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Recap of the previous lecture

Fr(M) = U{(m,p) | p: R" = T M } frame bundle;
m7p

0(v) = p 1 (dr(v)), v € T,Fr(M) canonical 1-form

© =df + :w,0] € Q*(Fr(M);R"), torsion form

3T € Q*(M;TM),s.t. 20 =T, torsion tensor

T(v,w) = Vyw— Vv — [v,w], v,weX(M)
Alt(Va) =da —aoT, «ac Q' (M)



TORSION

Curvature tensor

For P = Fr(M) we have ad P = End(T'M). Then the curvature
can be viewed as a skew—symmetric map

TM @ TM — End(TM), (v,w) = R(v,w).

R is called the curvature tensor.

For v,w,z € X(M) we have

R(v,w)x = [Vy, VT — Vi 4] T-

LEVI-CIVITA CON-N

For any G—bundle P the space A(P) of all connections is an affine
space modelled on Q'(M;ad P).

Proof. Pick an arbitrary connection w on P. Then for any

w' € A(P), the 1-form £ = w — ' is basic and ad—equivariant.
Vice versa, for any basic and equivariant 1-form &, the form

w' = w — & is a connection. Hence, the statement of the thm. [



LEVI-CIVITA CON—N

Assume G C GL,(R) and therefore g C gl,(R) = (R")* @ R".
Fr(M) D> Pis a G-bundle, w,uw’ € A(P), {=w-—u.

For any p € P, the map 0,: H,, — R" is an isomorphism.
Therefore we can write

& e (R ®@g, T, AR = A2, 22, R™.
Then
0 —-0=3[0 — (I,-Tp)xAy=35(&)y—&y)n).
Consider the G—equivariant homomorphism
§: (RMY*®g— (R")*® (R")* @ R" — A*(R")* @ R™.
Then, T! — T = 6¢.

Prop. P has a torsion—free connection if and only if T), € Im ¢ for
allp € P. J

LEVI-CIVITA CON-N

(M, g) Riemannian manifold (by default, M is oriented)

Fr(M) D P is the G = SO(n)-bundle of orthonormal oriented
frames

We have the commutative diagram of SO(n)-representations:
so(n) — gl,(R) = EndR"

- - (R™)* = R™.
AQRn c . R" ® R™

Prop. The map d4o(p): R"Q@A’R"” — A’2R*"Q@R" is an isomorphism.J

Proof. Fora =) a;jre; ® e; A e}, we have (exercise):

1
da = 5 Z(aijk — ajik)ei Nej eg.
Hence, if a € Kerd, then a;j, = aji, = —aji = —arji = Qpij =

Aikj = —Q4jk — a=0. L]



LEVI-CIVITA CON—N

The Levi—Chvita connection

Any SO(n)-subbundle of Fr(M) admits a unique torsion—free con-

nection.

v

For any Riemannian metric g there exists a unique torsion—free con-
nection on Fr(M) such that Vg = 0.

W

The unique connection in the “Fundamental thm" is called the
Levi—Civita (or Riemannian) connection. The corresponding
curvature tensor is called Riemannian curvature tensor.

LEVI-CIVITA CON-N

For any p € P we have
R,: A*R"™ =2 A*H,, — s0(n) = A°R™.

Ry(z,y)z + Rp(y, 2)x + Ry(z,2)y =0 for all x,y,z € R™.

Proof. df + [w,0] =0 =0 = [dw,0] — [w,dd] = 0. This
implies the first Bianchi identity:
(R, 6] = [dw, 0] + 5 [[w Aw], 0]
= [w, df] + %[[w /\w},@]
= —%[w, [w,@H + %[[w /\w],e]
= 0.
(R, 0)(pz, py,pz) = 0 <= algebraic Bianchi identity. O

Cor. (Ry(z,y)z,t) = (Ry(z,t)z,y), ie. R, € S*(A’R™).

Proof. Exercise. ]



LEVI-CIVITA CON—N

Observation: If V.= V1@ V5 as G—representation, then £ = E1 D Eo,
where F; := P xq V.

o

Determine irreducible components of the SO(n)-representation
R = {R € A*(R")* ®so(n) | R satisfies alg. Bianchi id.}.

We can decompose
EndR" = s0(n) & SymR" = so(n) & Symy R" & R,
where Symy R"” = Ker(tr: SymR"™ — R). In other words,
R" ® R" =2 A’R" @ SR" @ R. (1)

Prop. (1) is decomposition into irreducible components if n # 4.
For n = 4 we have in addition A*’R* = AZR* @ A2R*. J

Here: s: A™R?>™ — A™R?™ is the Hodge operator, *? = id
APR?™ are eigenspaces corresponding to A = 1.

LEVI-CIVITA CON-N

Think of ®*R" as the space of quadrilinear forms on (R™)*.
Consider the map

b(R) (e B,7,0) = 5 (R(er, 8,7,0) + R(B,7,,0) + R(y,0. 8,9))

(cyclic permutation in the first 3 variables; Bianchi map). Then
e bis SO(n)-invariant
e b2 =10
o b: S2(A?R"™) — S?(A%R")

Hence, we have

S2(A*R™) = Kerb @ Imb = R @ A'R™.



LEVI-CIVITA CON—N

The Ricci contraction is the SO(n)—equivariant map
c: S2(A*R™) — S°R", c¢(R)(x,y) =tr R(x,-,y,")

The Kulkarni-Nomizu product of h,k € S?R™ is the 4—tensor
h ® k given by

h o ko, B,7,6) = ho, 1)k (8, 8) + h(B, 6)k(

a, )
a,d).

Prop.
e hDk=kDh;
e h®k € Kerb=*R,
e ¢O q = 2idp2pn, Wwhere q =standard scalar product on R™.

Lem. [Ifn > 3, the map ¢ ® -: S?R™ — R is injective and its
adjoint is the restriction of the Ricci contraction c: /i — S?R™.

LEVI-CIVITA CON-N

Components of the Riemannian curvature tensor

We have the following decomposition:

R=RD SR W,

where VW = Kerc N Kerb. Ifn > 5, each component is irreducible.

v

Explicitly:
o Ltrc(R) + ¢(R)o are the components of R in R & S3R";
e the inclusions of the first two spaces are given by

R31—¢Dq, S2R™ 3 h+ q® h. (2)

Def. For the Riemannian curvature tensor R we define:
e Ric(R) = ¢(R) Ricci curvature,
e s =trc(R) scalar curvature, Ricg traceless Ricci curvature;
e W(R) € Kercn Kerb Weyl tensor.



LEVI-CIVITA CON—N

From (2) follows that R=Aq ® q + p Rico ® q + W. The

coefficients A, p can be determined from the equality
c(q® h) = (n—2)h+ (trh)q. Hence, we obtain

2n(n — 1)

s 1
R:—Q@q+mRiCQ@q+W

Observe: Ric is a symmetric quadratic form on the tangent bundle.

Def. A Riemannian mfld (M, g) is called Einstein, if there exists

A € R such that
Ric(g) = Ag.

LEVI-CIVITA CON-N

Local expressions

Choose local coordinates (z1,...,2y,) on M and write:
0 k o I 0 0 1)
VB/aa:i 31, — er Oz, ? gij — g(a_mia %)7 (g ) -
k

Local functions Fk are called Chistoffel symbols.

1
Ffj =3 Z 9" (0igij + 9594 — 019ij),
z
T(azw a%j) - Zaﬁ‘ﬂ' N Fki)a%
R(@xz’ 8:03 8xk Z ka ox;”’

Rl = (a Tk — 0klh) + ) (TRTY,

m

(gi5) "

=T To)




LEVI-CIVITA CON—N

Low dimensions

n = 2. The curvature tensor is determined by the scalar curvature:

S*(A°R*) =Rqmgq, R= Zq®q-

Notice: Einstein < constant sc. curvature

n = 3. The curvature tensor is determined by the Ricci curvature:

S2(A2R}) =R q® S2(R*) ®q, R= %q@q—l— Rico ® q.
n = 4. Recall: A’R* = Ai ® A%, Then

SERY 2 AT @A%, W= SHAL) D SH(A2).
Hence, the Weyl tensor splits: W = W+ + W=, W+ € S3(A2).

If we consider R as a linear symmetric map of A2R* = A% & A2,

we have
Wt id | Ric

R —
Ricy | W™+ fid

LEVI-CIVITA CON-N

Two Riemannian metrics g and ¢’ are conformally equivalent if
g = e¥g for some ¢ € C*°(M). The class [g] is called the
conformal class of g.

conformal class <= (CO(n) = O(n) x Ry—structure on M

Prop. The Weyl tensor is conformally invariant.

Proof. ¢ ~ g; W', w corresponding LC connections, w’ = w + £.
Recall: 0 =T — T = §¢, where
§: (R")* @ co(n) — A%2(R*)* @ R™, co(n) = so(n) ® R. Since
§: (R")* ® s0(n) — A?(R™)* @ R™ is an isomorphism, we have
¢ € Kerd = (R™)*. Then
F'—F=do —dw+ 3w Aw'] = 3w Aw]
=dg+[wng]+3[EN¢g]
= VE+ 3[E A€
Hence, R’ — R takes values in (R™)* ® (R™)* and thus belongs to
R & S2(R™). O



LEVI-CIVITA CON—N

Geodesics

Def. A curve v: R — M is called geodesic if V;;)(t) = 0 for all
t, i.e. if the vector field + is parallel along ~.

Choose local coordinates (x1,--- ,x,) and write v : x; = x;(t).

Vw)ﬁ(t) =0 <=

Cor. For any m € M and any v € T,,M there exists a unique
geodesic vy such that v(0) = m and %(0) = v.

Rem. ~ is not necessarily defined on the whole real line.

Def. (M,g) is called complete, if each geodesic is defined on the
whole R.

LEVI-CIVITA CON-N

Def (Exponential map). For m € M we define

exp: T,nM — M exp(tv) = Yy (t).

Rem. In general, exp is defined on B.(0) only.

Since exp, = id at m, exp is a diffeomorphism between some
neighbourhoods of 0 € T},, M and m € M.

Def (Normal coordinates). The map

—1
M= 7 M-SR p is an isometry,

defined in a neighbourhood of m is called normal coordinate
system.



LEVI-CIVITA CON—N

Jexp,, (v) ((eXpm)*Va (expm)*v) = gm(v,v), forallveT,M.

Recall: A solution to the equation
J+R(J, ) =0,  JeT(TM)

is called a Jacobi vector field along ~. If J; is the unique Jacobi
vector field satisfying J,,(0) = m, J,(0) = v, then

(expm)«v = Jy(1).

DECOMPOSABLE METRICS

Def. Holg = {g | IL,(p) = pyg, 7 is contractible } C Hol, is called
the restricted holonomy group at p € P.

Holg is the identity component of Hol,,.

Consider R™ as an H = Hol,—representation and write
R'=Vo Vi@ &V (3)

Here Vj is a trivial representation (may be 0), all V;, i > 1, are
irreducible. All V; are pairwise orthogonal.

Prop. Under (3), H' = Holg is isomorphic to a product

{e} x Hy X --- X Hy.




DECOMPOSABLE METRICS

Prop. Under (3), H° = Hol)) is isomorphic to a product

{e} x Hy x --+ X Hy.

Proof. Let P be the holonomy bundle through p € Fr(M).
Then, Vg € P and Vz,y € R™ we have R,(x,y) € h. Hence

Write x = > x;, y = >_ y; with z;,y; € V;. Then

< xyuv>—<Ruvacy> Z uvxz,yz>
:Z xihyi U,’U>,

i.e. R(x,y) =>_, R(x;,y;). By the Ambrose-Singer thm,
hb=0®h B - Dby, with h; C End V.
This implies the statement of the Proposition. []

DECOMPOSABLE METRICS

Prop. Under (3), M is locally isomorphic to a Riemannian product

Moy x My x -+ x M, where My is flat.

Proof. Denote F; := P xg V;, where P is the holonomy bundle.
Then TM = P, E;. Each distribution E; is integrable:

v,w e DN'(E;) = Vyw e T'(E;) = [v,w] = Vyw—V,v—0 € T'(E;).

From the Frobenius thm, in a neigbhd of m we may choose
coordinates

1 1, 1 T
L T L R
o _ _ 0
s.t. P is belongs to F;. If v = aj,w 8“27&5 then

Vw—V wU belongs to E, N E; = 0. Hence,
2eg( 25, 0 ) = g(Vurd ) + (o, Vi) = 0

5’le 83:12

provided s # 7. Hence, the restriction of g to E; depends on x*Z

only. []



DECOMPOSABLE METRICS

Def. Under the circumstances of the previous Proposition, M is
called locally reducible. M is called locally irreducible if the
holonomy representation is irreducible.

Cor. M is locally irreducible iff M is locally a Riemannian product.)

Let M be connected, simply connected, and complete. If the holon-
omy representation is reducible, then M is isometric to a Riemannian
product.

Proof. [KN, Thm. IV.6.1] O]

SYMMETRIC SPACES

Symmetric spaces

Def. (M, g) is called symmetric if Vm € M 3 an isometry s = s,
with the following properties:

s(m) =m, (S«)m = —id  on T}, M.

Prop. Let M be symmetric. Then

(i) sm is a local geodesic symmetry, i.e.
Sm(exp,,(v)) = exp,,(—v) whenever exp,, is defined on +v;

(ii) (M, g) is complete;

(iii) s2, =idyy.

Proof. (i): sy, is isometry =

Sm(exp,,(v)) = exp,,(sxv) = exp,,(—v).  (ii): If

v: (—e,e) = M, v(0) = m is a geodesic, then s,,,(v(t)) = v(—t)
= Sy(r/2) (V) =T =) = Sy(r/2) © sm(V(t)) = (T + 1)
whenever 7/2,t, 7+t € (—¢,¢€). Since s,(/2) © S is globally
defined, v extends to (0, +00). O



SYMMETRIC SPACES

Prop. A Riemannian symmetric space M is homogeneous, i.e. the
group of isometries acts transitively on M.

Proof. If v is a geodesic, then ~(t1) is mapped to ~(t2) by sm,
with m = (2£2).

For any (p,q) € M x M there exists a sequence of geodesic
segments put end to end which joins p and ¢ (in fact, there is a
single geodesic). Then the composition of reflections in the
corresponding middle points maps p to gq. []

Rem. In fact, we have shown, that the identity component G of
the isometry group acts transitively.

Pick m € M and denote K = Stab,, C G. Then M = G/K.
Observe, that GG is endowed with the involution

o: G — G, fr=>snofosn,

SYMMETRIC SPACES

(i) Let G be a connected Lie group with an involution o and a
left invariant metric which is also right—invariant under
K ={o(g) = g}. Let K be a closed subgroup of G s.t.
K°c K c K. Then M = G/K is a symmetric space with its
induced metric.

(i) Every symmetric space arises as in (i).

(ii1) We have the Cartan decomposition: g = ¢ + m with
[t e Cce [Em]Cm, [mm]Ce¢t

Moreover, T,,,M = m.
(iv) Hol,, C K.

Rem. Holonomy groups of Riemannian symmetric spaces were
classified by Cartan (see [Besse. Einstein mflds, 7.H, 10.K])




SYMMETRIC SPACES

For a Riemannian mfld M the following conditions are equivalent:
(i) VR =0;
(ii) the local geodesic symmetry s, is an isometry for any
m e M.

Def. (M, g) is called locally symmetric, if (i) < (ii) holds.

Proof. (ii)=(i):

Sm isometry = s, preserves VR. On the other hand, since VR is
of order 5, we must have s* (VR),, = —(VR),,. Hence,

(VR);, =0 Vm.

SYMMETRIC SPACES
VR=0 = s, Is isometry:

¥ = w geodesic through m, (e1,...,e,) orthonormal frame of
T, M. Define E; € T(v*TM) : Vs E; = 0, E;(0) = e;.
VR=0 = R(E;*)Y is parallel along v =

R(Ei, v)y = >_;rijEj with ri; = (R(E;, ¥)7, Ej), which is
constant in t.

Write J, (t) = Y a® (t)E;(t). Then a, satisfies ODE with
constant coefficients a, + ra, = 0.

Similarly, for ¥ = v_, put E; : VﬁEi =0, E;(0) = —e;;

J, =>_a FE;. Then a, + ra, = 0 (with the same matrix 7!).
Moreover, a,(0) =0 = ay(0) and a,(0) = @ (0). Hence
Jo(1) = Jy(1). Then

<Jv<1)7 Jv(1)> — <V7V> — <jv<1)7jv<1)>
((sm) v (1), (8m)xJv(1)).

[




BERGER THM

Berger theorem revisited

Assume M is a simply—connected irreducible not locally symmetric
Riemannian mfld of dimension n. Then Hol is one of the following:
Holonomy Geometry Extra structure

e SO(n)

e U(n/2) Kahler complex

o SU(n/2) Calabi—Yau complex + hol. vol.

e Sp(n/d) hyperKahler quaternionic

e Sp(1)Sp(n/4)  quaternionic Kahler “twisted” quaternionic

o Gy (n=7) exceptional “octonionic”

e Spin(7) (n=8) exceptional “octonionic”

BERGER THM

Comments to the Berger theorem

e The assumption (M) = 0 could be dropped by restricting
attention to Hol".

e M is locally symmetric = M is locally isometric to a
symmetric space. Holonomies of simply connected symmetric
spaces are known.

e Irreducibility could be dropped by taking all possible products
of the entries of the Berger list.

e In the theorem, Hol is not just an abstract group, but rather a
subgroup of SO(n), or, equivalently, comes together with an
irreducible n—dimensional representation.

Ex. For instance,

o= (42} c 0

is never a holonomy representation of an irreducible manifold (in
fact, this is never a holonomy representation of any Riemannian
manifold).
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