}^{2} \mathbb{R}^{n}$;
- the inclusions of the first two spaces are given by

$$
\begin{equation*}
\mathbb{R} \ni 1 \mapsto q \otimes q, \quad S_{0}^{2} \mathbb{R}^{n} \ni h \mapsto q \otimes h . \tag{2}
\end{equation*}
$$

Def. For the Riemannian curvature tensor R we define:

- $\operatorname{Ric}(R)=c(R)$ Ricci curvature;
- $s=\operatorname{tr} c(R)$ scalar curvature, Ric $_{0}$ traceless Ricci curvature;
- $W(R) \in \operatorname{Ker} c \cap \operatorname{Ker} b$ Weyl tensor.

From (2) follows that $R=\lambda q \otimes q+\mu \operatorname{Ric}_{0} \otimes q+W$. The coefficients λ, μ can be determined from the equality $c(q \otimes h)=(n-2) h+(\operatorname{tr} h) q$. Hence, we obtain

$$
R=\frac{s}{2 n(n-1)} q \otimes q+\frac{1}{n-2} \operatorname{Ric}_{0} \oplus q+W
$$

Observe: Ric is a symmetric quadratic form on the tangent bundle. Def. A Riemannian mfld (M, g) is called Einstein, if there exists $\lambda \in \mathbb{R}$ such that

$$
\operatorname{Ric}(g)=\lambda g
$$

Local expressions

Choose local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ on M and write:

$$
\nabla_{\partial / \partial x_{i}} \frac{\partial}{\partial x_{j}}=\sum_{k} \Gamma_{i j}^{k} \frac{\partial}{\partial x_{k}}, \quad g_{i j}=g\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right), \quad\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}
$$

Local functions $\Gamma_{i j}^{k}$ are called Chistoffel symbols.

Theorem ([KN, Prop. III.7.6 + Cor. IV.2.4])

$$
\begin{aligned}
\Gamma_{i j}^{k} & =\frac{1}{2} \sum_{l} g^{k l}\left(\partial_{i} g_{l j}+\partial_{j} g_{i l}-\partial_{l} g_{i j}\right) \\
T\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) & =\sum_{k}\left(\Gamma_{i j}^{k}-\Gamma_{j i}^{k}\right) \frac{\partial}{\partial x_{k}} \\
R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) \frac{\partial}{\partial x_{k}} & =\sum_{l} R_{i j k}^{l} \frac{\partial}{\partial x_{l}} \\
R_{i j k}^{l} & =\left(\partial_{j} \Gamma_{k i}^{l}-\partial_{k} \Gamma_{j i}^{l}\right)+\sum_{m}\left(\Gamma_{k i}^{m} \Gamma_{j m}^{l}-\Gamma_{j i}^{m} \Gamma_{k m}^{l}\right)
\end{aligned}
$$

Low dimensions

$n=2$. The curvature tensor is determined by the scalar curvature:

$$
S^{2}\left(\Lambda^{2} \mathbb{R}^{2}\right)=\mathbb{R} q \otimes q, \quad R=\frac{s}{4} q \otimes q
$$

Notice: Einstein \Leftrightarrow constant sc. curvature
$n=3$. The curvature tensor is determined by the Ricci curvature:

$$
S^{2}\left(\Lambda^{2} \mathbb{R}^{3}\right)=\mathbb{R} q \otimes q \oplus S_{0}^{2}\left(\mathbb{R}^{3}\right) \otimes q, \quad R=\frac{s}{12} q \oplus q+R i c_{0} \otimes q
$$

$n=4$. Recall: $\Lambda^{2} \mathbb{R}^{4}=\Lambda_{+}^{2} \oplus \Lambda_{-}^{2}$. Then

$$
S_{0}^{2}\left(\mathbb{R}^{4}\right) \cong \Lambda_{+}^{2} \otimes \Lambda_{-}^{2}, \quad \mathcal{W} \cong S_{0}^{2}\left(\Lambda_{+}^{2}\right) \oplus S_{0}^{2}\left(\Lambda_{-}^{2}\right)
$$

Hence, the Weyl tensor splits: $W=W^{+}+W^{-}, W^{ \pm} \in S_{0}^{2}\left(\Lambda_{ \pm}^{2}\right)$. If we consider R as a linear symmetric map of $\Lambda^{2} \mathbb{R}^{4}=\Lambda_{+}^{2} \oplus \Lambda_{-}^{2}$, we have

$$
R=\left(\begin{array}{c|c}
W^{+}+\frac{s}{12} i d & \text { Ric }_{0} \\
\hline \operatorname{Ric}_{0}^{*} & W^{-}+\frac{s}{12} i d
\end{array}\right)
$$

Two Riemannian metrics g and g^{\prime} are conformally equivalent if $g^{\prime}=e^{\varphi} g$ for some $\varphi \in C^{\infty}(M)$. The class $[g]$ is called the conformal class of g.

$$
\text { conformal class } \Longleftrightarrow C O(n)=O(n) \times \mathbb{R}_{+} \text {-structure on } M
$$

Prop. The Weyl tensor is conformally invariant.
Proof. $g^{\prime} \sim g ; \omega^{\prime}, \omega$ corresponding LC connections, $\omega^{\prime}=\omega+\xi$. Recall: $0=T^{\prime}-T=\delta \xi$, where $\delta:\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{c o}(n) \rightarrow \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n}, \mathfrak{c o}(n)=\mathfrak{s o}(n) \oplus \mathbb{R}$. Since $\delta:\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{s o}(n) \rightarrow \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n}$ is an isomorphism, we have $\xi \in \operatorname{Ker} \delta \cong\left(\mathbb{R}^{n}\right)^{*}$. Then

$$
\begin{aligned}
\tilde{F}^{\prime}-\tilde{F} & =d \omega^{\prime}-d \omega+\frac{1}{2}\left[\omega^{\prime} \wedge \omega^{\prime}\right]-\frac{1}{2}[\omega \wedge \omega] \\
& =d \xi+[\omega \wedge \xi]+\frac{1}{2}[\xi \wedge \xi] \\
& =\nabla \xi+\frac{1}{2}[\xi \wedge \xi] .
\end{aligned}
$$

Hence, $R^{\prime}-R$ takes values in $\left(\mathbb{R}^{n}\right)^{*} \otimes\left(\mathbb{R}^{n}\right)^{*}$ and thus belongs to $\mathbb{R} \oplus S_{0}^{2}\left(\mathbb{R}^{n}\right)$ 。

Def. A curve $\gamma: \mathbb{R} \rightarrow M$ is called geodesic if $\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)=0$ for all t, i.e. if the vector field $\dot{\gamma}$ is parallel along γ.

Choose local coordinates $\left(x_{1}, \cdots, x_{n}\right)$ and write $\gamma: x_{i}=x_{i}(t)$.

$$
\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)=0 \quad \Longleftrightarrow \quad \frac{d^{2} x_{i}}{d t^{2}}+\sum_{j, k} \Gamma_{j k}^{i} \dot{x}_{i} \dot{x}_{j}=0, \quad i=1, \ldots, n .
$$

Cor. For any $m \in M$ and any $\mathrm{v} \in T_{m} M$ there exists a unique geodesic γ such that $\gamma(0)=m$ and $\dot{\gamma}(0)=\mathrm{v}$.

Rem. γ is not necessarily defined on the whole real line.
Def. (M, g) is called complete, if each geodesic is defined on the whole \mathbb{R}.

Def (Exponential map). For $m \in M$ we define

$$
\exp : T_{m} M \rightarrow M \quad \exp (t \mathrm{v})=\gamma_{\mathrm{v}}(t)
$$

Rem. In general, \exp is defined on $B_{\varepsilon}(0)$ only.
Since $\exp _{*}=$ id at m, exp is a diffeomorphism between some neighbourhoods of $0 \in T_{m} M$ and $m \in M$.

Def (Normal coordinates). The map

$$
M \xrightarrow{\exp ^{-1}} T_{m} M \xrightarrow{p} \mathbb{R}^{n}, \quad p \text { is an isometry },
$$

defined in a neighbourhood of m is called normal coordinate system.

Theorem (Gauss Lemma)

$$
g_{\exp _{m}(\mathrm{v})}\left(\left(\exp _{m}\right)_{*} \mathrm{v},\left(\exp _{m}\right)_{*} \mathrm{v}\right)=g_{m}(\mathrm{v}, \mathrm{v}), \quad \text { for all } \mathrm{v} \in T_{m} M
$$

Recall: A solution to the equation

$$
\ddot{J}+R\left(J, \dot{\gamma}_{\mathrm{v}}\right) \dot{\gamma}_{\mathrm{v}}=0, \quad J \in \Gamma\left(\gamma_{\mathrm{v}}^{*} T M\right)
$$

is called a Jacobi vector field along γ. If J_{v} is the unique Jacobi vector field satisfying $J_{\mathrm{v}}(0)=m, \dot{J}_{\mathrm{v}}(0)=\mathrm{v}$, then

$$
\left(\exp _{m}\right)_{*} \mathrm{v}=J_{\mathrm{v}}(1)
$$

Def. $\operatorname{Hol}_{p}^{0}=\left\{g \mid \Pi_{\gamma}(p)=p g, \gamma\right.$ is contractible $\} \subset \operatorname{Hol}_{p}$ is called the restricted holonomy group at $p \in P$.
$\operatorname{Hol}_{p}^{0}$ is the identity component of Hol_{p}.
Consider \mathbb{R}^{n} as an $H=\operatorname{Hol}_{p}$-representation and write

$$
\begin{equation*}
\mathbb{R}^{n}=V_{0} \oplus V_{1} \oplus \cdots \oplus V_{k} \tag{3}
\end{equation*}
$$

Here V_{0} is a trivial representation (may be 0), all $V_{i}, i \geq 1$, are irreducible. All V_{i} are pairwise orthogonal.

Prop. Under (3), $H^{0}=\operatorname{Hol}_{p}^{0}$ is isomorphic to a product

$$
\{e\} \times H_{1} \times \cdots \times H_{k}
$$

Prop. Under (3), $H^{0}=\operatorname{Hol}_{p}^{0}$ is isomorphic to a product

$$
\{e\} \times H_{1} \times \cdots \times H_{k}
$$

Proof. Let P be the holonomy bundle through $p \in \operatorname{Fr}(M)$. Then, $\forall q \in P$ and $\forall x, y \in \mathbb{R}^{n}$ we have $R_{q}(x, y) \in \mathfrak{h}$. Hence

$$
R_{q}(x, y)\left(V_{i}\right) \subset V_{i} .
$$

Write $x=\sum x_{i}, y=\sum y_{i}$ with $x_{i}, y_{i} \in V_{i}$. Then

$$
\begin{aligned}
\langle R(x, y) u, v\rangle=\langle R(u, v) x, y\rangle & =\sum_{i}\left\langle R(u, v) x_{i}, y_{i}\right\rangle \\
& =\sum_{i}\left\langle R\left(x_{i}, y_{i}\right) u, v\right\rangle
\end{aligned}
$$

i.e. $R(x, y)=\sum_{i} R\left(x_{i}, y_{i}\right)$. By the Ambrose-Singer thm,

$$
\mathfrak{h}=0 \oplus \mathfrak{h}_{1} \oplus \cdots \oplus \mathfrak{h}_{k}, \quad \text { with } \mathfrak{h}_{i} \subset \text { End } V_{i} .
$$

This implies the statement of the Proposition.

Prop. Under (3), M is locally isomorphic to a Riemannian product

$$
M_{0} \times M_{1} \times \cdots \times M_{k}, \quad \text { where } M_{0} \text { is flat. }
$$

Proof. Denote $E_{i}:=P \times_{H} V_{i}$, where P is the holonomy bundle. Then $T M=\bigoplus_{i} E_{i}$. Each distribution E_{i} is integrable:

$$
v, w \in \Gamma\left(E_{i}\right) \Rightarrow \nabla_{v} w \in \Gamma\left(E_{i}\right) \Rightarrow[v, w]=\nabla_{v} w-\nabla_{w} v-0 \in \Gamma\left(E_{i}\right)
$$

From the Frobenius thm, in a neigbhd of m we may choose coordinates

$$
x_{1}^{1}, \ldots x_{1}^{r_{1}} ; \ldots ; x_{k}^{1}, \ldots x_{k}^{r_{k}}
$$

s.t. $\frac{\partial}{\partial x_{i}^{j}}$ is belongs to E_{i}. If $v=\frac{\partial}{\partial x_{i}^{j}}, w=\frac{\partial}{\partial x_{s}^{t}}, i \neq s$, then $\nabla_{v} w=\nabla_{w} v$ belongs to $E_{s} \cap E_{i}=0$. Hence,

$$
\frac{\partial}{\partial x_{s}^{\tau}} g\left(\frac{\partial}{\partial x_{i}^{j_{i}}}, \frac{\partial}{\partial x_{i}^{j_{2}}}\right)=g\left(\nabla_{w} v_{i}^{j_{1}}, v_{i}^{j_{2}}\right)+g\left(v_{i}^{j_{1}}, \nabla_{w} v_{i}^{j_{2}}\right)=0
$$

provided $s \neq i$. Hence, the restriction of g to E_{i} depends on x_{i}^{j} only.

Def. Under the circumstances of the previous Proposition, M is called locally reducible. M is called locally irreducible if the holonomy representation is irreducible.

Cor. M is locally irreducible iff M is locally a Riemannian product.

Theorem (de Rham decomposition theorem)

Let M be connected, simply connected, and complete. If the holonomy representation is reducible, then M is isometric to a Riemannian product.

Proof. [KN, Thm. IV.6.1]

Symmetric spaces

Def. (M, g) is called symmetric if $\forall m \in M \exists$ an isometry $s=s_{m}$ with the following properties:

$$
s(m)=m, \quad\left(s_{*}\right)_{m}=-\mathrm{id} \quad \text { on } T_{m} M .
$$

Prop. Let M be symmetric. Then
(i) s_{m} is a local geodesic symmetry, i.e.
$s_{m}\left(\exp _{m}(\mathrm{v})\right)=\exp _{m}(-\mathrm{v})$ whenever $\exp _{m}$ is defined on $\pm \mathrm{v}$;
(ii) (M, g) is complete;
(iii) $s_{m}^{2}=\mathrm{id}_{M}$.

Proof. (i): s_{m} is isometry \Rightarrow
$s_{m}\left(\exp _{m}(\mathrm{v})\right)=\exp _{m}\left(s_{*} \mathrm{v}\right)=\exp _{m}(-\mathrm{v})$. (ii): If $\gamma:(-\varepsilon, \varepsilon) \rightarrow M, \gamma(0)=m$ is a geodesic, then $s_{m}(\gamma(t))=\gamma(-t)$ $\Rightarrow s_{\gamma(\tau / 2)}(\gamma(t))=\gamma(\tau-t) \Rightarrow s_{\gamma(\tau / 2)} \circ s_{m}(\gamma(t))=\gamma(\tau+t)$ whenever $\tau / 2, t, \tau+t \in(-\varepsilon, \varepsilon)$. Since $s_{\gamma(\tau / 2)} \circ s_{m}$ is globally defined, γ extends to $(0,+\infty)$.

Prop. A Riemannian symmetric space M is homogeneous, i.e. the group of isometries acts transitively on M.

Proof. If γ is a geodesic, then $\gamma\left(t_{1}\right)$ is mapped to $\gamma\left(t_{2}\right)$ by s_{m} with $m=\gamma\left(\frac{t_{1}+t_{2}}{2}\right)$.
For any $(p, q) \in M \times M$ there exists a sequence of geodesic segments put end to end which joins p and q (in fact, there is a single geodesic). Then the composition of reflections in the corresponding middle points maps p to q.

Rem. In fact, we have shown, that the identity component G of the isometry group acts transitively.

Pick $m \in M$ and denote $K=\operatorname{Stab}_{m} \subset G$. Then $M \cong G / K$. Observe, that G is endowed with the involution

$$
\sigma: G \rightarrow G, \quad f \mapsto s_{m} \circ f \circ s_{m}
$$

Theorem ([Helgason. Diff geom and symm spaces, IV.4])

(i) Let G be a connected Lie group with an involution σ and a left invariant metric which is also right-invariant under $\hat{K}=\{\sigma(g)=g\}$. Let K be a closed subgroup of G s.t. $\hat{K}^{0} \subset K \subset \hat{K}$. Then $M=G / K$ is a symmetric space with its induced metric.
(ii) Every symmetric space arises as in (i).
(iii) We have the Cartan decomposition: $\mathfrak{g}=\mathfrak{k}+\mathfrak{m}$ with

$$
[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k}, \quad[\mathfrak{k}, \mathfrak{m}] \subset \mathfrak{m}, \quad[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{k} .
$$

Moreover, $T_{m} M \cong \mathfrak{m}$.
(iv) $\mathrm{Hol}_{m} \subset K$.

Rem. Holonomy groups of Riemannian symmetric spaces were classified by Cartan (see [Besse. Einstein mflds, 7.H, 10.K])

Theorem

For a Riemannian mfld M the following conditions are equivalent:
(i) $\nabla R=0$;
(ii) the local geodesic symmetry s_{m} is an isometry for any $m \in M$.

Def. (M, g) is called locally symmetric, if (i) \Leftrightarrow (ii) holds.
Proof. (ii) \Rightarrow (i):
s_{m} isometry $\Rightarrow s_{m}$ preserves ∇R. On the other hand, since ∇R is of order 5 , we must have $s_{m}^{*}(\nabla R)_{m}=-(\nabla R)_{m}$. Hence, $(\nabla R)_{m}=0 \forall m$.
$\nabla R=0 \Rightarrow s_{m}$ is isometry:
$\gamma=\gamma_{\mathrm{w}}$ geodesic through $m,\left(e_{1}, \ldots, e_{n}\right)$ orthonormal frame of
$T_{m} M$. Define $E_{i} \in \Gamma\left(\gamma^{*} T M\right): \nabla_{\dot{\gamma}} E_{i}=0, E_{i}(0)=e_{i}$.
$\nabla R=0 \Rightarrow R\left(E_{i}, \dot{\gamma}\right) \dot{\gamma}$ is parallel along $\gamma \Rightarrow$ $R\left(E_{i}, \dot{\gamma}\right) \dot{\gamma}=\sum_{j} r_{i j} E_{j}$ with $r_{i j}=\left\langle R\left(E_{i}, \dot{\gamma}\right) \dot{\gamma}, E_{j}\right\rangle$, which is constant in t.
Write $J_{\mathrm{v}}(t)=\sum a_{\mathrm{v}}^{i}(t) E_{i}(t)$. Then a_{v} satisfies ODE with constant coefficients $\ddot{a}_{\mathrm{v}}+r a_{\mathrm{v}}=0$.
Similarly, for $\bar{\gamma}=\gamma_{- \text {w. }}$ put $\bar{E}_{i}: \nabla_{\dot{\bar{\gamma}}} \bar{E}_{i}=0, \bar{E}_{i}(0)=-e_{i}$; $\bar{J}_{\mathrm{v}}=\sum \bar{a}_{\mathrm{v}}^{i} \bar{E}_{i}$. Then $\ddot{\bar{a}}_{\mathrm{v}}+r \bar{a}_{\mathrm{v}}=0$ (with the same matrix $r!$). Moreover, $\bar{a}_{\mathrm{v}}(0)=0=a_{\mathrm{v}}(0)$ and $\dot{\bar{a}}_{\mathrm{v}}(0)=\dot{a}_{\mathrm{v}}(0)$. Hence $\bar{J}_{\mathrm{v}}(1)=J_{\mathrm{v}}(1)$. Then

$$
\begin{aligned}
\left\langle J_{\mathrm{v}}(1), J_{\mathrm{v}}(1)\right\rangle=\langle\mathrm{v}, \mathrm{v}\rangle & =\left\langle\bar{J}_{\mathrm{v}}(1), \bar{J}_{\mathrm{v}}(1)\right\rangle \\
& =\left\langle\left(s_{m}\right)_{*} J_{\mathrm{v}}(1),\left(s_{m}\right)_{*} J_{\mathrm{v}}(1)\right\rangle .
\end{aligned}
$$

Berger theorem revisited

Theorem (Berger thm)

Assume M is a simply-connected irreducible not locally symmetric Riemannian mfld of dimension n. Then Hol is one of the following: Holonomy Geometry Extra structure

- $S O(n)$
- $U(n / 2)$
- $\quad S U(n / 2)$
- $\quad S p(n / 4)$
- $\quad S p(1) S p(n / 4)$
- $G_{2}(n=7)$
- $\operatorname{Spin}(7)(n=8)$
exceptional
Kähler
Calabi-Yau
hyperKähler
quaternionic Kähler
exceptional
complex
complex + hol. vol.
quaternionic
"twisted" quaternionic "octonionic" "octonionic"

Comments to the Berger theorem

- The assumption $\pi_{1}(M)=0$ could be dropped by restricting attention to Hol^{0}.
- M is locally symmetric $\Rightarrow M$ is locally isometric to a symmetric space. Holonomies of simply connected symmetric spaces are known.
- Irreducibility could be dropped by taking all possible products of the entries of the Berger list.
- In the theorem, Hol is not just an abstract group, but rather a subgroup of $S O(n)$, or, equivalently, comes together with an irreducible n-dimensional representation.
Ex. For instance,

$$
S O(m)=\left\{\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & A
\end{array}\right)\right\} \subset S O(2 m)
$$

is never a holonomy representation of an irreducible manifold (in fact, this is never a holonomy representation of any Riemannian manifold).

Holonomy groups
 in Riemannian geometry

Lecture 4

November 17, 2011

SUBMANIFOLDS

Equivalent formulation of the Berger theorem

By inspection, each group in Berger's list acts transitively on the unit sphere. On the other hand, all groups acting transitively on spheres were classified by Montgomery and Samelson in 1943. The list consists of

$$
U(1) \cdot S p(m), \quad \operatorname{Spin}(9)
$$

and the groups from Berger's list. The first group never occurs as a holonomy group (follows from the Bianchi identity). Alekseevsky proved in 1968 that $\operatorname{Spin}(9)$ can occur as holonomy group of a symmetric space only. Hence, the following theorem is equivalent to Berger's classification theorem.

Theorem (Berger)

Assume that the holonomy group of an irreducible Riemannian manifold does not act transitively on spheres. Then M is locally symmetric.

Second fundamental form

Let \bar{M} be a Riemannian mfld, $M \subset \bar{M}$.
Write $T \bar{M}=T M \oplus \nu M$ along M.
$\bar{\nabla}_{v} w=\left(\bar{\nabla}_{v} w\right)^{T}+\left(\bar{\nabla}_{v} w\right)^{\perp}=\nabla_{v} w+\alpha(v, w), \quad$ where $v, w \in \mathfrak{X}(M)$.

Prop.

- ∇ is the Levi-Civita connection on M wrt the induced metric; - $\alpha \in \Gamma\left(S^{2}(T M) \otimes \nu M\right)$.
α is called the second fundamental form of M.
M is called totally geodesic, if geodesic in $M \Rightarrow$ geodesic in \bar{M}.
Let γ be a geodesic in M. Then $\bar{\nabla}_{\dot{\gamma}} \dot{\gamma}=0+\alpha(\dot{\gamma}, \dot{\gamma})$. Hence,

$$
M \text { is totally geodesic } \Longleftrightarrow \alpha=0 .
$$

Shape operator

Similarly, if $v \in \mathfrak{X}(M), \xi \in \Gamma(\nu M)$, then

$$
\bar{\nabla}_{v} \xi=\left(\bar{\nabla}_{v} \xi\right)^{T}+\left(\bar{\nabla}_{v} \xi\right)^{\perp}=-A_{\xi} v+\nabla_{v}^{\perp} \xi
$$

A_{ξ} is called the shape operator.
Let $w \in \mathfrak{X}(M)$. Then, differentiating equality $\bar{g}(w, \xi)=0$ in the direction of v, we obtain

$$
\bar{g}(\alpha(v, w), \xi)=\bar{g}\left(A_{\xi} v, w\right)
$$

$M \subset \bar{M}, \bar{\Pi}_{\gamma}$ parallel transport of \bar{M}.
Prop. M is totally geodesic if and only if $\forall \gamma:[0,1] \rightarrow M$ and $\forall v \in T_{\gamma(0)} M \quad \bar{\Pi}_{\gamma} v \in T_{\gamma(1)} M$.

Proof. (\Leftarrow) Let $\gamma=\gamma_{v}$ be a geodesic in M through m. Denote by $\bar{\Pi}_{\gamma}^{t}$ the parallel transport in \bar{M} along $\gamma(\tau), \tau \in[0, t]$. Then

$$
\bar{\Pi}_{\gamma}^{t} v=\operatorname{proj}_{T M} \bar{\Pi}_{\gamma}^{t} v=\Pi_{\gamma}^{t} v=\dot{\gamma}(t)
$$

i.e. γ is a geodesic in \bar{M}.
$(\Rightarrow)[\mathrm{KN}, \mathrm{Thm}$ VII.8.4]

Let M be a smooth G-mfld, where G is a Lie gp acting properly. $G_{m}:=\{g \mid g m=m\}$ isotropy subgroup.

Theorem

Let G be cmpt. For $m \in M$ and $H=G_{m}$ there exist a unique H representation V and a G-equivariant diffeomorphism $\varphi: G \times{ }_{H} V \rightarrow$ M onto an open neighbourhood of $G m$ s.t. $\varphi([g, 0])=g m$.
V is called the slice representation of M at m.
Observe: $G \rightarrow G / H$ is a principal H-bundle. Moreover, $G / H=G / G_{m} \cong G m$. Since the zero-section of $G \times_{H} V \rightarrow G / H$ is identified with the orbit $G m$, we obtain $\nu(G m) \cong G \times_{H} V$. In particular, $\nu_{m}(G m) \cong V$.

On the other hand, H preserves $G m$. The induced representation of H on $T_{m}(G m)$ is called the isotropy representation.

For subgroups $H, K \subset G$ we write $H \sim K$ if H is conjugate to K.
(H) conjugacy class of H.
$(H) \leq(K)$ if H is conjugate to a subgroup of K.
$M_{(H)}=\left\{m \mid G_{m} \sim H\right\}$.

Theorem

Let G be a compact group. Assume M / G is connected. Then there exists a unique isotropy type (H) of M such that $M_{(H)}$ is open and dense in M. Each other isotropy type (K) satisfies $(H) \leq(K)$.

Proof. [tom Dieck. Transformation groups. Thm. 5.14]

Strategy of the proof of the Berger thm

Step 1. $H=\mathrm{Hol}_{m}$ is not transitive on the sphere \Rightarrow for any principal v there exists a family \mathcal{F}_{v} of normal subspaces to non-trivial orbits of H, which generates $T_{m} M$.

Step 2. For any $v \in T_{m} M, v \neq 0$, the submfld $N^{v}=\exp _{m}\left(\nu_{v}(H v)\right)$ is totally geodesic.

Step 3. The normal holonomy group H^{\perp} of $H v \subset T_{m} M$ acts by isometries on N^{v}. Moreover, $H^{\perp} \supset \operatorname{Hol}\left(N^{v}\right)$.

Step 4. $\operatorname{Hol}\left(N^{v}\right)$ acts by isometries on $N^{v} \Rightarrow N^{v}$ is locally symmetric.

Step 5. Almost all geodesics through m are contained in a family of loc. symmetric and totally geodesic submflds $\Rightarrow M$ is locally symmetric at m.

Strategy of the proof of the Berger thm

Step 1. $H=\mathrm{Hol}_{m}$ is not transitive on the sphere \Rightarrow for any principal v there exists a family \mathcal{F}_{v} of normal subspaces to non-trivial orbits of H, which generates $T_{m} M$.

Step 2. For any $v \in T_{m} M, v \neq 0$, the submfld $N^{v}=\exp _{m}\left(\nu_{v}(H v)\right)$ is totally geodesic.

Step 3. The normal holonomy group H^{\perp} of $H v \subset T_{m} M$ acts by isometries on N^{v}. Moreover, $H^{\perp} \supset \operatorname{Hol}\left(N^{v}\right)$.

Step 4. $\operatorname{Hol}\left(N^{v}\right)$ acts by isometries on $N^{v} \Rightarrow N^{v}$ is locally symmetric.

Step 5. Almost all geodesics through m are contained in a family of loc. symmetric and totally geodesic submflds $\Rightarrow M$ is locally symmetric at m.

Let M be a Riemannian mfld, $m \in M, \rho$ injectivity radius at m.

Gluing Lemma

$\forall v \in T_{m} M$ let \mathcal{F}_{v} be a family of subspaces of $T_{m} M$ s.t.
(i) $v \in W$ for any $W \in \mathcal{F}_{v}$;
(ii) $\exp _{m}\left(W_{\rho}\right)$ is a totally geodesic and (intrinsically) loc. symm. Assume that for any v in some dense $\Omega \subset B_{\rho}(0)$ the family \mathcal{F}_{v} spans $T_{m} M$, where $B_{\rho}(0) \subset T_{m} M$ is the ball of radius ρ. Then the local geodesic symmetry s_{m} is an isometry.

Proof. Let $v \in \Omega, \gamma=\gamma_{v}$ is the geodesic through m. Choose a frame $\left(e_{1}, \ldots, e_{n}\right)$ of $T_{m} M$ s.t. e_{i} belongs to some $W_{i} \in \mathcal{F}_{v}$. Let $\left(E_{1}, \ldots, E_{n}\right)$ be parallel vector fields along γ with $E_{i}(0)=e_{i}$.
Then $r_{i j}=\left\langle R\left(E_{i}, \dot{\gamma}\right) \dot{\gamma}, E_{j}\right\rangle$ is constant in t. Indeed, $\exists W \in \mathcal{F}_{v}$ s.t. $e_{i} \in W$. Hence, E_{i} is tangent to $\exp _{m}(W)$ and $\gamma(t) \in \exp _{m}(W)$. $\exp _{m}(W)$ is loc. symmetric $\Rightarrow\left(\nabla_{\dot{\gamma}} R\right)\left(E_{i}, \dot{\gamma}\right)=0 \Rightarrow \dot{r}_{i j}=0$.
Thus, in the frame E_{i}, Jacobi fields correspond to solutions of $\ddot{a}+r a=0$, where $r=$ const. Hence the statement.

Strategy of the proof of the Berger thm
Step 1. $H=\mathrm{Hol}_{m}$ is not transitive on the sphere \Rightarrow for any principal v there exists a family \mathcal{F}_{v} of normal subspaces to non-trivial orbits of H, which generates $T_{m} M$.

Step 2. For any $v \in T_{m} M, v \neq 0$, the submfld $N^{v}=\exp _{m}\left(\nu_{v}(H v)\right)$ is totally geodesic.

Step 3. The normal holonomy group H^{\perp} of $H v \subset T_{m} M$ acts by isometries on N^{v}. Moreover, $H^{\perp} \supset \operatorname{Hol}\left(N^{v}\right)$.

Step 4. $\operatorname{Hol}\left(N^{v}\right)$ acts by isometries on $N^{v} \Rightarrow N^{v}$ is locally symmetric.

Step 5. Almost all geodesics through m are contained in a family of loc. symmetric and totally geodesic submflds $\Rightarrow M$ is locally symmetric at m.

Lemma A

Assume a compact subgroup $G \subset S O(n)$ does not act transitively on S^{n-1}. Let v be a principal vector of G. Then there exists $\xi \in \nu_{v}(G v), \quad \xi \neq \lambda v$, s.t. the family of normal spaces $\nu_{\gamma(t)}(G \gamma(t))$ spans \mathbb{R}^{n}, where $\gamma(t)=v+t \xi, t \in \mathbb{R}$.

Proof. [Olmos, A geometric proof..., Lemma 2.2]

Lemma B

(i) N^{v} is a totally geodesic submanifold of M;
(ii) N^{v} is (intrinsically) locally symmetric.

Proof. Will be sketched below.

Theorem (Berger)

Assume that the holonomy group of an irreducible Riemannian manifold does not act transitively on spheres. Then M is locally symmetric.

Proof. Pick $m \in M$. Let $\mathcal{O} \subset T_{m} M$ be subset of principal vectors. Then \mathcal{O} is open and dense. Pick $v \in \mathcal{O}$.

Lemma $\mathrm{A} \Rightarrow \exists \gamma(t)=v+t \xi$ s.t. the family
$\mathcal{F}_{v}=\left\{\nu_{\gamma(t)}(G \gamma(t)) \mid t \in \mathbb{R}\right\}$ spans $T_{m} M$.
Observe: $\xi \in \nu_{v}(G v) \Rightarrow v \in \nu_{v+\xi}(G(v+\xi))$. Indeed, $G \subset S O\left(T_{m} M\right) \Rightarrow \mathfrak{g} \subset \mathfrak{s o}\left(T_{m} M\right)$. Hence, for any $A \in \mathfrak{g}$ we have

$$
0=\langle A v, v+\xi\rangle=-\langle v, A(v+\xi)\rangle .
$$

The first equality follows from $T_{v}(G v)=\{A v \mid A \in \mathfrak{g}\}$.
Therefore, $v \in \nu_{\gamma(t)}(G \gamma(t))$ for any t. Lemma $\mathrm{B} \Rightarrow$ assumptions of the Gluing Lemma are satisfied. Then Gluing Lemma implies that M is locally symmetric.

Strategy of the proof of the Berger thm

Step 1. $H=\mathrm{Hol}_{m}$ is not transitive on the sphere \Rightarrow for any principal v there exists a family \mathcal{F}_{v} of normal subspaces to non-trivial orbits of H, which generates $T_{m} M$.

Step 2. For any $v \in T_{m} M, v \neq 0$, the submfld $N^{v}=\exp _{m}\left(\nu_{v}(H v)\right)$ is totally geodesic.
Step 3. The normal holonomy group H^{\perp} of $H v \subset T_{m} M$ acts by isometries on N^{v}. Moreover, $H^{\perp} \supset \operatorname{Hol}\left(N^{v}\right)$.

Step 4. $\operatorname{Hol}\left(N^{v}\right)$ acts by isometries on $N^{v} \Rightarrow N^{v}$ is locally symmetric.

Step 5. Almost all geodesics through m are contained in a family of loc. symmetric and totally geodesic submflds $\Rightarrow M$ is locally symmetric at m.

Theorem (Cartan)

Let $V \subset T_{m} M$. Then $\exp _{m}\left(V_{\rho}\right)$ is totally geodesic submanifold if and only if the curvature tensor of M preserves the parallel transport of V along geodesics γ_{v} with $\gamma_{v}(0)=m, v \in V$.
$U:=\Pi_{\gamma} V$. Then " R preserves U " means: $R_{\gamma(1)}(U, U) U \subset U$.
Proof. [Berndt-Olmos-Console, Submflds and hol., Thm 8.3.1]
$N^{v}:=\exp _{m}\left(\nu_{v}(H v) \cap B_{\rho}(0)\right)$, where $v \in T_{m} M \backslash\{0\}$.

Lemma B

(i) N^{v} is a totally geodesic submanifold of M.

Proof. Denote

$$
\mathcal{R}=\operatorname{span}\left\{\bar{R}(x, y)=\Pi_{\gamma}^{-1} R\left(\Pi_{\gamma} x, \Pi_{\gamma} y\right) \Pi_{\gamma}\right\} .
$$

Then the Ambrose-Singer thm states that $\mathcal{R}=\mathfrak{h} \subset \mathfrak{s o}\left(T_{m} M\right)$.

$$
\xi \in \nu_{v}(H v) \quad \Longleftrightarrow \quad 0=\langle\bar{R}(x, y) v, \xi\rangle=\langle\bar{R}(v, \xi) x, y\rangle
$$

where $x, y \in T_{m} M$, and $\bar{R} \in \mathcal{R}$ are arbitrary. Hence, $\bar{R}(v, \xi)=0$. Then, for any $\eta \in \nu_{v}(H v)$, the Bianchi identity yields:
$\bar{R}(\xi, \eta) v=-\bar{R}(\eta, v) \xi-\bar{R}(v, \xi) \eta=0$. Thus $\bar{R}(\xi, \eta)$ belongs to the isotropy subalgebra and $\bar{R}(\xi, \eta) \nu_{v}(H v) \subset \nu_{v}(H v) \Rightarrow$

$$
\begin{equation*}
\bar{R}\left(\nu_{v}(H v), \nu_{v}(H v)\right) \nu_{v}(H v) \subset \nu_{v}(H v) . \tag{1}
\end{equation*}
$$

Since (1) holds at any pt (after parallel transport), the hypotheses of the Cartan Thm are satisfied. Hence the statement.

Strategy of the proof of the Berger thm
Step 1. $H=\mathrm{Hol}_{m}$ is not transitive on the sphere \Rightarrow for any principal v there exists a family \mathcal{F}_{v} of normal subspaces to non-trivial orbits of H, which generates $T_{m} M$.

Step 2. For any $v \in T_{m} M, v \neq 0$, the submfld $N^{v}=\exp _{m}\left(\nu_{v}(H v)\right)$ is totally geodesic.

Step 3. The normal holonomy group H^{\perp} of $H v \subset T_{m} M$ acts by isometries on N^{v}. Moreover, $H^{\perp} \supset \operatorname{Hol}\left(N^{v}\right)$.

Step 4. $\operatorname{Hol}\left(N^{v}\right)$ acts by isometries on $N^{v} \Rightarrow N^{v}$ is locally symmetric.

Step 5. Almost all geodesics through m are contained in a family of loc. symmetric and totally geodesic submflds $\Rightarrow M$ is locally symmetric at m.

Lem. Let $\varphi_{t}: S \rightarrow M$ be a smooth family of totally geodesic submanifolds of M. If $\xi_{t}=\partial_{t} \varphi_{t} \perp \varphi_{t}(S)$, then $i d:\left(S, \varphi_{0}^{*} g\right) \rightarrow$ $\left(S, \varphi_{t}^{*} g\right)$ is an isometry.

Proof. Put $S_{t}=\varphi_{t}(S) \subset M$ with its induced metric. Let γ_{w} be a geodesic of S_{0} through $m, w \in T_{m} M$. Then

$$
\begin{aligned}
\frac{d}{d t} g\left(\left(\varphi_{t}\right)_{*} w,\left(\varphi_{t}\right)_{*} w\right) & =\frac{\partial}{\partial t} g\left(\left.\frac{\partial}{\partial s}\right|_{s=0} \varphi_{t}\left(\gamma_{w}(s)\right),\left.\frac{\partial}{\partial s}\right|_{s=0} \varphi_{t}\left(\gamma_{w}(s)\right)\right) \\
& =2 g\left(\left.\nabla_{t} \frac{\partial}{\partial s}\right|_{s=0} \varphi_{t}\left(\gamma_{w}(s)\right),\left.\frac{\partial}{\partial s}\right|_{s=0} \varphi_{t}\left(\gamma_{w}(s)\right)\right) \\
& =2 g\left(\left.\nabla_{s}\right|_{s=0} \frac{\partial}{\partial t} \varphi_{t}\left(\gamma_{w}(s)\right),\left(\varphi_{t}\right)_{*} w\right) \\
& =-2 g\left(A_{\xi_{t}}\left(\varphi_{t}\right)_{*} w,\left(\varphi_{t}\right)_{*} w\right) \\
& =0 .
\end{aligned}
$$

Therefore, $g\left(\left(\varphi_{t}\right)_{*} w,\left(\varphi_{t}\right)_{*} w\right)$ does not depend on t.

Lem. The normal holonomy group H^{\perp} of $H v \subset T_{m} M$ acts by isometries on N^{v}.

Proof. Let $c:[0,1] \rightarrow H v, c(0)=v$. Denote by Π_{t}^{\perp} the normal parallel transport along $\left.c\right|_{[0, t]}$. By Lemma B, (i)

$$
\varphi_{t}: \nu_{v}(H v) \rightarrow M, \quad \varphi_{t}=\exp _{m} \circ \Pi_{t}^{\perp}
$$

is a one-parameter family of totally geodesic submanifolds.
Put $\xi_{t}=\partial_{t} \varphi_{t}$. Want to show $\xi_{t} \perp \operatorname{Im} \varphi_{t}=\exp _{m}\left(\Pi_{t}^{\perp}\left(\nu_{v}(H v)\right)\right)$. It suffices to show that $\xi_{0} \perp \exp _{m}\left(\nu_{v}(H v)\right)=N^{v}$, since for $t>0$ the proof is obtained by replacing v by $c(t)$.
For an arbitrary $\eta \in \nu_{v}(H v), J(s)=\xi_{0}(s \eta)=\left.\frac{\partial}{\partial t}\right|_{t=0} \exp _{m}\left(s \Pi_{t}^{\perp} \eta\right)$ is the Jacobi v.f. along $\gamma_{\eta}(s)$. Initial conditions: 0 and $\left.\frac{d}{d t}\right|_{t=0} \Pi_{t}^{\perp} \eta=-A_{\eta} \dot{c}(0)+\nabla^{\perp} \Pi_{t}^{\perp} \eta=-A_{\eta} \dot{c}(0) \perp T_{m} N^{v}=\nu_{v}(H v)$. Hence, $\xi_{0}(s \eta) \perp N^{v}$ for all s. Hence, $\xi_{0} \perp N^{v}$.
Therefore, φ_{t} induces an isometry $N^{v} \rightarrow N^{c(t)}$. If c is a loop, we obtain an isometry $N^{v} \rightarrow N^{v}$.

Theorem

Assume a connected Lie gp $H \subset S O(n)$ acts irreducibly on \mathbb{R}^{n}. Then the image of the connected component of the isotropy gp $\left(H_{v}\right)_{0}$ is contained in H^{\perp}.

Proof. [Berndt-Console-Olmos, Cor. 6.2.6]

Prop. The holonomy gp H^{v} of N^{v} is contained in the image of $\left(H_{v}\right)_{0}$ under the slice representation.

Proof. The proof is similar to the proof of the fact that N^{v} is totally geodesic. For details see [Olmos, p.586]

Cor. $H^{v} \subset H^{\perp}$.

Strategy of the proof of the Berger thm

Step 1. $H=\mathrm{Hol}_{m}$ is not transitive on the sphere \Rightarrow for any principal v there exists a family \mathcal{F}_{v} of normal subspaces to non-trivial orbits of H, which generates $T_{m} M$.

Step 2. For any $v \in T_{m} M, v \neq 0$, the submfld $N^{v}=\exp _{m}\left(\nu_{v}(H v)\right)$ is totally geodesic.

Step 3. The normal holonomy group H^{\perp} of $H v \subset T_{m} M$ acts by isometries on N^{v}. Moreover, $H^{\perp} \supset \operatorname{Hol}\left(N^{v}\right)$.

Step 4. $\operatorname{Hol}\left(N^{v}\right)$ acts by isometries on $N^{v} \Rightarrow N^{v}$ is locally symmetric.

Step 5. Almost all geodesics through m are contained in a family of loc. symmetric and totally geodesic submflds $\Rightarrow M$ is locally symmetric at m.

Lem. Let M be a Riemannian mfld with the following property: for any $m \in M$ each restricted holonomy transformation of $T_{m} M$ extends via the exponential map to a local isometry. Then M is locally symmetric.

Sketch of the proof. Can assume that $H=\operatorname{Hol}(M)$ acts irreducibly. Denote $\mathcal{K}=\left\{K \mid \mathcal{L}_{K} g=0, K \in \mathfrak{X}\left(U_{m}\right)\right\}$. Then $\mathcal{K}_{m}=\{K(m) \mid K \in \mathcal{K}\}$ is a non-trivial H-invariant subspace of $T_{m} M$. Hence, $\mathcal{K}_{m}=T_{m} M$.
Then, for each $v \in T_{m} M$ there exists a unique $K \in \mathcal{K}$ s.t. $K(m)=v$ and $(\nabla K)_{m}=0$. For such K, the integral curve $t \mapsto \varphi_{t}^{K}(m)$ through m is a geodesic. Moreover, the parallel transport along this geodesic is given by $\left(\varphi_{t}^{K}\right)_{*}$. This implies the local symmetry.

Lemma B

(ii) N^{v} is (intrinsically) locally symmetric.

Hodge theory in a nutshell

Let V be an oriented Euclidean vector space, $\operatorname{dim} V=n$. Then the Hodge operator $*: \Lambda^{k} V^{*} \rightarrow \Lambda^{n-k} V^{*}$ is defined by the relation

$$
\alpha \wedge * \beta=\langle\alpha, \beta\rangle \text { vol }, \quad \text { for all } \alpha \in \Lambda^{k} V^{*} .
$$

* is an $S O(V)$-equivariant isomorphism, $*^{-1}=(-1)^{k(n-k)} *$. Hence, for any oriented Riemannian manifold (M, g) we have a well defined map $*: \Lambda^{k} T^{*} M \rightarrow \Lambda^{n-k} T^{*} M$.
Define $d^{*}: \Omega^{k}(M) \rightarrow \Omega^{k-1}(M)$ by $d^{*}=(-1)^{n(k+1)+1} * d *$. Then, if M is compact, Stokes' theorem implies that

$$
\langle d \alpha, \beta\rangle_{L_{2}}=\left\langle\alpha, d^{*} \beta\right\rangle_{L_{2}}, \quad \text { for any } \alpha \in \Omega^{k-1}, \beta \in \Omega^{k} .
$$

$\Delta=d d^{*}+d^{*} d: \Omega^{k} \rightarrow \Omega^{k}$ is called the Laplace operator. It is second order elliptic PDO. Denote $\mathscr{H}^{k}=\operatorname{Ker}\left(\Delta: \Omega^{k} \rightarrow \Omega^{k}\right)$.

Theorem (Hodge)

Every de Rham cohomology class contains a unique harmonic representative and $H_{d R}^{k} \cong \mathscr{H}^{k}$.

It is known, that all $\Lambda^{k}\left(\mathbb{R}^{n}\right)^{*}$ are irreducible as
$O(n)$-representations. However, if $G \subset O(n)$, then $\Lambda^{k}\left(\mathbb{R}^{n}\right)^{*}$ does not need to be irreducible as G-representation.

$$
\text { Model example: } \quad G=S O(4) \subset O(4)
$$

$*^{2}=i d$ on $\Lambda^{2}\left(\mathbb{R}^{4}\right)^{*} \Rightarrow \Lambda^{2}\left(\mathbb{R}^{4}\right)^{*} \cong \Lambda_{+}^{2} \oplus \Lambda_{-}^{2}$ as
$S O(4)$-representation. Hence, for any oriented Riemannian four-manifold we have $\Lambda^{n} T^{*} M \cong \Lambda_{+}^{n} T^{*} M \oplus \Lambda_{-}^{n} T^{*} M$. Since $\Delta *=* \Delta$, we have $\mathscr{H}^{2} \cong \mathscr{H}_{+}^{2} \oplus \mathscr{H}_{-}^{2}, b_{2}=b_{+}+b_{-}$.

Let $H=\mathrm{Hol}$ and P be the holonomy bundle. Consider $\Lambda^{k}\left(\mathbb{R}^{n}\right)^{*}$ as H-representation. Let

$$
\Lambda^{k}\left(\mathbb{R}^{n}\right)^{*} \cong \bigoplus_{i \in I_{k}} \Lambda_{i}^{k}\left(\mathbb{R}^{n}\right)^{*}
$$

be the decomposition into irreducible components. Then

$$
\Lambda^{k} T^{*} M \cong \bigoplus_{i} \Lambda_{i}^{k} T^{*} M, \quad \text { where } \Lambda_{i}^{k} T^{*} M=P \times_{H} \Lambda_{i}^{k}\left(\mathbb{R}^{n}\right)^{*}
$$

Lem. Denote $\Omega_{i}^{k}(M)=\Gamma\left(\Lambda_{i}^{k} T^{*} M\right)$. Then $\Delta\left(\Omega_{i}^{k}\right) \subset \Omega_{i}^{k}$. Hence,

$$
\mathscr{H}^{k} \cong \bigoplus \mathscr{H}_{i}^{k}, \quad b_{k}=\sum_{i \in I_{k}} b_{k}^{i}
$$

This statement follows from the Weitzenböck formula for the Laplacian [Besse. 1I, Lawson-Michelson. II.8]

The refined Betti numbers b_{k}^{i} carry both topological and geometrical information. They give obstructions to existence of metrics with non-generic holonomy.

Ex. If M admits a Kähler metric, then odd Betti numbers of M are even.

Another example of connection between holonomy groups and cohomology gives the following consideration. If for some i $\Lambda_{i}^{k}\left(\mathbb{R}^{n}\right)^{*}$ is a trivial H-representation, then $b_{i}^{k}=\operatorname{dim} \Lambda_{i}^{k}\left(\mathbb{R}^{n}\right)^{*}$. Indeed, each $\xi_{0} \in \Lambda_{i}^{k}\left(\mathbb{R}^{n}\right)^{*}$ corresponds to a parallel $\xi \in \Omega_{i}^{k}$. Then $\nabla \xi=0 \Rightarrow d \xi=0=d^{*} \xi$. Hence, $\Delta \xi=0$. On the other hand, from the Weitzenböck formula one obtains $\Delta \xi=0 \Rightarrow \nabla \xi=0$. Therefore,

$$
\mathscr{H}_{i}^{k} \cong\{\xi \mid \nabla \xi=0\}
$$

Holonomy groups
 in Riemannian geometry

Lecture 5

November 24, 2011

A complex structure on a real vector space V (necessarily of even dimension) is an endomorphism J s.t. $J^{2}=-1$. This establishes the correspondence
$\{$ real vector spaces equipped with $J\} \cong\{$ complex vector spaces $\}$ Notice: J^{*} is a complex structure on V^{*}.
Let V be a real vector space. Then $V_{\mathbb{C}}=V \otimes \mathbb{C}$ is a complex vector space endowed with an antilinear map ${ }^{-}: V_{\mathbb{C}} \rightarrow V_{\mathbb{C}}$, $v \otimes z \mapsto v \otimes \bar{z}$.

Prop. Let V be a real vector space equpped with a complex structure. Then

- $V_{\mathbb{C}}=V^{1,0} \oplus V^{0,1}$, where $V^{1,0}$ and $V^{0,1}$ are eigenspaces of J corresponding to eigenvalues $+i$ and $-i$ respectively;
- $V^{1,0}=\{v \otimes 1-J v \otimes i \mid v \in V\}, V^{0,1}=\{v \otimes 1+J v \otimes i\} ;$
- $-: V^{1,0} \rightarrow V^{0,1}$ is an (antilinear) isomorphism.
- $V^{1,0} \cong(V, J), V^{0,1} \cong(V,-J)$.

Similarly, $V_{\mathbb{C}}^{*} \cong\left(V^{*}\right)^{1,0} \oplus\left(V^{*}\right)^{0,1}$ and therefore
$\Lambda^{k} V_{\mathbb{C}}^{*} \cong \bigoplus_{p+q=k} \Lambda^{p, q} V^{*}, \quad$ where $\Lambda^{p, q} V^{*}=\Lambda^{p}\left(V^{*}\right)^{1,0} \otimes \Lambda^{q}\left(V^{*}\right)^{0,1}$.
A Hermitian scalar product on (V, J) is a scalar product h on V s.t. $h(J v, J w)=h(v, w)$. Then $\omega(v, w)=h(J v, w)$ is skew-symmetric. Since $\omega(J v, J w)=\omega(v, w)$ we obtain $\omega \in \Lambda^{1,1}$.
Consider the case $(V, J)=\left(\mathbb{R}^{2 m}, J_{0}\right)$, where

$$
J_{0}=\left(\begin{array}{c|c}
0 & -\mathbf{1}_{m} \\
\hline \mathbf{1}_{m} & 0
\end{array}\right)
$$

Thus, $\left(\mathbb{R}^{2 m}, J_{0}\right)$ can be identified with \mathbb{C}^{m}. Then the standard Euclidean scalar product is Hermitian and $\omega_{0}=2 \sum_{j=1}^{m} d x_{j} \wedge d y_{j}$.

Denote

$$
\begin{aligned}
S p(2 m ; \mathbb{R}) & =\left\{A \in G L_{2 m}(\mathbb{R}) \mid \omega_{0}(A \cdot, A \cdot)=\omega_{0}(\cdot, \cdot) \Leftrightarrow A J_{0} A^{T}=J_{0}\right\} \\
G L_{m}(\mathbb{C}) & =\left\{A \in G L_{2 m}(\mathbb{R}) \mid A \circ J_{0}=J_{0} \circ A\right\}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
U(m) & =S O(2 m) \cap S p(2 m ; \mathbb{R}) \\
& =S O(2 m) \cap G L_{m}(\mathbb{C}) \\
& =G L_{m}(\mathbb{C}) \cap S p(2 m ; \mathbb{R})
\end{aligned}
$$

Representations of $U(m)$

Observe that $\Lambda^{p, p}$ is invariant subspace wrt the conjugation.
Hence, $\Lambda^{p, p}$ is the complexification of some real vector space:

$$
\Lambda^{p, p} \cong\left[\Lambda^{p, p}\right]_{r} \otimes \mathbb{C}
$$

Namely, $\left[\Lambda^{p, p}\right]_{r}=\{\alpha \mid \bar{\alpha}=\alpha\}$. Similarly, if $p \neq q$

$$
\Lambda^{p, q} \oplus \Lambda^{q, p}=\left[\Lambda^{p, q}\right]_{r} \otimes \mathbb{C} .
$$

In particular, we have

$$
\left(\mathbb{R}^{2 m}\right)^{*} \cong\left[\Lambda^{1,0}\right]_{r}, \quad \Lambda^{2}\left(\mathbb{R}^{2 m}\right)^{*} \cong\left[\Lambda^{1,1}\right]_{r} \oplus\left[\Lambda^{2,0}\right]_{r}
$$

Since $U(m) \subset S O(2 m)$, we also have

$$
\Lambda^{2}\left(\mathbb{R}^{2 m}\right)^{*} \cong \mathfrak{s o}(2 m)=\mathfrak{u}(m) \oplus \mathfrak{u}(m)^{\perp}
$$

Prop. $\mathfrak{u}(m)=\left[\Lambda^{1,1}\right]_{r}, \quad \mathfrak{u}(m)^{\perp} \cong\left[\Lambda^{2,0}\right]_{r}$.

Proof. Exercise.

Let (V, J, h) be a Hermitian vector space, $\omega=h(J \cdot, \cdot)$. Consider the map $L: \Lambda V_{\mathbb{C}}^{*} \rightarrow \Lambda V_{\mathbb{C}}^{*}, L(\alpha)=\omega \wedge \alpha$, which is $U(V)$-equivariant. Denote $\Lambda=L^{*}, B=[\Lambda, L]$. Then

$$
[B, L]=-2 L \quad \text { and } \quad[B, \Lambda]=2 \Lambda,
$$

i.e. $\Lambda V_{\mathbb{C}}^{*}$ is an $\mathfrak{s l}_{2}(\mathbb{C})$-representation. This leads to the following decomposition of $\Lambda^{p, q}$ into irreducible components.
For $p+q \leq m$, denote $\Lambda_{0}^{p, q}=L\left(\Lambda^{p-1, q-1}\right)^{\perp}$. It is called the space of primitive (p, q)-forms.

Theorem (Lefschetz decomposition)

For $p \geq q$ and $p+q \leq m$ there is a $U(V)$-invariant decomposition

$$
\Lambda^{p, q} \cong \Lambda_{0}^{p, q} \oplus \Lambda_{0}^{p-1, q-1} \oplus \cdots \oplus \Lambda_{0}^{p-q+1,1} \oplus \Lambda^{p-q, 0}
$$

See [Wells. Differential analysis on cx mflds. 5.1] for details.

Complex manifolds

For a real mfld M, a section I of $\operatorname{End}(T M)$ s.t. $I^{2}=-i d$ is called an almost complex structure. If M admits an almost complex structure, then M is necessarily orientable mfld of even dimension. To each I, we associate the Nijenhuis tensor.

$$
N_{I}(v, w)=[I v, I w]-I[I v, w]-I[v, I w]-[v, w], \quad v, w \in(M)
$$

Denote $\Omega^{p, q}(M)=\Gamma\left(\Lambda^{p, q} T^{*} M\right)$.

Theorem

For an almost complex mfld the following statements are equivalent:
(i) $v, w \in \Gamma\left(T^{1,0} M\right) \Rightarrow[v, w] \in \Gamma\left(T^{1,0} M\right)$;
(ii) $d \Omega^{1,0} \subset \Omega^{2,0}+\Omega^{1,1}$;
(iii) $d \Omega^{p, q} \subset \Omega^{p+1, q}+\Omega^{p, q+1}$;
(iv) $N_{I} \equiv 0$.

Proof. $(i) \Leftrightarrow(i i) \Leftrightarrow(i i i)$: Exercise.
To prove $(i) \Leftrightarrow(i v)$ observe that $v \in \Gamma\left(T^{1,0} M\right) \Leftrightarrow v=v_{0}-i I v_{0}$, $v_{0} \in \mathfrak{X}(M)$, and similarly for w. Denote $x=[v, w]$. Then

$$
2(x+i I x)=-N\left(v_{0}, w_{0}\right)-i I N\left(v_{0}, w_{0}\right)
$$

Hence, $x^{0,1}=0 \Leftrightarrow N\left(v_{0}, w_{0}\right)=0$.
Exercise. Let $\alpha \in \Omega^{1,0}(M)$. Show that $(d \alpha)^{0,2}$ can be identified with $\alpha \circ N_{I}$.

Newlander-Nirenberg Theorem

$\alpha_{1}, \ldots, \alpha_{m} \in \Omega^{1,0}(U), m=\operatorname{dim}_{\mathbb{R}} M / 2, M \supset U$ is open
Assume α_{j} are closed and pointwise linearly independent. Then $N \equiv 0$, since $\left(d \alpha_{j}\right)^{0,2} \cong 0$ for all j. After restricting to a possibly smaller domain, all α_{j} can be assumed to be exact:
$\alpha_{j}=d f_{j}, f_{j}=x_{j}+y_{j} i: U \rightarrow \mathbb{C}$. Then each f_{j} is I-holomorphic, i.e.

$$
d f_{j} \circ I=i d f_{j} \quad \Longleftrightarrow \quad d f_{j} \in \Omega^{1,0} .
$$

Hence we obtain local holomorphic coordinates on M.
Rem. This reasoning shows that if $N_{I} \neq 0$ usually there are no holomorphic functions on M (even locally).

Theorem (Newlander-Nirenberg)

$N_{I} \equiv 0$ iff M is a complex mfld, i.e. admits an atlas whose transition functions are holomorphic.

Write

$$
\partial=d^{1,0}: \Omega^{p, q} \rightarrow \Omega^{p+1, q}, \quad \bar{\partial}=d^{0,1}: \Omega^{p, q} \rightarrow \Omega^{p, q+1} .
$$

For complex mflds, $d=\partial+\bar{\partial}$. Hence,

$$
\begin{equation*}
d^{2}=0 \quad \Longleftrightarrow \quad \partial^{2}=0, \bar{\partial}^{2}=0, \partial \bar{\partial}+\bar{\partial} \partial=0 \tag{1}
\end{equation*}
$$

Any $\alpha \in \Omega^{p, q}$ can be written locally as a sum of the following forms: $\beta=f d z_{j_{1}} \wedge \cdots \wedge d z_{j_{p}} \wedge d \bar{z}_{k_{1}} \wedge \cdots \wedge d \bar{z}_{k_{q}}$. Then

$$
\partial \beta=\sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}} d z_{j} \wedge \ldots, \quad \partial \beta=\sum_{j=1}^{n} \frac{\partial f}{\partial \bar{z}_{j}} d \bar{z}_{j} \wedge \ldots
$$

From (1) we obtain that

$$
\Omega^{p, 0} \xrightarrow{\bar{\partial}} \Omega^{p, 1} \xrightarrow{\bar{\partial}} \ldots \xrightarrow{\bar{\partial}} \Omega^{p, n}
$$

is a complex for any p. It is called Dolbeault complex.

$$
H^{p, q}=\frac{\operatorname{Ker}\left(\bar{\partial}: \Omega^{p, q} \rightarrow \Omega^{p, q+1}\right)}{\operatorname{Im}\left(\bar{\partial}: \Omega^{p, q-1} \rightarrow \Omega^{p, q}\right)}
$$

are called Dolbeault cohomology groups.

Structure function of an H-structure

Recall: Let $P \subset F r_{M}$ be an H-structure endowed with two connections ω and $\omega^{\prime}=\omega-\xi$. Then $T^{\prime}-T=\delta \xi$. Here $T, T^{\prime}: P \rightarrow \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n}, \xi: P \rightarrow\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{h}$ are regarded as H-equivariant maps and

$$
\delta:\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{h} \hookrightarrow\left(\mathbb{R}^{n}\right)^{*} \otimes\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n} \longrightarrow \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n} .
$$

For $H=S O(n)$ the map δ is an isomorphism.
Consider

$$
T_{0}: P \xrightarrow{T} \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n} \rightarrow \operatorname{Coker} \delta=\Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n} / \operatorname{Im} \delta .
$$

By construction, T_{0} does not depend on the choice of connection and is called the structure function of P. It is the obstruction to the existence of a torsion-free connection on P.

Structure function of a $G L_{m}(\mathbb{C})$-structure

Theorem

Let $P \subset F r$ be a $G L_{m}(\mathbb{C})$-structure, i.e. M is an almost $c x$ mfld. Then P admits a connection, whose torsion is given by $T=\frac{1}{8} N$.

Proof. [KN, Thm IX.3.4].

Cor. The structure function of a $G L_{m}(\mathbb{C})$-structure can be identified with the Nijenhuis tensor.

Assume that V is an $S O(n)$-representation and $H=\operatorname{Stab}_{\eta}, \eta \in V$. Then

$$
\Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \cong \mathfrak{s o}(n)=\mathfrak{h} \oplus \mathfrak{h}^{\perp}
$$

Since $\delta_{\mathfrak{s o}(n)}$ is an isomorphism, we have

- $\delta:\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{h} \rightarrow \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n}$ is injective;
- Coker $\delta \cong(\operatorname{Im} \delta)^{\perp} \cong\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{h}^{\perp}$.

Recall that η defines an equivariant map $\tilde{\eta}: F r_{S O} \rightarrow V$.
Prop. The obstruction $T_{0}(p)$ to the existence of a torsion-free H-connection can be identified with $(\nabla \tilde{\eta})(p)$, and has values in the space $\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{h}^{\perp}$.

Prop. The obstruction $T_{0}(p)$ to the existence of a torsion-free H-connection can be identified with $(\nabla \tilde{\eta})(p)$, and has values in the space $\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{h}^{\perp}$.

Proof. The obstruction $T_{0}(p)$ is a component of the torsion of any H-connection ω^{\prime} on $P \subset F r_{S O}$. Extend ω^{\prime} to a connection on P and denote $\xi=\omega-\omega^{\prime}: P \rightarrow\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{s o}(n)$, where ω is the Levi-Civita connection. Since $T \equiv 0, T^{\prime}$ is identified with ξ.
Observe

$$
\begin{equation*}
\nabla^{\prime} \tilde{\eta}=0 \quad \Rightarrow \quad \nabla \tilde{\eta}(p)=-\xi(p) \tilde{\eta} \tag{2}
\end{equation*}
$$

Consider the map $\nu: \mathfrak{s o}(n) \rightarrow$ End $V \xrightarrow{e v_{\eta}} V$, where the first arrow is the infinitesimal $S O(n)$-action. Then $\operatorname{Ker} \nu=\mathfrak{h}$ and $\nu: \mathfrak{h}^{\perp} \rightarrow V$ is an embedding. From (2), $\xi(p) \tilde{\eta} \equiv T_{0}(p)$ has values in $\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{h}^{\perp}$ and can be identified with $\nabla \tilde{\eta}$.

Recall:

$$
\begin{aligned}
U(m) & =S O(2 m) \cap S p(2 m ; \mathbb{R}) \\
& =S O(2 m) \cap G L_{m}(\mathbb{C}) \\
& =G L_{m}(\mathbb{C}) \cap S p(2 m ; \mathbb{R})
\end{aligned}
$$

Hence, a $U(m)$-structure on M is given by one of the following piece of data
(i) A Riemannian metric g and an "almost symplectic form" ω s.t. $T M \xrightarrow{\hat{g}} T^{*} M \xrightarrow{\hat{\omega}^{-1}} T M$ is an almost cx structure;
(ii) A Riemannian metric g and an orthogonal almost cx str. I;
(iii) An almost complex structure I and an "almost symplectic form" ω s.t. $\omega(\cdot, I \cdot)$ is positive-definite.
Recalling that $\mathfrak{u}(m)^{\perp} \cong\left[\Lambda^{0,2}\right]_{r}$ we obtain
Prop. The structure function T_{0} of a $U(m)$-structure can be identified with $\nabla \omega$ and takes values in

$$
\left(\mathbb{R}^{2 m}\right)^{*} \otimes\left[\Lambda^{0,2}\right]_{r} \cong\left[\Lambda^{0,1} \otimes \Lambda^{0,2}\right]_{r} \oplus\left[\Lambda^{1,2}\right]_{r}
$$

Kähler metrics

A manifold M equipped with a $U(m)$-structure P is called Kähler if the Levi-Civita connection reduces to P. This is equivalent to any of the following conditions
(i) $\nabla \omega=0$;
(ii) $\nabla J=0$;
(iii) $\operatorname{Hol}(M) \subset U(m)$;
(iv) P admits a torsion-free connection.

Prop. Let (M, g) be a Riemannian mfld equipped with an orthogonal integrable complex structure I. Denote $\omega(I \cdot, \cdot)$. Then g is Kähler iff

$$
d \omega=0 \quad \Leftrightarrow \quad \bar{\partial} \omega=0
$$

Cor. Let M be Kähler and $Z \subset M$ be a complex submanifold. Then the induces metric on Z is also Kähler.

Prop. Let (M, g) be a Riemannian mfld equipped with an orthogonal integrable complex structure I. Denote $\omega(\cdot, \cdot)=g(I \cdot, \cdot)$. Then g is Kähler iff

$$
d \omega=0 \quad \Leftrightarrow \quad \bar{\partial} \omega=0 .
$$

Proof. First observe that $d \omega=0 \Leftrightarrow \bar{\partial} \omega=0$, since ω is a real $(1,1)$-form and $(d \omega)^{0,3}=0=(d \omega)^{3,0}$ by the integrability of the complex structure.
If g is Kähler, then $\nabla \omega=0 \Rightarrow d \omega=0$.
Assume now $d \omega=0$. First observe that the component of $\nabla \omega$ lying in $\left[\Lambda^{0,1} \otimes \Lambda^{0,2}\right]_{r}$ can be identified with the structure function of the corresponding $G L_{m}(\mathbb{C})$-structure and therefore vanishes. $d \omega$ is the image of $\nabla \omega$ under the antisymmetrisation map:

$$
\left[\Lambda^{1,2}\right]_{r} \cong\left[\Lambda_{0}^{1,2}\right]_{r} \oplus\left[\Lambda^{0,1}\right]_{r} \longrightarrow \Lambda^{3} \cong\left[\Lambda^{0,3}\right]_{r} \oplus\left[\Lambda_{0}^{2,1}\right] \oplus\left[\Lambda^{0,1}\right]_{r}
$$

Hence, the component of $\nabla \omega$ in $\left[\Lambda^{1,2}\right]_{r}$ is determined by $(d \omega)^{1,2}$ and therefore vanishes.

Kähler potentials

Let $f: \mathbb{C}^{m} \rightarrow \mathbb{R}$. The Levi form of f

$$
-i \partial \bar{\partial} f=-i \sum_{j, k}^{m} \frac{\partial^{2} f}{\partial z_{j} \partial \bar{z}_{k}} d z_{j} \wedge d \bar{z}_{k}
$$

is of type $(1,1)$, real, and closed, since $\partial \bar{\partial}=\frac{1}{2} d(\bar{\partial}-\partial)$. The Levi form defines a Kähler metric iff it is positive definite. Conversely, a real closed $(1,1)$-form ω is locally expressible as $-i \partial \bar{\partial} f$ for some real function f. If ω is a Kähler form, the function f is called a Kähler potential.

Ex.

(i) $f=\sum_{j=1}^{m}\left|z_{j}\right|^{2}$ is a Kähler potential of the flat metric on \mathbb{C}^{m};
(ii) $-\log f: \mathbb{C}^{m} \backslash 0 \rightarrow \mathbb{R}$ determines a Kähler potential on $\mathbb{C P}^{m-1}$. This metric is called the Fubini-Study metric.

Cor. Any complex submanifold of $\mathbb{C P}^{m}$ is Kähler.

Cohomology of Kähler manifolds

Let (M, I, g, ω) be an almost Kähler mfld. Then
$H(v, \omega)=g(v, \bar{w})$ is a Hermitian scalar product on $T_{\mathbb{C}} M$, i.e. H is a sesquilinear and positive-definite. The Hodge operator for complexified forms is defined similarly to the real case:

$$
\alpha \wedge * \beta=H(\alpha, \beta) \text { vol. }
$$

Hence, $*$ is antilinear. Moreover, $*: \Omega^{p, q} \rightarrow \Omega^{m-q, m-p}$. By analogy with the real case, define

$$
\bar{\partial}^{*}=-* \bar{\partial} * \quad \text { and } \quad \Delta_{\bar{\partial}}=\bar{\partial} \bar{\partial}^{*}+\bar{\partial}^{*} \bar{\partial}
$$

Then, just like for the de Rham cohomology, we have

Theorem

Every Dolbeault cohomology class on a compact Hermitian mfld has a unique $\Delta_{\bar{\partial}}$-harmonic representative and $H^{p, q} \cong \mathcal{H}^{p, q}=$ $\operatorname{Ker}\left(\Delta_{\bar{\partial}}: \Omega^{p, q} \rightarrow \Omega^{p, q}\right)$.

Prop. If M is Kähler, then $2 \Delta_{\bar{\partial}}=\Delta$.

Hence, we obtain

Theorem

Let M be a compact Kähler mfld. Then

$$
H^{k}(M ; \mathbb{C})=\bigoplus_{p+q=k} H^{p, q}(M)
$$

Moreover, $\overline{H^{p, q}}=H^{q, p}$ and $H^{p, q} \cong\left(H^{m-p, m-q}\right)^{*}$ (Serre duality).

Serre duality: If $\alpha \in \mathcal{H}^{p, q}$, then $* \alpha \in \mathcal{H}^{m-q, m-p}$. Since $\int_{M} \alpha \wedge * \alpha=\int_{M}\|\alpha\|^{2} v o l$, the pairing $\mathcal{H}^{p, q} \times \mathcal{H}^{n-p, n-q} \rightarrow \mathbb{C}, \quad(\alpha, \beta) \mapsto \int_{M} \alpha \wedge \beta$ is nondegenerate.
Hence, $\mathcal{H}^{p, q} \cong\left(\mathcal{H}^{n-p, n-q}\right)^{*}$.

Define the Hodge numbers $h^{p, q}$ by $h^{p, q}=\operatorname{dim} H^{p, q}(M)$. Then for compact Kähler mflds we have

$$
b_{k}=\sum_{j=0}^{k} h^{j, k-j} \quad \text { and } \quad h^{p, q}=h^{q, p}=h^{m-p, m-q}=h^{m-q, m-p} .
$$

Cor. If M is compact Kähler mfld, then odd Betti numbers of M are even.

Theorem (Hard Lefschetz theorem)

On a compact Kähler mfld $M^{2 m}$, there is a decomposition

$$
H^{k}(M, \mathbb{R})=\bigoplus_{p+q=k} \bigoplus_{r=0}^{\min (p, q)} H_{0}^{p-r, q-r}(M), \quad 0 \leq k \leq m
$$

Idea of the proof: The $\mathfrak{s l}_{2}(\mathbb{C})$-action on $\Omega^{\bullet}(M, \mathbb{C})$ descents to $H^{\bullet}(M ; \mathbb{C})$ and respects bidegree and real structure. See [Wells] or [Huybrechts, Complex geometry] for details.

Curvature of Kähler mflds

Recall: $\mathfrak{R}=\operatorname{Ker}\left(b: S^{2}\left(\Lambda^{2}\left(\mathbb{R}^{n}\right)\right) \rightarrow S^{2}\left(\Lambda^{2} \mathbb{R}^{n}\right)\right)$ is the space of algebraic curvature tensors, where $b: S^{2}\left(\Lambda^{2} \mathbb{R}^{n}\right) \rightarrow \Lambda^{4} \mathbb{R}^{n}$ is the Bianchi map (full antisymmetrization).
Let $P \subset F r_{S O}$ be a principal H-bundle equipped with a connection φ. then the curvature tensor takes values in \mathfrak{h}. Hence, we obtain

Prop. For any $p \in P$ the curvature $R(p)$ belongs to the space

$$
\mathfrak{R}^{H}=\operatorname{Ker}\left(b: S^{2} \mathfrak{h} \rightarrow S^{2} \mathfrak{h}\right)
$$

and we have the commutative diagram

Consider now the case $H=U(m)$ and recall that $\mathfrak{u}(m) \cong\left[\Lambda^{1,1}\right]_{r}$. Hence,

$$
\begin{aligned}
S^{2}\left(\mathfrak{u}(m)_{\mathbb{C}}\right) & \cong S^{2}\left(\Lambda^{1,1}\right) \\
& \cong S^{2}\left(\Lambda^{1,0}\right) \otimes S^{2}\left(\Lambda^{0,1}\right) \oplus \Lambda^{2}\left(\Lambda^{1,0}\right) \otimes \Lambda^{2}\left(\Lambda^{0,1}\right) \\
& \cong S^{2,2} \oplus \Lambda^{2,2}
\end{aligned}
$$

In analogy to the decomposition

$$
\Lambda^{2,2} \cong \Lambda_{0}^{2,2} \oplus \Lambda_{0}^{1,1} \oplus \mathbb{C}
$$

we may write

$$
S^{2,2} \cong \mathfrak{B}_{\mathbb{C}} \oplus \Lambda_{0}^{1,1} \oplus \mathbb{C}
$$

where $\mathfrak{B}_{\mathbb{C}}$ denotes the primitive component.
Prop. $\mathfrak{R}^{U(m)} \cong \mathfrak{B} \oplus\left[\Lambda_{0}^{1,1}\right]_{r} \oplus \mathbb{R}, \quad \mathfrak{R}^{S U(m)} \cong \mathfrak{B}$.

Proof. [Salamon, Prop. 4.7].

Ricci form

Observe: $\mathfrak{R}^{U(m)} \subset \operatorname{End}\left(\Lambda^{1,1}\right)$.
Prop. For $R \in \mathfrak{R}^{U(m)}$ denote $r=c(R)$, where c is the Ricci contraction. Then $R\left(\omega_{0}\right)=r(I \cdot, \cdot)=: \rho$.

Proof. Let $\left(e_{1}, I_{0} e_{1}, \ldots, e_{m}, I_{0} e_{m}\right)$ be an orthonormal basis of $\mathbb{R}^{2 m}$. Then

$$
\begin{aligned}
r(x, y) & =\sum_{j}\left\langle R\left(e_{j}, x\right) e_{j}, y\right\rangle+\sum_{j}\left\langle R\left(I_{0} e_{j}, x\right) I_{0} e_{j}, y\right\rangle \\
& =\sum_{j}\left\langle R\left(e_{j}, x\right) I_{0} e_{j}, I_{0} y\right\rangle-\sum_{j}\left\langle R\left(e_{j}, x\right) e_{j}, I_{0} y\right\rangle \\
& =\sum_{j}\left\langle R\left(e_{j}, I_{0} e_{j}\right) x, I_{0} y\right\rangle,
\end{aligned}
$$

where $1 \leq j \leq m$ and the last equality follows from the Bianchi identity. The statement follows since ω_{0} is identified with $\sum e_{j} \wedge I_{0} e_{j}$.

If M is Kähler with curvature tensor R, then the associated $(1,1)$-form ρ is called the Ricci form.

Prop. The Ricci form is closed.
Proof. The Ricci form is obtained as contraction of R and ω. Then $d \rho=0$ follows from $d^{\nabla} R=0$ and $d \omega=0$.

Any $\beta \in\left[\Lambda^{1,1}\right]_{r} \cong \mathfrak{u}(m)$ can be viewed as a \mathbb{C}-linear endomorphism of \mathbb{C}^{m}. Then $\operatorname{tr}_{\mathbb{C}} \beta$ is purely imaginary.

Rem. If β is viewed as \mathbb{R}-linear map of $\mathbb{R}^{2 m}$, then $\operatorname{tr}_{\mathbb{R}} \beta=0$.
The proof of the previous Proposition shows that $i \rho=\operatorname{tr}_{\mathbb{C}} R$, where R is viewed as a $(1,1)$-form with values in $\operatorname{End}_{\mathbb{C}}(T M)$. Hence,

Prop. The first Chern class $c_{1}(M)$ is represented by $\frac{1}{2 \pi} \rho$
Cor. The curvature tensor of the canonical line bundle $\Lambda^{m, 0} T^{*} M=$ $\Lambda^{m}\left(T^{*} M\right)^{1,0}$ equals $i \rho$.

Algebraic prelmininaries Complex Mflds

Theorem

Let $M^{2 m}$ be a Kähler mfld. Then $\operatorname{Hol}^{0}(M) \subset S U(m)$ iff Ric $\equiv 0$.

Proof. Let P be the holonomy bundle. Then $\operatorname{Hol}^{0}(M) \subset S U(m)$ iff for any $p \in P R(p)$ takes values in $\mathfrak{s u}(m)$. Observe that

$$
\mathfrak{s u}(m)=\left\{A \in \mathfrak{u}(m) \mid \operatorname{tr}_{\mathbb{C}} A=0\right\}
$$

Hence, $R(p) \in \mathfrak{s u}(m)$ iff $i \rho_{\pi(p)}=\operatorname{tr}_{\mathbb{C}} R(p)=0 \Leftrightarrow$ $\operatorname{Ric}(p)=0$.

Theorem

$\operatorname{Hol}(M) \subset S U(M)$ iff M admits a parallel ($m, 0$)-form.

Recall:

$$
\begin{gathered}
\mathfrak{R} \cong \mathbb{R} \oplus S_{0}^{2} \mathbb{R}^{n} \oplus \mathcal{W} \\
R=\frac{s}{2 n(n-1)} q \oplus q+\frac{1}{n-2} \operatorname{Ric}_{0} \otimes q+W
\end{gathered}
$$

Tracing the identifications for Kähler mflds we can write

$$
\begin{gathered}
\mathfrak{R}^{U(m)} \cong \mathbb{R} \oplus\left[\Lambda_{0}^{1,1}\right]_{r} \oplus \mathfrak{B} \\
R=\frac{s}{2 m^{2}} \omega \otimes \omega+\frac{1}{m} \omega \otimes \rho_{0}+\frac{1}{m} \rho_{0} \otimes \omega+B,
\end{gathered}
$$

where ρ_{0} is the primitive component of ρ. In particular, we have the diagram $(m \geq 3)$:

Holonomy groups
 in Riemannian geometry

Lecture 6

December 1, 2011

Some results from the previous lecture

Prop. The first Chern class $c_{1}(M)$ is represented by $\frac{1}{2 \pi} \rho$, where ρ is the Ricci form.

Cor. The curvature tensor of the canonical line bundle $K_{M}=$ $\Lambda^{m, 0} T^{*} M=\Lambda^{m}\left(T^{*} M\right)^{1,0}$ equals $i \rho$.

Theorem

Let $M^{2 m}$ be a Kähler mfld. Then $\operatorname{Hol}^{0}(M) \subset S U(m)$ iff Ric $\equiv 0$.

Theorem

$\operatorname{Hol}(M) \subset S U(M)$ iff M admits a parallel ($m, 0$)-form.

Calabi-Yau and Kähler-Einstein metrics

Let (M, I) be be a closed connected complex mfld.
Def. A Kähler metric g is said to be Kähler-Einstein if it is Einstein, i.e. if there exists a constant λ such that

$$
\begin{equation*}
\rho=\lambda \omega . \tag{1}
\end{equation*}
$$

Rem.

(i) $\lambda: M \rightarrow \mathbb{R}$ in (1) $\Longrightarrow \lambda=$ const.
(ii) $(1) \Longleftrightarrow R(\omega)=\lambda \omega$.

Def. A class $c \in H^{2}(M ; \mathbb{R})$ is said to be

- positive, if $\exists \beta \in c \cap \Omega^{1,1}$ s.t. $\beta(\cdot, I \cdot)>0$;
- negative, if $\exists \beta \in c \cap \Omega^{1,1}$ s.t. $\beta(\cdot, I \cdot)<0$.

Main Theorems

Theorem (Calabi-Yau)

Let $\rho^{\prime} \in 2 \pi c_{1}(M)$ be a closed real $(1,1)$-form. Then there exists a unique Kähler metric g^{\prime} on M with Kähler form ω^{\prime} cohomologous to ω and with Ricci form ρ^{\prime}.

Cor. If $c_{1}(M)=0$, then M has a unique Ricci-flat Kähler metric g^{\prime} with $\left[\omega^{\prime}\right]=[\omega]$.

Theorem (Aubin-Calabi-Yau)

Assume $c_{1}(M)<0$. Then, up to a scaling constant, M has a unique Kähler-Einstein metric (with negative Einstein constant) .

On the proof of Calabi-Yau and Aubin-Calabi-Yau theorems

Let $\Omega \in \Omega^{m, 0}(U)$, where $U \subset M$ is open. Write

$$
\nabla \Omega=\psi \otimes \Omega
$$

where ψ is a local connection form of $\Lambda^{m, 0} T^{*} M$.
Observe: $\Omega \in \Omega^{m, 0} \Rightarrow \partial \Omega=0 \Rightarrow \bar{\partial} \Omega=d \Omega=\psi \wedge \Omega$. By definition, Ω is holomorphic, if $\bar{\partial} \Omega=0$. Since Ω is a complex volume form,

$$
\bar{\partial} \Omega=0 \quad \Longleftrightarrow \quad \psi^{0,1} \wedge \Omega=0 \quad \Longleftrightarrow \quad \psi \in \Omega^{1,0}
$$

We have

$$
\begin{aligned}
d\left(\log \|\Omega\|^{2}\right) & =\frac{1}{\|\Omega\|^{2}} d\langle\Omega, \Omega\rangle \\
& =\frac{1}{\|\Omega\|^{2}}\left(\psi\|\Omega\|^{2}+\bar{\psi}\|\Omega\|^{2}\right) \\
& =\psi+\bar{\psi}
\end{aligned}
$$

Ω is holomorphic $\Longrightarrow \quad \psi=\left(d\left(\log \|\Omega\|^{2}\right)\right)^{1,0}=\partial\left(\log \|\Omega\|^{2}\right)$.
Hence, the curvature of $\Lambda^{m, 0} T^{*} M$ is represented by $d \psi=\bar{\partial} \partial \log \|\Omega\|^{2}$. In particular, $d \psi$ is purely imaginary $(1,1)$-form. Hence,

$$
\rho=i d \psi=-i \partial \bar{\partial} \log \|\Omega\|^{2}
$$

Further, observe that

$$
* \Omega=a \cdot \bar{\Omega},
$$

where $a \in \mathbb{C}^{*}$. Hence, $a \cdot m!\Omega \wedge \bar{\Omega}=\|\Omega\|^{2} \omega^{m}$. If g^{\prime} is another Kähler metric s.t. $\left[\omega^{\prime}\right]=[\omega]$, then

$$
\left(\omega^{\prime}\right)^{m}=e^{f} \cdot \omega^{m}
$$

for some $f: M \rightarrow \mathbb{R}$. Therefore,

$$
\|\Omega\|_{g^{\prime}}^{2}=e^{-f}\|\Omega\|_{g}^{2} \quad \Longrightarrow \rho^{\prime}=\rho-i \partial \bar{\partial} f .
$$

Vice versa, by the $\partial \bar{\partial}$-Lemma, for any real closed $(1,1)$-form ρ^{\prime} cohomologous to ρ, there exists $f: M \rightarrow \mathbb{R}$ s.t.

$$
\rho^{\prime}-\rho=-i \partial \bar{\partial} f
$$

Moreover, f is unique up to an additive constant. Similarly,

$$
\omega^{\prime}-\omega=i \partial \bar{\partial} \varphi, \quad \varphi: M \rightarrow \mathbb{R}
$$

Thus, in the setting of the CY thm, we are looking for φ s.t.
(i) $(\omega+i \partial \bar{\partial} \varphi)^{m}=e^{f} \cdot \omega^{m}$,
(ii) $\omega+i \partial \bar{\partial} \varphi>0$,
where f is a fixed function.
Claim. $(i) \Rightarrow$ (ii)
Proof. [Ballmann. Lectures on Kähler mflds, p.90].
Rem. For Kähler mflds, eqn $\operatorname{Ric}(g)=0$ is therefore equivalent to $(*)$. Notice that

- $(*)$ is an eqn for a function rather than for a metric tensor,
- $(*)$ is highly nonlinear (nonlinear in derivatives of the highest order).

Claim. The Kähler-Einstein condition (under the setup of Aubin-Calabi-Yau thm) is equivalent to the eqn

$$
(\omega+i \partial \bar{\partial} \varphi)^{m}=e^{f-\lambda \varphi} \cdot \omega^{m}
$$

where ω is a suitably chosen Kähler metric on M.
Proof. [see Ballmann, p. 91 for details].

Idea of the proof of the Calabi-Yau thm

Uniqueness: Let φ_{1}, φ_{2} be solutions of the eqn

$$
(\omega+i \partial \bar{\partial} \varphi)^{m}=e^{F(p, \varphi)} \omega^{m}
$$

It can be shown that

$$
\begin{aligned}
& \frac{1}{m} \int\left|\operatorname{grad}\left(\varphi_{1}-\varphi_{2}\right)\right|_{g_{1}}^{2} \omega_{1}^{m}+ \\
& \quad+\int\left(\varphi_{1}-\varphi_{2}\right)\left(e^{F\left(p, \varphi_{1}\right)}-\left(e^{F\left(p, \varphi_{2}\right)}\right) \omega^{m} \leq 0\right.
\end{aligned}
$$

Hence, uniqueness follows from the (weak) monotonicity of F in φ (for each fixed $p \in M$).
Existence (by the continuity method): Consider the eqn

$$
(\omega+i \partial \bar{\partial} \varphi)^{m}=e^{t f} \omega^{m}
$$

where $t \in[0,1]$ is a parameter. Denote by \mathcal{T} the set of those t, for which there exists a solution. Then $\mathcal{T} \ni 0$, hence $\mathcal{T} \neq \emptyset$.
Moreover, \mathcal{T} is open and closed. Hence, $1 \in \mathcal{T}$.

Examples of Calabi-Yau manifolds

A compact (simply connected) Riemannian mfld with $\operatorname{Hol}(M, g) \subset S U(m)$ is called Calabi-Yau. If $\pi_{1}(M)=\{1\}$ this is equivalent to $c_{1}(M)=0$.

Ex.

1) Let M be a degree d hypersurface in $\mathbb{C} P^{N}$. From the adjunction formula we have

$$
K_{M}=\left.\left.\left(K_{\mathbb{C P}^{N}} \otimes \mathcal{O}(d)\right)\right|_{M} \cong \mathcal{O}(-N-1+d)\right|_{M}
$$

Therefore, $c_{1}\left(K_{M}\right)=0 \Leftrightarrow d=N+1$. Hence, the Fermat quartic $M=\left\{z_{0}^{4}+z_{1}^{4}+z_{2}^{4}+z_{3}^{4}=0\right\} \subset \mathbb{C P}^{3}$ admits a metric with holonomy $S U(2)$.
2) Let M be a complete intersection:
$M=M_{d_{1}} \cap \cdots \cap M_{d_{k}} \subset \mathbb{C} P^{N}$. Then
$c_{1}(M)=0 \Leftrightarrow d_{1}+\cdots+d_{k}=N+1$.

Theorem (Calabi)

Let M be Kähler-Einstein with positive sc. curvature. Then there exists a metric on the total space of K_{M} with $\operatorname{Hol}^{0} \subset S U(m+1)$.

Proof. Let $P \rightarrow M$ be the $U(m)$-structure. Since $\mathfrak{u}(m) \cong \mathfrak{s u}(m) \oplus i \mathbb{R}$, the Levi-Civita connection on P decomposes: $\varphi_{L C}=\varphi_{0}+\psi i$. Observe that ψi is essentially the connection of K_{M}. It follows that M is KE iff $d \psi=\lambda \pi^{*} \omega$, where $\pi: P \rightarrow M$. Consider $\beta=d z+z \psi i \in \Omega^{1}(P \times \mathbb{C} ; \mathbb{C})$, where z is a coordinate on \mathbb{C}. Put $\rho=|z|^{2}=z \bar{z}$. With the help of

$$
d \beta=\left(\beta \wedge \psi+\lambda z \pi^{*} \omega\right) i, \quad d \rho=d z \cdot \bar{z}+z d \bar{z}=\beta \cdot \bar{z}+z \beta
$$

one easily shows that the 2 -form

$$
\tilde{\omega}=u \pi^{*} \omega-\frac{1}{\lambda} u^{\prime} \cdot i \beta \wedge \bar{\beta}
$$

is closed, where $u=u(\rho)$.

Proof of the Calabi theorem (continued)

Moreover, $\tilde{\omega}=u \pi^{*} \omega-\frac{1}{\lambda} u^{\prime} \cdot i \beta \wedge \bar{\beta}$ is $U(m)$-invariant and basic and therefore descends to a $(1,1)$-form $\tilde{\omega}$ on $(P \times \mathbb{C}) / U(m)=K$. If both u and u^{\prime} are positive, $\tilde{\omega}$ is also positive. Recall that each $p \in P$ is a unitary basis of $T_{\pi(p)} M$, i.e. $p=\left(p_{1}, \ldots, p_{m}\right)$. Then $\Omega=p_{1}^{*} \wedge \cdots \wedge p_{m}^{*}$ is a global complex m-form on P. Consider

$$
\tilde{\Omega}=\beta \wedge \Omega
$$

Just like $\tilde{\omega}, \tilde{\Omega}$ descends to an $(m+1,0)$-form on K. Then $\tilde{\Omega}$ is parallel iff $\|\tilde{\Omega}\|=$ const $\Rightarrow u^{m} u^{\prime}=\lambda(m+1) \Rightarrow$ $u(\rho)=(\lambda \rho+l)^{\frac{1}{m+1}}$. Hence we obtain an explicit metric on K with $\operatorname{Hol}^{0} \subset S U(m+1)$, namely

$$
g=u(p) \pi_{K}^{*} g_{M} \oplus u^{\prime}(\rho) \operatorname{Re}(\beta \otimes \bar{\beta})
$$

Rem. If the scalar curvature of M is negative, the Calabi metric is defined on a neighbourhood of the zero section only.

HyperKähler manifolds

A quaternionic vector space is a real vector space V equipped with a triple $\left(I_{1}, I_{2}, I_{3}\right)$ of endomorphisms s.t.

$$
I_{r}^{2}=-1, \quad I_{1} I_{2}=I_{3}=-I_{2} I_{1}
$$

In other words, V is an \mathbb{H}-module.
V is quaternion-Hermitian, if V is equipped with an Euclidean scalar product, which is Hermitian wrt each complex structure I_{r}. Denote $\omega_{r}(\cdot, \cdot)=\left\langle I_{r} \cdot, \cdot\right\rangle, \omega=\omega_{1} i+\omega_{2} j+\omega_{3} k$.

Ex. $V=\mathbb{H}^{m}, I_{1}(h)=h \bar{i}, I_{2}(h)=h \bar{j}, I_{3}(h)=h \bar{k}$, $\left\langle h_{1}, h_{2}\right\rangle=\operatorname{Re}\left(\bar{h}_{1} h_{2}\right)$. Then $\omega\left(h_{1}, h_{2}\right)=\operatorname{Im}\left(\bar{h}_{1} h_{2}\right)$

Put $h=\langle\cdot, \cdot\rangle+i \omega_{1}$ and $\omega_{c}=\omega_{2}+\omega_{3} i$. Then h is an Hermitian scalar product and ω_{c} is a complex symplectic form. Hence,

$$
\begin{align*}
S p(m) & =\left\{A \in O\left(\mathbb{H}^{n}\right) \mid A I_{r}=I_{r} A, \quad r=1,2,3\right\} \\
& =O(4 n) \cap G L_{n}(\mathbb{H}) \\
& =U(2 n) \cap S p(2 n ; \mathbb{C}) .
\end{align*}
$$

Assume $M^{4 m}$ is endowed with with an $S p(m)$-structure. In other words, M is a Riemannian mfld equipped with a triple $\left(I_{1}, I_{2}, I_{3}\right)$ of almost complex structures s.t. the metric is Hermitian wrt each I_{r}. Alternatively, M can be seen as an almost Hermitian mfld equipped with a complex symplectic form $\omega_{c} \in \Omega^{2,0}(M)$.
M is called hyperKähler, if $\operatorname{Hol}(\mathrm{M}) \subset S p(m)$. This is equivalent to one of the following conditions:
(i) $\nabla I_{1}=\nabla I_{2}=\nabla I_{3}=0$;
(ii) $\nabla \omega_{1}=\nabla \omega_{2}=\nabla \omega_{3}=0$;
(iii) g is Kähler wrt each complex structure I_{r}.

Prop. For an almost hyperKähler manifold the following holds:

$$
\nabla \omega_{1}=\nabla \omega_{2}=\nabla \omega_{3}=0 \quad \Longleftrightarrow \quad d \omega_{1}=d \omega_{2}=d \omega_{3}=0
$$

Proof. Need to show that each almost complex structure is integrable. Observe: $v \in \mathfrak{X}_{I_{1}}^{1,0}(M) \Leftrightarrow \imath_{v} \omega_{2}=i \imath_{v} \omega_{3}$. Indeed,

$$
i_{v} \omega_{2}=g\left(I_{2} v, \cdot\right)=g\left(I_{3} I_{1} v, \cdot\right)=\omega_{3}\left(I_{1} v, \cdot\right)
$$

Then $\imath_{v} \omega_{2}=i i_{v} \omega_{3} \Leftrightarrow I_{1} v=i v$.
Assume now $v, w \in \mathfrak{X}_{I_{1}}^{1,0}(M)$. Then

$$
\begin{align*}
\imath_{[v, w]} \omega_{2} & =\mathcal{L}_{v}\left(\imath_{w} \omega_{2}\right)-\imath_{w}\left(\mathcal{L}_{v} \omega_{2}\right) \\
& =\mathcal{L}_{v}\left(\imath_{w} \omega_{2}\right)-\imath_{w}\left(\imath_{v} \omega_{2}\right) \tag{Cartan}\\
& =\mathcal{L}_{v}\left(i \imath_{w} \omega_{3}\right)-\imath_{w}\left(i \imath_{w} \omega_{3}\right) \\
& =i \imath_{[v, w]} \omega_{3} .
\end{align*}
$$

Examples of hyperKähler manifolds

Ex.

(i) We have an exceptional isomorphism $S p(1) \cong S U(2)$, since $\omega_{c} \in \lambda^{2,0} \mathbb{C}^{2}$ is a complex volume form. Hence, if $\operatorname{dim}_{\mathbb{R}} M=4$ Calabi-Yau \equiv hyperKähler Hence, there is a hK metric on the Fermat quartic.
(ii) Similar methods as in the proof of the fact that for KE M the total space of K_{M} has a Ricci-flat metric, also give that the total space of $T^{*} \mathbb{C} P^{m}$ has a complete metric with holonomy $S p(m)$ for any m (this fact is also due to Calabi).

Let $M^{4 m}$ be a compact Kähler with a complex sympl. form ω_{c}. Then ω_{c}^{m} trivializes K_{M} and hence there exists a Ricci-flat Kähler metric on M.
Observe that any closed ($p, 0$)-form on closed Ricci-flat Kähler mfld must be parallel. This follows from the fact that the Weitzenböck formula for ($p, 0$)-forms involves Ricci-curvature only. Hence, with respect to the new Ricci-flat metric $\nabla \omega_{c}=0$. Thus if M is compact Kähler

$$
\text { hyperKähler } \equiv \text { complex symplectic }
$$

This is used to show that there are compact 8 -mflds with holonomy $S p(2)$ by blowing-up the diagonal in $M_{4} \times M_{4}$ and quotening by the involution. Further generalization of this yields compact mflds with holonomy $S p(m)$.

HyperKähler reduction

Let M be a hK mfld and assume G acts on M preserving hK structure. Then for any $\xi \in \mathfrak{g}$

$$
0=\mathcal{L}_{K_{\xi}} \omega_{r}=\imath_{K_{\xi}} d \omega_{r}+d \imath_{K_{\xi}} \omega_{r}=0+d \imath_{K_{\xi}} \omega_{r}
$$

where K_{ξ} is the Killing v.f.
Assume there exists $\mu_{r}(\xi): M \rightarrow \mathbb{R}$ s.t. $i_{K_{\xi}} \omega_{r}=d \mu_{r}(\xi)$.
Construct a G-equivariant map

$$
\mu=\mu_{1} i+\mu_{2} j+\mu_{3} k: \quad M \rightarrow \mathfrak{g}^{*} \otimes \operatorname{Im} \mathbb{H}
$$

which is called the hK moment map.

Theorem

If $M / / / \tau G=\mu^{-1}(\tau) / G$ is a mfld, where $\tau \in \mathfrak{g}^{*}$ is central, then it is hyperKähler (with respect to the induces metric).

Proof. For $m \in \mu^{-1}(\tau)$ put $\mathcal{K}_{m}=\left\{K_{\xi}(m) \mid \xi \in \mathfrak{g}\right\}$. Since $d \mu_{r}(\xi)=g\left(I_{r} K_{\xi}, \cdot\right)$, the orthogonal complement to

$$
\mathcal{K}_{m} \oplus I_{1} \mathcal{K}_{m} \oplus I_{2} \mathcal{K}_{m} \oplus I_{3} \mathcal{K}_{m}
$$

can be identified with $T_{[m]}(M / / / \tau G)$. Hence $M / / /{ }_{\tau} G$ is almost hyperKähler. The corresponding 2 -forms are closed, hence $M / / / \tau G$ is hyperKähler.

Further examples of hyperKähler manifolds

Ex.

1) S^{1} acts on \mathbb{H}^{n+1} by multiplication on the left. The moment map is

$$
\mu(x)=-\sum_{p=1}^{n+1} \bar{x}_{p} i x_{p}=i \sum_{p=1}^{n+1}\left(\left|w_{p}\right|^{2}-\left|z_{p}\right|^{2}\right)-2 k \sum_{p=1}^{n+1} z_{p} w_{p}
$$

where $x_{p}=z_{p}+j w_{p}, z_{p}, w_{p} \in \mathbb{C}$. Clearly,

$$
\begin{aligned}
& \mathbb{H}^{n+1} / / / S^{1}=\mu^{-1}(-i) / S^{1} \cong \\
& \quad \cong\left\{\left(z_{p}, w_{p}\right) \in \mathbb{C}^{2 n+2} \mid \sum_{p=1}^{n+1} z_{p} w_{p}=0,\left(z_{1}, \ldots, z_{n+1}\right) \neq 0\right\} / \mathbb{C}^{*} \\
& \quad \cong T^{*} \mathbb{C} P^{n} .
\end{aligned}
$$

Hence, the total space of $T^{*} \mathbb{C P}^{n}$ is hK and the metric obtained via the hK reduction coincides with the Calabi metric.

Ex.

2) $T^{*} G r_{p}\left(\mathbb{C}^{p+q}\right)$ is hK . This is also obtained as a hK reduction: $T^{*} G r_{p}\left(\mathbb{C}^{p+q}\right) \cong \mathbb{H}^{p(p+q)} / / / U(p)$.
3) Let X^{4} be a hK mfld. Pick a G-bundle $P \rightarrow X$. Then the space $\mathcal{A}(P)$ inherits a hK structure. The action of the gauge gp $\mathcal{G}=A u t P$ preserves this hK structure and the moment map is

$$
\begin{aligned}
\mu: A & \longmapsto F_{A}^{+} \in \Omega_{+}^{2}(X ; \operatorname{ad} P) \cong \\
& \cong \Gamma(\operatorname{ad} P) \otimes \operatorname{Im} \mathbb{H} \cong \\
& \cong \operatorname{Lie}(\mathcal{G})^{*} \otimes \operatorname{Im} \mathbb{H} .
\end{aligned}
$$

Hence, the moduli space of asd instantons

$$
\mu^{-1}(0) / \mathcal{G} \cong\left\{A \mid F_{A}^{+}=0\right\} / \mathcal{G}
$$

is hyperKähler.

Quaternion-Kähler manifolds

Consider the action of $S p(n) \times S p(1)$ on \mathbb{H}^{n} :

$$
(A, q) \cdot x=A x \bar{q}
$$

Obviously, $(-1,-1)$ acts trivially and we define

$$
S p(n) S p(1)=S p(n) \times S p(1) / \pm 1 \subset S O(4 n)
$$

Consider $\Lambda^{1}=\mathbb{R}^{4 n}$ as $S p(n) S p(1)$-representation. Then

$$
\Lambda_{\mathbb{C}}^{1} \cong E \otimes_{\mathbb{C}} W
$$

where E denotes the complex tautological representation of $S p(n) \subset S U(2 n)$ of dimension $2 n$ and W denotes the two dimensional complex representation of $S p(1) \cong S U(2)$. Explicitly,

$$
v \longmapsto v^{1,0} \otimes\binom{1}{0}+I_{2} v^{0,1} \otimes\binom{0}{1}
$$

Then

$$
\begin{aligned}
\mathfrak{s o}(4 n) & \cong \Lambda^{2}\left(\mathbb{R}^{4 n}\right)^{*} \cong \Lambda^{2}[E \otimes W]_{r} \\
& \cong\left[S^{2} E \otimes \Lambda^{2} W\right]_{r} \oplus\left[\Lambda^{2} E \otimes S^{2} W\right]_{r} \\
& \cong \mathfrak{s p}(n) \oplus\left[\Lambda^{2} E \otimes W_{2}\right]_{r} \\
& \cong \mathfrak{s p}(n) \oplus \mathfrak{s p}(1) \oplus\left[\Lambda_{0}^{2} E \otimes W_{2}\right]_{r} .
\end{aligned}
$$

Here: $W_{p}=S^{p} W$ is the irreducible $(p+1)$-dimensional $S p(1)$-representation. In particular, $W_{1}=W, W_{2}=\mathfrak{s p}(1)_{\mathbb{C}}$.
Consider the 4 -form

$$
\Omega_{0}=\omega_{1} \wedge \omega_{1}+\omega_{2} \wedge \omega_{2}+\omega_{3} \wedge \omega_{3} \quad \in \Lambda^{4}\left(\mathbb{R}^{4 n}\right)^{*}
$$

which is $S p(n) S p(1)$-invariant.
Lem. For $n \geq 2$, the subgp of $G L_{4 n}(\mathbb{R})$ preserving Ω_{0} is equal to $S p(n) S p(1)$.

Proof. [Salamon. Lemma 9.1]
Rem. Hence, the 4 -form Ω_{0} determines the Euclidean scalar product.

An $S p(n) S p(1)$-structure on $M^{4 n}, n \geq 2$ can be described by $\Omega \in \Omega^{4}(M)$, which is linearly equivalent to Ω_{0} at each pt. Then M is quaternion-Kähler, i.e. $\operatorname{Hol}(M) \subset S p(n) S p(1)$, iff $\nabla \Omega=0$. In particular, $d \Omega=0$.

Theorem (Swann)

If $\operatorname{dim} M \geq 12$, then $\nabla \Omega=0 \Leftrightarrow d \Omega=0$.

In contrast to hK mflds, qK mflds do not have global almost complex structures but rather are endowed with rank 3 subbundle of $\operatorname{End}(T M)$ admitting local trivialization $\left(I_{1}, I_{2}, I_{3}\right)$ satisfying quaternionic relations. This is apparent from the decomposition

$$
\mathfrak{s o}(4 n) \cong \mathfrak{s p}(n) \oplus \mathfrak{s p}(1) \oplus\left[\Lambda_{0}^{2} E \otimes W_{2}\right]_{r}
$$

Prop. The spaces of algebraic curvature tensors for $q K$ and $h K$ mflds are given respectively by

$$
\begin{aligned}
\mathcal{R}^{S p(n) S p(1)} & \cong\left[S^{4} E\right]_{r} \oplus \mathbb{R}, \\
\mathcal{R}^{S p(n)} & \cong\left[S^{4} E\right]_{r} .
\end{aligned}
$$

Proof. Similar to the corresponding proof for Kähler mflds. For details see [Salamon. Prop. 9.3].

Cor. Any qK mfld is Einstein, and its Ricci tensor vanishes iff it is locally $h K$, i.e. $\mathrm{Hol}^{0} \subset S p(n)$.

Ex. $\mathbb{H} P^{n}=\mathbb{H}^{n+1} \backslash\{0\} / \mathbb{H}^{*} \cong \frac{S p(n+1)}{S p(n) \times S p(1)}$ is a symmetric qK mfld. All qK symmetric spaces were classified by Woff.

Theorem (Swann)

Let $M^{4 n}$ be a positive $q K$ mfld with the corresponding $S p(n) S p(1)$ structure P. Then the total space of the bundle $\mathcal{U}(M)=$ $P \times{ }_{S p(n) S p(1)} \mathbb{H}^{*} / \pm 1$ carries a hK metric.

The construction of this hK metric is similar to the construction of the Calabi metrics (Ricci-flat on K_{M} and hK on $T^{*} \mathbb{C P}^{n}$).

Holonomy groups
 in Riemannian geometry

Lecture 7

Exceptional holonomy groups

December 8, 2011

Groups $\operatorname{Spin}(3), \operatorname{Spin}(4)$, and $\operatorname{Sp}(1)$

Recall: For $n \geq 3$, $\operatorname{Spin}(n)$ is a connected simply connected group fitting into the short exact sequence

$$
0 \rightarrow\{ \pm 1\} \rightarrow \operatorname{Spin}(n) \rightarrow S O(n) \rightarrow 0
$$

In other words, $S O(n) \cong \operatorname{Spin}(n) / \pm 1$.
The group $S p(1)=\{q \in \mathbb{H} \mid q \bar{q}=1\}$ acts on $\operatorname{Im} \mathbb{H}: \quad q \cdot x=q x \bar{q}$. Hence, we have the short exact sequence

$$
0 \rightarrow\{ \pm 1\} \rightarrow S p(1) \rightarrow S O(3) \rightarrow 0
$$

which establishes the isomorphism $\operatorname{Spin}(3) \cong S p(1) \cong S U(2)$.
Consider also the action of $S p_{+}(1) \times S p_{-}(1)$ on \mathbb{H} :
$\left(q_{+}, q_{-}\right) \cdot x=q_{+} x \bar{q}_{-}$. This leads to the short exact sequence

$$
0 \rightarrow\{ \pm 1\} \rightarrow S p_{+}(1) \times S p_{-}(1) \rightarrow S O(4) \rightarrow 0
$$

Hence, $\operatorname{Spin}(4) \cong S p_{+}(1) \times S p_{-}(1)$.

The group G_{2}

Put $V=\operatorname{Im} \mathbb{H}_{x} \oplus \mathbb{H}_{y} \cong \mathbb{R}^{7}$, which is considered as oriented Euclidean vector space. $S O(4)$ acts on V :

$$
\left[q_{+}, q_{-}\right] \cdot(x, y)=\left(q_{-} x \bar{q}_{-}, q_{+} y \bar{q}_{-}\right)
$$

Write

$$
\begin{aligned}
& \frac{1}{2} d \bar{y} \wedge d y=\omega_{1} i+\omega_{2} j+\omega_{3} k \\
& =\left(d y_{0} \wedge d y_{1}-d y_{2} \wedge d y_{3}\right) i+\left(d y_{0} \wedge d y_{2}+d y_{1} \wedge d y_{3}\right) j+ \\
& +\left(d y_{0} \wedge d y_{3}-d y_{1} \wedge d y_{2}\right) k .
\end{aligned}
$$

Notice that $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ is the standard basis of $\Lambda_{-}^{2}\left(\mathbb{R}^{4}\right)^{*}$. Put

$$
\begin{aligned}
\varphi & =\operatorname{vol}_{x}-\frac{1}{2} \operatorname{Re}(d x \wedge d y \wedge d \bar{y}) \\
& =d x_{1} \wedge d x_{2} \wedge d x_{3}+d x_{1} \wedge \omega_{1}+d x_{2} \wedge \omega_{2}+d x_{3} \wedge \omega_{3}
\end{aligned}
$$

Def. The stabilizer of φ in $G L_{7}(\mathbb{R})$ is called G_{2}.

$$
\varphi=\operatorname{vol}_{x}-\frac{1}{2} \operatorname{Re}(d x \wedge d y \wedge d \bar{y})
$$

Observe the following:

- $L_{\left[q_{+}, q_{-}\right]}^{*} d \bar{y} \wedge d y=q_{-} d \bar{y} \wedge d y \bar{q}_{-} \Rightarrow \operatorname{Re}(d x \wedge d y \wedge d \bar{y})$ is $S O(4)$-invariant $\Rightarrow S O(4) \subset G_{2}$.
- Write $V=\left(\mathbb{R} \oplus \mathbb{C}_{z}\right) \oplus \mathbb{C}_{w_{1}, w_{2}}^{2},\left(x_{0}, z, w_{1}, w_{2}\right) \mapsto$ $x_{0} i+z j+\bar{w}_{1}+w_{2} j$. Then

$$
\begin{aligned}
\varphi= & \frac{1}{2} d x_{0} \wedge \operatorname{Im}\left(d z \wedge d \bar{z}+d w_{1} \wedge d \bar{w}_{1}+d w_{2} \wedge d \bar{w}_{2}\right) \\
& +\operatorname{Re}\left(d z \wedge d w_{1} \wedge d w_{2}\right)
\end{aligned}
$$

Hence, $G_{2} \supset S U(3)$.

- $S O(4) \subset G_{2}, S U(3) \subset G_{2} \Rightarrow G_{2} \cap S O(7)$ acts transitively on S^{6}.
- For $Q: V \rightarrow \Lambda^{7} V, Q(v)=\left(i_{v} \varphi\right)^{2} \wedge \varphi$ we have $Q\left(e_{1}\right)=\left\|e_{1}\right\|^{2} \operatorname{vol}_{7} \Rightarrow Q(v)=\|v\|^{2}$ vol $_{7}$ for all $v \in V$.
- $g \in G_{2} \Rightarrow g^{*} Q(g v)=Q(v) \Rightarrow(\operatorname{det} g) \cdot\|g v\|^{2}=\|v\|^{2}$
$\Rightarrow \operatorname{det} g=1$, i.e. $G_{2} \subset S O(7)$
- $\left\{g \in G_{2} \mid g e_{1}=e_{1}\right\} \cong S U(3)$. Hence, we have that topologically G_{2} is the fibre bundle

$$
S U(3) \subsetneq G_{2}
$$

In particular, $\operatorname{dim} G=14 ; G$ is connected and simply connected.

- $\Lambda^{3} V^{*} \supset G L_{7}(\mathbb{R}) \cdot \varphi \cong G L_{7}(\mathbb{R}) / G_{2}$ has dimension $35=\operatorname{dim} \Lambda^{3} V^{*}$. Hence, $G L_{7}(\mathbb{R}) \cdot \varphi$ is an open set in $\Lambda^{3} V^{*}$.
Fact. G_{2} is the automorphism group of octonions, i.e.

$$
\left\{g \in G L_{8}(\mathbb{R}) \mid g(a b)=g(a) \cdot g(b)\right\} \cong G_{2}
$$

Some representation theory of G_{2}

Consider $V \cong \mathbb{R}^{7}$ as a G_{2}-representation via the embedding $G_{2} \subset S O(7)$. Then V is irreducible.
Further $\Lambda^{2} V^{*}$ contains the following G_{2}-invariant subspaces

- $\Lambda_{14}^{2} V^{*} \cong \mathfrak{g}_{2}$
- $\Lambda_{7}^{2} V^{*}=\left\{i_{v} \varphi \mid v \in V\right\} \cong V$
which are irreducible. By dimension counting,

$$
\Lambda^{2} V^{*} \cong \Lambda_{14}^{2} V^{*} \oplus \Lambda_{7}^{2} V^{*}
$$

Rem. The subspaces Λ_{7}^{2} and Λ_{14}^{2} can be described equivalently as follows:

$$
\begin{aligned}
\Lambda_{7}^{2} & =\{\alpha \mid *(\varphi \wedge \alpha)=2 \alpha\} \\
\Lambda_{14}^{2} & =\{\alpha \mid *(\varphi \wedge \alpha)=-\alpha\}
\end{aligned}
$$

To decompose $\Lambda^{3} V^{*}$, consider

$$
\gamma: \operatorname{End}(V) \cong V \otimes V \mapsto \Lambda^{3} V^{*}, \quad \gamma(a)=a^{*} \varphi
$$

Then $\operatorname{Ker} \gamma=\mathfrak{g}_{2}$. Since $\operatorname{dim} \operatorname{Im} \gamma=7 \times 7-\operatorname{dim} \operatorname{Ker} \gamma=35$ $=\operatorname{dim} \Lambda^{3} V^{*}, \gamma$ is surjective. Hence,

$$
\Lambda^{3} V^{*} \cong S^{2} V^{*} \oplus \Lambda_{7}^{2} V^{*} \cong \mathbb{R} \oplus S_{0}^{2} V^{*} \oplus V^{*}
$$

and $S_{0}^{2} V^{*}$ is irreducible. We summarize,

Lem.

$$
\begin{aligned}
& \Lambda^{2} V^{*} \cong \mathfrak{g}_{2} \oplus V \\
& \Lambda^{3} V^{*} \cong \mathbb{R} \oplus V \oplus S_{0}^{2} V^{*}
\end{aligned}
$$

G_{2} as a structure group

A G_{2}-structure on M^{7} is determined by a 3 -form φ, which is pointwise linearly equivalent to the 3-form $\varphi_{0} \in \Lambda^{3}\left(\mathbb{R}^{7}\right)^{*}$. In particular, φ determines a Riemannian metric g_{φ} and an orientation.

The following Lemma is auxiliary and will be proved in the next lecture.

Lem. Denote by $\sigma: \mathbb{R}^{n} \otimes \Lambda^{k}\left(\mathbb{R}^{n}\right)^{*} \rightarrow \Lambda^{k-1}\left(\mathbb{R}^{n}\right)^{*}$ the contraction map. Then, for any Riemannian mfld M, the map

$$
\Gamma\left(\Lambda^{k} T^{*} M\right) \xrightarrow{\nabla^{L C}} \Gamma\left(T^{*} M \otimes \Lambda^{k} T^{*} M\right) \xrightarrow{-\sigma} \Gamma\left(\Lambda^{k-1} T^{*} M\right)
$$

coincides with $d^{*}: \Omega^{k} \rightarrow \Omega^{k-1}$.

Theorem

φ is parallel wrt the Levi-Vita connection of g_{φ} iff $d \varphi=0=d\left(*_{\varphi} \varphi\right)$.

Proof. Recall that the intrinsic torsion of the G_{2}-structure can be identified with $\nabla \varphi$. In particular, $\nabla \varphi$ takes values in $V^{*} \otimes \mathfrak{g}_{2}^{\perp} \cong V^{*} \otimes V \cong\left(S_{0}^{2} V^{*} \oplus \mathbb{R}\right) \oplus\left(\mathfrak{g}_{2} \oplus V\right)$. Observe that $d \varphi$ and $d(* \varphi)$ can be obtained from $\nabla \varphi$ by means of the algebraic maps

$$
\begin{aligned}
& V^{*} \otimes V \hookrightarrow V^{*} \otimes \Lambda^{3} V^{*} \longrightarrow \Lambda^{4} V^{*} \cong \Lambda^{3} V^{*} \cong \mathbb{R} \oplus V \oplus S_{0}^{2} V^{*} . \\
& V^{*} \otimes V \hookrightarrow V^{*} \otimes \Lambda^{3} V^{*} \mapsto \Lambda^{2} V^{*} \cong \mathfrak{g}_{2} \oplus V .
\end{aligned}
$$

One can show that both maps are surjective. Comparing components of target spaces with the components of

$$
V^{*} \otimes V \cong S_{0}^{2} V^{*} \oplus \mathbb{R} \oplus \mathfrak{g}_{2} \oplus V
$$

we obtain that $\nabla \varphi=0 \Longleftrightarrow d \varphi=0=d(* \varphi)$.

Curvature of a G_{2}-manifold

Let $c: S^{2} \mathfrak{g}_{2} \rightarrow S^{2} V^{*}$ be the Ricci contraction. Denote $F=\operatorname{Ker} c$. This is an irreducible G_{2}-representation of dimension 77 .

Recall that $\mathcal{R}^{G_{2}} \cong \operatorname{Ker} b \cap S^{2} \mathfrak{g}_{2}$, where

$$
b: S^{2}\left(\Lambda^{2} V^{*}\right) \rightarrow \Lambda^{4} V^{*}
$$

is the Bianchi map. Notice that

$$
\begin{aligned}
S^{2} \mathfrak{g}_{2} & \cong F \oplus S_{0}^{2} V^{*} \oplus \mathbb{R} \\
\Lambda^{4} V^{*} & \cong \Lambda^{3} V^{*} \cong V \oplus S_{0}^{2} V^{*} \oplus \mathbb{R}
\end{aligned}
$$

The Bianchi map is injective on $S_{0}^{2} V^{*} \oplus \mathbb{R}$. Hence $\mathcal{R}^{G_{2}} \cong F$. We summarize

Prop. $\quad \mathcal{R}^{G_{2}} \cong F$. A 7 -mfld with holonomy in G_{2} is Ricci-flat.

The group $\operatorname{Spin}(7)$

Put $U=\mathbb{H}_{x} \oplus \mathbb{H}_{y}$. Let $S p_{0}(1) \times S p_{+}(1) \times S p_{-}(1)$ act on U via

$$
\left(q_{0}, q_{+}, q_{-}\right) \cdot(x, y)=\left(q_{0} x \bar{q}_{-}, q_{+} y \bar{q}_{-}\right)
$$

Define the Cayley 4-form $\Omega_{0} \in \Omega^{4}(V)$ by

$$
\begin{aligned}
\Omega_{0} & =\operatorname{vol}_{x}+\omega_{x}^{1} \wedge \omega_{y}^{1}+\omega_{x}^{2} \wedge \omega_{y}^{2}+\omega_{x}^{3} \wedge \omega_{y}^{3}+\operatorname{vol}_{y}= \\
& =\operatorname{vol}_{x}-\operatorname{Re}(d \bar{x} \wedge d x \wedge d \bar{y} \wedge d y)+\operatorname{vol}_{y}
\end{aligned}
$$

Denote by K the stabilizer of Ω_{0} in $G L_{8}(\mathbb{R})$. The following facts are obtained in a similar fashion as for the group G_{2} :

- $\Omega_{0}=d x_{0} \wedge \varphi_{0}+*_{4} \varphi_{0} \quad \Longrightarrow \quad G_{2}=K \cap S O(7)$
- $S U(4) \subset K$
- $K \subset S O(8)$
- K is a compact, connected and simply connected Lie group of dimension 21 acting transitively on S^{7}
- Consider U as a G_{2}-representation. Then
$U \cong \mathbb{R} \oplus V \Rightarrow \Lambda^{2} U \cong \Lambda^{2} V \oplus V \cong \mathfrak{g}_{2} \oplus V \oplus V$. By dimension counting, $\mathfrak{K} \cong \mathfrak{g}_{2} \oplus V$. Hence,

$$
\Lambda^{2} U \cong \mathfrak{K} \oplus \mathfrak{K}^{\perp} \quad \text { with } \quad \operatorname{dim} \mathfrak{K}^{\perp}=7
$$

- Obviously, $-\mathbf{1}_{U} \in K$ acts trivially on $\Lambda^{2} U$. One can show that the map

$$
K / \pm 1 \rightarrow S O\left(\mathfrak{K}^{\perp}\right)
$$

is an isomorphism. Hence,

$$
K \cong \operatorname{Spin}(7)
$$

Rem. Unlike in the G_{2} case, the orbit of Ω_{0} in $\Lambda^{4}\left(\mathbb{R}^{8}\right)^{*}$ is not open.

Spin(7) as a structure group

A $\operatorname{Spin}(7)$-structure on M^{8} is determined by $\Omega \in \Omega^{4}(M)$, which is pointwise linearly equivalent to the Cayley form.

Theorem

Ω is parallel wrt the Levi-Civita connection of g_{Ω} iff $d \Omega=0$.

Proof. [Salamon, Prop. 12.4].

Prop. $\quad \mathcal{R}^{\operatorname{Spin}(7)} \cong W$, where W is an irreducible $\operatorname{Spin}(7)$ representation of dimension 168. In particular, an 8-mfld with holonomy in $\operatorname{Spin}(7)$ is Ricci-flat.

Proof. [Salamon, Cor. 12.6].

Examples

Ex.

- Since $S U(3) \subset G_{2}$, for any Z with $\operatorname{Hol}(Z) \subset S U(3)$, $M=Z \times \mathbb{R}$ can be considered as G_{2}-mfld
- First local examples were constructed by Bryant in 1987.

Theorem (Bryant-Salamon)

Let M be a positive self-dual Einstein four-manifold. Then there exists a metric with holonomy in G_{2} on the total space of $\Lambda_{-}^{2} T^{*} M$.

Sketch of the proof. Let $P \rightarrow M$ be the principal $S O(4)$-bundle. Since $\mathfrak{s o}(4)=\mathfrak{s o}_{+}(3) \oplus \mathfrak{s o}_{-}(3)$ we can decompose the Levi-Vita connection: $\tau=\tau_{+}+\tau_{-}$. Further, since $\operatorname{Sp}(1) \cong \operatorname{Spin}(3)$ we have

$$
\mathfrak{s o}(3)=\mathfrak{s p i n}(3) \cong \mathfrak{s p}(1)=\operatorname{Im} \mathbb{H} .
$$

Hence, $\tau_{ \pm} \in \Omega^{1}(P ; \operatorname{Im} \mathbb{H})$. Similarly, the canonical 1-form θ can be thought of as an element of $\Omega^{1}(P ; \mathbb{H})$.

Consider the action of $S O(4)=S p_{+}(1) \times S p_{-}(1) / \pm 1$ on $P \times \operatorname{Im} \mathbb{H}_{x}$

$$
\left[q_{+}, q_{-}\right] \cdot(p, x)=\left(p \cdot\left[q_{+}, q_{-}\right], q_{-} x \bar{q}_{-}\right)
$$

Clearly, $P \times \operatorname{Im} \mathbb{H} / S O(4) \cong \Lambda_{-}^{2} T^{*} M$.
Put $\alpha=d x+\tau_{-} x-x \tau_{-} \in \Omega^{1}(P \times \operatorname{Im} \mathbb{H}, \operatorname{Im} \mathbb{H})$. It is easy to check that the following forms are $S O(4)$-equivariant:

$$
\begin{aligned}
\gamma_{1} & =\alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3}, \\
\gamma_{2} & =-\operatorname{Re}(\alpha \wedge \bar{\theta} \wedge \theta)=\alpha_{1} \wedge \omega_{1}+\alpha_{2} \wedge \omega_{2}+\alpha_{3} \wedge \omega_{3}, \\
\varepsilon_{1} & =\frac{1}{6} \operatorname{Re}(\bar{\theta} \wedge \theta \wedge \bar{\theta} \wedge \theta)=\pi^{*} v o l_{M}, \\
\varepsilon_{2} & =\frac{1}{4} \operatorname{Re}(\alpha \wedge \alpha \wedge \bar{\theta} \wedge \theta)= \\
& =\alpha_{2} \wedge \alpha_{3} \wedge \omega_{1}+\alpha_{3} \wedge \alpha_{1} \wedge \omega_{2}+\alpha_{1} \wedge \alpha_{2} \wedge \omega_{3} .
\end{aligned}
$$

Moreover, for any functions $f=f\left(|x|^{2}\right), h=h\left(|x|^{2}\right)$ without zeros the symmetric tensor

$$
g=f^{2}\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right)+h^{2}\left(\theta_{0}^{2}+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{4}^{2}\right)
$$

determines a metric on $\Lambda_{-}^{2} T^{*} M$. Then

$$
\varphi=f^{3} \gamma_{1}+f h^{2} \gamma_{2}
$$

determines a G_{2}-structure on $\Lambda_{-}^{2} T^{*} M$. We have also

$$
* \varphi=h^{4} \varepsilon_{1}-f^{2} h^{2} \varepsilon_{2}
$$

With the help of the fact that M is positive, self-dual, and Einstein, equations $d \varphi=0=d * \varphi$ essentially imply that

$$
f(r)=(1+r)^{-1 / 4} \quad h(r)=\sqrt{2 \varkappa}(1+r)^{1 / 4}
$$

Here $\varkappa=($ sc.curv. $) / 12>0$.

Rem. Hitchin showed that the only complete self-dual Einstein 4 -mflds with positive sc. curvature are S^{4} and $\mathbb{C} P^{2}$ with their standard metrics. For these 4 -mflds the holonomy of the Bryant-Salamon metric equals G_{2}.

Using similar technique, Bryant and Salamon prove the following.

Theorem

Let M^{3} be S^{3} or its quotient by a finite group. Then there exists an explicite metric with holonomy G_{2} on $M \times \mathbb{R}^{4}$ (total space of the spinor bundle).

Consider S^{4} as $\mathbb{H} \mathbb{P}^{1}$. Let \mathbb{S} denote the tautological quaternionic line bundle (the spinor bundle).

Theorem

The total space of \mathbb{S} carries an explicite metric with holonomy $\operatorname{Spin}(7)$.

Calabi metric revisited

Recall: If S^{1} acts on $\mathbb{C}^{4} \cong \mathbb{H}^{2}$ via

$$
\lambda \cdot\left(z_{1}, z_{2}, w_{1}, w_{2}\right)=\left(\lambda z_{1}, \lambda z_{2}, \bar{\lambda} w_{1}, \bar{\lambda} w_{2}\right)
$$

then the hyperKähler moment map is given by

$$
\mu=-\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|w_{1}\right|^{2}-\left|w_{2}\right|^{2}\right) i-2 k\left(z_{1} w_{1}+z_{2} w_{2}\right)
$$

In particular, the induced metric on $\mu^{-1}(i) / S^{1} \cong T^{*} \mathbb{C} P^{1}$ has holonomy $S p(1) \cong S U(2)$.

Want to study asymptotic properties of the Calabi metric. First consider

$$
\left.\begin{array}{c}
\mu=0 \\
z \neq 0
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{c}
\left(w_{1}, w_{2}\right)=a\left(z_{2},-z_{1}\right) \\
|a|=1
\end{array}\right.
$$

Hence, the map $\mathbb{C}^{2} \rightarrow \mathbb{C}^{4}$

$$
\left(t_{1}, t_{2}\right) \mapsto\left(t_{1}, t_{2}, t_{2},-t_{1}\right)
$$

induces a diffeomorphism $\mathbb{C}^{2} / \pm 1 \cong \mu^{-1}(0) / S^{1}$ (away from the singular pt). It is easy to see that in fact this is an isometry.

Observe also that we have a commutative diagram

where the map χ is induced by the inclusion in the top row. Moreover, χ is holomorphic and

$$
\chi^{-1}(z)= \begin{cases}p t, & z \neq 0 \\ \mathbb{P}^{1}, & z=0\end{cases}
$$

i.e. χ is a resolution of singularity.

Prop. Let g denote the Calabi metric on $T^{*} \mathbb{C P}^{1}$. Then

$$
\chi^{*} g=g_{f l a t}+O\left(r^{-4}\right)
$$

where r is the radial function on $\mathbb{C}^{2} / \pm 1$.

A metric with asymptotics as in the Prop. above is called ALE (asymptotically locally Euclidean).
The fact that the leading term is $g_{\text {flat }}$ follows from the following observation. Denote by $M_{\rho}=\mu^{-1}(-i \rho) / S^{1}$, where $\rho \in \mathbb{R}$. Clearly, M_{ρ} is diffeomorphic to $T^{*} \mathbb{C} P^{1}$ for any ρ. As $\rho \rightarrow 0$, the metric g_{ρ} tends to the flat metric on $M_{0} \cong \mathbb{C}^{2} / \pm 1$ (away from the singularity).

A sketch of the construction of a compact G_{2}-mfld Consider \mathbb{T}^{7} with its flat G_{2}-structure $\left(g_{0}, \varphi_{0}\right)$. The group \mathbb{Z}_{2}^{3} acts on \mathbb{T}^{7} via

$$
\begin{aligned}
\alpha\left(x_{1}, \ldots, x_{7}\right) & =\left(x_{1}, x_{2}, x_{3},-x_{4},-x_{5},-x_{6},-x_{7}\right) \\
\beta\left(x_{1}, \ldots, x_{7}\right) & =\left(x_{1},-x_{2},-x_{3}, x_{4}, x_{5}, \frac{1}{2}-x_{6},-x_{7}\right) \\
\gamma\left(x_{1}, \ldots, x_{7}\right) & =\left(-x_{1}, x_{2},-x_{3}, x_{4}, \frac{1}{2}-x_{5}, x_{6}, \frac{1}{2}-x_{7}\right)
\end{aligned}
$$

Lem. The singular set S of $\mathbb{T}^{7} / \mathbb{Z}_{2}^{3}$ consists of 12 disjoint \mathbb{T}^{3} with singularities modelled on $\mathbb{T}^{3} \times \mathbb{C}^{2} / \pm 1$.

Since $T^{*} \mathbb{P}^{1}$ is asymptotic to flat $\mathbb{C}^{2} / \pm 1$, we can cut out a small neihbourhood of each connected component of S and replace it with $\mathbb{T}^{3} \times T^{*} \mathbb{P}^{1}$. The metric on the resulting mfld, as well as a G_{2}-structure, is obtained by glueing the flat metric on \mathbb{T}^{7} to the product (non-flat) metric on $\mathbb{T}^{3} \times T^{*} \mathbb{P}^{1}$. The 3 -form φ is not parallel, but can be chosen so that $d \varphi=0$ and $d * \varphi$ is small.

Then Joyce proves that such (g, φ) can be deformed into a metric with holonomy G_{2}.

Examples of compact $\operatorname{Spin}(7)$-mflds can be constructed in a similar manner.

Holonomy groups
 in Riemannian geometry

Lecture 8

Spin Geometry

December 15, 2011

Clifford algebras

Recall: For $n \geq 3$, Spin (n) is a connected simply connected group fitting into the short exact sequence

$$
0 \rightarrow\{ \pm 1\} \rightarrow \operatorname{Spin}(n) \rightarrow S O(n) \rightarrow 0
$$

Aim: Construct spinor groups explicitly.
Let V be a (real) finite dimensional vector space. Denote by $T V$ the tensor algebra of $V: T V=\mathbb{R} \oplus V \oplus V \otimes V \oplus \ldots$

Def. Let q be a quadratic form on V. Then the Clifford algebra is defined by

$$
C l(V, q)=T V /\langle v \cdot v+q(v)\rangle .
$$

In other words, the algebra $C l(V, q)$ is generated by elements of V and 1 subject to relations

$$
v \cdot v=-q(v) \quad \Longleftrightarrow \quad v \cdot w+w \cdot v=-2 q(v, w) .
$$

Rem. $C l(V, q)$ is $\mathbb{Z} / 2 \mathbb{Z}$-graded: $C l(V, q)=C l^{0}(V, q) \oplus C l^{1}(V, q)$.

From now on we assume that q is positive definite for the sake of simplicity.

Prop. There is a (canonical) vector space isomorphism $\Lambda V \longrightarrow$ $C l(V, q)$.

Proof. Choose an orthogonal basis $\left(e_{1}, \ldots, e_{n}\right)$ of V. Then $e_{i} \cdot e_{j}=-e_{j} \cdot e_{i}$ for all i, j. Hence, the map

$$
\begin{aligned}
\varphi: \Lambda V & \longrightarrow C l(V, q) \\
e_{i_{1}} \wedge \cdots \wedge e_{i_{k}} & \mapsto e_{i_{1}} \ldots e_{i_{k}}
\end{aligned}
$$

is well-defined and surjective. This map is also injective (excercise).

Cor. $\operatorname{dim} C l(V, q)=2^{n}$, where $n=\operatorname{dim} V$.

Rem. ΛV and $C l(V, q)$ are not isomorphic as algebras (unless $q=0$).

In fact we have
Prop. With respect to the isomorphism $C l\left(\mathbb{R}^{n}, q_{s t}\right) \cong \Lambda\left(\mathbb{R}^{n}\right)^{*}$, Clifford multiplication between $v \in \mathbb{R}^{n}$ and $\varphi \in \Lambda\left(\mathbb{R}^{n}\right)^{*}$ can be written as

$$
v \cdot \varphi=q_{s t}(v, \cdot) \wedge \varphi-i_{v} \varphi
$$

Proof. [Lawson, Michelsohn. Prop. I.3.9]
Let x be a unit in $C l(V, q)$. Define

$$
A d_{x}: C l(V, q) \longrightarrow C l(V, q), \quad A d_{x} y=x y x^{-1}
$$

Observe that each non-zero $v \in V \hookrightarrow C l(V, q)$ is a unit:

$$
v^{-1}=-\frac{1}{q(v)} v
$$

Prop. For any non-zero $v \in V$ the $m a p ~ A d v$ preserves V and the following equality holds:

$$
-A d_{v} w=w-2 \frac{q(v, w)}{q(v, v)} v
$$

(i.e. $-A d_{v}$ is the reflection in v^{\perp}).

Proof.

$$
\begin{aligned}
A d_{v} w & =-\frac{1}{q(v, v)} v \cdot w \cdot v=\frac{1}{q(v, v)} v \cdot(v \cdot w+2 q(v, w)) \\
& =-w+2 \frac{q(v, w)}{q(v, v)} v
\end{aligned}
$$

Rem. $A d_{v}$ preserves q but not orientation (in general).

Spin groups

Def. $\operatorname{Spin}(V, q)$ is the group generated by

$$
\{v \cdot w \mid q(v)=1=q(w)\} \subset C l^{\times}(V, q) .
$$

It is well-known that the group $O(V, q)$ is generated by reflections (recall the normal form for orthogonal matrices and observe that each rotation of the plane is a product of two reflections). Then $S O(V, q)$ is generated by compositions of even numbers of reflections. In other words, the map

$$
A d: \operatorname{Spin}(V, q) \longrightarrow S O(V, q)
$$

is surjective.

Prop. Ker $A d \cong\{ \pm 1\}$, i.e. we have the short exact sequence

$$
0 \longrightarrow\{ \pm 1\} \longrightarrow \operatorname{Spin}(V, q) \longrightarrow S O(V, q) \longrightarrow 0
$$

Proof. Denote by ~ the automorphism of Cl generated by $\tilde{\sim}: T V \rightarrow T V, \tilde{v}=-v$. Let

$$
\widetilde{A d}_{v} w=\tilde{v} \cdot w \cdot v, \quad w \in C l(V, q)
$$

This induces a homomorphism

$$
\widetilde{A d}: C l^{\times}(V, q) \longrightarrow G L(C l(V, q))
$$

Choose an ONB $\left(e_{1}, \ldots, e_{n}\right)$ of V. Suppose $\varphi \in C l^{\times}(V, q)$ belongs to $\operatorname{Ker} \widetilde{A d}: C l^{\times} \rightarrow G L(V)$, i.e. $\tilde{\varphi} \cdot w=w \cdot \varphi$ for all $w \in V$. Write $\varphi=\varphi_{0}+\varphi_{1}$, where $\varphi_{i} \in C l^{i}(V, q)$. Then

$$
\left(\varphi_{0}-\varphi_{1}\right) w=w\left(\varphi_{0}+\varphi_{1}\right) \quad \Longleftrightarrow \quad\left\{\begin{array}{r}
\varphi_{0} \cdot w=w \cdot \varphi_{0} \tag{1}\\
-\varphi_{1} \cdot w=w \cdot \varphi_{1}
\end{array}\right.
$$

$$
\text { Proof of Ker } A d=\{ \pm 1\} \text { continued }
$$

Further, write $\varphi_{0}=\psi_{0}+e_{1} \psi_{1}$, where ψ_{0}, ψ_{1} are expressions in e_{2}, \ldots, e_{n} only. We have

$$
\begin{array}{rlrl}
e_{1}\left(\psi_{0}+e_{1} \psi_{1}\right) & =\left(\psi_{0}+e_{1} \psi_{1}\right) e_{1} & & \left(\text { by }(1) \text { with } w=e_{1}\right) \\
& =\psi_{0} e_{1}+e_{1} \psi_{1} e_{1} & \\
& =e_{1} \psi_{0}-e_{1}^{2} \psi_{1} & & \left(\text { since } \psi_{i} \in C l^{i}\right)
\end{array}
$$

Hence, $\psi_{1}=0 \Rightarrow \varphi_{0}$ does not involve $e_{1} \Rightarrow \varphi_{0}=\lambda \cdot 1$.
A similar argument shows that φ_{1} does not involve any $e_{j} \Rightarrow \varphi_{1}=0$.
Thus, $\operatorname{Ker}\left(\widetilde{A d}: C l^{\times} \rightarrow G L(V)\right) \cong \mathbb{R}^{*}$. Therefore,
$\operatorname{Ker}(\widetilde{A d}: \operatorname{Spin}(V, q) \rightarrow S O(V)) \cong\{ \pm 1\}$. Finally, $\widetilde{A d}=A d$ on $\operatorname{Spin}(V, q)$.

Prop. $\operatorname{Spin}(n):=\operatorname{Spin}\left(\mathbb{R}^{n}, q_{s t}\right)$ is a nontrivial double covering of $S O(n)$.

Proof. It suffices to show that 1 and -1 can be joined by a path in $\operatorname{Spin}(n)$. The path

$$
\begin{aligned}
\gamma(t) & =\left(e_{1} \cos t+e_{2} \sin t\right)\left(e_{2} \sin t-e_{1} \cos t\right)= \\
& =\cos 2 t \cdot 1+\sin 2 t \cdot e_{1} e_{2}
\end{aligned}
$$

does the job.

Cor. $\operatorname{Spin}(n)$ is connected and simply connected provided $n \geq 3$.

Proof. Follows from the facts that $S O(n)$ is connected and $\pi_{1}(S O(n)) \cong\{ \pm 1\}$.

Ex. ("accidental isomorphisms in low dimensions")

1) $\operatorname{Spin}(2):=U(1) \cong S^{1}$
2) $\operatorname{Spin}(3) \cong S p(1) \cong S U(2)$
3) $\operatorname{Spin}(4) \cong S p(1) \times S p(1)$
4) $\operatorname{Spin}(5) \cong S p(2)$

To see this, consider the action of $S p(2)$ on $M_{2}(\mathbb{H})$ by conjugation. Then \mathbb{R}^{5} can be identified with the subspace of traceless, quaternion-Hermitian matrices. Hence, $S p(2) / \pm 1 \cong S O(5)$.
5) $\operatorname{Spin}(6) \cong S U(4)$

Some facts from representation theory of Clifford algebras and Spin groups

Theorem

Let ν_{n} and $\nu_{n}^{\mathbb{C}}$ denote the number of inequivalent irreducible real and complex representations of $C l_{n}:=C l\left(\mathbb{R}^{n}, q_{s t}\right)$ and $C l_{n} \otimes \mathbb{C}$ respectively. Then

$$
\nu_{n}=\left\{\begin{array}{ll}
2 & n \equiv 1(\bmod 4), \\
1 & \text { otherwise }
\end{array} \quad \text { and } \quad \nu_{n}^{\mathbb{C}}= \begin{cases}2 & n \text { is odd } \\
1 & n \text { is even }\end{cases}\right.
$$

Proof. [Lawson, Michelsohn. Thm I.5.7].

Def. The real (complex) spinor representation of $\operatorname{Spin}(n)$ is the homomorphism

$$
\begin{array}{ll}
\Delta_{n}: \operatorname{Spin}(n) \rightarrow \operatorname{End}_{\mathbb{R}}(S), & \text { if real } \\
\Delta_{n}^{\mathbb{C}}: \operatorname{Spin}(n) \rightarrow \operatorname{End}_{\mathbb{C}}(S), & \text { if complex }
\end{array}
$$

given by restricting an irreducible real (complex) representation of $C l_{n}\left(C l_{n} \otimes \mathbb{C}\right)$ to $\operatorname{Spin}(n)$.

Theorem

Let W be a real $C l_{n}$-representation. Then there exists a scalar product on W s.t. $\left\langle v \cdot w, v \cdot w^{\prime}\right\rangle=\left\langle w, w^{\prime}\right\rangle \forall v \in V$ s.t. $\|v\|=1$.

Cor. $\left\langle v \cdot w, w^{\prime}\right\rangle=-\left\langle w, v \cdot w^{\prime}\right\rangle$.

Spin structures

Let $P \rightarrow M$ be a principal $S O(n)$-bundle, $n \geq 3$.
Def. The Spin-structure on P (equivalently, on $E=P \times_{S O(n)} \mathbb{R}^{n}$) is a principal $\operatorname{Spin}(n)$-bundle $\widetilde{P} \rightarrow M$ together with a $\operatorname{Spin}(n)$-equivariant map $\xi: \widetilde{P} \rightarrow P$, which is (fiberwise) a 2 -sheeted covering.

Thus, we have a commutative diagram

From the short exact sequence

$$
1 \rightarrow\{ \pm 1\} \rightarrow S \operatorname{pin}(n) \rightarrow S O(n) \rightarrow 1
$$

we obtain

$$
\begin{aligned}
H^{0}(M ; S O(n)) & \rightarrow H^{1}\left(M ; \mathbb{Z}_{2}\right) \rightarrow H^{1}(M ; S p i n(n)) \rightarrow \\
& \rightarrow H^{1}(M ; S O(n)) \xrightarrow{\delta} H^{2}\left(M ; \mathbb{Z}_{2}\right) .
\end{aligned}
$$

Then $\delta[P]$ equals the second Stiefel-Whitney class, $w_{2}(P)$. Hence, P admits a spin structure iff $w_{2}(P)=0$. If this is the case, all spin structures are classified by $H^{1}\left(M, \mathbb{Z}_{2}\right)$ (assuming M is connected).

Def. A spin mfld is an oriented Riemannian mfld with a spin structure on its tangent bundle.

Rem. Thus, M admits a spin structure iff $w_{2}(M)=0$. This is a topological condition on M, not on the Riemannian metric.

Rem. Since $\xi: \widetilde{\sim} P \rightarrow P$ is a covering, $\xi^{*} \varphi_{L C}$ is a (distinguished) connection on \widetilde{P}.

For the spinor representation $\Delta: \operatorname{Spin}(n) \rightarrow \operatorname{End}(S)$ the associated spinor bundle

$$
S:=\widetilde{P} \times_{\operatorname{Spin}(n)} S
$$

is equipped with a connection and Euclidean scalar product.
Rem. For any $m \in M$, the fibre S_{m} is a module over $C l\left(T_{m} M\right)$.
Denote by $R^{S} \in \Omega^{2}(M ; \operatorname{End}(S))$ the induced curvature form.
Prop. Let $e=\left(e_{1}, \ldots, e_{n}\right)$ be a local section of $P=P_{S O}$. Then

$$
\begin{equation*}
R^{S}(v, w) \sigma=\sum_{i, j}\left\langle R(v, w) e_{i}, e_{j}\right\rangle e_{i} e_{j} \cdot \sigma \tag{2}
\end{equation*}
$$

Proof. [Lawson, Michelson. Thm I.4.15]

Parallel spinors and holonomy groups

Theorem

Assume M admits a nontrivial parallel spinor. Then M is Ricci-flat.
Proof. Assume $\psi \in \Gamma(S)$ is parallel. Then
$d^{\nabla}(\nabla \psi)=d^{\nabla} \cdot d^{\nabla} \psi=0 \Longleftrightarrow R^{S}(v, w) \cdot \psi=0$ for any $v, w \in \mathfrak{X}(M)$. With the help of (2) with $v=e_{k}$ we obtain

$$
\begin{aligned}
& 0= \sum_{i, j, k}\left\langle R\left(e_{k}, w\right) e_{i}, e_{j}\right\rangle e_{k} e_{i} e_{j} \cdot \psi=\sum_{i, j, k}\left\langle R\left(e_{i}, e_{j}\right) e_{k}, w\right\rangle e_{i} e_{j} e_{k} \cdot \psi \\
&=\frac{1}{3} \sum_{i \neq j \neq k \neq i}\left\langle R\left(e_{i}, e_{j}\right) e_{k}+R\left(e_{j}, e_{k}\right) e_{i}+R\left(e_{k}, e_{i}\right) e_{j}, w\right\rangle e_{i} e_{j} e_{k} \cdot \psi \\
&+\sum_{i, j}\left\langle R\left(e_{i}, e_{j}\right) e_{i}, w\right\rangle e_{i} e_{j} e_{i} \cdot \psi+\sum_{i, j}\left\langle R\left(e_{i}, e_{j}\right) e_{j}, w\right\rangle e_{i} e_{j} e_{j} \cdot \psi \\
&=0+\sum_{i, j,}\left\langle R\left(e_{i}, w\right) e_{i}, e_{j}\right\rangle e_{j} \cdot \psi-\sum_{i, j,}\left\langle R\left(e_{j}, w\right) e_{i}, e_{j}\right\rangle e_{i} \cdot \psi
\end{aligned}
$$

$$
=2 \operatorname{Ric}(w) \cdot \psi
$$

$$
\text { Proof of } \nabla \psi=0, \psi \neq 0 \Rightarrow \text { Ric }=0 \text { continued }
$$

Here Ric is viewed as a linear map $T M \rightarrow T M$, namely
$\operatorname{Ric}(w)=\sum_{j=1}^{n} R\left(e_{j}, w\right) e_{j}$. Hence

$$
\operatorname{Ric}(w) \cdot \psi=0 \quad \Longrightarrow \quad \operatorname{Ric}(w)^{2} \cdot \psi=-\|\operatorname{Ric}(w)\|^{2} \psi=0
$$

Hence, $\operatorname{Ric}(w)=0$ for all w.
Clearly, if M admits a parallel spinor then M must have a non-generic holonomy. Only metrics with the following holonomies

$$
\begin{equation*}
S U\left(\frac{n}{2}\right), S p\left(\frac{n}{4}\right), G_{2}, \operatorname{Spin}(7) \tag{3}
\end{equation*}
$$

are Ricci-flat.

Theorem

Let M be a complete, simply-connected, and irreducible Riemannian spin mfld. Then M admits a not-trivial parallel spinor iff $\operatorname{Hol}(M)$ is one of the four groups listed in (3).

Dirac bundles

Let $P \rightarrow M$ be the principal $S O(n)$-bundle of orthonormal oriented frames. Then $C l(M):=P \times_{S O(n)} C l\left(\mathbb{R}^{n}\right)$ is called the Clifford bundle of M. Notice: $C l_{m}(M)=C l\left(T_{m} M\right)$.

Def. A Dirac bundle is a bundle S of left modules over $C l(M)$ equipped with an Euclidean scalar product and a connection s.t. the following holds:

$$
\begin{aligned}
& \left\langle v \cdot \sigma_{1}, v \cdot \sigma_{2}\right\rangle=\|v\|^{2}\left\langle\sigma_{1}, \sigma_{2}\right\rangle \\
& \nabla(\varphi \cdot \sigma)=\left(\nabla^{L C} \varphi\right) \cdot \sigma+\varphi \cdot(\nabla \sigma)
\end{aligned}
$$

Here $\sigma, \sigma_{i} \in \Gamma(S), v \in \mathfrak{X}(M)$, and $\varphi \in \Gamma(C l(M))$.

- Spinor bundle S is a Dirac bundle [See LM. II. 4 for details].
- $\Lambda T^{*} M \cong C l(M)$ is a Dirac bundle (with the Levi-Civita connection). Hence, the existence of Dirac bundles does not require M to be spin.

Dirac operators

Let S be a Dirac bundle.
Def. The map

$$
D: \Gamma(S) \xrightarrow{\nabla} \Gamma\left(T^{*} M \otimes S\right) \xrightarrow{C l} \Gamma(S)
$$

is called the Dirac operator.
In terms of a local frame $\left(e_{1}, \ldots, e_{n}\right)$ of $T M$ the Dirac operator is given by

$$
D \sigma=\sum_{i=1}^{n} e_{i} \cdot\left(\nabla_{e_{i}} \sigma\right)
$$

Prop. D is elliptic and formally self-adjoint operator (wrt the L_{2} scalar product).

Proof. Ellipticity: $\sigma_{\xi}(D)=i \xi \cdot: S \rightarrow S$ is clearly invertible for any $\xi \neq 0$.
To prove that D is formally self-adjoint, choose a local orthonormal basis $e=\left(e_{1}, \ldots, e_{n}\right)$ of $T M$ s.t. $\left(\nabla e_{i}\right)_{m}=0$ for all i. Then

$$
\begin{aligned}
\left\langle D \sigma_{1}, \sigma_{2}\right\rangle_{m} & =\sum_{j}\left\langle e_{j} \cdot \nabla_{e_{j}} \sigma_{1}, \sigma_{2}\right\rangle_{m}= \\
& =-\sum_{j}\left\langle\nabla_{e_{j}} \sigma_{1}, e_{j} \cdot \sigma_{2}\right\rangle_{m}= \\
& =-\sum_{j}\left(e_{j} \cdot\left\langle\sigma_{1}, e_{j} \cdot \sigma_{2}\right\rangle-\left\langle\sigma_{1}, e_{j} \cdot \nabla_{e_{j}} \sigma_{2}\right\rangle\right)_{m}
\end{aligned}
$$

Proof continued

Further, define $v \in \mathfrak{X}(M)$ by the condition

$$
\langle v, w\rangle=-\left\langle\sigma_{1}, w \cdot \sigma_{2}\right\rangle \quad \text { for all } \quad w \in \mathfrak{X}(M)
$$

Then

$$
\begin{aligned}
\operatorname{div}_{m}(v) & =\sum_{j}\left\langle\nabla_{e_{j}} v, e_{j}\right\rangle_{m} \\
& =\sum_{j}\left(e_{j} \cdot\left\langle v, e_{j}\right\rangle\right)_{m} \\
& =-\sum_{j}\left(e_{j} \cdot\left\langle\sigma_{1}, e_{j} \cdot \sigma_{2}\right\rangle\right)_{m}
\end{aligned}
$$

Hence, $\left\langle D \sigma_{1}, \sigma_{2}\right\rangle=\operatorname{div}(v)+\left\langle\sigma_{1}, D \sigma_{2}\right\rangle$ pointwise. Hence, D is formally self-adjoint.

Examples of Dirac operators

1) $M=\mathbb{R}^{2}$. Then $C l\left(\mathbb{R}^{2}\right)$ has a basis $\left(1, e_{1}, e_{2}, e_{1} \cdot e_{2}\right)$. Then we have the isomorphism of vector spaces

$$
C l\left(\mathbb{R}^{2}\right)=C l^{0}\left(\mathbb{R}^{2}\right) \oplus C l^{1}\left(\mathbb{R}^{2}\right) \cong \mathbb{C} \oplus \mathbb{C}
$$

Notice that the Clifford multiplication by $v \in \mathbb{R}^{2}$ is an antidiagonal operator. Then

$$
D=\left(\begin{array}{cc}
0 & -\frac{\partial}{\partial z} \\
\frac{\partial}{\partial \bar{z}} & 0
\end{array}\right)
$$

2) Similarly, for $M=\mathbb{R}^{4}$ one obtains

$$
D=\left(\begin{array}{cc}
0 & -\frac{\partial}{\partial q} \\
\frac{\partial}{\partial \bar{q}} & 0
\end{array}\right)
$$

where $\frac{\partial}{\partial \bar{q}}: C^{\infty}\left(\mathbb{R}^{4} ; \mathbb{H}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{4} ; \mathbb{H}\right)$,
$\frac{\partial f}{\partial \bar{q}}=\frac{\partial f}{\partial x_{0}}+i \frac{\partial f}{\partial x_{1}}+j \frac{\partial f}{\partial x_{2}}+k \frac{\partial f}{\partial x_{3}}$ is the Fueter operator.

Examples of Dirac operators: continued

3) M is a Riemannian mfld, $S=C l(M)$. Then

$$
D=d+d^{*}: \quad \Omega(M) \rightarrow \Omega(M) .
$$

This follows from the following two observations:
a) $v \cdot \varphi=q_{s t}(v, \cdot) \wedge \varphi-i_{v} \varphi \quad$ if $\quad v \in \mathbb{R}^{n}, \quad \varphi \in \Lambda\left(\mathbb{R}^{n}\right)^{*}$
b) $d=\sum_{j} e_{j}^{*} \wedge \nabla_{e_{j}}, \quad d^{*}=-\sum_{j} \imath_{e_{j}} \nabla_{e_{j}}$

This is just a restatement of the facts that the sequences
$\Gamma\left(\Lambda^{k} T^{*} M\right) \xrightarrow{\nabla^{L C}} \Gamma\left(T^{*} M \otimes \Lambda^{k} T^{*} M\right) \xrightarrow{\text { Alt }} \Gamma\left(\Lambda^{k+1} T^{*} M\right)$
$\Gamma\left(\Lambda^{k} T^{*} M\right) \xrightarrow{\nabla^{L C}} \Gamma\left(T^{*} M \otimes \Lambda^{k} T^{*} M\right) \xrightarrow{- \text { contr. }} \Gamma\left(\Lambda^{k-1} T^{*} M\right)$
represent d and d^{*} respectively. Details concerning d^{*} can be found in [LM. Lemma II.5.13].

Weitzenböck formulae and Bochner technique

Assume M is a compact Riemannian mfld. Let $E \rightarrow M$ be an Euclidean vector bundle equipped with a connection ∇. Define

$$
\nabla_{v, w}^{2} s=\nabla_{v}\left(\nabla_{w} s\right)-\nabla_{\nabla_{v} w} s
$$

where $s \in \Gamma(E), v, w \in \mathfrak{X}(M)$. Notice that

$$
\nabla_{v, w}^{2}-\nabla_{w, v}^{2}=R(v, w)
$$

Hence, $\quad \nabla_{\cdot, \cdot}^{2} \in \Gamma\left(T^{*} M \otimes T^{*} M \otimes S\right)$.
Def. The map

$$
\nabla^{*} \nabla: \Gamma(S) \xrightarrow{\nabla^{2}} \Gamma\left(T^{*} M \otimes T^{*} M \otimes S\right) \xrightarrow{-t r} \Gamma(S)
$$

is called the connection Laplacian.
In terms of local orthonormal frames we have

$$
\nabla^{*} \nabla s=-\sum_{j} \nabla_{e_{j}, e_{j}}^{2} s
$$

Prop. The operator $\nabla^{*} \nabla$ is formally self-adjoint and satisfies

$$
\left\langle\nabla^{*} \nabla s_{1}, s_{2}\right\rangle_{L_{2}}=\left\langle\nabla s_{1}, \nabla s_{2}\right\rangle_{L_{2}}
$$

In particular, $\nabla^{*} \nabla$ is non-negative.

Proof. Similar to the proof of the fact that D is formally self-adjoint. For details see [LM. Prop. II.2.1.].

Let S be a Dirac bundle. If $R \in \Omega^{2}(M ; \operatorname{End}(S))$ is the curvature form, define $\mathcal{R} \in \Gamma(\operatorname{End}(S))$ by

$$
\mathcal{R}(s)=\frac{1}{2} \sum_{j, k} e_{j} e_{k} \cdot R\left(e_{j}, e_{k}\right)(s)
$$

Theorem (general Bochner identity)

$$
D^{2}=\nabla^{*} \nabla+\mathcal{R}
$$

Proof. Choose a local frame $\left(e_{1}, \ldots, e_{n}\right)$ of $T M$ s.t. $\left(\nabla e_{j}\right)_{m}=0$. Then

$$
\begin{aligned}
D^{2} & =\sum_{j, k} e_{j} \cdot \nabla_{e_{j}}\left(e_{k} \cdot \nabla_{e_{k}} \cdot\right) \\
& =\sum_{j, k} e_{j} e_{k} \cdot \nabla_{e_{j}}\left(\nabla_{e_{k}} \cdot\right) \\
& =\sum_{j, k} e_{j} e_{k} \cdot \nabla_{e_{j}, e_{k}}^{2} \\
& =-\sum_{j} \nabla_{e_{j}, e_{j}}^{2}+\sum_{j<k} e_{j} e_{k} \cdot\left(\nabla_{e_{j}, e_{k}}^{2}-\nabla_{e_{k}, e_{j}}^{2}\right) \\
& =\nabla^{*} \nabla+\mathcal{R} .
\end{aligned}
$$

Cor. Let $\Delta=d d^{*}+d^{*} d$ be the Hodge Laplacian and $\nabla^{*} \nabla$ be the connection Laplacian on $T^{*} M$. Then

$$
\Delta=\nabla^{*} \nabla+\text { Ric }
$$

This follows from the previous thm for $D=d+d^{*}$, which acts on $C l(M) \cong \Lambda T^{*} M$. The computation of \mathcal{R} in this case follows the same lines as the proof of the implication

$$
\nabla \psi=0 \quad \Longrightarrow \quad \operatorname{Ric}(w) \cdot \psi=0
$$

[LM. Cor. II.8.3].

Theorem (Bochner)

$$
\text { Ric }>0 \quad \Longrightarrow \quad b_{1}(M)=0
$$

Theorem (Lichnerowicz)

Let M be spin and suppose S is a spinor bundle. Then

$$
D^{2}=\nabla^{*} \nabla+\frac{s}{4},
$$

where s is the scalar curvature.
Proof. [LM. Thm. II.8.8].

Cor.

$$
s>0 \quad \Longrightarrow \quad \text { Ker } D=0
$$

Theorem (Hitchin)

In every dimension $n>8, n \equiv 1(\bmod 8)$ or $n \equiv 2(\bmod 8)$, there exist compact mflds, which are homeomorpic to S^{n}, but which do not admit any Riemannian metric with $s>0$.

