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Smooth manifold comes equipped with a collection of charts
(Uα, ϕα), where {Uα} is an open covering and the maps
ϕβ ◦ ϕ−1

α : Rn → Rn are smooth.

A Lie group G is a group which has a structure of a smooth mfld
such that the structure maps, i.e. m : G×G→ G, ·−1 : G→ G,
are smooth.

g := TeG is a Lie algebra, i.e. a vector space endowed with a map
[·, ·] : Λ2g→ g satisfying the Jacobi identity:[

ξ, [η, ζ]
]

+
[
η, [ζ, ξ]

]
+
[
ζ, [ξ, η]

]
= 0.

Ex.
G GLn(R) GLn(C) SO(n) U(n)

g EndRn EndCn {At = −A} {Āt = −A}
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Identification: g ∼= {left-invariant vector fields on G}

• ξ1, . . . , ξn a basis of g

• ω1, . . . , ωn dual basis

ω :=
∑
ωi ⊗ ξi ∈ Ω1(G; g) canonical 1-form with values in g,

which satisfies the Maurer–Cartan equation

dω +
1

2
[ω ∧ ω] =

∑
i

dωi ⊗ ξi +
1

2

∑
i,j

ωi ∧ ωj ⊗ [ξi, ξj ] = 0.
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Vector bundles

A vector bundle E over M satisfies:

• E is a manifold endowed with a submersion π : E →M

• ∀m ∈M Em := π−1(m) has the structure of a vector space

• ∀m ∈M ∃U 3 m s.t. π−1(U) ∼= U × Em

Γ(E) = {s : M → E | π ◦ s = idM} space of sections of E

Ex.
E Γ(E)

TM X(M) vector fields
ΛkT ∗M Ωk(M) differential k-forms

T pq (M) :=
⊗p TM ⊗

⊗q T ∗M ? tensors of type (p, q)
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de Rham complex

Exterior derivative d : Ωk → Ωk+1 is the unique map with the
properties:

• df is the differential of f for f ∈ Ω0(M) = C∞(M)

• d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ, if α ∈ Ωp

• d2 = 0

Thus, we have the de Rham complex:

0→ Ω0 → Ω1 → · · · → Ωn → 0, n = dimM.

Betti numbers:

bk = dimHk(M ;R) = dim
Ker d : Ωk → Ωk+1

im d : Ωk−1 → Ωk
.
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Lie bracket of vector fields

A vector field can be viewed as an R–linear derivation of the
algebra C∞(M). Then X(M) is a Lie algebra:

[v, w] · f = v · (w · f)− w · (v · f).

The exterior derivative and the Lie bracket are related by

2dω(v, w) = v · ω(w)− w · ω(v)− ω([v, w])

Rem. “2” is optional in the above formula.
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Lie derivative

For v ∈ X(M) let ϕt be the corresponding 1-parameter
(semi)group of diffeomorphisms of M , i.e.

d

dt
ϕt(m) = v(ϕt(m)), ϕ0 = idM .

The Lie derivative of a tensor S is defined by

LvS =
d

dt

∣∣∣
t=0

ϕ∗tS

In particular, this means:

Lvf(m) =
d

dt

∣∣∣
t=0

f(ϕt(m)) = dfm
(
v(m)

)
, if f ∈ C∞(M),

Lvw(m) =
d

dt

∣∣∣
t=0

(
dϕt
)−1

m
w(ϕt(m)), if w ∈ X(M)

Lie groups Vector bundles Principal bundles Connections on G–bundles Holonomy Torsion

Properties of the Lie derivative

• Lv(S ⊗ T ) = (LvS)⊗ T + S ⊗ (LvT )

• Lvw = [v, w] for w ∈ X(M)

• [Lv,Lw] = L[v,w]

• Cartan formula

Lvω = ıvdω + d(ıvω) where ω ∈ Ω(M).

• [Lv, d] = 0 on Ω(M)
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Connections on vector bundles

Def. A connection on E is a linear map
∇ : Γ(E)→ Γ(T ∗M ⊗ E) satisfying the Leibnitz rule:

∇(fs) = df ⊗ s+ f∇s, ∀f ∈ C∞(M) and ∀s ∈ Γ(E)

For v ∈ X(M) we write

∇vs = v · ∇s, where ” · ”is a contraction.

Then
∇αv(βs) = α∇v(βs) = α(v · β)∇vs+ αβ∇vs.
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Curvature

Prop. For v, w ∈ X(M) and s ∈ Γ(E) the expression

∇v(∇ws)−∇w(∇vs)−∇[v,w]s

is C∞(M)–linear in v, w, and s.

Def. The unique section R = R(∇) of Λ2T ∗M ⊗ End(E)
satisfying

R(∇)(v ∧ w ⊗ s) = ∇v(∇ws)−∇w(∇vs)−∇[v,w]s

is called the curvature of the connection ∇.
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Choose local coordinates (x1, . . . , xn) on M

vi := ∂
∂xi

⇒ [vi, vj ] = 0

Then R(vi, vj)s = ∇v(∇ws)−∇w(∇vs)

Think of ∇vis as “partial derivative” of s

Curvature measures how much “partial derivatives” of sections of E
fail to commute.
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Twisted differential forms

Denote Ωk(E) := Γ(ΛkT ∗M ⊗ E)

Then ∇ : Ω0(E)→ Ω1(E) extends uniquely to
d∇ : Ωk(E)→ Ωk+1(E) via the rule

d∇(ω ⊗ s) = dω ⊗ s+ (−1)kω ∧∇s

We obtain the sequence

Ω0(E)
∇=d∇−−−−−→ Ω1(E)

d∇−−−→ Ω2(E)
d∇−−−→ . . .

d∇−−−→ Ωn(E) (1)

Then
(
d∇ ◦ d∇

)
σ = R(∇) · σ

Curvature measures the extend to which sequence (1) fails to be a
complex.
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Principal bundles

Let G be a Lie group

A principal bundle P over M satisfies:

• P is a manifold endowed with a submersion π : P →M

• G acts on P on the right and π(p · g) = π(p)

• ∀m ∈M the group G acts freely and transitively on
Pm := π−1(m). Hence Pm ∼= G

• Local triviality: ∀m ∈M ∃U 3 m s.t. π−1(U) ∼= U ×G
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Example: Frame bundle

Let E →M be a vector bundle. A frame at a point m is a linear
isomorphism p : Rk → Em.

Fr(E) :=
⋃
m,p

{
(m, p) | p is a frame at m

}
(i) GL(k;R) = Aut(Rk) acts freely and transitively on Frm(E):

p · g = p ◦ g.

(ii) A moving frame on U ⊂M is a set {s1, . . . , sk} of pointwise
linearly independent sections of E over U . This gives rise to a
section s of Fr(E) over U :

s(m)x =
∑

xisi(m), x ∈ Rk.

By (i) this defines a trivialization of Fr(E) over U .
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Frame bundle: variations

If in addition E is

• oriented, i.e. ΛtopE is trivial, Fr+(E) is a principal
GL+(k;R)–bundle

• Euclidean FrO is a principal O(k)–bundle

• Hermitian FrU is a principal U(k)–bundle

• quaternion–Hermitian is a principal Sp(k)–bundle

• . . . . . .

Def. Let G be a subgroup of GL(n;R), n = dimM . A
G–structure on M is a principal G–subbundle of FrM = Fr(TM).

• orientation ⇔ GL+(n;R)–structure

• Riemannian metric ⇔ O(n)–structure

• . . . . . .
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Associated bundle

P →M principal G–bundle
V G–representation, i.e. a homomorphism ρ : G→ GL(V ) is given

P ×G V :=
(
P × V

)
/G, action: (p, v) · g = (pg, ρ(g−1)v)

is called the bundle associated to P with fibre V .

Ex. For P = FrM , G = GL(n;R), and E = P ×G V we have

• E = TM for V = Rn (tautological representation)

• E = T ∗M for V =
(
Rn
)∗

• E = ΛkT ∗M for V = Λk
(
Rn
)∗

Sections of associated bundles correspond to equivariant maps:{
f : P → V | f(pg) = ρ(g−1)f(p)

}
≡ Γ(E)

f 7→ sf , sf (m) = [p, f(p)], p ∈ Pm
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Connection as horizontal distribution

For ξ ∈ g the Killing vector at p ∈ P is given by

Kξ(p) :=
d

dt

∣∣∣
t=0

(
p · exp tξ

)
Vp =

{
Kξ(p) | ξ ∈ g

} ∼= g is called vertical space at p

Def. A connection on P is a subbundle H of TP satisfying

(i) H is G–invariant, i.e. Hpg = (Rg)∗Hp
(ii) TP = V ⊕H

H is called a horizontal bundle.
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Connection as a 1–form

Given a connection on P , define ω ∈ Ω1(P ; g) as follows

TpP → Vp ∼= g

ω is called the connection form and satisfies:

(a) ω(Kξ) = ξ

(b) R∗gω = adg−1 ω, where ad denotes the adjoint representation

Prop. Every ω ∈ Ω1(P ; g) satisfying (a) and (b) defines a connec-
tion via

H = Kerω.
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Horizontal lift

Ker
(
π∗
)
p

= Vp. Hence
(
π∗
)
p
: Hp → Tπ(p)M is an isomorphism.

In particular, H ∼= π∗TM . Hence, we have

Prop. For any w ∈ X(M) there exists w̃ ∈ X(P ) s.t.

(i) w̃ is G–invariant and horizontal

(ii)
(
π∗
)
p
w̃ = w(π(p))

Vice versa, if w̃ ∈ X(P ) is G–invariant and horizontal, then ∃! w ∈
X(M) s.t. π∗w̃ = w.
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Invariant and equivariant forms

α̃ ∈ Ωk(P ) is called basic if ıvα̃ = 0 for any vertical vector field v.

Then ∀α ∈ Ωk(M) the form α̃ = π∗α is G–invariant and basic.
On the other hand, any G–invariant and basic k–form α̃ on P
induces a k–form on M . Notice: no connection required here.

V is a representation of G
α̃ ∈ Ωk(P ;V ) is G–equivariant if R∗gα̃ = ρ(g−1)α̃.

Ex. Connection 1-form is an equivariant form for V = g.

For basic and equivariant forms we have the identification

Ωk
G,bas(P, V ) ∼= Ωk(M ;E), π∗α←[ α
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Curvature tensor

Prop. Let ω be a connection form. The 2–form F̃ω = dω+ 1
2 [ω∧ω]

is basic and G–equivariant, i.e. R∗gF̃ = adg−1 F̃ .

Cor. Denote adP := P ×G,ad g. Then there exists F ∈
Ω2(M ; adP ) s.t. π∗F = F̃ .

The 2-form F is called the curvature form of the connection ω.
The defining equation for F is often written as

dω = −1
2 [ω ∧ ω] + F

and is called the structural equation.
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Covariant differentiation

P →M G–bundle, ρ : G→ GL(V ), E := P ×G V ,
f : P → V equivariant map, i.e. section of E.

Def. ∇f = dhf = df
∣∣
H is called the covariant derivative of f .

Rem. Denote τ = dρe : g→ gl(V ) = EndV . Then for a vertical
vector Kξ(p) we have: df(Kξ(p)) = −τ(ξ)f(p), that is all
information about df is contained in dhf .

Prop.

∇f = df + ω · f

Here “·” means the action of g on V via the map τ .
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Prop. ∇f ∈ Ω1(P ;V ) is G–equivariant and basic form.

Thus ∇f can be interpreted as an element of Ω1(M ;E) and we
have a diagram

MapG(P ;V )
∇

- Ω1
G,bas(P ;V )

Γ(E)

|||
|||
|||
|||
||| ∇E

- Ω1(M ;E)

|||
|||
|||
|||

f - ∇f

sf
?

- ∇Esf
?

Prop. ∇E is a connection on E.
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Bianchi identity

ω connection on P , F curvature
adP has an induced connection ∇

Theorem (Bianchi identity)

d∇F = 0

Proof. For ϕ̃ ∈ Ωk(P ; g) denote Dϕ̃ = dϕ̃+ [ω ∧ ϕ̃]

Step 1. For any ϕ ∈ Ωk(M ; adP ) we have d̃∇ϕ = Dϕ̃.

Can assume ϕ = s · ϕ0, where ϕ0 ∈ Ωk(M) and

Γ(adP ) 3 s! f ∈MapG(P ; g).

Then
d̃∇ϕ = ∇̃s ∧ ϕ̃0 + s̃ · dϕ̃0

= (df + [ω, f ]) ∧ ϕ̃0 + f dϕ̃0

= d(fϕ̃0) + [ω ∧ fϕ̃0]

= Dϕ
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Proof of the Bianchi identity (continued)

Step 2. DF̃ = 0, where F̃ = dω + 1
2 [ω ∧ ω].

dF̃ = 1
2

(
[dω ∧ ω]− [ω ∧ dω]

)
= [dω ∧ ω]

= [F̃ ∧ ω]− 1
2 [[ω ∧ ω] ∧ ω]

Jacobi identity =⇒ [[ω ∧ ω] ∧ ω] = 0

Thus, DF̃ = 0 ⇐⇒ d∇F = 0.
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Horizontal lift of a curve

γ : [0, 1]→M (piecewise) smooth curve, p0 ∈ Pγ(0).

Prop. [KN, Prop. II.3.1] For any γ there exists a unique horizontal
lift of γ through p0, i.e. a curve Γ: [0, 1] → P with the following
properties:

(i) Γ̇(t) ∈ HΓ(t) for any t ∈ [0, 1] (“ Γ is horizontal”)

(ii) Γ(0) = p0

(iii) π ◦ Γ = γ

Sketch of the proof. Let Γ0 be an arbitrary lift of γ, Γ0(0) = p0.
Then Γ = Γ0 · g for some curve g : [0, 1]→ G. Hence,

Γ̇ = Γ̇0 · g + Γ0 · ġ =⇒ ω(Γ̇) = adg−1ω(Γ̇0) + g−1ġ.

Then there exists a unique curve g, g(0) = e, such that
g−1ġ + adg−1ω(Γ̇0) = 0 ⇐⇒ ω(Γ̇) = 0.
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Parallel transport

γ : [0, 1]→M, γ(0) = m, γ(1) = n
Parallel transport Πγ : Pm → Pn is defined by

Πγ(p) = Γ(1),

where Γ is the horizontal lift of γ satisfying Γ(0) = p.

Prop.

(i) Πγ commutes with the action of G for any curve γ

(ii) Πγ is bijective

(iii) Πγ1∗γ2 = Πγ1 ◦Πγ2 , Πγ−1 = Π−1
γ
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Holonomy group

Denote Ωm :=
{

piecewise smooth loops in M based at m
}

Holp(ω) :=
{
g ∈ G | ∃γ ∈ Ωm s.t. Πγ(p) = pg

}
Prop.

(i) Holp is a Lie group

(ii) Holpg = Adg−1

(
Holp

)
Proof. Group structure follows from (iii) of the previous Prop.
For the structure of Lie group see [Kobayashi–Nomizu, Thm 4.2].
Statement (ii) follows from the observation

Γ is horizontal =⇒ Rg ◦ Γ is also horizontal.
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Reduction of connections

Let H ⊂ G be a Lie subgroup and Q ⊂ P be a principal H–bundle
(“structure group reduces to H”).

Def. A connection H on P reduces to Q if Hq ⊂ TqQ ∀q ∈ Q.

Prop. A connection reduces to Q ⇐⇒ ı∗ω takes values in h,
where ı : Q ↪→ P .

Proof. (⇒): TqQ ∼= Hq ⊕ h
(0, id)

- h

TqP
?

∩

ω
- g

?

∩

(⇐): ı∗ω is a connection on Q, hence TQ = HQ ⊕ h. Since
HQ ⊂ HP and rkHP = dimM = rkHQ, we obtain
HQ = HP .
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Reduction theorem

For p0 ∈ P define the holonomy bundle through p0 as follows:

Q(p0) := {p ∈ P | ∃ a horizontal curve Γ s.t. Γ(0) = p0, Γ(1) = p}.

Theorem (“Reduction theorem”)

Put H = Holp0(P, ω). Then the following holds:

(i) Q is a principal H–bundle

(ii) connection ω reduces to Q

Proof. (i): p ∈ Q, g ∈ H ⇒ pg ∈ Q (by the def of H).

Exercise: Show that Holp(ω) = H ∀p ∈ Q.

From the def of Q follows, that H acts transitively on fibres.
Local triviality: Use parallel transport over coordinate chart U wrt
segments to obtain a local section of Q (see [KN, Thm II.7.1] for
details).

(ii): Follows immediately from the def of Q.
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Parallel transport and covariant derivative

Let Γ: [0, 1]→ P be a horizontal lift of γ
ΓE(t) := [Γ(t), v], v ∈ V, E = P ×G V
ΓE : [0, 1]→ E is called the horizontal lift of γ to E
Πt : Eγ(t) → Em parallel transport in E, m = γ(0)

Lem. ∇ws = lim
t→0

1
t

(
Πts
(
γ(t)

)
− s(m)

)
, where w = γ̇(0).

Proof. Let s! f , i.e. [p, f(p)] = s(π(p)). First observe that

ΠE
γ [p, v] = [Πγp, v].

Since
[
Γ(t), f(Γ(t))

]
= s(γ(t)), we obtain

Πts =
[
p, f(Γ(t))

]
.

⇓ to be continued ⇓
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Lem. ∇ws = lim
t→0

1
t

(
Πts
(
γ(t)

)
− s(m)

)
, where w = γ̇(0).

Proof. Let s! f , i.e. [p, f(p)] = s(π(p)). First observe that

ΠE
γ [p, v] = [Πγp, v].

Since
[
Γ(t), f(Γ(t))

]
= s(γ(t)), we obtain

Πts =
[
p, f(Γ(t))

]
.

Then

∇ws = [p, df(w̃)]

=
[
p, ddt

∣∣
t=0

f ◦ Γ(t)]

= lim
t→0

1
t

([
p, f(Γ(t))

]
− [p, f(p)]

)
= lim

t→0

1
t

(
Πts
(
γ(t)

)
− s(m)

)
.
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Rem. Let w ∈ X(M). If s ! f , then ∇ws ! df(w̃).

Lem. Let s ∈ Γ(E), s0 = s(m). Assume ∇s = 0. Then for any
loop γ based at m we have ΠE

γ s0 = s0.

Proof. Let Γ be a horizontal lift of γ. Then f ◦ Γ = const.
Hence Πts(γ(t)) = [p, f ◦ Γ] does not depend on t.
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V is a G–representation, H = Stabη, where η ∈ V .
Q ⊂ P is a principal H–subbundle
The constant function q 7→ η can be extended to an equivariant
function η on P

Theorem

ω reduces to Q ⇐⇒ ∇Eη = 0.

Proof. (⇒): ∀q ∈ Q dη
∣∣
Hq

= 0, since η is constant on Q and

H ⊂ TQ.

(⇐): For any q ∈ Q we have

[q, η] = ΠE
γ [q, η] =

[
Πγq, η

]
= [qg, η] = [q, ρ(g−1)η].

Hence Holq(ω) ⊂ H. Then the holonomy bundle through q is
contained in Q. Therefore, ω reduces to Q.
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Ambrose–Singer theorem

Theorem (Ambrose–Singer)

Let Q be the holonomy bundle through p0, F̃ ∈ Ω2(P ; g) curvature
of ω. Then

holp0 = span
{
F̃q(w1, w2) | q ∈ Q, w1, w2 ∈ Hq

}
.

Sketch of the proof. Can assume Q = P . Denote

g′ = span
{
F̃q(w1, w2) | q ∈ Q, w1, w2 ∈ Hq

}
⊂ g.

Further, Sp := Hp ⊕ {Kξ(p) | ξ ∈ g′}. Then the distribution S is
integrable. If P0 3 p0 is a maximal integral submanifold, then
P0 = P , since each horizontal curve must lie in P0. Then
dim g = dimP − dimM = dimP0 − dimM = dim g′. Hence
g = g′.
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From now on P = Fr(M) is the principal G = GLn(R)–bundle of
linear frames

Def. A canonical 1–form θ ∈ Ω1(P ;Rn) is given by

θ(v) = p−1(dπ(v)), v ∈ TpP.

Rem. θ is defined for bundles of linear frames only.

θ is G–equivariant in the following sense: R∗gθ = g−1θ. Indeed, for
any v ∈ TpP we have

R∗gθ(v) = (pg)−1
(
dπ(Rgv)

)
= g−1p−1

(
dπ(v)

)
= g−1θ(v).
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Torsion

ω is a connection on Fr(M). In particular, ω is gln(R)–valued.
Thus, we have induced connections on TM, T ∗M, ΛkT ∗M . . .

Def. Θ = dθ + 1
2 [ω, θ] ∈ Ω2(Fr(M);Rn) is called the torsion

form of ω.

Rem. [ω, θ](v, w) = ω(v)θ(w)− ω(w)θ(v).

Prop. Θ is horizontal and equivariant. Hence there exists T ∈
Ω2(M ;TM) s.t. 2Θ = π∗T .

T can be viewed as a skew–symmetric linear map
TM ⊗ TM → TM and is called the torsion tensor.
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Theorem

For v, w ∈ X(M) we have

T (v, w) = ∇vw −∇wv − [v, w]

Proof. Represent v, w by equivariant functions
fv, fw : Fr → Rn. Then ∇vw is represented by dfw(ṽ).

For the bundle of frames, fw = θ(w̃). Hence ∇vw = p
(
ṽ · θ(w̃)

)
.

Therefore we obtain

T (v, w) = p
(
2Θ(ṽ, w̃)

)
= p
(
ṽ · θ(w̃)− w̃ · θ(ṽ)− θ([ṽ, w̃])

)
= ∇vw −∇wv − [v, w].

The last equality follows from [ṽ, w̃]h = [̃v, w] (exercise).
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Denote
Γ(T ∗M)

∇−−→ Γ(T ∗M ⊗ T ∗M)
Alt−−→ Ω2(M), α 7→ Alt(∇α).

Theorem

Alt(∇α) = dα− α ◦ T

In particular, for torsion–free connections Alt(∇α) = dα.

Proof. This follows from the previous Thm with the help of the
formulae v · α(w) = ∇v(α(w)) = (∇vα)(w) + α(∇vw).
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