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Equivalent formulation of the Berger theorem

By inspection, each group in Berger’s list acts transitively on the
unit sphere. On the other hand, all groups acting transitively on
spheres were classified by Montgomery and Samelson in 1943. The
list consists of

U(1) · Sp(m), Spin(9),

and the groups from Berger’s list. The first group never occurs as
a holonomy group (follows from the Bianchi identity). Alekseevsky
proved in 1968 that Spin(9) can occur as holonomy group of a
symmetric space only. Hence, the following theorem is equivalent
to Berger’s classification theorem.

Theorem (Berger)

Assume that the holonomy group of an irreducible Riemannian man-
ifold does not act transitively on spheres. Then M is locally sym-
metric.
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Second fundamental form

Let M̄ be a Riemannian mfld, M ⊂ M̄ .
Write TM̄ = TM ⊕ νM along M .

∇̄vw =
(
∇̄vw

)T
+
(
∇̄vw

)⊥
= ∇vw+α(v, w), where v, w ∈ X(M).

Prop.

• ∇ is the Levi–Civita connection on M wrt the induced metric;

• α ∈ Γ
(
S2(TM)⊗ νM

)
.

α is called the second fundamental form of M .

M is called totally geodesic, if geodesic in M ⇒ geodesic in M̄ .

Let γ be a geodesic in M . Then ∇̄γ̇ γ̇ = 0 + α(γ̇, γ̇). Hence,

M is totally geodesic ⇐⇒ α = 0.
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Shape operator

Similarly, if v ∈ X(M), ξ ∈ Γ(νM), then

∇̄vξ =
(
∇̄vξ

)T
+
(
∇̄vξ

)⊥
= −Aξv +∇⊥v ξ.

Aξ is called the shape operator.

Let w ∈ X(M). Then, differentiating equality ḡ(w, ξ) = 0 in the
direction of v, we obtain

ḡ
(
α(v, w), ξ

)
= ḡ(Aξv, w).
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M ⊂ M̄ , Π̄γ parallel transport of M̄ .

Prop. M is totally geodesic if and only if ∀γ : [0, 1] → M and
∀v ∈ Tγ(0)M Π̄γv ∈ Tγ(1)M.

Proof. (⇐) Let γ = γv be a geodesic in M through m. Denote
by Π̄t

γ the parallel transport in M̄ along γ(τ), τ ∈ [0, t]. Then

Π̄t
γv = projTM Π̄t

γv = Πt
γv = γ̇(t),

i.e. γ is a geodesic in M̄ .

(⇒) [KN, Thm VII.8.4]
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Let M be a smooth G-mfld, where G is a Lie gp acting properly.
Gm := {g | gm = m} isotropy subgroup.

Theorem

Let G be cmpt. For m ∈M and H = Gm there exist a unique H–
representation V and a G–equivariant diffeomorphism ϕ : G×HV →
M onto an open neighbourhood of Gm s.t. ϕ([g, 0]) = gm.

V is called the slice representation of M at m.

Observe: G→ G/H is a principal H–bundle. Moreover,
G/H = G/Gm ∼= Gm. Since the zero–section of G×H V → G/H
is identified with the orbit Gm, we obtain ν(Gm) ∼= G×H V . In
particular, νm(Gm) ∼= V .

On the other hand, H preserves Gm. The induced representation
of H on Tm(Gm) is called the isotropy representation.
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For subgroups H,K ⊂ G we write H ∼ K if H is conjugate to K.
(H) conjugacy class of H.
(H) ≤ (K) if H is conjugate to a subgroup of K.
M(H) = {m | Gm ∼ H}.

Theorem

Let G be a compact group. Assume M/G is connected. Then there
exists a unique isotropy type (H) of M such that M(H) is open and
dense in M . Each other isotropy type (K) satisfies (H) ≤ (K).

Proof. [tom Dieck. Transformation groups. Thm. 5.14]
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Strategy of the proof of the Berger thm

Step 1. H = Holm is not transitive on the sphere ⇒ for any
principal v there exists a family Fv of normal subspaces to
non–trivial orbits of H, which generates TmM .

Step 2. For any v ∈ TmM, v 6= 0, the submfld
Nv = expm

(
νv(Hv)

)
is totally geodesic.

Step 3. The normal holonomy group H⊥ of Hv ⊂ TmM acts by
isometries on Nv. Moreover, H⊥ ⊃ Hol(Nv).

Step 4. Hol(Nv) acts by isometries on Nv ⇒ Nv is locally
symmetric.

Step 5. Almost all geodesics through m are contained in a family
of loc. symmetric and totally geodesic submflds ⇒ M is locally
symmetric at m.
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Let M be a Riemannian mfld, m ∈M , ρ injectivity radius at m.

Gluing Lemma

∀v ∈ TmM let Fv be a family of subspaces of TmM s.t.

(i) v ∈W for any W ∈ Fv;

(ii) expm(Wρ) is a totally geodesic and (intrinsically) loc. symm.

Assume that for any v in some dense Ω ⊂ Bρ(0) the family Fv
spans TmM , where Bρ(0) ⊂ TmM is the ball of radius ρ. Then the
local geodesic symmetry sm is an isometry.

Proof. Let v ∈ Ω, γ = γv is the geodesic through m. Choose a
frame (e1, . . . , en) of TmM s.t. ei belongs to some Wi ∈ Fv. Let
(E1, . . . , En) be parallel vector fields along γ with Ei(0) = ei.

Then rij = 〈R(Ei, γ̇)γ̇, Ej〉 is constant in t. Indeed, ∃W ∈ Fv s.t.
ei ∈W . Hence, Ei is tangent to expm(W ) and γ(t) ∈ expm(W ).
expm(W ) is loc. symmetric ⇒ (∇γ̇R)(Ei, γ̇) = 0⇒ ṙij = 0.

Thus, in the frame Ei, Jacobi fields correspond to solutions of
ä+ ra = 0, where r = const. Hence the statement.
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Lemma A

Assume a compact subgroup G ⊂ SO(n) does not act transitively
on Sn−1. Let v be a principal vector of G. Then there exists
ξ ∈ νv(Gv), ξ 6= λv, s.t. the family of normal spaces νγ(t)

(
Gγ(t)

)
spans Rn, where γ(t) = v + tξ, t ∈ R.

Proof. [Olmos, A geometric proof..., Lemma 2.2]

Lemma B

(i) Nv is a totally geodesic submanifold of M ;

(ii) Nv is (intrinsically) locally symmetric.

Proof. Will be sketched below.
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Theorem (Berger)

Assume that the holonomy group of an irreducible Riemannian man-
ifold does not act transitively on spheres. Then M is locally sym-
metric.

Proof. Pick m ∈M . Let O ⊂ TmM be subset of principal
vectors. Then O is open and dense. Pick v ∈ O.

Lemma A ⇒ ∃γ(t) = v + tξ s.t. the family
Fv =

{
νγ(t)

(
Gγ(t)

)
| t ∈ R

}
spans TmM .

Observe: ξ ∈ νv
(
Gv
)
⇒ v ∈ νv+ξ

(
G(v + ξ)

)
. Indeed,

G ⊂ SO(TmM)⇒ g ⊂ so(TmM). Hence, for any A ∈ g we have

0 = 〈Av, v + ξ〉 = −〈v,A(v + ξ)〉.
The first equality follows from Tv(Gv) = {Av | A ∈ g}.
Therefore, v ∈ νγ(t)

(
Gγ(t)

)
for any t. Lemma B ⇒ assumptions

of the Gluing Lemma are satisfied. Then Gluing Lemma implies
that M is locally symmetric.
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Theorem (Cartan)

Let V ⊂ TmM . Then expm(Vρ) is totally geodesic submanifold if
and only if the curvature tensor of M preserves the parallel transport
of V along geodesics γv with γv(0) = m, v ∈ V .

U := ΠγV . Then “R preserves U” means: Rγ(1)(U,U)U ⊂ U.

Proof. [Berndt–Olmos–Console, Submflds and hol., Thm 8.3.1]
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Nv := expm
(
νv(Hv) ∩Bρ(0)

)
, where v ∈ TmM \ {0}.

Lemma B

(i) Nv is a totally geodesic submanifold of M .

Proof. Denote

R = span
{
R̄(x, y) = Π−1γ R

(
Πγx,Πγy

)
Πγ

}
.

Then the Ambrose–Singer thm states that R = h ⊂ so(TmM).

ξ ∈ νv(Hv) ⇐⇒ 0 = 〈R̄(x, y)v, ξ〉 = 〈R̄(v, ξ)x, y〉,

where x, y ∈ TmM, and R̄ ∈ R are arbitrary. Hence, R̄(v, ξ) = 0.
Then, for any η ∈ νv(Hv), the Bianchi identity yields:
R̄(ξ, η)v = −R̄(η, v)ξ− R̄(v, ξ)η = 0. Thus R̄(ξ, η) belongs to the
isotropy subalgebra and R̄(ξ, η)νv(Hv) ⊂ νv(Hv) ⇒

R̄
(
νv(Hv), νv(Hv)

)
νv(Hv) ⊂ νv(Hv). (1)

Since (1) holds at any pt (after parallel transport), the hypotheses
of the Cartan Thm are satisfied. Hence the statement.
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Lem. Let ϕt : S → M be a smooth family of totally geodesic
submanifolds of M . If ξt = ∂tϕt ⊥ ϕt(S), then id : (S, ϕ∗0g) →
(S, ϕ∗t g) is an isometry.

Proof. Put St = ϕt(S) ⊂M with its induced metric. Let γw be a
geodesic of S0 through m, w ∈ TmM . Then

d
dtg
(
(ϕt)∗w, (ϕt)∗w

)
= ∂

∂tg
(
∂
∂s

∣∣
s=0

ϕt(γw(s)), ∂∂s
∣∣
s=0

ϕt(γw(s))
)

= 2g
(
∇t ∂

∂s

∣∣
s=0

ϕt(γw(s)), ∂∂s
∣∣
s=0

ϕt(γw(s))
)

= 2g
(
∇s
∣∣
s=0

∂
∂tϕt(γw(s)), (ϕt)∗w

)
= −2g

(
Aξt(ϕt)∗w, (ϕt)∗w

)
= 0.

Therefore, g
(
(ϕt)∗w, (ϕt)∗w

)
does not depend on t.
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Lem. The normal holonomy group H⊥ of Hv ⊂ TmM acts by
isometries on Nv.

Proof. Let c : [0, 1]→ Hv, c(0) = v. Denote by Π⊥t the normal
parallel transport along c|[0,t]. By Lemma B, (i)

ϕt : νv(Hv)→M, ϕt = expm ◦Π⊥t
is a one–parameter family of totally geodesic submanifolds.

Put ξt = ∂tϕt. Want to show ξt ⊥ Imϕt = expm
(
Π⊥t (νv(Hv))

)
.

It suffices to show that ξ0 ⊥ expm(νv(Hv)) = Nv, since for t > 0
the proof is obtained by replacing v by c(t).

For an arbitrary η ∈ νv(Hv), J(s) = ξ0(sη) = ∂
∂t |t=0 expm(sΠ⊥t η)

is the Jacobi v.f. along γη(s). Initial conditions: 0 and
d
dt |t=0Π

⊥
t η = −Aη ċ(0) +∇⊥Π⊥t η = −Aη ċ(0) ⊥ TmNv = νv(Hv).

Hence, ξ0(sη) ⊥ Nv for all s. Hence, ξ0 ⊥ Nv.

Therefore, ϕt induces an isometry Nv → N c(t). If c is a loop, we
obtain an isometry Nv → Nv.
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Theorem

Assume a connected Lie gp H ⊂ SO(n) acts irreducibly on Rn.
Then the image of the connected component of the isotropy gp
(Hv)0 is contained in H⊥.

Proof. [Berndt–Console–Olmos, Cor. 6.2.6]

Prop. The holonomy gp Hv of Nv is contained in the image of
(Hv)0 under the slice representation.

Proof. The proof is similar to the proof of the fact that Nv is
totally geodesic. For details see [Olmos, p.586]

Cor. Hv ⊂ H⊥.
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Lem. Let M be a Riemannian mfld with the following property:
for any m ∈ M each restricted holonomy transformation of TmM
extends via the exponential map to a local isometry. Then M is
locally symmetric.

Sketch of the proof. Can assume that H = Hol(M) acts
irreducibly. Denote K = {K | LKg = 0, K ∈ X(Um)}. Then
Km = {K(m) | K ∈ K} is a non-trivial H–invariant subspace of
TmM . Hence, Km = TmM .

Then, for each v ∈ TmM there exists a unique K ∈ K s.t.
K(m) = v and (∇K)m = 0. For such K, the integral curve
t 7→ ϕKt (m) through m is a geodesic. Moreover, the parallel
transport along this geodesic is given by (ϕKt )∗. This implies the
local symmetry.

Lemma B

(ii) Nv is (intrinsically) locally symmetric.
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Hodge theory in a nutshell

Let V be an oriented Euclidean vector space, dimV = n. Then
the Hodge operator ∗ : ΛkV ∗ → Λn−kV ∗ is defined by the relation

α ∧ ∗β = 〈α, β〉vol, for all α ∈ ΛkV ∗.

∗ is an SO(V )–equivariant isomorphism, ∗−1 = (−1)k(n−k)∗.
Hence, for any oriented Riemannian manifold (M, g) we have a
well defined map ∗ : ΛkT ∗M → Λn−kT ∗M .

Define d∗ : Ωk(M)→ Ωk−1(M) by d∗ = (−1)n(k+1)+1 ∗ d ∗ .
Then, if M is compact, Stokes’ theorem implies that

〈dα, β〉L2 = 〈α, d∗β〉L2 , for any α ∈ Ωk−1, β ∈ Ωk.

∆ = dd∗ + d∗d : Ωk → Ωk is called the Laplace operator. It is
second order elliptic PDO. Denote H k = Ker(∆: Ωk → Ωk).

Theorem (Hodge)

Every de Rham cohomology class contains a unique harmonic rep-
resentative and Hk

dR
∼= H k.
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It is known, that all Λk(Rn)∗ are irreducible as
O(n)–representations. However, if G ⊂ O(n), then Λk(Rn)∗ does
not need to be irreducible as G–representation.

Model example: G = SO(4) ⊂ O(4)

∗2 = id on Λ2(R4)∗ ⇒ Λ2(R4)∗ ∼= Λ2
+ ⊕ Λ2

− as
SO(4)–representation. Hence, for any oriented Riemannian
four–manifold we have ΛnT ∗M ∼= Λn+T

∗M ⊕ Λn−T
∗M . Since

∆∗ = ∗∆, we have H 2 ∼= H 2
+ ⊕H 2

− , b2 = b+ + b−.
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Let H = Hol and P be the holonomy bundle. Consider Λk(Rn)∗

as H–representation. Let

Λk(Rn)∗ ∼=
⊕
i∈Ik

Λki (Rn)∗

be the decomposition into irreducible components. Then

ΛkT ∗M ∼=
⊕
i∈Ik

Λki T
∗M, where Λki T

∗M = P ×H Λki (Rn)∗.

Lem. Denote Ωk
i (M) = Γ(Λki T

∗M). Then ∆(Ωk
i ) ⊂ Ωk

i . Hence,

H k ∼=
⊕

H k
i , bk =

∑
i∈Ik

bik.

This statement follows from the Weitzenböck formula for the
Laplacian [Besse. 1I, Lawson–Michelson. II.8]
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The refined Betti numbers bik carry both topological and
geometrical information. They give obstructions to existence of
metrics with non–generic holonomy.

Ex. If M admits a Kähler metric, then odd Betti numbers of M
are even.

Another example of connection between holonomy groups and
cohomology gives the following consideration. If for some i
Λki (Rn)∗ is a trivial H–representation, then bki = dim Λki (Rn)∗.
Indeed, each ξ0 ∈ Λki (Rn)∗ corresponds to a parallel ξ ∈ Ωk

i . Then
∇ξ = 0 ⇒ dξ = 0 = d∗ξ. Hence, ∆ξ = 0. On the other hand,
from the Weitzenböck formula one obtains ∆ξ = 0 ⇒ ∇ξ = 0.
Therefore,

H k
i
∼= {ξ | ∇ξ = 0 }.
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