Holonomy groups
 in Riemannian geometry

Lecture 3

November 3, 2011

Recap of the previous lecture

$\operatorname{Fr}(M):=\bigcup_{m, p}\left\{(m, p) \mid p: \mathbb{R}^{n} \xrightarrow{\cong} T_{m} M\right\} \quad$ frame bundle;
$\theta(v)=p^{-1}(d \pi(v)), v \in T_{p} \operatorname{Fr}(M) \quad$ canonical 1-form

$$
\Theta=d \theta+\frac{1}{2}[\omega, \theta] \in \Omega^{2}\left(F r(M) ; \mathbb{R}^{n}\right)
$$

torsion form
$\exists T \in \Omega^{2}(M ; T M)$, s.t. $\quad 2 \Theta=\pi^{*} T$,
torsion tensor
$T(v, w)=\nabla_{v} w-\nabla_{w} v-[v, w], \quad v, w \in \mathfrak{X}(M)$ $\operatorname{Alt}(\nabla \alpha)=d \alpha-\alpha \circ T, \quad \alpha \in \Omega^{1}(M)$

Curvature tensor

For $P=\operatorname{Fr}(M)$ we have $a d P=\operatorname{End}(T M)$. Then the curvature can be viewed as a skew-symmetric map

$$
T M \otimes T M \rightarrow \operatorname{End}(T M), \quad(v, w) \mapsto R(v, w)
$$

R is called the curvature tensor.

Theorem (KN, Thm. II.5.1)

For $v, w, x \in \mathfrak{X}(M)$ we have

$$
R(v, w) x=\left[\nabla_{v}, \nabla_{w}\right] x-\nabla_{[v, w]} x
$$

Theorem

For any G-bundle P the space $\mathcal{A}(P)$ of all connections is an affine space modelled on $\Omega^{1}(M ; a d P)$.

Proof. Pick an arbitrary connection ω on P. Then for any $\omega^{\prime} \in \mathcal{A}(P)$, the 1 -form $\xi=\omega-\omega^{\prime}$ is basic and $a d$-equivariant. Vice versa, for any basic and equivariant 1-form ξ, the form $\omega^{\prime}=\omega-\xi$ is a connection. Hence, the statement of the thm.

Assume $G \subset G L_{n}(\mathbb{R})$ and therefore $\mathfrak{g} \subset \mathfrak{g l}_{n}(\mathbb{R}) \cong\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n}$.
$\operatorname{Fr}(M) \supset P$ is a G-bundle, $\quad \omega, \omega^{\prime} \in \mathcal{A}(P), \quad \xi=\omega-\omega^{\prime}$.
For any $p \in P$, the map $\theta_{p}: \mathcal{H}_{p} \rightarrow \mathbb{R}^{n}$ is an isomorphism.
Therefore we can write

$$
\xi_{p} \in\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{g}, \quad T_{p}: \Lambda^{2} \mathbb{R}^{n} \cong \Lambda^{2} \mathcal{H}_{p} \xrightarrow{\Theta_{p}} \mathbb{R}^{n}
$$

Then

$$
\Theta^{\prime}-\Theta=\frac{1}{2}[\xi, \theta] \quad \Longleftrightarrow \quad\left(T_{p}^{\prime}-T_{p}\right) x \wedge y=\frac{1}{2}\left(\xi_{p}(x) y-\xi_{p}(y) x\right)
$$

Consider the G-equivariant homomorphism

$$
\delta:\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{g} \hookrightarrow\left(\mathbb{R}^{n}\right)^{*} \otimes\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n} \longrightarrow \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n}
$$

Then, $T^{\prime}-T=\delta \xi$.
Prop. P has a torsion-free connection if and only if $T_{p} \in \operatorname{Im} \delta$ for all $p \in P$.
(M, g) Riemannian manifold (by default, M is oriented)
$\operatorname{Fr}(M) \supset P$ is the $G=S O(n)$-bundle of orthonormal oriented frames
We have the commutative diagram of $S O(n)$-representations:

Prop. The $\operatorname{map} \delta_{\mathfrak{s o}(n)}: \mathbb{R}^{n} \otimes \Lambda^{2} \mathbb{R}^{n} \rightarrow \Lambda^{2} \mathbb{R}^{n} \otimes \mathbb{R}^{n}$ is an isomorphism.
Proof. For $a=\sum a_{i j k} e_{i} \otimes e_{j} \wedge e_{k}$ we have (exercise):

$$
\delta a=\frac{1}{2} \sum\left(a_{i j k}-a_{j i k}\right) e_{i} \wedge e_{j} \otimes e_{k}
$$

Hence, if $a \in \operatorname{Ker} \delta$, then $a_{i j k}=a_{j i k}=-a_{j k i}=-a_{k j i}=a_{k i j}=$ $a_{i k j}=-a_{i j k} \quad \Longrightarrow \quad a=0$.

The Levi-Civita connection

Theorem ("Fundamental theorem of Riemannian geometry")

Any $S O(n)$-subbundle of $\operatorname{Fr}(M)$ admits a unique torsion-free connection.

Theorem ("Fundamental theorem", reformulation)

For any Riemannian metric g there exists a unique torsion-free connection on $\operatorname{Fr}(M)$ such that $\nabla g=0$.

The unique connection in the "Fundamental thm" is called the Levi-Civita (or Riemannian) connection. The corresponding curvature tensor is called Riemannian curvature tensor.

For any $p \in P$ we have

$$
R_{p}: \Lambda^{2} \mathbb{R}^{n} \cong \Lambda^{2} \mathcal{H}_{p} \longrightarrow \mathfrak{s o}(n) \cong \Lambda^{2} \mathbb{R}^{n}
$$

Theorem ("algebraic Bianchi identity")

$R_{p}(x, y) z+R_{p}(y, z) x+R_{p}(z, x) y=0 \quad$ for all $x, y, z \in \mathbb{R}^{n}$.
Proof. $d \theta+\frac{1}{2}[\omega, \theta]=\Theta=0 \Rightarrow[d \omega, \theta]-[\omega, d \theta]=0$. This implies the first Bianchi identity:

$$
\begin{aligned}
{[R, \theta] } & =[d \omega, \theta]+\frac{1}{2}[[\omega \wedge \omega], \theta] \\
& =[\omega, d \theta]+\frac{1}{2}[[\omega \wedge \omega], \theta] \\
& =-\frac{1}{2}[\omega,[\omega, \theta]]+\frac{1}{2}[[\omega \wedge \omega], \theta] \\
& =0
\end{aligned}
$$

$[R, \theta](p x, p y, p z)=0 \Longleftrightarrow$ algebraic Bianchi identity.
Cor. $\left\langle R_{p}(x, y) z, t\right\rangle=\left\langle R_{p}(z, t) x, y\right\rangle$, i.e. $R_{p} \in S^{2}\left(\Lambda^{2} \mathbb{R}^{n}\right)$.
Proof. Exercise.

Observation: If $V=V_{1} \oplus V_{2}$ as G-representation, then $E=E_{1} \oplus E_{2}$, where $E_{i}:=P \times_{G} V_{i}$.

Determine irreducible components of the $S O(n)$-representation

$$
\mathfrak{R}=\left\{R \in \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{s o}(n) \mid R \text { satisfies alg. Bianchi id. }\right\} .
$$

We can decompose

$$
\text { End } \mathbb{R}^{n}=\mathfrak{s o}(n) \oplus \operatorname{Sym} \mathbb{R}^{n}=\mathfrak{s o}(n) \oplus \operatorname{Sym}_{0} \mathbb{R}^{n} \oplus \mathbb{R}
$$

where $\operatorname{Sym}_{0} \mathbb{R}^{n}=\operatorname{Ker}\left(\operatorname{tr}: \operatorname{Sym} \mathbb{R}^{n} \rightarrow \mathbb{R}\right)$. In other words,

$$
\begin{equation*}
\mathbb{R}^{n} \otimes \mathbb{R}^{n} \cong \Lambda^{2} \mathbb{R}^{n} \oplus S_{0}^{2} \mathbb{R}^{n} \oplus \mathbb{R} \tag{1}
\end{equation*}
$$

Prop. (1) is decomposition into irreducible components if $n \neq 4$. For $n=4$ we have in addition $\Lambda^{2} \mathbb{R}^{4}=\Lambda_{+}^{2} \mathbb{R}^{4} \oplus \Lambda_{-}^{2} \mathbb{R}^{4}$.

Here: $*: \Lambda^{m} \mathbb{R}^{2 m} \rightarrow \Lambda^{m} \mathbb{R}^{2 m}$ is the Hodge operator, $*^{2}=i d$ $\Lambda_{ \pm}^{m} \mathbb{R}^{2 m}$ are eigenspaces corresponding to $\lambda= \pm 1$.

LEvi-Civita CON-N

Think of $\bigotimes^{4} \mathbb{R}^{n}$ as the space of quadrilinear forms on $\left(\mathbb{R}^{n}\right)^{*}$.
Consider the map

$$
b(R)(\alpha, \beta, \gamma, \delta)=\frac{1}{3}(R(\alpha, \beta, \gamma, \delta)+R(\beta, \gamma, \alpha, \delta)+R(\gamma, \alpha, \beta, \delta))
$$

(cyclic permutation in the first 3 variables; Bianchi map). Then

- b is $S O(n)$-invariant
- $b^{2}=b$
- $b: S^{2}\left(\Lambda^{2} \mathbb{R}^{n}\right) \rightarrow S^{2}\left(\Lambda^{2} \mathbb{R}^{n}\right)$

Hence, we have

$$
S^{2}\left(\Lambda^{2} \mathbb{R}^{n}\right)=\operatorname{Ker} b \oplus \operatorname{Im} b=\mathfrak{R} \oplus \Lambda^{4} \mathbb{R}^{n}
$$

The Ricci contraction is the $S O(n)$-equivariant map

$$
c: S^{2}\left(\Lambda^{2} \mathbb{R}^{n}\right) \rightarrow S^{2} \mathbb{R}^{n}, \quad c(R)(x, y)=\operatorname{tr} R(x, \cdot, y, \cdot)
$$

The Kulkarni-Nomizu product of $h, k \in S^{2} \mathbb{R}^{n}$ is the 4-tensor $h \oplus k$ given by

$$
\begin{aligned}
h \otimes k(\alpha, \beta, \gamma, \delta) & =h(\alpha, \gamma) k(\beta, \delta)+h(\beta, \delta) k(\alpha, \gamma) \\
& -h(\alpha, \delta) k(\beta, \gamma)-h(\beta, \gamma) k(\alpha, \delta) .
\end{aligned}
$$

Prop.

- $h \otimes k=k \otimes h ;$
- $h \otimes k \in \operatorname{Ker} b=\mathfrak{R}$;
- $q \otimes q=2 i d_{\Lambda^{2} \mathbb{R}^{n}}$, where $q=$ standard scalar product on \mathbb{R}^{n}.

Lem. If $n \geq 3$, the $\operatorname{map} q \otimes \cdot: S^{2} \mathbb{R}^{n} \rightarrow \mathfrak{R}$ is injective and its adjoint is the restriction of the Ricci contraction $c: \mathfrak{R} \rightarrow S^{2} \mathbb{R}^{n}$.

Components of the Riemannian curvature tensor

Theorem

We have the following decomposition:

$$
\mathfrak{R} \cong \mathbb{R} \oplus S_{0}^{2} \mathbb{R}^{n} \oplus \mathcal{W}
$$

where $\mathcal{W}=\operatorname{Ker} c \cap \operatorname{Ker} b$. If $n \geq 5$, each component is irreducible.

Explicitly:

- $\frac{1}{n} \operatorname{tr} c(R)+c(R)_{0}$ are the components of R in $\mathbb{R} \oplus S_{0}^{2} \mathbb{R}^{n}$;
- the inclusions of the first two spaces are given by

$$
\begin{equation*}
\mathbb{R} \ni 1 \mapsto q \otimes q, \quad S_{0}^{2} \mathbb{R}^{n} \ni h \mapsto q \otimes h . \tag{2}
\end{equation*}
$$

Def. For the Riemannian curvature tensor R we define:

- $\operatorname{Ric}(R)=c(R)$ Ricci curvature;
- $s=\operatorname{tr} c(R)$ scalar curvature, Ric $_{0}$ traceless Ricci curvature;
- $W(R) \in \operatorname{Ker} c \cap \operatorname{Ker} b$ Weyl tensor.

From (2) follows that $R=\lambda q \otimes q+\mu \operatorname{Ric}_{0} \otimes q+W$. The coefficients λ, μ can be determined from the equality $c(q \otimes h)=(n-2) h+(\operatorname{tr} h) q$. Hence, we obtain

$$
R=\frac{s}{2 n(n-1)} q \otimes q+\frac{1}{n-2} \operatorname{Ric}_{0} \oplus q+W
$$

Observe: Ric is a symmetric quadratic form on the tangent bundle. Def. A Riemannian mfld (M, g) is called Einstein, if there exists $\lambda \in \mathbb{R}$ such that

$$
\operatorname{Ric}(g)=\lambda g
$$

Local expressions

Choose local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ on M and write:

$$
\nabla_{\partial / \partial x_{i}} \frac{\partial}{\partial x_{j}}=\sum_{k} \Gamma_{i j}^{k} \frac{\partial}{\partial x_{k}}, \quad g_{i j}=g\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right), \quad\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}
$$

Local functions $\Gamma_{i j}^{k}$ are called Chistoffel symbols.

Theorem ([KN, Prop. III.7.6 + Cor. IV.2.4])

$$
\begin{aligned}
\Gamma_{i j}^{k} & =\frac{1}{2} \sum_{l} g^{k l}\left(\partial_{i} g_{l j}+\partial_{j} g_{i l}-\partial_{l} g_{i j}\right) \\
T\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) & =\sum_{k}\left(\Gamma_{i j}^{k}-\Gamma_{j i}^{k}\right) \frac{\partial}{\partial x_{k}} \\
R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) \frac{\partial}{\partial x_{k}} & =\sum_{l} R_{i j k}^{l} \frac{\partial}{\partial x_{l}} \\
R_{i j k}^{l} & =\left(\partial_{j} \Gamma_{k i}^{l}-\partial_{k} \Gamma_{j i}^{l}\right)+\sum_{m}\left(\Gamma_{k i}^{m} \Gamma_{j m}^{l}-\Gamma_{j i}^{m} \Gamma_{k m}^{l}\right)
\end{aligned}
$$

Low dimensions

$n=2$. The curvature tensor is determined by the scalar curvature:

$$
S^{2}\left(\Lambda^{2} \mathbb{R}^{2}\right)=\mathbb{R} q \otimes q, \quad R=\frac{s}{4} q \otimes q
$$

Notice: Einstein \Leftrightarrow constant sc. curvature
$n=3$. The curvature tensor is determined by the Ricci curvature:

$$
S^{2}\left(\Lambda^{2} \mathbb{R}^{3}\right)=\mathbb{R} q \otimes q \oplus S_{0}^{2}\left(\mathbb{R}^{3}\right) \otimes q, \quad R=\frac{s}{12} q \oplus q+R i c_{0} \otimes q
$$

$n=4$. Recall: $\Lambda^{2} \mathbb{R}^{4}=\Lambda_{+}^{2} \oplus \Lambda_{-}^{2}$. Then

$$
S_{0}^{2}\left(\mathbb{R}^{4}\right) \cong \Lambda_{+}^{2} \otimes \Lambda_{-}^{2}, \quad \mathcal{W} \cong S_{0}^{2}\left(\Lambda_{+}^{2}\right) \oplus S_{0}^{2}\left(\Lambda_{-}^{2}\right)
$$

Hence, the Weyl tensor splits: $W=W^{+}+W^{-}, W^{ \pm} \in S_{0}^{2}\left(\Lambda_{ \pm}^{2}\right)$. If we consider R as a linear symmetric map of $\Lambda^{2} \mathbb{R}^{4}=\Lambda_{+}^{2} \oplus \Lambda_{-}^{2}$, we have

$$
R=\left(\begin{array}{c|c}
W^{+}+\frac{s}{12} i d & \text { Ric }_{0} \\
\hline \operatorname{Ric}_{0}^{*} & W^{-}+\frac{s}{12} i d
\end{array}\right)
$$

Two Riemannian metrics g and g^{\prime} are conformally equivalent if $g^{\prime}=e^{\varphi} g$ for some $\varphi \in C^{\infty}(M)$. The class $[g]$ is called the conformal class of g.

$$
\text { conformal class } \Longleftrightarrow C O(n)=O(n) \times \mathbb{R}_{+} \text {-structure on } M
$$

Prop. The Weyl tensor is conformally invariant.
Proof. $g^{\prime} \sim g ; \omega^{\prime}, \omega$ corresponding LC connections, $\omega^{\prime}=\omega+\xi$. Recall: $0=T^{\prime}-T=\delta \xi$, where $\delta:\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{c o}(n) \rightarrow \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n}, \mathfrak{c o}(n)=\mathfrak{s o}(n) \oplus \mathbb{R}$. Since $\delta:\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{s o}(n) \rightarrow \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n}$ is an isomorphism, we have $\xi \in \operatorname{Ker} \delta \cong\left(\mathbb{R}^{n}\right)^{*}$. Then

$$
\begin{aligned}
\tilde{F}^{\prime}-\tilde{F} & =d \omega^{\prime}-d \omega+\frac{1}{2}\left[\omega^{\prime} \wedge \omega^{\prime}\right]-\frac{1}{2}[\omega \wedge \omega] \\
& =d \xi+[\omega \wedge \xi]+\frac{1}{2}[\xi \wedge \xi] \\
& =\nabla \xi+\frac{1}{2}[\xi \wedge \xi] .
\end{aligned}
$$

Hence, $R^{\prime}-R$ takes values in $\left(\mathbb{R}^{n}\right)^{*} \otimes\left(\mathbb{R}^{n}\right)^{*}$ and thus belongs to $\mathbb{R} \oplus S_{0}^{2}\left(\mathbb{R}^{n}\right)$ 。

Def. A curve $\gamma: \mathbb{R} \rightarrow M$ is called geodesic if $\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)=0$ for all t, i.e. if the vector field $\dot{\gamma}$ is parallel along γ.

Choose local coordinates $\left(x_{1}, \cdots, x_{n}\right)$ and write $\gamma: x_{i}=x_{i}(t)$.

$$
\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)=0 \quad \Longleftrightarrow \quad \frac{d^{2} x_{i}}{d t^{2}}+\sum_{j, k} \Gamma_{j k}^{i} \dot{x}_{i} \dot{x}_{j}=0, \quad i=1, \ldots, n .
$$

Cor. For any $m \in M$ and any $\mathrm{v} \in T_{m} M$ there exists a unique geodesic γ such that $\gamma(0)=m$ and $\dot{\gamma}(0)=\mathrm{v}$.

Rem. γ is not necessarily defined on the whole real line.
Def. (M, g) is called complete, if each geodesic is defined on the whole \mathbb{R}.

Def (Exponential map). For $m \in M$ we define

$$
\exp : T_{m} M \rightarrow M \quad \exp (t \mathrm{v})=\gamma_{\mathrm{v}}(t)
$$

Rem. In general, \exp is defined on $B_{\varepsilon}(0)$ only.
Since $\exp _{*}=$ id at m, exp is a diffeomorphism between some neighbourhoods of $0 \in T_{m} M$ and $m \in M$.

Def (Normal coordinates). The map

$$
M \xrightarrow{\exp ^{-1}} T_{m} M \xrightarrow{p} \mathbb{R}^{n}, \quad p \text { is an isometry },
$$

defined in a neighbourhood of m is called normal coordinate system.

Theorem (Gauss Lemma)

$$
g_{\exp _{m}(\mathrm{v})}\left(\left(\exp _{m}\right)_{*} \mathrm{v},\left(\exp _{m}\right)_{*} \mathrm{v}\right)=g_{m}(\mathrm{v}, \mathrm{v}), \quad \text { for all } \mathrm{v} \in T_{m} M
$$

Recall: A solution to the equation

$$
\ddot{J}+R\left(J, \dot{\gamma}_{\mathrm{v}}\right) \dot{\gamma}_{\mathrm{v}}=0, \quad J \in \Gamma\left(\gamma_{\mathrm{v}}^{*} T M\right)
$$

is called a Jacobi vector field along γ. If J_{v} is the unique Jacobi vector field satisfying $J_{\mathrm{v}}(0)=m, \dot{J}_{\mathrm{v}}(0)=\mathrm{v}$, then

$$
\left(\exp _{m}\right)_{*} \mathrm{v}=J_{\mathrm{v}}(1)
$$

Def. $\operatorname{Hol}_{p}^{0}=\left\{g \mid \Pi_{\gamma}(p)=p g, \gamma\right.$ is contractible $\} \subset \operatorname{Hol}_{p}$ is called the restricted holonomy group at $p \in P$.
$\operatorname{Hol}_{p}^{0}$ is the identity component of Hol_{p}.
Consider \mathbb{R}^{n} as an $H=\operatorname{Hol}_{p}$-representation and write

$$
\begin{equation*}
\mathbb{R}^{n}=V_{0} \oplus V_{1} \oplus \cdots \oplus V_{k} \tag{3}
\end{equation*}
$$

Here V_{0} is a trivial representation (may be 0), all $V_{i}, i \geq 1$, are irreducible. All V_{i} are pairwise orthogonal.

Prop. Under (3), $H^{0}=\operatorname{Hol}_{p}^{0}$ is isomorphic to a product

$$
\{e\} \times H_{1} \times \cdots \times H_{k}
$$

Prop. Under (3), $H^{0}=\operatorname{Hol}_{p}^{0}$ is isomorphic to a product

$$
\{e\} \times H_{1} \times \cdots \times H_{k}
$$

Proof. Let P be the holonomy bundle through $p \in \operatorname{Fr}(M)$. Then, $\forall q \in P$ and $\forall x, y \in \mathbb{R}^{n}$ we have $R_{q}(x, y) \in \mathfrak{h}$. Hence

$$
R_{q}(x, y)\left(V_{i}\right) \subset V_{i} .
$$

Write $x=\sum x_{i}, y=\sum y_{i}$ with $x_{i}, y_{i} \in V_{i}$. Then

$$
\begin{aligned}
\langle R(x, y) u, v\rangle=\langle R(u, v) x, y\rangle & =\sum_{i}\left\langle R(u, v) x_{i}, y_{i}\right\rangle \\
& =\sum_{i}\left\langle R\left(x_{i}, y_{i}\right) u, v\right\rangle
\end{aligned}
$$

i.e. $R(x, y)=\sum_{i} R\left(x_{i}, y_{i}\right)$. By the Ambrose-Singer thm,

$$
\mathfrak{h}=0 \oplus \mathfrak{h}_{1} \oplus \cdots \oplus \mathfrak{h}_{k}, \quad \text { with } \mathfrak{h}_{i} \subset \text { End } V_{i} .
$$

This implies the statement of the Proposition.

Prop. Under (3), M is locally isomorphic to a Riemannian product

$$
M_{0} \times M_{1} \times \cdots \times M_{k}, \quad \text { where } M_{0} \text { is flat. }
$$

Proof. Denote $E_{i}:=P \times_{H} V_{i}$, where P is the holonomy bundle. Then $T M=\bigoplus_{i} E_{i}$. Each distribution E_{i} is integrable:

$$
v, w \in \Gamma\left(E_{i}\right) \Rightarrow \nabla_{v} w \in \Gamma\left(E_{i}\right) \Rightarrow[v, w]=\nabla_{v} w-\nabla_{w} v-0 \in \Gamma\left(E_{i}\right)
$$

From the Frobenius thm, in a neigbhd of m we may choose coordinates

$$
x_{1}^{1}, \ldots x_{1}^{r_{1}} ; \ldots ; x_{k}^{1}, \ldots x_{k}^{r_{k}}
$$

s.t. $\frac{\partial}{\partial x_{i}^{j}}$ is belongs to E_{i}. If $v=\frac{\partial}{\partial x_{i}^{j}}, w=\frac{\partial}{\partial x_{s}^{t}}, i \neq s$, then $\nabla_{v} w=\nabla_{w} v$ belongs to $E_{s} \cap E_{i}=0$. Hence,

$$
\frac{\partial}{\partial x_{s}^{\tau}} g\left(\frac{\partial}{\partial x_{i}^{j_{i}}}, \frac{\partial}{\partial x_{i}^{j_{2}}}\right)=g\left(\nabla_{w} v_{i}^{j_{1}}, v_{i}^{j_{2}}\right)+g\left(v_{i}^{j_{1}}, \nabla_{w} v_{i}^{j_{2}}\right)=0
$$

provided $s \neq i$. Hence, the restriction of g to E_{i} depends on x_{i}^{j} only.

Def. Under the circumstances of the previous Proposition, M is called locally reducible. M is called locally irreducible if the holonomy representation is irreducible.

Cor. M is locally irreducible iff M is locally a Riemannian product.

Theorem (de Rham decomposition theorem)

Let M be connected, simply connected, and complete. If the holonomy representation is reducible, then M is isometric to a Riemannian product.

Proof. [KN, Thm. IV.6.1]

Symmetric spaces

Def. (M, g) is called symmetric if $\forall m \in M \exists$ an isometry $s=s_{m}$ with the following properties:

$$
s(m)=m, \quad\left(s_{*}\right)_{m}=-\mathrm{id} \quad \text { on } T_{m} M .
$$

Prop. Let M be symmetric. Then
(i) s_{m} is a local geodesic symmetry, i.e.
$s_{m}\left(\exp _{m}(\mathrm{v})\right)=\exp _{m}(-\mathrm{v})$ whenever $\exp _{m}$ is defined on $\pm \mathrm{v}$;
(ii) (M, g) is complete;
(iii) $s_{m}^{2}=\mathrm{id}_{M}$.

Proof. (i): s_{m} is isometry \Rightarrow
$s_{m}\left(\exp _{m}(\mathrm{v})\right)=\exp _{m}\left(s_{*} \mathrm{v}\right)=\exp _{m}(-\mathrm{v})$. (ii): If $\gamma:(-\varepsilon, \varepsilon) \rightarrow M, \gamma(0)=m$ is a geodesic, then $s_{m}(\gamma(t))=\gamma(-t)$ $\Rightarrow s_{\gamma(\tau / 2)}(\gamma(t))=\gamma(\tau-t) \Rightarrow s_{\gamma(\tau / 2)} \circ s_{m}(\gamma(t))=\gamma(\tau+t)$ whenever $\tau / 2, t, \tau+t \in(-\varepsilon, \varepsilon)$. Since $s_{\gamma(\tau / 2)} \circ s_{m}$ is globally defined, γ extends to $(0,+\infty)$.

Prop. A Riemannian symmetric space M is homogeneous, i.e. the group of isometries acts transitively on M.

Proof. If γ is a geodesic, then $\gamma\left(t_{1}\right)$ is mapped to $\gamma\left(t_{2}\right)$ by s_{m} with $m=\gamma\left(\frac{t_{1}+t_{2}}{2}\right)$.
For any $(p, q) \in M \times M$ there exists a sequence of geodesic segments put end to end which joins p and q (in fact, there is a single geodesic). Then the composition of reflections in the corresponding middle points maps p to q.

Rem. In fact, we have shown, that the identity component G of the isometry group acts transitively.

Pick $m \in M$ and denote $K=\operatorname{Stab}_{m} \subset G$. Then $M \cong G / K$. Observe, that G is endowed with the involution

$$
\sigma: G \rightarrow G, \quad f \mapsto s_{m} \circ f \circ s_{m}
$$

Theorem ([Helgason. Diff geom and symm spaces, IV.4])

(i) Let G be a connected Lie group with an involution σ and a left invariant metric which is also right-invariant under $\hat{K}=\{\sigma(g)=g\}$. Let K be a closed subgroup of G s.t. $\hat{K}^{0} \subset K \subset \hat{K}$. Then $M=G / K$ is a symmetric space with its induced metric.
(ii) Every symmetric space arises as in (i).
(iii) We have the Cartan decomposition: $\mathfrak{g}=\mathfrak{k}+\mathfrak{m}$ with

$$
[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k}, \quad[\mathfrak{k}, \mathfrak{m}] \subset \mathfrak{m}, \quad[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{k} .
$$

Moreover, $T_{m} M \cong \mathfrak{m}$.
(iv) $\mathrm{Hol}_{m} \subset K$.

Rem. Holonomy groups of Riemannian symmetric spaces were classified by Cartan (see [Besse. Einstein mflds, 7.H, 10.K])

Theorem

For a Riemannian mfld M the following conditions are equivalent:
(i) $\nabla R=0$;
(ii) the local geodesic symmetry s_{m} is an isometry for any $m \in M$.

Def. (M, g) is called locally symmetric, if (i) \Leftrightarrow (ii) holds.
Proof. (ii) \Rightarrow (i):
s_{m} isometry $\Rightarrow s_{m}$ preserves ∇R. On the other hand, since ∇R is of order 5 , we must have $s_{m}^{*}(\nabla R)_{m}=-(\nabla R)_{m}$. Hence, $(\nabla R)_{m}=0 \forall m$.
$\nabla R=0 \Rightarrow s_{m}$ is isometry:
$\gamma=\gamma_{\mathrm{w}}$ geodesic through $m,\left(e_{1}, \ldots, e_{n}\right)$ orthonormal frame of
$T_{m} M$. Define $E_{i} \in \Gamma\left(\gamma^{*} T M\right): \nabla_{\dot{\gamma}} E_{i}=0, E_{i}(0)=e_{i}$.
$\nabla R=0 \Rightarrow R\left(E_{i}, \dot{\gamma}\right) \dot{\gamma}$ is parallel along $\gamma \Rightarrow$ $R\left(E_{i}, \dot{\gamma}\right) \dot{\gamma}=\sum_{j} r_{i j} E_{j}$ with $r_{i j}=\left\langle R\left(E_{i}, \dot{\gamma}\right) \dot{\gamma}, E_{j}\right\rangle$, which is constant in t.
Write $J_{\mathrm{v}}(t)=\sum a_{\mathrm{v}}^{i}(t) E_{i}(t)$. Then a_{v} satisfies ODE with constant coefficients $\ddot{a}_{\mathrm{v}}+r a_{\mathrm{v}}=0$.
Similarly, for $\bar{\gamma}=\gamma_{- \text {w. }}$ put $\bar{E}_{i}: \nabla_{\dot{\bar{\gamma}}} \bar{E}_{i}=0, \bar{E}_{i}(0)=-e_{i}$; $\bar{J}_{\mathrm{v}}=\sum \bar{a}_{\mathrm{v}}^{i} \bar{E}_{i}$. Then $\ddot{\bar{a}}_{\mathrm{v}}+r \bar{a}_{\mathrm{v}}=0$ (with the same matrix $r!$). Moreover, $\bar{a}_{\mathrm{v}}(0)=0=a_{\mathrm{v}}(0)$ and $\dot{\bar{a}}_{\mathrm{v}}(0)=\dot{a}_{\mathrm{v}}(0)$. Hence $\bar{J}_{\mathrm{v}}(1)=J_{\mathrm{v}}(1)$. Then

$$
\begin{aligned}
\left\langle J_{\mathrm{v}}(1), J_{\mathrm{v}}(1)\right\rangle=\langle\mathrm{v}, \mathrm{v}\rangle & =\left\langle\bar{J}_{\mathrm{v}}(1), \bar{J}_{\mathrm{v}}(1)\right\rangle \\
& =\left\langle\left(s_{m}\right)_{*} J_{\mathrm{v}}(1),\left(s_{m}\right)_{*} J_{\mathrm{v}}(1)\right\rangle .
\end{aligned}
$$

Berger theorem revisited

Theorem (Berger thm)

Assume M is a simply-connected irreducible not locally symmetric Riemannian mfld of dimension n. Then Hol is one of the following: Holonomy Geometry Extra structure

- $S O(n)$
- $U(n / 2)$
- $\quad S U(n / 2)$
- $\quad S p(n / 4)$
- $\quad S p(1) S p(n / 4)$
- $G_{2}(n=7)$
- $\operatorname{Spin}(7)(n=8)$
exceptional
Kähler
Calabi-Yau
hyperKähler
quaternionic Kähler
exceptional
complex
complex + hol. vol.
quaternionic
"twisted" quaternionic "octonionic" "octonionic"

Comments to the Berger theorem

- The assumption $\pi_{1}(M)=0$ could be dropped by restricting attention to Hol^{0}.
- M is locally symmetric $\Rightarrow M$ is locally isometric to a symmetric space. Holonomies of simply connected symmetric spaces are known.
- Irreducibility could be dropped by taking all possible products of the entries of the Berger list.
- In the theorem, Hol is not just an abstract group, but rather a subgroup of $S O(n)$, or, equivalently, comes together with an irreducible n-dimensional representation.
Ex. For instance,

$$
S O(m)=\left\{\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & A
\end{array}\right)\right\} \subset S O(2 m)
$$

is never a holonomy representation of an irreducible manifold (in fact, this is never a holonomy representation of any Riemannian manifold).

