Holonomy groups
 in Riemannian geometry

Lecture 2

October 27, 2011

Smooth manifold comes equipped with a collection of charts $\left(U_{\alpha}, \varphi_{\alpha}\right)$, where $\left\{U_{\alpha}\right\}$ is an open covering and the maps $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are smooth.
A Lie group G is a group which has a structure of a smooth mfld such that the structure maps, i.e. $m: G \times G \rightarrow G, .^{-1}: G \rightarrow G$, are smooth.
$\mathfrak{g}:=T_{e} G$ is a Lie algebra, i.e. a vector space endowed with a map $[\cdot, \cdot]: \Lambda^{2} \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying the Jacobi identity:

$$
[\xi,[\eta, \zeta]]+[\eta,[\zeta, \xi]]+[\zeta,[\xi, \eta]]=0
$$

Ex. | G | $G L_{n}(\mathbb{R})$ | $G L_{n}(\mathbb{C})$ | $S O(n)$ | $U(n)$ |
| :---: | :---: | :---: | :---: | :---: |
| \mathfrak{g} | End \mathbb{R}^{n} | End \mathbb{C}^{n} | $\left\{A^{t}=-A\right\}$ | $\left\{\bar{A}^{t}=-A\right\}$ |

Identification: $\mathfrak{g} \cong\{$ left-invariant vector fields on $G\}$

- ξ_{1}, \ldots, ξ_{n} a basis of \mathfrak{g}
- $\omega_{1}, \ldots, \omega_{n}$ dual basis
$\omega:=\sum \omega_{i} \otimes \xi_{i} \in \Omega^{1}(G ; \mathfrak{g})$ canonical 1-form with values in \mathfrak{g}, which satisfies the Maurer-Cartan equation

$$
d \omega+\frac{1}{2}[\omega \wedge \omega]=\sum_{i} d \omega_{i} \otimes \xi_{i}+\frac{1}{2} \sum_{i, j} \omega_{i} \wedge \omega_{j} \otimes\left[\xi_{i}, \xi_{j}\right]=0 .
$$

Vector bundles

A vector bundle E over M satisfies:

- E is a manifold endowed with a submersion $\pi: E \rightarrow M$
- $\forall m \in M E_{m}:=\pi^{-1}(m)$ has the structure of a vector space
- $\forall m \in M \quad \exists U \ni m$ s.t. $\quad \pi^{-1}(U) \cong U \times E_{m}$
$\Gamma(E)=\left\{s: M \rightarrow E \mid \pi \circ s=i d_{M}\right\}$ space of sections of E
Ex.

E	$\Gamma(E)$	
$T M$	$\mathfrak{X}(M)$	vector fields
$\Lambda^{k} T^{*} M$	$\Omega^{k}(M)$	differential k-forms
$T_{q}^{p}(M):=\bigotimes^{p} T M \otimes \bigotimes^{q} T^{*} M$	$?$	tensors of type (p, q)

de Rham complex

Exterior derivative $d: \Omega^{k} \rightarrow \Omega^{k+1}$ is the unique map with the properties:

- df is the differential of f for $f \in \Omega^{0}(M)=C^{\infty}(M)$
- $d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{p} \alpha \wedge d \beta$, if $\alpha \in \Omega^{p}$
- $d^{2}=0$

Thus, we have the de Rham complex:

$$
0 \rightarrow \Omega^{0} \rightarrow \Omega^{1} \rightarrow \cdots \rightarrow \Omega^{n} \rightarrow 0, \quad n=\operatorname{dim} M
$$

Betti numbers:

$$
b_{k}=\operatorname{dim} H^{k}(M ; \mathbb{R})=\operatorname{dim} \frac{\operatorname{Ker} d: \Omega^{k} \rightarrow \Omega^{k+1}}{\operatorname{im} d: \Omega^{k-1} \rightarrow \Omega^{k}}
$$

Lie bracket of vector fields

A vector field can be viewed as an \mathbb{R}-linear derivation of the algebra $C^{\infty}(M)$. Then $\mathfrak{X}(M)$ is a Lie algebra:

$$
[v, w] \cdot f=v \cdot(w \cdot f)-w \cdot(v \cdot f)
$$

The exterior derivative and the Lie bracket are related by

$$
2 d \omega(v, w)=v \cdot \omega(w)-w \cdot \omega(v)-\omega([v, w])
$$

Rem. "2" is optional in the above formula.

Lie derivative

For $v \in \mathfrak{X}(M)$ let φ_{t} be the corresponding 1-parameter (semi)group of diffeomorphisms of M, i.e.

$$
\frac{d}{d t} \varphi_{t}(m)=v\left(\varphi_{t}(m)\right), \quad \varphi_{0}=i d_{M}
$$

The Lie derivative of a tensor S is defined by

$$
\mathcal{L}_{v} S=\left.\frac{d}{d t}\right|_{t=0} \varphi_{t}^{*} S
$$

In particular, this means:

$$
\begin{array}{ll}
\mathcal{L}_{v} f(m)=\left.\frac{d}{d t}\right|_{t=0} f\left(\varphi_{t}(m)\right)=d f_{m}(v(m)), & \text { if } f \in C^{\infty}(M), \\
\mathcal{L}_{v} w(m)=\left.\frac{d}{d t}\right|_{t=0}\left(d \varphi_{t}\right)_{m}^{-1} w\left(\varphi_{t}(m)\right), & \text { if } w \in \mathfrak{X}(M)
\end{array}
$$

Properties of the Lie derivative

- $\mathcal{L}_{v}(S \otimes T)=\left(\mathcal{L}_{v} S\right) \otimes T+S \otimes\left(\mathcal{L}_{v} T\right)$
- $\mathcal{L}_{v} w=[v, w]$ for $w \in \mathfrak{X}(M)$
- $\left[\mathcal{L}_{v}, \mathcal{L}_{w}\right]=\mathcal{L}_{[v, w]}$
- Cartan formula

$$
\mathcal{L}_{v} \omega=\imath_{v} d \omega+d\left(\imath_{v} \omega\right) \quad \text { where } \omega \in \Omega(M) .
$$

- $\left[\mathcal{L}_{v}, d\right]=0$ on $\Omega(M)$

Connections on vector bundles

Def. A connection on E is a linear map
$\nabla: \Gamma(E) \rightarrow \Gamma\left(T^{*} M \otimes E\right)$ satisfying the Leibnitz rule:

$$
\nabla(f s)=d f \otimes s+f \nabla s, \quad \forall f \in C^{\infty}(M) \quad \text { and } \forall s \in \Gamma(E)
$$

For $v \in \mathfrak{X}(M)$ we write

$$
\nabla_{v} s=v \cdot \nabla s, \quad \text { where } " \cdot " \text { is a contraction. }
$$

Then

$$
\nabla_{\alpha v}(\beta s)=\alpha \nabla_{v}(\beta s)=\alpha(v \cdot \beta) \nabla_{v} s+\alpha \beta \nabla_{v} s .
$$

Curvature

Prop. For $v, w \in \mathfrak{X}(M)$ and $s \in \Gamma(E)$ the expression

$$
\nabla_{v}\left(\nabla_{w} s\right)-\nabla_{w}\left(\nabla_{v} s\right)-\nabla_{[v, w]} s
$$

is $C^{\infty}(M)$-linear in v, w, and s.

Def. The unique section $R=R(\nabla)$ of $\Lambda^{2} T^{*} M \otimes \operatorname{End}(E)$ satisfying

$$
R(\nabla)(v \wedge w \otimes s)=\nabla_{v}\left(\nabla_{w} s\right)-\nabla_{w}\left(\nabla_{v} s\right)-\nabla_{[v, w]} s
$$

is called the curvature of the connection ∇.

Choose local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ on M
$v_{i}:=\frac{\partial}{\partial x_{i}} \quad \Rightarrow \quad\left[v_{i}, v_{j}\right]=0$
Then $R\left(v_{i}, v_{j}\right) s=\nabla_{v}\left(\nabla_{w} s\right)-\nabla_{w}\left(\nabla_{v} s\right)$
Think of $\nabla_{v_{i}} s$ as "partial derivative" of s
Curvature measures how much "partial derivatives" of sections of E fail to commute.

Twisted differential forms

Denote $\Omega^{k}(E):=\Gamma\left(\Lambda^{k} T^{*} M \otimes E\right)$
Then $\nabla: \Omega^{0}(E) \rightarrow \Omega^{1}(E)$ extends uniquely to
$d^{\nabla}: \Omega^{k}(E) \rightarrow \Omega^{k+1}(E)$ via the rule

$$
d^{\nabla}(\omega \otimes s)=d \omega \otimes s+(-1)^{k} \omega \wedge \nabla s
$$

We obtain the sequence

$$
\begin{equation*}
\Omega^{0}(E) \xrightarrow{\nabla=d^{\nabla}} \Omega^{1}(E) \xrightarrow{d^{\nabla}} \Omega^{2}(E) \xrightarrow{d^{\nabla}} \ldots \xrightarrow{d^{\nabla}} \Omega^{n}(E) \tag{1}
\end{equation*}
$$

Then

$$
\left(d^{\nabla} \circ d^{\nabla}\right) \sigma=R(\nabla) \cdot \sigma
$$

Curvature measures the extend to which sequence (1) fails to be a complex.

Principal bundles

Let G be a Lie group
A principal bundle P over M satisfies:

- P is a manifold endowed with a submersion $\pi: P \rightarrow M$
- G acts on P on the right and $\pi(p \cdot g)=\pi(p)$
- $\forall m \in M$ the group G acts freely and transitively on $P_{m}:=\pi^{-1}(m)$. Hence $P_{m} \cong G$
- Local triviality: $\forall m \in M \quad \exists U \ni m$ s.t. $\quad \pi^{-1}(U) \cong U \times G$

Example: Frame bundle

Let $E \rightarrow M$ be a vector bundle. A frame at a point m is a linear isomorphism $p: \mathbb{R}^{k} \rightarrow E_{m}$.

$$
\operatorname{Fr}(E):=\bigcup_{m, p}\{(m, p) \mid p \text { is a frame at } m\}
$$

(i) $G L(k ; \mathbb{R})=\operatorname{Aut}\left(\mathbb{R}^{k}\right)$ acts freely and transitively on $F r_{m}(E)$:

$$
p \cdot g=p \circ g
$$

(ii) A moving frame on $U \subset M$ is a set $\left\{s_{1}, \ldots, s_{k}\right\}$ of pointwise linearly independent sections of E over U. This gives rise to a section s of $\operatorname{Fr}(E)$ over U :

$$
s(m) x=\sum x_{i} s_{i}(m), \quad x \in \mathbb{R}^{k}
$$

By (i) this defines a trivialization of $\operatorname{Fr}(E)$ over U.

Frame bundle: variations

If in addition E is

- oriented, i.e. $\Lambda^{\text {top }} E$ is trivial, $F r^{+}(E)$ is a principal $G L^{+}(k ; \mathbb{R})$-bundle
- Euclidean Fr_{O} is a principal $O(k)$-bundle
- Hermitian $F r_{U}$ is a principal $U(k)$-bundle
- quaternion-Hermitian is a principal $S p(k)$-bundle
-

Def. Let G be a subgroup of $G L(n ; \mathbb{R}), n=\operatorname{dim} M$. A G-structure on M is a principal G-subbundle of $\operatorname{Fr}_{M}=\operatorname{Fr}(T M)$.

- orientation $\Leftrightarrow G L^{+}(n ; \mathbb{R})$-structure
- Riemannian metric $\Leftrightarrow O(n)$-structure
\qquad

Associated bundle

$P \rightarrow M$ principal G-bundle $V G$-representation, i.e. a homomorphism $\rho: G \rightarrow G L(V)$ is given

$$
P \times{ }_{G} V:=(P \times V) / G, \quad \text { action: }(p, v) \cdot g=\left(p g, \rho\left(g^{-1}\right) v\right)
$$

is called the bundle associated to P with fibre V.
Ex. For $P=F r_{M}, G=G L(n ; \mathbb{R})$, and $E=P \times_{G} V$ we have

- $E=T M$ for $V=\mathbb{R}^{n}$ (tautological representation)
- $E=T^{*} M$ for $V=\left(\mathbb{R}^{n}\right)^{*}$
- $E=\Lambda^{k} T^{*} M$ for $V=\Lambda^{k}\left(\mathbb{R}^{n}\right)^{*}$

Sections of associated bundles correspond to equivariant maps:

$$
\begin{gathered}
\left\{f: P \rightarrow V \mid f(p g)=\rho\left(g^{-1}\right) f(p)\right\} \equiv \Gamma(E) \\
f \mapsto s_{f}, \quad s_{f}(m)=[p, f(p)], \quad p \in P_{m}
\end{gathered}
$$

Connection as horizontal distribution

For $\xi \in \mathfrak{g}$ the Killing vector at $p \in P$ is given by

$$
K_{\xi}(p):=\left.\frac{d}{d t}\right|_{t=0}(p \cdot \exp t \xi)
$$

$\mathcal{V}_{p}=\left\{K_{\xi}(p) \mid \xi \in \mathfrak{g}\right\} \cong \mathfrak{g}$ is called vertical space at p
Def. A connection on P is a subbundle \mathcal{H} of $T P$ satisfying
(i) \mathcal{H} is G-invariant, i.e. $\mathcal{H}_{p g}=\left(R_{g}\right)_{*} \mathcal{H}_{p}$
(ii) $T P=\mathcal{V} \oplus \mathcal{H}$
\mathcal{H} is called a horizontal bundle.

Connection as a 1-form

Given a connection on P, define $\omega \in \Omega^{1}(P ; \mathfrak{g})$ as follows

$$
T_{p} P \rightarrow \mathcal{V}_{p} \cong \mathfrak{g}
$$

ω is called the connection form and satisfies:
(a) $\omega\left(K_{\xi}\right)=\xi$
(b) $R_{g}^{*} \omega=a d_{g^{-1}} \omega$, where $a d$ denotes the adjoint representation

Prop. Every $\omega \in \Omega^{1}(P ; \mathfrak{g})$ satisfying (a) and (b) defines a connection via

$$
\mathcal{H}=\operatorname{Ker} \omega
$$

Horizontal lift

$\operatorname{Ker}\left(\pi_{*}\right)_{p}=\mathcal{V}_{p}$. Hence $\left(\pi_{*}\right)_{p}: \mathcal{H}_{p} \rightarrow T_{\pi(p)} M$ is an isomorphism. In particular, $\mathcal{H} \cong \pi^{*} T M$. Hence, we have

Prop. For any $w \in \mathfrak{X}(M)$ there exists $\tilde{w} \in \mathfrak{X}(P)$ s.t.
(i) \tilde{w} is G-invariant and horizontal
(ii) $\left(\pi_{*}\right)_{p} \tilde{w}=w(\pi(p))$

Vice versa, if $\tilde{w} \in \mathfrak{X}(P)$ is G-invariant and horizontal, then $\exists!w \in$ $\mathfrak{X}(M)$ s.t. $\pi_{*} \tilde{w}=w$.

Invariant and equivariant forms

$\tilde{\alpha} \in \Omega^{k}(P)$ is called basic if $\imath_{v} \tilde{\alpha}=0$ for any vertical vector field v.
Then $\forall \alpha \in \Omega^{k}(M)$ the form $\tilde{\alpha}=\pi^{*} \alpha$ is G-invariant and basic. On the other hand, any G-invariant and basic k-form $\tilde{\alpha}$ on P induces a k-form on M. Notice: no connection required here.
V is a representation of G
$\tilde{\alpha} \in \Omega^{k}(P ; V)$ is G-equivariant if $R_{g}^{*} \tilde{\alpha}=\rho\left(g^{-1}\right) \tilde{\alpha}$.
Ex. Connection 1-form is an equivariant form for $V=\mathfrak{g}$.

For basic and equivariant forms we have the identification

$$
\Omega_{G, b a s}^{k}(P, V) \cong \Omega^{k}(M ; E), \quad \pi^{*} \alpha \hookleftarrow \alpha
$$

Curvature tensor

Prop. Let ω be a connection form. The 2-form $\tilde{F}_{\omega}=d \omega+\frac{1}{2}[\omega \wedge \omega]$ is basic and G-equivariant, i.e. $R_{g}^{*} \tilde{F}=a d_{g^{-1}} \tilde{F}$.

Cor. Denote ad $P:=P \times_{G, a d} \mathfrak{g}$. Then there exists $F \in$ $\Omega^{2}(M ; a d P)$ s.t. $\pi^{*} F=\tilde{F}$.

The 2 -form F is called the curvature form of the connection ω. The defining equation for F is often written as

$$
d \omega=-\frac{1}{2}[\omega \wedge \omega]+F
$$

and is called the structural equation.

Covariant differentiation

$P \rightarrow M G$-bundle, $\rho: G \rightarrow G L(V), E:=P \times_{G} V$, $f: P \rightarrow V$ equivariant map, i.e. section of E.
Def. $\nabla f=d^{h} f=\left.d f\right|_{\mathcal{H}}$ is called the covariant derivative of f.

Rem. Denote $\tau=d \rho_{e}: \mathfrak{g} \rightarrow \mathfrak{g l}(V)=\operatorname{End} V$. Then for a vertical vector $K_{\xi}(p)$ we have: $d f\left(K_{\xi}(p)\right)=-\tau(\xi) f(p)$, that is all information about $d f$ is contained in $d^{h} f$.

Prop.

$$
\nabla f=d f+\omega \cdot f
$$

Here "." means the action of \mathfrak{g} on V via the map τ.

Prop. $\nabla f \in \Omega^{1}(P ; V)$ is G-equivariant and basic form.

Thus ∇f can be interpreted as an element of $\Omega^{1}(M ; E)$ and we have a diagram

Prop. ∇^{E} is a connection on E.

Bianchi identity

ω connection on P, F curvature
$a d P$ has an induced connection ∇

Theorem (Bianchi identity)

$$
d^{\nabla} F=0
$$

Proof. For $\tilde{\varphi} \in \Omega^{k}(P ; \mathfrak{g})$ denote $D \tilde{\varphi}=d \tilde{\varphi}+[\omega \wedge \tilde{\varphi}]$
Step 1. For any $\varphi \in \Omega^{k}(M ; a d P)$ we have $\widetilde{d^{\nabla} \varphi}=D \tilde{\varphi}$.
Can assume $\varphi=s \cdot \varphi_{0}$, where $\varphi_{0} \in \Omega^{k}(M)$ and

$$
\Gamma(a d P) \ni s \nLeftarrow \rightsquigarrow f \in \operatorname{Map}^{G}(P ; \mathfrak{g}) .
$$

Then

$$
\begin{aligned}
\widetilde{d^{\nabla} \varphi} & =\widetilde{\nabla s} \wedge \tilde{\varphi}_{0}+\tilde{s} \cdot d \tilde{\varphi}_{0} \\
& =(d f+[\omega, f]) \wedge \tilde{\varphi}_{0}+f d \tilde{\varphi}_{0} \\
& =d\left(f \tilde{\varphi}_{0}\right)+\left[\omega \wedge f \tilde{\varphi}_{0}\right] \\
& =D \varphi
\end{aligned}
$$

Proof of the Bianchi identity (continued)

Step 2. $D \tilde{F}=0$, where $\tilde{F}=d \omega+\frac{1}{2}[\omega \wedge \omega]$.

$$
\begin{aligned}
& d \tilde{F}=\frac{1}{2}([d \omega \wedge \omega]-[\omega \wedge d \omega]) \\
&=[d \omega \wedge \omega] \\
&=[\tilde{F} \wedge \omega]-\frac{1}{2}[[\omega \wedge \omega] \wedge \omega] \\
& \text { Jacobi identity } \Longrightarrow[[\omega \wedge \omega] \wedge \omega]=0
\end{aligned}
$$

Thus, $D \tilde{F}=0 \Longleftrightarrow d^{\nabla} F=0$.

Horizontal lift of a curve

$\gamma:[0,1] \rightarrow M$ (piecewise) smooth curve, $p_{0} \in P_{\gamma(0)}$.
Prop. [KN, Prop. II.3.1] For any γ there exists a unique horizontal lift of γ through p_{0}, i.e. a curve $\Gamma:[0,1] \rightarrow P$ with the following properties:
(i) $\dot{\Gamma}(t) \in \mathcal{H}_{\Gamma(t)}$ for any $t \in[0,1]$ (" Γ is horizontal")
(ii) $\Gamma(0)=p_{0}$
(iii) $\pi \circ \Gamma=\gamma$

Sketch of the proof. Let Γ_{0} be an arbitrary lift of $\gamma, \Gamma_{0}(0)=p_{0}$. Then $\Gamma=\Gamma_{0} \cdot g$ for some curve $g:[0,1] \rightarrow G$. Hence,

$$
\dot{\Gamma}=\dot{\Gamma}_{0} \cdot g+\Gamma_{0} \cdot \dot{g} \quad \Longrightarrow \quad \omega(\dot{\Gamma})=a d_{g^{-1}} \omega\left(\dot{\Gamma}_{0}\right)+g^{-1} \dot{g} .
$$

Then there exists a unique curve $g, g(0)=e$, such that $g^{-1} \dot{g}+a d_{g^{-1}} \omega\left(\dot{\Gamma}_{0}\right)=0 \quad \Longleftrightarrow \quad \omega(\dot{\Gamma})=0$.

Parallel transport

$\gamma:[0,1] \rightarrow M, \gamma(0)=m, \gamma(1)=n$
Parallel transport $\Pi_{\gamma}: P_{m} \rightarrow P_{n}$ is defined by

$$
\Pi_{\gamma}(p)=\Gamma(1)
$$

where Γ is the horizontal lift of γ satisfying $\Gamma(0)=p$.

Prop.

(i) Π_{γ} commutes with the action of G for any curve γ
(ii) Π_{γ} is bijective
(iii) $\Pi_{\gamma_{1} * \gamma_{2}}=\Pi_{\gamma_{1}} \circ \Pi_{\gamma_{2}}, \quad \Pi_{\gamma^{-1}}=\Pi_{\gamma}^{-1}$

Holonomy group

Denote $\Omega_{m}:=\{$ piecewise smooth loops in M based at $m\}$

$$
\operatorname{Hol}_{p}(\omega):=\left\{g \in G \mid \exists \gamma \in \Omega_{m} \text { s.t. } \Pi_{\gamma}(p)=p g\right\}
$$

Prop.

(i) Hol_{p} is a Lie group
(ii) $H o l_{p g}=A d_{g^{-1}}\left(H o l_{p}\right)$

Proof. Group structure follows from (iii) of the previous Prop. For the structure of Lie group see [Kobayashi-Nomizu, Thm 4.2]. Statement (ii) follows from the observation Γ is horizontal $\Longrightarrow \quad R_{g} \circ \Gamma$ is also horizontal.

Reduction of connections

Let $H \subset G$ be a Lie subgroup and $Q \subset P$ be a principal H-bundle ("structure group reduces to H ").

Def. A connection \mathcal{H} on P reduces to Q if $\mathcal{H}_{q} \subset T_{q} Q \quad \forall q \in Q$.

Prop. A connection reduces to $Q \Longleftrightarrow \imath^{*} \omega$ takes values in \mathfrak{h}, where $\imath: Q \hookrightarrow P$.

Proof. $(\Rightarrow): \quad T_{q} Q \cong \mathcal{H}_{q} \oplus \mathfrak{h} \xrightarrow{(0, i d)} \mathfrak{h}$

$(\Leftarrow): \imath^{*} \omega$ is a connection on Q, hence $T Q=\mathcal{H}^{Q} \oplus \mathfrak{h}$. Since
$\mathcal{H}^{Q} \subset \mathcal{H}^{P}$ and $\operatorname{rk} \mathcal{H}^{P}=\operatorname{dim} M=\operatorname{rk} \mathcal{H}^{Q}$, we obtain
$\mathcal{H}^{Q}=\mathcal{H}^{P}$.

Reduction theorem

For $p_{0} \in P$ define the holonomy bundle through p_{0} as follows:
$Q\left(p_{0}\right):=\left\{p \in P \mid \exists\right.$ a horizontal curve Γ s.t. $\left.\Gamma(0)=p_{0}, \Gamma(1)=p\right\}$.

Theorem ("Reduction theorem")

Put $H=\operatorname{Hol}_{p_{0}}(P, \omega)$. Then the following holds:
(i) Q is a principal H-bundle
(ii) connection ω reduces to Q

Proof. (i): $p \in Q, g \in H \Rightarrow p g \in Q \quad$ (by the def of H). Exercise: Show that $\operatorname{Hol}_{p}(\omega)=H \quad \forall p \in Q$.
From the def of Q follows, that H acts transitively on fibres. Local triviality: Use parallel transport over coordinate chart U wrt segments to obtain a local section of Q (see [KN, Thm II.7.1] for details).
(ii): Follows immediately from the def of Q.

Parallel transport and covariant derivative

Let $\Gamma:[0,1] \rightarrow P$ be a horizontal lift of γ
$\Gamma_{E}(t):=[\Gamma(t), v], \quad v \in V, E=P \times_{G} V$
$\Gamma_{E}:[0,1] \rightarrow E$ is called the horizontal lift of γ to E
$\Pi_{t}: E_{\gamma(t)} \rightarrow E_{m}$ parallel transport in $E, m=\gamma(0)$
Lem. $\quad \nabla_{w} s=\lim _{t \rightarrow 0} \frac{1}{t}\left(\Pi_{t} s(\gamma(t))-s(m)\right)$, where $w=\dot{\gamma}(0)$.

Proof. Let $s \longleftrightarrow f$, i.e. $[p, f(p)]=s(\pi(p))$. First observe that

$$
\Pi_{\gamma}^{E}[p, v]=\left[\Pi_{\gamma} p, v\right] .
$$

Since $[\Gamma(t), f(\Gamma(t))]=s(\gamma(t))$, we obtain

$$
\Pi_{t} s=[p, f(\Gamma(t))] .
$$

$\Downarrow \quad$ to be continued \Downarrow

Lem. $\quad \nabla_{w} s=\lim _{t \rightarrow 0} \frac{1}{t}\left(\Pi_{t} s(\gamma(t))-s(m)\right)$, where $w=\dot{\gamma}(0)$.

Proof. Let $s \nrightarrow f$, i.e. $[p, f(p)]=s(\pi(p))$. First observe that

$$
\Pi_{\gamma}^{E}[p, v]=\left[\Pi_{\gamma} p, v\right] .
$$

Since $[\Gamma(t), f(\Gamma(t))]=s(\gamma(t))$, we obtain

$$
\Pi_{t} s=[p, f(\Gamma(t))] .
$$

Then

$$
\begin{aligned}
\nabla_{w} s & =[p, d f(\tilde{w})] \\
& =\left[p,\left.\frac{d}{d t}\right|_{t=0} f \circ \Gamma(t)\right] \\
& =\lim _{t \rightarrow 0} \frac{1}{t}([p, f(\Gamma(t))]-[p, f(p)]) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(\Pi_{t} s(\gamma(t))-s(m)\right) .
\end{aligned}
$$

Rem. Let $w \in \mathfrak{X}(M)$. If $s \longleftrightarrow \nprec f$, then $\nabla_{w} s \longleftrightarrow d f(\tilde{w})$.

Lem. Let $s \in \Gamma(E), s_{0}=s(m)$. Assume $\nabla s=0$. Then for any loop γ based at m we have $\Pi_{\gamma}^{E} s_{0}=s_{0}$.

Proof. Let Γ be a horizontal lift of γ. Then $f \circ \Gamma=$ const. Hence $\Pi_{t} s(\gamma(t))=[p, f \circ \Gamma]$ does not depend on t.
V is a G-representation, $H=S t a b_{\eta}$, where $\eta \in V$.
$Q \subset P$ is a principal H-subbundle
The constant function $q \mapsto \eta$ can be extended to an equivariant function η on P

Theorem

ω reduces to $Q \quad \Longleftrightarrow \quad \nabla^{E} \eta=0$.

Proof. $(\Rightarrow):\left.\forall q \in Q d \eta\right|_{\mathcal{H}_{q}}=0$, since η is constant on Q and $\mathcal{H} \subset T Q$.
(\Leftarrow) : For any $q \in Q$ we have

$$
[q, \eta]=\Pi_{\gamma}^{E}[q, \eta]=\left[\Pi_{\gamma} q, \eta\right]=[q g, \eta]=\left[q, \rho\left(g^{-1}\right) \eta\right]
$$

Hence $\operatorname{Hol}_{q}(\omega) \subset H$. Then the holonomy bundle through q is contained in Q. Therefore, ω reduces to Q.

Ambrose-Singer theorem

Theorem (Ambrose-Singer)

Let Q be the holonomy bundle through $p_{0}, \tilde{F} \in \Omega^{2}(P ; \mathfrak{g})$ curvature of ω. Then

$$
\mathfrak{h o l} p_{p_{0}}=\operatorname{span}\left\{\tilde{F}_{q}\left(w_{1}, w_{2}\right) \mid q \in Q, w_{1}, w_{2} \in \mathcal{H}_{q}\right\}
$$

Sketch of the proof. Can assume $Q=P$. Denote

$$
\mathfrak{g}^{\prime}=\operatorname{span}\left\{\tilde{F}_{q}\left(w_{1}, w_{2}\right) \mid q \in Q, w_{1}, w_{2} \in \mathcal{H}_{q}\right\} \subset \mathfrak{g} .
$$

Further, $S_{p}:=\mathcal{H}_{p} \oplus\left\{K_{\xi}(p) \mid \xi \in \mathfrak{g}^{\prime}\right\}$. Then the distribution S is integrable. If $P_{0} \ni p_{0}$ is a maximal integral submanifold, then $P_{0}=P$, since each horizontal curve must lie in P_{0}. Then $\operatorname{dim} \mathfrak{g}=\operatorname{dim} P-\operatorname{dim} M=\operatorname{dim} P_{0}-\operatorname{dim} M=\operatorname{dim} \mathfrak{g}^{\prime}$. Hence $\mathfrak{g}=\mathfrak{g}^{\prime}$.

Lie groups Vector bundles

From now on $P=\operatorname{Fr}(M)$ is the principal $G=G L_{n}(\mathbb{R})$-bundle of linear frames

Def. A canonical 1-form $\theta \in \Omega^{1}\left(P ; \mathbb{R}^{n}\right)$ is given by

$$
\theta(v)=p^{-1}(d \pi(v)), \quad v \in T_{p} P
$$

Rem. θ is defined for bundles of linear frames only.
θ is G-equivariant in the following sense: $R_{g}^{*} \theta=g^{-1} \theta$. Indeed, for any $v \in T_{p} P$ we have

$$
R_{g}^{*} \theta(v)=(p g)^{-1}\left(d \pi\left(R_{g} v\right)\right)=g^{-1} p^{-1}(d \pi(v))=g^{-1} \theta(v)
$$

Torsion

ω is a connection on $\operatorname{Fr}(M)$. In particular, ω is $\mathfrak{g l}_{n}(\mathbb{R})$-valued. Thus, we have induced connections on $T M, T^{*} M, \Lambda^{k} T^{*} M \ldots$

Def. $\Theta=d \theta+\frac{1}{2}[\omega, \theta] \in \Omega^{2}\left(\operatorname{Fr}(M) ; \mathbb{R}^{n}\right)$ is called the torsion form of ω.

Rem. $[\omega, \theta](v, w)=\omega(v) \theta(w)-\omega(w) \theta(v)$.

Prop. Θ is horizontal and equivariant. Hence there exists $T \in$ $\Omega^{2}(M ; T M)$ s.t. $2 \Theta=\pi^{*} T$.
T can be viewed as a skew-symmetric linear map
$T M \otimes T M \rightarrow T M$ and is called the torsion tensor.

Theorem

For $v, w \in \mathfrak{X}(M)$ we have

$$
T(v, w)=\nabla_{v} w-\nabla_{w} v-[v, w]
$$

Proof. Represent v, w by equivariant functions $f_{v}, f_{w}: F r \rightarrow \mathbb{R}^{n}$. Then $\nabla_{v} w$ is represented by $d f_{w}(\tilde{v})$.
For the bundle of frames, $f_{w}=\theta(\tilde{w})$. Hence $\nabla_{v} w=p(\tilde{v} \cdot \theta(\tilde{w}))$. Therefore we obtain

$$
\begin{aligned}
T(v, w) & =p(2 \Theta(\tilde{v}, \tilde{w})) \\
& =p(\tilde{v} \cdot \theta(\tilde{w})-\tilde{w} \cdot \theta(\tilde{v})-\theta([\tilde{v}, \tilde{w}])) \\
& =\nabla_{v} w-\nabla_{w} v-[v, w] .
\end{aligned}
$$

The last equality follows from $[\tilde{v}, \tilde{w}]^{h}=\widetilde{[v, w]}$ (exercise).

Denote
$\Gamma\left(T^{*} M\right) \xrightarrow{\nabla} \Gamma\left(T^{*} M \otimes T^{*} M\right) \xrightarrow{\text { Alt }} \Omega^{2}(M), \quad \alpha \mapsto \operatorname{Alt}(\nabla \alpha)$.

Theorem

$$
\operatorname{Alt}(\nabla \alpha)=d \alpha-\alpha \circ T
$$

In particular, for torsion-free connections $\operatorname{Alt}(\nabla \alpha)=d \alpha$.

Proof. This follows from the previous Thm with the help of the formulae $v \cdot \alpha(w)=\nabla_{v}(\alpha(w))=\left(\nabla_{v} \alpha\right)(w)+\alpha\left(\nabla_{v} w\right)$.

