Holonomy groups in Riemannian geometry

Lecture 3

November 3, 2011

TORSION

LEVI-CIVITA CON-N

ECOMPOSABLE ME

Symmetric spaces

Berger Thm

Recap of the previous lecture

$$\begin{split} Fr(M) &:= \bigcup_{m,p} \{ (m,p) \mid p \colon \mathbb{R}^n \xrightarrow{\cong} T_m M \} & \text{frame bundle;} \\ \theta(v) &= p^{-1}(d\pi(v)), \ v \in T_p Fr(M) & \text{canonical 1-form} \\ \Theta &= d\theta + \frac{1}{2}[\omega,\theta] \in \Omega^2(Fr(M);\mathbb{R}^n), & \text{torsion form} \\ \exists T \in \Omega^2(M;TM), \text{s.t.} \quad 2\Theta &= \pi^*T, & \text{torsion tensor} \\ T(v,w) &= \nabla_v w - \nabla_w v - [v,w], \quad v,w \in \mathfrak{X}(M) \\ \operatorname{Alt}(\nabla \alpha) &= d\alpha - \alpha \circ T, \quad \alpha \in \Omega^1(M) \end{split}$$

Curvature tensor

For P = Fr(M) we have ad P = End(TM). Then the curvature can be viewed as a skew-symmetric map

 $TM \otimes TM \to \operatorname{End}(TM), \qquad (v, w) \mapsto R(v, w).$

R is called the *curvature tensor*.

For $v, w, x \in \mathfrak{X}(M)$ we have

Theorem (KN, Thm. II.5.1)

$$R(v,w)x = [\nabla_v, \nabla_w]x - \nabla_{[v,w]}x.$$

Proof. Pick an arbitrary connection ω on P. Then for any $\omega' \in \mathcal{A}(P)$, the 1-form $\xi = \omega - \omega'$ is basic and *ad*-equivariant. Vice versa, for any basic and equivariant 1-form ξ , the form $\omega' = \omega - \xi$ is a connection. Hence, the statement of the thm. \Box

Assume $G \subset GL_n(\mathbb{R})$ and therefore $\mathfrak{g} \subset \mathfrak{gl}_n(\mathbb{R}) \cong (\mathbb{R}^n)^* \otimes \mathbb{R}^n$. $Fr(M) \supset P$ is a G-bundle, $\omega, \omega' \in \mathcal{A}(P)$, $\xi = \omega - \omega'$. For any $p \in P$, the map $\theta_p \colon \mathcal{H}_p \to \mathbb{R}^n$ is an isomorphism. Therefore we can write

$$\xi_p \in (\mathbb{R}^n)^* \otimes \mathfrak{g}, \qquad T_p \colon \Lambda^2 \mathbb{R}^n \cong \Lambda^2 \mathcal{H}_p \xrightarrow{\Theta_p} \mathbb{R}^n.$$

Then

$$\Theta' - \Theta = \frac{1}{2} [\xi, \theta] \quad \Longleftrightarrow \quad \left(T'_p - T_p \right) x \wedge y = \frac{1}{2} \left(\xi_p(x) y - \xi_p(y) x \right).$$

Consider the G-equivariant homomorphism

$$\delta \colon (\mathbb{R}^n)^* \otimes \mathfrak{g} \hookrightarrow (\mathbb{R}^n)^* \otimes (\mathbb{R}^n)^* \otimes \mathbb{R}^n \longrightarrow \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Then, $T' - T = \delta \xi$.

Prop. *P* has a torsion-free connection if and only if $T_p \in \text{Im } \delta$ for all $p \in P$.

Torsion	Levi-Civita con-n	DECOMPOSABLE METRICS	Symmetric spaces	Berger Thm	
(M,g) Riemannian manifold (by default, M is oriented) $Fr(M) \supset P$ is the $G = SO(n)$ -bundle of orthonormal oriented frames					
We have the commutative diagram of $SO(n)$ –representations:					
$\mathfrak{so}(n) \hookrightarrow \mathfrak{gl}_n(\mathbb{R}) = \operatorname{End} \mathbb{R}^n$					

$$\cong \left| \begin{array}{c} \cong \\ \Lambda^2 \mathbb{R}^n \longrightarrow \mathbb{R}^n \otimes \mathbb{R}^n \end{array} \right| \cong (\mathbb{R}^n)^* \cong \mathbb{R}^n$$

Prop. The map $\delta_{\mathfrak{so}(n)} \colon \mathbb{R}^n \otimes \Lambda^2 \mathbb{R}^n \to \Lambda^2 \mathbb{R}^n \otimes \mathbb{R}^n$ is an isomorphism.

Proof. For $a = \sum a_{ijk}e_i \otimes e_j \wedge e_k$ we have (*exercise*):

$$\delta a = \frac{1}{2} \sum (a_{ijk} - a_{jik}) e_i \wedge e_j \otimes e_k.$$

Hence, if $a \in \operatorname{Ker} \delta$, then $a_{ijk} = a_{jik} = -a_{jki} = -a_{kji} = a_{kij} = a_{ikj} = -a_{ijk} \implies a = 0.$

The Levi-Civita connection

Theorem ("Fundamental theorem of Riemannian geometry")

Any SO(n)-subbundle of Fr(M) admits a unique torsion-free connection.

Theorem ("Fundamental theorem" , reformulation)

For any Riemannian metric g there exists a unique torsion-free connection on Fr(M) such that $\nabla g = 0$.

The unique connection in the "Fundamental thm" is called the *Levi–Civita* (or *Riemannian*) connection. The corresponding curvature tensor is called *Riemannian curvature tensor*.

Observation: If $V = V_1 \oplus V_2$ as *G*-representation, then $E = E_1 \oplus E_2$, where $E_i := P \times_G V_i$.

Determine irreducible components of the SO(n)-representation $\mathfrak{R} = \{ R \in \Lambda^2(\mathbb{R}^n)^* \otimes \mathfrak{so}(n) \mid R \text{ satisfies alg. Bianchi id.} \}.$

We can decompose

End
$$\mathbb{R}^n = \mathfrak{so}(n) \oplus \operatorname{Sym} \mathbb{R}^n = \mathfrak{so}(n) \oplus \operatorname{Sym}_0 \mathbb{R}^n \oplus \mathbb{R}$$
,

where $\operatorname{Sym}_0 \mathbb{R}^n = \operatorname{Ker}(\operatorname{tr} \colon \operatorname{Sym} \mathbb{R}^n \to \mathbb{R})$. In other words,

$$\mathbb{R}^n \otimes \mathbb{R}^n \cong \Lambda^2 \mathbb{R}^n \oplus S_0^2 \mathbb{R}^n \oplus \mathbb{R}.$$
 (1)

Prop. (1) is decomposition into irreducible components if $n \neq 4$. For n = 4 we have in addition $\Lambda^2 \mathbb{R}^4 = \Lambda^2_+ \mathbb{R}^4 \oplus \Lambda^2_- \mathbb{R}^4$.

Here: $*: \Lambda^m \mathbb{R}^{2m} \to \Lambda^m \mathbb{R}^{2m}$ is the Hodge operator, $*^2 = id$ $\Lambda^m_{\pm} \mathbb{R}^{2m}$ are eigenspaces corresponding to $\lambda = \pm 1$.

ORSION	Levi-Civita con-n	Decomposable metrics	Symmetric spaces	Berger Thm
Think	of $\bigotimes^4 \mathbb{R}^n$ as the	space of quadrilinear	forms on $(\mathbb{R}^n)^*$.	

Consider the map

$$b(R)(\alpha,\beta,\gamma,\delta) = \frac{1}{3} \Big(R(\alpha,\beta,\gamma,\delta) + R(\beta,\gamma,\alpha,\delta) + R(\gamma,\alpha,\beta,\delta) \Big)$$

(cyclic permutation in the first 3 variables; Bianchi map). Then

- b is SO(n)-invariant
- $b^2 = b$
- $b: S^2(\Lambda^2 \mathbb{R}^n) \to S^2(\Lambda^2 \mathbb{R}^n)$

Hence, we have

$$S^2(\Lambda^2 \mathbb{R}^n) = \operatorname{Ker} b \oplus \operatorname{Im} b = \mathfrak{R} \oplus \Lambda^4 \mathbb{R}^n.$$

The *Ricci contraction* is the SO(n)-equivariant map

$$c: S^2(\Lambda^2 \mathbb{R}^n) \to S^2 \mathbb{R}^n, \qquad c(R)(x, y) = \operatorname{tr} R(x, \cdot, y, \cdot)$$

The Kulkarni–Nomizu product of $h, k \in S^2 \mathbb{R}^n$ is the 4-tensor $h \otimes k$ given by

$$\begin{split} h \oslash k(\alpha, \beta, \gamma, \delta) &= h(\alpha, \gamma) k(\beta, \delta) + h(\beta, \delta) k(\alpha, \gamma) \\ &- h(\alpha, \delta) k(\beta, \gamma) - h(\beta, \gamma) k(\alpha, \delta). \end{split}$$

Prop.

- $h \otimes k = k \otimes h$;
- $h \oslash k \in \operatorname{Ker} b = \mathfrak{R};$
- $q \otimes q = 2 i d_{\Lambda^2 \mathbb{R}^n}$, where q =standard scalar product on \mathbb{R}^n .

Lem. If $n \geq 3$, the map $q \otimes \cdots S^2 \mathbb{R}^n \to \mathfrak{R}$ is injective and its adjoint is the restriction of the Ricci contraction $c \colon \mathfrak{R} \to S^2 \mathbb{R}^n$.

Torsion	Levi-Civita con-n	Decomposable metrics	Symmetric spaces	Berger Thm
(Components of t	the Riemannian	curvature	tensor

Theorem

We have the following decomposition:

$$\mathfrak{R} \cong \mathbb{R} \oplus S_0^2 \mathbb{R}^n \oplus \mathcal{W},$$

where $W = \text{Ker } c \cap \text{Ker } b$. If $n \ge 5$, each component is irreducible.

Explicitly:

- $\frac{1}{n} \operatorname{tr} c(R) + c(R)_0$ are the components of R in $\mathbb{R} \oplus S_0^2 \mathbb{R}^n$;
- the inclusions of the first two spaces are given by

$$\mathbb{R} \ni 1 \mapsto q \otimes q, \qquad S_0^2 \mathbb{R}^n \ni h \mapsto q \otimes h. \tag{2}$$

Def. For the Riemannian curvature tensor R we define:

- Ric(R) = c(R) Ricci curvature;
- $s = \operatorname{tr} c(R)$ scalar curvature, Ric_0 traceless Ricci curvature;
- $W(R) \in \operatorname{Ker} c \cap \operatorname{Ker} b$ Weyl tensor.

Symmetric space

From (2) follows that $R = \lambda q \otimes q + \mu \operatorname{Ric}_0 \otimes q + W$. The coefficients λ , μ can be determined from the equality $c(q \otimes h) = (n-2)h + (\operatorname{tr} h)q$. Hence, we obtain

$$R = \frac{s}{2n(n-1)} q \otimes q + \frac{1}{n-2} \operatorname{Ric}_0 \otimes q + W.$$

Observe: Ric is a symmetric quadratic form on the tangent bundle.

Def. A Riemannian mfld (M,g) is called *Einstein*, if there exists $\lambda \in \mathbb{R}$ such that

$$Ric(g) = \lambda g.$$

Low dimensions

n = 2. The curvature tensor is determined by the scalar curvature:

$$S^2(\Lambda^2 \mathbb{R}^2) = \mathbb{R} q \otimes q, \qquad R = rac{s}{4} q \otimes q.$$

Notice: Einstein \Leftrightarrow constant sc. curvature

n = 3. The curvature tensor is determined by the Ricci curvature:

$$S^{2}(\Lambda^{2}\mathbb{R}^{3}) = \mathbb{R}q \otimes q \oplus S^{2}_{0}(\mathbb{R}^{3}) \otimes q, \qquad R = \frac{s}{12}q \otimes q + Ric_{0} \otimes q.$$

$$n = 4$$
. Recall: $\Lambda^2 \mathbb{R}^4 = \Lambda^2_+ \oplus \Lambda^2_-$. Then
 $S_0^2(\mathbb{R}^4) \cong \Lambda^2_+ \otimes \Lambda^2_-, \qquad \mathcal{W} \cong S_0^2(\Lambda^2_+) \oplus S_0^2(\Lambda^2_-).$

Hence, the Weyl tensor splits: $W = W^+ + W^-$, $W^{\pm} \in S_0^2(\Lambda_{\pm}^2)$. If we consider R as a linear symmetric map of $\Lambda^2 \mathbb{R}^4 = \Lambda_+^2 \oplus \Lambda_-^2$, we have

$$R = \left(\begin{array}{c|c} W^+ + \frac{s}{12}id & Ric_0 \\ \hline Ric_0^* & W^- + \frac{s}{12}id \end{array} \right)$$

TORSION

LEVI-CIVITA CON-N

Decomposable metrics

SYMMETRIC S

Berger Thm

Two Riemannian metrics g and g' are conformally equivalent if $g' = e^{\varphi}g$ for some $\varphi \in C^{\infty}(M)$. The class [g] is called the conformal class of g.

conformal class $\iff CO(n) = O(n) \times \mathbb{R}_+$ -structure on M

Prop. The Weyl tensor is conformally invariant.

Proof. $g' \sim g$; ω' , ω corresponding LC connections, $\omega' = \omega + \xi$. Recall: $0 = T' - T = \delta \xi$, where $\delta : (\mathbb{R}^n)^* \otimes \mathfrak{co}(n) \to \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$, $\mathfrak{co}(n) = \mathfrak{so}(n) \oplus \mathbb{R}$. Since $\delta : (\mathbb{R}^n)^* \otimes \mathfrak{so}(n) \to \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$ is an isomorphism, we have $\xi \in \operatorname{Ker} \delta \cong (\mathbb{R}^n)^*$. Then $\tilde{F}' - \tilde{F} = d\omega' - d\omega + \frac{1}{2}[\omega' \wedge \omega'] - \frac{1}{2}[\omega \wedge \omega]$ $= d\xi + [\omega \wedge \xi] + \frac{1}{2}[\xi \wedge \xi]$ $= \nabla \xi + \frac{1}{2}[\xi \wedge \xi].$

Hence, R' - R takes values in $(\mathbb{R}^n)^* \otimes (\mathbb{R}^n)^*$ and thus belongs to $\mathbb{R} \oplus S_0^2(\mathbb{R}^n)$.

Geodesics

Def. A curve $\gamma \colon \mathbb{R} \to M$ is called *geodesic* if $\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t) = 0$ for all t, i.e. if the vector field $\dot{\gamma}$ is parallel along γ .

Choose local coordinates (x_1, \cdots, x_n) and write $\gamma : x_i = x_i(t)$.

$$\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t) = 0 \quad \Longleftrightarrow \quad \frac{d^2x_i}{dt^2} + \sum_{j,k} \Gamma^i_{jk}\dot{x}_i\dot{x}_j = 0, \quad i = 1, \dots, n.$$

Cor. For any $m \in M$ and any $v \in T_m M$ there exists a unique geodesic γ such that $\gamma(0) = m$ and $\dot{\gamma}(0) = v$.

Rem. γ is not necessarily defined on the whole real line.

Def. (M,g) is called *complete*, if each geodesic is defined on the whole \mathbb{R} .

Def (Exponential map). For $m \in M$ we define

$$\exp: T_m M \to M \qquad \exp(t\mathbf{v}) = \gamma_{\mathbf{v}}(t).$$

Rem. In general, exp is defined on $B_{\varepsilon}(0)$ only.

Since $\exp_* = \operatorname{id}$ at m, \exp is a diffeomorphism between some neighbourhoods of $0 \in T_m M$ and $m \in M$.

Def (Normal coordinates). The map

 $M \xrightarrow{\exp^{-1}} T_m M \xrightarrow{p} \mathbb{R}^n, \qquad p \text{ is an isometry},$

defined in a neighbourhood of *m* is called *normal coordinate* system.

Theorem (Gauss Lemma)

$$g_{\exp_m(\mathbf{v})}((\exp_m)_*\mathbf{v},(\exp_m)_*\mathbf{v}) = g_m(\mathbf{v},\mathbf{v}), \quad \text{ for all } \mathbf{v} \in T_m M.$$

Recall: A solution to the equation

$$\ddot{J} + R(J, \dot{\gamma}_{v})\dot{\gamma}_{v} = 0, \qquad J \in \Gamma(\gamma_{v}^{*}TM)$$

is called a *Jacobi vector field* along γ . If J_v is the unique Jacobi vector field satisfying $J_v(0) = m$, $\dot{J}_v(0) = v$, then

$$(exp_m)_*\mathbf{v} = J_\mathbf{v}(1).$$

Def. $\operatorname{Hol}_p^0 = \{g \mid \Pi_\gamma(p) = pg, \ \gamma \text{ is contractible }\} \subset \operatorname{Hol}_p \text{ is called the restricted holonomy group at } p \in P.$

 Hol_p^0 is the identity component of Hol_p .

Consider \mathbb{R}^n as an $H = \operatorname{Hol}_p$ -representation and write

$$\mathbb{R}^n = V_0 \oplus V_1 \oplus \dots \oplus V_k. \tag{3}$$

Here V_0 is a trivial representation (may be 0), all V_i , $i \ge 1$, are irreducible. All V_i are pairwise orthogonal.

Prop. Under (3), $H^0 = \operatorname{Hol}_p^0$ is isomorphic to a product $\{e\} \times H_1 \times \cdots \times H_k.$ **Prop.** Under (3), $H^0 = \operatorname{Hol}_p^0$ is isomorphic to a product $\{e\} \times H_1 \times \cdots \times H_k.$

Proof. Let P be the holonomy bundle through $p \in Fr(M)$. Then, $\forall q \in P$ and $\forall x, y \in \mathbb{R}^n$ we have $R_q(x, y) \in \mathfrak{h}$. Hence

$$R_{q}(x,y)(V_{i}) \subset V_{i}.$$
Write $x = \sum x_{i}, y = \sum y_{i}$ with $x_{i}, y_{i} \in V_{i}.$ Then
$$\langle R(x,y)u, v \rangle = \langle R(u,v)x, y \rangle = \sum_{i} \langle R(u,v)x_{i}, y_{i} \rangle$$

$$= \sum_{i} \langle R(x_{i},y_{i})u, v \rangle,$$

i.e. $R(x, y) = \sum_{i} R(x_i, y_i)$. By the Ambrose–Singer thm, $\mathfrak{h} = 0 \oplus \mathfrak{h}_1 \oplus \cdots \oplus \mathfrak{h}_k$, with $\mathfrak{h}_i \subset \operatorname{End} V_i$.

This implies the statement of the Proposition.

Prop. Under (3), M is locally isomorphic to the second secon	rphic to a Riemannian product	
$M_0 \times M_1 \times \cdots \times M_k,$	where M_0 is flat.	J

Proof. Denote $E_i := P \times_H V_i$, where P is the holonomy bundle. Then $TM = \bigoplus_i E_i$. Each distribution E_i is integrable:

 $v, w \in \Gamma(E_i) \Rightarrow \nabla_v w \in \Gamma(E_i) \Rightarrow [v, w] = \nabla_v w - \nabla_w v - 0 \in \Gamma(E_i).$

From the Frobenius thm, in a neighbd of m we may choose coordinates

$$x_1^1, \ldots x_1^{r_1}; \ldots; x_k^1, \ldots x_k^{r_k}$$

s.t. $\frac{\partial}{\partial x_i^j}$ is belongs to E_i . If $v = \frac{\partial}{\partial x_i^j}$, $w = \frac{\partial}{\partial x_s^t}$, $i \neq s$, then
 $\nabla_v w = \nabla_w v$ belongs to $E_s \cap E_i = 0$. Hence,

$$\frac{\partial}{\partial x_s^i}g\left(\frac{\partial}{\partial x_i^{j_1}},\frac{\partial}{\partial x_i^{j_2}}\right) = g\left(\nabla_w v_i^{j_1},v_i^{j_2}\right) + g\left(v_i^{j_1},\nabla_w v_i^{j_2}\right) = 0$$

provided $s \neq i$. Hence, the restriction of g to E_i depends on x_i^j only.

Def. Under the circumstances of the previous Proposition, M is called *locally reducible*. M is called *locally irreducible* if the holonomy representation is irreducible.

Cor. *M* is locally irreducible iff *M* is locally a Riemannian product.

Theorem (de Rham decomposition theorem)

Let M be connected, simply connected, and complete. If the holonomy representation is reducible, then M is isometric to a Riemannian product.

Proof. [KN, Thm. IV.6.1]

Symmetric spaces

Def. (M,g) is called *symmetric* if $\forall m \in M \exists$ an isometry $s = s_m$ with the following properties:

s(m) = m, $(s_*)_m = -\mathrm{id}$ on $T_m M.$

Prop. Let M be symmetric. Then
(i) s_m is a local geodesic symmetry, i.e. s_m(exp_m(v)) = exp_m(-v) whenever exp_m is defined on ±v;
(ii) (M,g) is complete;
(iii) s²_m = id_M.

Proof. (i): s_m is isometry \Rightarrow $s_m(\exp_m(v)) = \exp_m(s_*v) = \exp_m(-v)$. (ii): If $\gamma: (-\varepsilon, \varepsilon) \to M, \ \gamma(0) = m$ is a geodesic, then $s_m(\gamma(t)) = \gamma(-t)$ $\Rightarrow s_{\gamma(\tau/2)}(\gamma(t)) = \gamma(\tau - t) \Rightarrow s_{\gamma(\tau/2)} \circ s_m(\gamma(t)) = \gamma(\tau + t)$ whenever $\tau/2, t, \tau + t \in (-\varepsilon, \varepsilon)$. Since $s_{\gamma(\tau/2)} \circ s_m$ is globally defined, γ extends to $(0, +\infty)$. **Prop.** A Riemannian symmetric space M is homogeneous, i.e. the group of isometries acts transitively on M.

Proof. If γ is a geodesic, then $\gamma(t_1)$ is mapped to $\gamma(t_2)$ by s_m with $m = \gamma(\frac{t_1+t_2}{2})$. For any $(p,q) \in M \times M$ there exists a sequence of geodesic segments put end to end which joins p and q (in fact, there is a single geodesic). Then the composition of reflections in the corresponding middle points maps p to q.

Rem. In fact, we have shown, that the identity component G of the isometry group acts transitively.

Pick $m \in M$ and denote $K = Stab_m \subset G$. Then $M \cong G/K$. Observe, that G is endowed with the involution

$$\sigma \colon G \to G, \qquad f \mapsto s_m \circ f \circ s_m$$

Rem. Holonomy groups of Riemannian symmetric spaces were classified by Cartan (see [Besse. Einstein mflds, 7.H, 10.K])

Theorem
For a Riemannian mfld M the following conditions are equivalent:
(i) $\nabla R = 0;$
(ii) the local geodesic symmetry s_m is an isometry for any
$m \in M$.

Def. (M,g) is called *locally symmetric*, if $(i) \Leftrightarrow (ii)$ holds.

Proof. (*ii*) \Rightarrow (*i*): s_m isometry $\Rightarrow s_m$ preserves ∇R . On the other hand, since ∇R is of order 5, we must have $s_m^*(\nabla R)_m = -(\nabla R)_m$. Hence, $(\nabla R)_m = 0 \ \forall m$.

 $\nabla R = 0 \Rightarrow s_m$ is isometry:

 $\gamma = \gamma_w$ geodesic through m, (e_1, \ldots, e_n) orthonormal frame of $T_m M$. Define $E_i \in \Gamma(\gamma^* TM) : \nabla_{\dot{\gamma}} E_i = 0, \ E_i(0) = e_i$.

 $abla R = 0 \Rightarrow R(E_i, \dot{\gamma})\dot{\gamma} \text{ is parallel along } \gamma \Rightarrow R(E_i, \dot{\gamma})\dot{\gamma} = \sum_j r_{ij}E_j \text{ with } r_{ij} = \langle R(E_i, \dot{\gamma})\dot{\gamma}, E_j \rangle, \text{ which is constant in } t.$

Write $J_{\rm v}(t) = \sum a_{\rm v}^i(t) E_i(t)$. Then $a_{\rm v}$ satisfies ODE with constant coefficients $\ddot{a}_{\rm v} + ra_{\rm v} = 0$.

Similarly, for $\bar{\gamma} = \gamma_{-w}$ put \bar{E}_i : $\nabla_{\dot{\gamma}} \bar{E}_i = 0$, $\bar{E}_i(0) = -e_i$; $\bar{J}_v = \sum \bar{a}_v^i \bar{E}_i$. Then $\ddot{a}_v + r\bar{a}_v = 0$ (with the same matrix r!). Moreover, $\bar{a}_v(0) = 0 = a_v(0)$ and $\dot{\bar{a}}_v(0) = \dot{a}_v(0)$. Hence $\bar{J}_v(1) = J_v(1)$. Then

$$\langle J_{\mathbf{v}}(1), J_{\mathbf{v}}(1) \rangle = \langle \mathbf{v}, \mathbf{v} \rangle = \langle \bar{J}_{\mathbf{v}}(1), \bar{J}_{\mathbf{v}}(1) \rangle$$

= $\langle (s_m)_* J_{\mathbf{v}}(1), (s_m)_* J_{\mathbf{v}}(1) \rangle$

Berger theorem revisited

Theorem (Berger thm)

 $\begin{array}{c|c} \mbox{Assume M is a simply-connected irreducible not locally symmetric} \\ \mbox{Riemannian mfld of dimension n. Then Hol is one of the following:} \\ \mbox{Holonomy} & \mbox{Geometry} & \mbox{Extra structure} \\ \hline \bullet & SO(n) \\ \bullet & U(n/2) & \mbox{K\"ahler} & \mbox{complex} \end{array}$

•	SU(n/2)	Calabi–Yau	complex + hol. vol.
•	Sp(n/4)	hyperKähler	quaternionic
•	Sp(1)Sp(n/4)	quaternionic Kähler	"twisted" quaternionic
•	$G_2 (n=7)$	exceptional	"octonionic"
•	Spin(7) (n=8)	exceptional	"octonionic"

Torsion Levi-Civita con-n Decomposable metrics Symmetric spaces Berger Thm

Comments to the Berger theorem

- The assumption $\pi_1(M) = 0$ could be dropped by restricting attention to Hol^0 .
- M is locally symmetric ⇒ M is locally isometric to a symmetric space. Holonomies of simply connected symmetric spaces are known.
- Irreducibility could be dropped by taking all possible products of the entries of the Berger list.
- In the theorem, Hol is not just an abstract group, but rather a subgroup of SO(n), or, equivalently, comes together with an irreducible n-dimensional representation.
- **Ex.** For instance,

$$SO(m) = \left\{ \left(\begin{array}{c|c} A & 0 \\ \hline 0 & A \end{array} \right) \right\} \subset SO(2m)$$

is never a holonomy representation of an irreducible manifold (in fact, this is never a holonomy representation of any Riemannian manifold).