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Recap of the previous lecture

Fr(M) :=
⋃
m,p

{
(m, p) | p : Rn

∼=−−→ TmM
}

frame bundle;

θ(v) = p−1(dπ(v)), v ∈ TpFr(M) canonical 1–form

Θ = dθ + 1
2 [ω, θ] ∈ Ω2(Fr(M);Rn), torsion form

∃T ∈ Ω2(M ;TM), s.t. 2Θ = π∗T, torsion tensor

T (v, w) = ∇vw −∇wv − [v, w], v, w ∈ X(M)

Alt(∇α) = dα− α ◦ T, α ∈ Ω1(M)
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Curvature tensor

For P = Fr(M) we have adP = End(TM). Then the curvature
can be viewed as a skew–symmetric map

TM ⊗ TM → End(TM), (v, w) 7→ R(v, w).

R is called the curvature tensor.

Theorem (KN, Thm. II.5.1)

For v, w, x ∈ X(M) we have

R(v, w)x = [∇v,∇w]x−∇[v,w]x.
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Theorem

For any G–bundle P the space A(P ) of all connections is an affine
space modelled on Ω1(M ; adP ).

Proof. Pick an arbitrary connection ω on P . Then for any
ω′ ∈ A(P ), the 1-form ξ = ω − ω′ is basic and ad–equivariant.
Vice versa, for any basic and equivariant 1–form ξ, the form
ω′ = ω − ξ is a connection. Hence, the statement of the thm.
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Assume G ⊂ GLn(R) and therefore g ⊂ gln(R) ∼= (Rn)∗ ⊗ Rn.
Fr(M) ⊃ P is a G–bundle, ω, ω′ ∈ A(P ), ξ = ω − ω′.
For any p ∈ P , the map θp : Hp → Rn is an isomorphism.
Therefore we can write

ξp ∈ (Rn)∗ ⊗ g, Tp : Λ2Rn ∼= Λ2Hp
Θp−−−→ Rn.

Then

Θ′ −Θ = 1
2 [ξ, θ] ⇐⇒

(
T ′p − Tp

)
x ∧ y = 1

2

(
ξp(x)y − ξp(y)x

)
.

Consider the G–equivariant homomorphism

δ : (Rn)∗ ⊗ g ↪→ (Rn)∗ ⊗ (Rn)∗ ⊗ Rn −→ Λ2(Rn)∗ ⊗ Rn.

Then, T ′ − T = δξ.

Prop. P has a torsion–free connection if and only if Tp ∈ Im δ for
all p ∈ P .
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(M, g) Riemannian manifold (by default, M is oriented)
Fr(M) ⊃ P is the G = SO(n)–bundle of orthonormal oriented
frames

We have the commutative diagram of SO(n)–representations:

so(n) ⊂ - gln(R) = EndRn

Λ2Rn

∼=
?

⊂ - Rn ⊗ Rn

∼=

?

(Rn)∗ ∼= Rn.

Prop. The map δso(n) : Rn⊗Λ2Rn → Λ2Rn⊗Rn is an isomorphism.

Proof. For a =
∑
aijkei ⊗ ej ∧ ek we have (exercise):

δa =
1

2

∑
(aijk − ajik)ei ∧ ej ⊗ ek.

Hence, if a ∈ Ker δ, then aijk = ajik = −ajki = −akji = akij =
aikj = −aijk =⇒ a = 0.
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The Levi–Civita connection

Theorem (“Fundamental theorem of Riemannian geometry”)

Any SO(n)–subbundle of Fr(M) admits a unique torsion–free con-
nection.

Theorem (“Fundamental theorem”, reformulation)

For any Riemannian metric g there exists a unique torsion–free con-
nection on Fr(M) such that ∇g = 0.

The unique connection in the “Fundamental thm” is called the
Levi–Civita (or Riemannian) connection. The corresponding
curvature tensor is called Riemannian curvature tensor.
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For any p ∈ P we have

Rp : Λ2Rn ∼= Λ2Hp −→ so(n) ∼= Λ2Rn.

Theorem (“algebraic Bianchi identity”)

Rp(x, y)z +Rp(y, z)x+Rp(z, x)y = 0 for all x, y, z ∈ Rn.

Proof. dθ + 1
2 [ω, θ] = Θ = 0 ⇒ [dω, θ]− [ω, dθ] = 0. This

implies the first Bianchi identity:

[R, θ] = [dω, θ] + 1
2

[
[ω ∧ ω], θ

]
= [ω, dθ] + 1

2

[
[ω ∧ ω], θ

]
= −1

2

[
ω, [ω, θ]

]
+ 1

2

[
[ω ∧ ω], θ

]
= 0.

[R, θ](px, py, pz) = 0 ⇐⇒ algebraic Bianchi identity.

Cor. 〈Rp(x, y)z, t〉 = 〈Rp(z, t)x, y〉, i.e. Rp ∈ S2(Λ2Rn).

Proof. Exercise.
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Observation: If V = V1⊕V2 as G–representation, then E = E1⊕E2,
where Ei := P ×G Vi.

Determine irreducible components of the SO(n)–representation

R =
{
R ∈ Λ2(Rn)∗ ⊗ so(n) | R satisfies alg. Bianchi id.

}
.

We can decompose

EndRn = so(n)⊕ SymRn = so(n)⊕ Sym0 Rn ⊕ R,

where Sym0 Rn = Ker(tr : SymRn → R). In other words,

Rn ⊗ Rn ∼= Λ2Rn ⊕ S2
0 Rn ⊕ R. (1)

Prop. (1) is decomposition into irreducible components if n 6= 4.
For n = 4 we have in addition Λ2R4 = Λ2

+R4 ⊕ Λ2
−R4.

Here: ∗ : ΛmR2m → ΛmR2m is the Hodge operator, ∗2 = id
Λm±R2m are eigenspaces corresponding to λ = ±1.
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Think of
⊗4 Rn as the space of quadrilinear forms on (Rn)∗.

Consider the map

b(R)(α, β, γ, δ) = 1
3

(
R(α, β, γ, δ) +R(β, γ, α, δ) +R(γ, α, β, δ)

)
(cyclic permutation in the first 3 variables; Bianchi map). Then

• b is SO(n)–invariant

• b2 = b

• b : S2(Λ2Rn)→ S2(Λ2Rn)

Hence, we have

S2(Λ2Rn) = Ker b⊕ Im b = R⊕ Λ4Rn.
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The Ricci contraction is the SO(n)–equivariant map

c : S2(Λ2Rn)→ S2Rn, c(R)(x, y) = trR(x, ·, y, ·)

The Kulkarni–Nomizu product of h, k ∈ S2Rn is the 4–tensor
h? k given by

h? k(α, β, γ, δ) = h(α, γ)k(β, δ) + h(β, δ)k(α, γ)

− h(α, δ)k(β, γ)− h(β, γ)k(α, δ).

Prop.

• h? k = k ? h;

• h? k ∈ Ker b = R;

• q ? q = 2 idΛ2Rn , where q =standard scalar product on Rn.

Lem. If n ≥ 3, the map q ? · : S2Rn → R is injective and its
adjoint is the restriction of the Ricci contraction c : R→ S2Rn.
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Components of the Riemannian curvature tensor

Theorem

We have the following decomposition:

R ∼= R⊕ S2
0Rn ⊕W,

where W = Ker c ∩Ker b. If n ≥ 5, each component is irreducible.

Explicitly:
• 1

ntr c(R) + c(R)0 are the components of R in R⊕ S2
0Rn;

• the inclusions of the first two spaces are given by

R 3 1 7→ q ? q, S2
0Rn 3 h 7→ q ? h. (2)

Def. For the Riemannian curvature tensor R we define:
• Ric(R) = c(R) Ricci curvature;
• s = tr c(R) scalar curvature, Ric0 traceless Ricci curvature;
• W (R) ∈ Ker c ∩Ker b Weyl tensor.
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From (2) follows that R = λ q ? q + µRic0 ? q +W. The
coefficients λ, µ can be determined from the equality
c(q ? h) = (n− 2)h+ (trh)q. Hence, we obtain

R =
s

2n(n− 1)
q ? q +

1

n− 2
Ric0 ? q +W.

Observe: Ric is a symmetric quadratic form on the tangent bundle.

Def. A Riemannian mfld (M, g) is called Einstein, if there exists
λ ∈ R such that

Ric(g) = λg.
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Local expressions

Choose local coordinates (x1, . . . , xn) on M and write:

∇∂/∂xi

∂
∂xj

=
∑
k

Γkij
∂
∂xk

, gij = g( ∂
∂xi
, ∂
∂xj

), (gij) = (gij)
−1

Local functions Γkij are called Chistoffel symbols.

Theorem ([KN, Prop. III.7.6 + Cor. IV.2.4])

Γkij =
1

2

∑
l

gkl
(
∂iglj + ∂jgil − ∂lgij

)
,

T
(
∂
∂xi
, ∂
∂xj

)
=
∑
k

(Γkij − Γkji)
∂
∂xk

,

R
(
∂
∂xi
, ∂
∂xj

)
∂
∂xk

=
∑
l

Rlijk
∂
∂xl
,

Rlijk =
(
∂jΓ

l
ki − ∂kΓlji

)
+
∑
m

(
ΓmkiΓ

l
jm − ΓmjiΓ

l
km

)
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Low dimensions

n = 2. The curvature tensor is determined by the scalar curvature:

S2(Λ2R2) = Rq ? q, R =
s

4
q ? q.

Notice: Einstein ⇔ constant sc. curvature

n = 3. The curvature tensor is determined by the Ricci curvature:

S2(Λ2R3) = Rq ? q ⊕ S2
0(R3) ? q, R =

s

12
q ? q +Ric0 ? q.

n = 4. Recall: Λ2R4 = Λ2
+ ⊕ Λ2

−. Then

S2
0(R4) ∼= Λ2

+ ⊗ Λ2
−, W ∼= S2

0(Λ2
+)⊕ S2

0(Λ2
−).

Hence, the Weyl tensor splits: W = W+ +W−, W± ∈ S2
0(Λ2

±).
If we consider R as a linear symmetric map of Λ2R4 = Λ2

+ ⊕ Λ2
−,

we have

R =

 W+ + s
12 id Ric0

Ric∗0 W− + s
12 id
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Two Riemannian metrics g and g′ are conformally equivalent if
g′ = eϕg for some ϕ ∈ C∞(M). The class [g] is called the
conformal class of g.

conformal class ⇐⇒ CO(n) = O(n)× R+–structure on M

Prop. The Weyl tensor is conformally invariant.

Proof. g′ ∼ g; ω′, ω corresponding LC connections, ω′ = ω + ξ.
Recall: 0 = T ′ − T = δξ, where
δ : (Rn)∗ ⊗ co(n)→ Λ2(Rn)∗ ⊗ Rn, co(n) = so(n)⊕ R. Since
δ : (Rn)∗ ⊗ so(n)→ Λ2(Rn)∗ ⊗ Rn is an isomorphism, we have
ξ ∈ Ker δ ∼= (Rn)∗. Then

F̃ ′ − F̃ = dω′ − dω + 1
2 [ω′ ∧ ω′]− 1

2 [ω ∧ ω]

= dξ + [ω ∧ ξ] + 1
2 [ξ ∧ ξ]

= ∇ξ + 1
2 [ξ ∧ ξ].

Hence, R′ −R takes values in (Rn)∗ ⊗ (Rn)∗ and thus belongs to
R⊕ S2

0(Rn).
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Geodesics

Def. A curve γ : R→M is called geodesic if ∇γ̇(t)γ̇(t) = 0 for all
t, i.e. if the vector field γ̇ is parallel along γ.

Choose local coordinates (x1, · · · , xn) and write γ : xi = xi(t).

∇γ̇(t)γ̇(t) = 0 ⇐⇒ d2xi
dt2

+
∑
j,k

Γijkẋiẋj = 0, i = 1, . . . , n.

Cor. For any m ∈ M and any v ∈ TmM there exists a unique
geodesic γ such that γ(0) = m and γ̇(0) = v.

Rem. γ is not necessarily defined on the whole real line.

Def. (M, g) is called complete, if each geodesic is defined on the
whole R.

Torsion Levi–Civita con–n Decomposable metrics Symmetric spaces Berger Thm

Def (Exponential map). For m ∈M we define

exp: TmM →M exp(tv) = γv(t).

Rem. In general, exp is defined on Bε(0) only.

Since exp∗ = id at m, exp is a diffeomorphism between some
neighbourhoods of 0 ∈ TmM and m ∈M .

Def (Normal coordinates). The map

M
exp−1

−−−−−→ TmM
p−−−→ Rn, p is an isometry,

defined in a neighbourhood of m is called normal coordinate
system.
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Theorem (Gauss Lemma)

gexpm(v)

(
(expm)∗v, (expm)∗v

)
= gm(v, v), for all v ∈ TmM.

Recall: A solution to the equation

J̈ +R(J, γ̇v)γ̇v = 0, J ∈ Γ(γ∗vTM)

is called a Jacobi vector field along γ. If Jv is the unique Jacobi
vector field satisfying Jv(0) = m, J̇v(0) = v, then

(expm)∗v = Jv(1).
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Def. Hol0p =
{
g | Πγ(p) = pg, γ is contractible

}
⊂ Holp is called

the restricted holonomy group at p ∈ P .

Hol0p is the identity component of Holp.

Consider Rn as an H = Holp–representation and write

Rn = V0 ⊕ V1 ⊕ · · · ⊕ Vk. (3)

Here V0 is a trivial representation (may be 0), all Vi, i ≥ 1, are
irreducible. All Vi are pairwise orthogonal.

Prop. Under (3), H0 = Hol0p is isomorphic to a product

{e} ×H1 × · · · ×Hk.
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Prop. Under (3), H0 = Hol0p is isomorphic to a product

{e} ×H1 × · · · ×Hk.

Proof. Let P be the holonomy bundle through p ∈ Fr(M).
Then, ∀q ∈ P and ∀x, y ∈ Rn we have Rq(x, y) ∈ h. Hence

Rq(x, y)(Vi) ⊂ Vi.
Write x =

∑
xi, y =

∑
yi with xi, yi ∈ Vi. Then〈

R(x, y)u, v
〉

=
〈
R(u, v)x, y

〉
=
∑
i

〈
R(u, v)xi, yi

〉
=
∑
i

〈
R(xi, yi)u, v

〉
,

i.e. R(x, y) =
∑

iR(xi, yi). By the Ambrose–Singer thm,

h = 0⊕ h1 ⊕ · · · ⊕ hk, with hi ⊂ EndVi.

This implies the statement of the Proposition.
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Prop. Under (3), M is locally isomorphic to a Riemannian product

M0 ×M1 × · · · ×Mk, where M0 is flat.

Proof. Denote Ei := P ×H Vi, where P is the holonomy bundle.
Then TM =

⊕
iEi. Each distribution Ei is integrable:

v, w ∈ Γ(Ei)⇒ ∇vw ∈ Γ(Ei) ⇒ [v, w] = ∇vw−∇wv−0 ∈ Γ(Ei).

From the Frobenius thm, in a neigbhd of m we may choose
coordinates

x1
1, . . . x

r1
1 ; . . . ;x1

k, . . . x
rk
k

s.t. ∂

∂xji
is belongs to Ei. If v = ∂

∂xji
, w = ∂

∂xts
, i 6= s, then

∇vw = ∇wv belongs to Es ∩ Ei = 0. Hence,

∂
∂xts

g
(

∂

∂x
j1
i

, ∂

∂x
j2
i

)
= g
(
∇wvj1i , v

j2
i

)
+ g
(
vj1i ,∇wv

j2
i

)
= 0

provided s 6= i. Hence, the restriction of g to Ei depends on xji
only.
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Def. Under the circumstances of the previous Proposition, M is
called locally reducible. M is called locally irreducible if the
holonomy representation is irreducible.

Cor. M is locally irreducible iff M is locally a Riemannian product.

Theorem (de Rham decomposition theorem)

Let M be connected, simply connected, and complete. If the holon-
omy representation is reducible, then M is isometric to a Riemannian
product.

Proof. [KN, Thm. IV.6.1]
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Symmetric spaces

Def. (M, g) is called symmetric if ∀m ∈M ∃ an isometry s = sm
with the following properties:

s(m) = m, (s∗)m = −id on TmM.

Prop. Let M be symmetric. Then

(i) sm is a local geodesic symmetry, i.e.
sm(expm(v)) = expm(−v) whenever expm is defined on ±v;

(ii) (M, g) is complete;

(iii) s2
m = idM .

Proof. (i): sm is isometry ⇒
sm(expm(v)) = expm(s∗v) = expm(−v). (ii): If
γ : (−ε, ε)→M, γ(0) = m is a geodesic, then sm(γ(t)) = γ(−t)
⇒ sγ(τ/2)(γ(t)) = γ(τ − t) ⇒ sγ(τ/2) ◦ sm(γ(t)) = γ(τ + t)
whenever τ/2, t, τ + t ∈ (−ε, ε). Since sγ(τ/2) ◦ sm is globally
defined, γ extends to (0,+∞).
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Prop. A Riemannian symmetric space M is homogeneous, i.e. the
group of isometries acts transitively on M .

Proof. If γ is a geodesic, then γ(t1) is mapped to γ(t2) by sm
with m = γ( t1+t2

2 ).
For any (p, q) ∈M ×M there exists a sequence of geodesic
segments put end to end which joins p and q (in fact, there is a
single geodesic). Then the composition of reflections in the
corresponding middle points maps p to q.

Rem. In fact, we have shown, that the identity component G of
the isometry group acts transitively.

Pick m ∈M and denote K = Stabm ⊂ G. Then M ∼= G/K.
Observe, that G is endowed with the involution

σ : G→ G, f 7→ sm ◦ f ◦ sm
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Theorem ([Helgason. Diff geom and symm spaces, IV.4])

(i) Let G be a connected Lie group with an involution σ and a
left invariant metric which is also right–invariant under
K̂ = {σ(g) = g}. Let K be a closed subgroup of G s.t.
K̂0 ⊂ K ⊂ K̂. Then M = G/K is a symmetric space with its
induced metric.

(ii) Every symmetric space arises as in (i).

(iii) We have the Cartan decomposition: g = k + m with

[k, k] ⊂ k, [k,m] ⊂ m, [m,m] ⊂ k.

Moreover, TmM ∼= m.

(iv) Holm ⊂ K.

Rem. Holonomy groups of Riemannian symmetric spaces were
classified by Cartan (see [Besse. Einstein mflds, 7.H, 10.K])
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Theorem

For a Riemannian mfld M the following conditions are equivalent:

(i) ∇R = 0;

(ii) the local geodesic symmetry sm is an isometry for any
m ∈M .

Def. (M, g) is called locally symmetric, if (i) ⇔ (ii) holds.

Proof. (ii)⇒(i):
sm isometry ⇒ sm preserves ∇R. On the other hand, since ∇R is
of order 5, we must have s∗m(∇R)m = −(∇R)m. Hence,
(∇R)m = 0 ∀m.
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∇R = 0 ⇒ sm is isometry:

γ = γw geodesic through m, (e1, . . . , en) orthonormal frame of
TmM . Define Ei ∈ Γ(γ∗TM) : ∇γ̇Ei = 0, Ei(0) = ei.

∇R = 0 ⇒ R(Ei, γ̇)γ̇ is parallel along γ ⇒
R(Ei, γ̇)γ̇ =

∑
j rijEj with rij = 〈R(Ei, γ̇)γ̇, Ej〉, which is

constant in t.

Write Jv(t) =
∑
aiv(t)Ei(t). Then av satisfies ODE with

constant coefficients äv + rav = 0.

Similarly, for γ̄ = γ−w put Ēi : ∇˙̄γĒi = 0, Ēi(0) = −ei;
J̄v =

∑
āivĒi. Then ¨̄av + rāv = 0 (with the same matrix r!).

Moreover, āv(0) = 0 = av(0) and ˙̄av(0) = ȧv(0). Hence
J̄v(1) = Jv(1). Then

〈Jv(1), Jv(1)〉 = 〈v, v〉 = 〈J̄v(1), J̄v(1)〉
= 〈(sm)∗Jv(1), (sm)∗Jv(1)〉.
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Berger theorem revisited

Theorem (Berger thm)

Assume M is a simply–connected irreducible not locally symmetric
Riemannian mfld of dimension n. Then Hol is one of the following:

Holonomy Geometry Extra structure

• SO(n)
• U(n/2) Kähler complex
• SU(n/2) Calabi–Yau complex + hol. vol.
• Sp(n/4) hyperKähler quaternionic
• Sp(1)Sp(n/4) quaternionic Kähler “twisted” quaternionic
• G2 (n=7) exceptional “octonionic”
• Spin(7) (n=8) exceptional “octonionic”
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Comments to the Berger theorem

• The assumption π1(M) = 0 could be dropped by restricting
attention to Hol0.

• M is locally symmetric ⇒ M is locally isometric to a
symmetric space. Holonomies of simply connected symmetric
spaces are known.

• Irreducibility could be dropped by taking all possible products
of the entries of the Berger list.

• In the theorem, Hol is not just an abstract group, but rather a
subgroup of SO(n), or, equivalently, comes together with an
irreducible n–dimensional representation.

Ex. For instance,

SO(m) =

{(
A 0

0 A

)}
⊂ SO(2m)

is never a holonomy representation of an irreducible manifold (in
fact, this is never a holonomy representation of any Riemannian
manifold).
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