Holonomy groups in Riemannian geometry

Lecture 5

November 24, 2011

Complex Mflds

STRUCTURE FUNCTION

KÄHLER METRICS

A complex structure on a real vector space V (necessarily of even dimension) is an endomorphism J s.t. $J^2 = -1$. This establishes the correspondence

{real vector spaces equipped with J} \cong {complex vector spaces}

Notice: J^* is a complex structure on V^* .

Let V be a real vector space. Then $V_{\mathbb{C}} = V \otimes \mathbb{C}$ is a complex vector space endowed with an antilinear map $\overline{\cdot} : V_{\mathbb{C}} \to V_{\mathbb{C}}$, $v \otimes z \mapsto v \otimes \overline{z}$.

Prop. Let V be a real vector space equpped with a complex structure. Then

- V_C = V^{1,0} ⊕ V^{0,1}, where V^{1,0} and V^{0,1} are eigenspaces of J corresponding to eigenvalues +i and −i respectively;
- $V^{1,0} = \{ v \otimes 1 Jv \otimes i \mid v \in V \}, V^{0,1} = \{ v \otimes 1 + Jv \otimes i \};$
- $\overline{\cdot}: V^{1,0} \to V^{0,1}$ is an (antilinear) isomorphism.
- $V^{1,0} \cong (V,J)$, $V^{0,1} \cong (V,-J)$.

Similarly, $V^*_{\mathbb{C}}\cong (V^*)^{1,0}\oplus (V^*)^{0,1}$ and therefore

$$\Lambda^k V^*_{\mathbb{C}} \cong \bigoplus_{p+q=k} \Lambda^{p,q} V^*, \qquad \text{where } \Lambda^{p,q} V^* = \Lambda^p (V^*)^{1,0} \otimes \Lambda^q (V^*)^{0,1}.$$

A Hermitian scalar product on (V, J) is a scalar product h on V s.t. h(Jv, Jw) = h(v, w). Then $\omega(v, w) = h(Jv, w)$ is skew-symmetric. Since $\omega(Jv, Jw) = \omega(v, w)$ we obtain $\omega \in \Lambda^{1,1}$.

Consider the case $(V, J) = (\mathbb{R}^{2m}, J_0)$, where

$$J_0 = \left(\begin{array}{c|c} 0 & -\mathbf{1}_m \\ \hline \mathbf{1}_m & 0 \end{array}\right)$$

Thus, (\mathbb{R}^{2m}, J_0) can be identified with \mathbb{C}^m . Then the standard Euclidean scalar product is Hermitian and $\omega_0 = 2 \sum_{j=1}^m dx_j \wedge dy_j$.

$$U(m) = SO(2m) \cap Sp(2m; \mathbb{R})$$

= $SO(2m) \cap GL_m(\mathbb{C})$
= $GL_m(\mathbb{C}) \cap Sp(2m; \mathbb{R}).$

Representations of U(m)

Observe that $\Lambda^{p,p}$ is invariant subspace wrt the conjugation. Hence, $\Lambda^{p,p}$ is the complexification of some real vector space:

 $\Lambda^{p,p} \cong [\Lambda^{p,p}]_r \otimes \mathbb{C}.$

Namely, $[\Lambda^{p,p}]_r = \{ \alpha \mid \bar{\alpha} = \alpha \}$. Similarly, if $p \neq q$ $\Lambda^{p,q} \oplus \Lambda^{q,p} = [\Lambda^{p,q}]_r \otimes \mathbb{C}$.

In particular, we have

 $(\mathbb{R}^{2m})^* \cong [\Lambda^{1,0}]_r, \qquad \Lambda^2 (\mathbb{R}^{2m})^* \cong [\Lambda^{1,1}]_r \oplus [\Lambda^{2,0}]_r.$

Since $U(m) \subset SO(2m)$, we also have

$$\Lambda^2(\mathbb{R}^{2m})^* \cong \mathfrak{so}(2m) = \mathfrak{u}(m) \oplus \mathfrak{u}(m)^{\perp}.$$

Prop. $\mathfrak{u}(m) = [\Lambda^{1,1}]_r, \quad \mathfrak{u}(m)^{\perp} \cong [\Lambda^{2,0}]_r.$

Proof. Exercise.

Algebraic preliminaries	Complex Mflds	STRUCTURE FUNCTION	Kähler metrics
Let (V, J, h) be a the map $L : \Lambda V^*$	Hermitian vector	space, $\omega = h(J \cdot, \cdot)$.	Consider
U(V)–equivariar	$\rightarrow \Lambda V_{\mathbb{C}}, \ L(\alpha) =$ it. Denote $\Lambda = L^*$	$a, B = [\Lambda, L]$. Then	
	[B,L]=-2L an	$d [B,\Lambda] = 2\Lambda,$	

i.e. $\Lambda V^*_{\mathbb{C}}$ is an $\mathfrak{sl}_2(\mathbb{C})$ -representation. This leads to the following decomposition of $\Lambda^{p,q}$ into irreducible components. For $p+q \leq m$, denote $\Lambda^{p,q}_0 = L(\Lambda^{p-1,q-1})^{\perp}$. It is called the space of primitive (p,q)-forms.

Theorem (Lefschetz decomposition)

For $p \geq q$ and $p + q \leq m$ there is a U(V)-invariant decomposition

 $\Lambda^{p,q} \cong \Lambda^{p,q}_0 \oplus \Lambda^{p-1,q-1}_0 \oplus \cdots \oplus \Lambda^{p-q+1,1}_0 \oplus \Lambda^{p-q,0}_0.$

See [Wells. Differential analysis on cx mflds. 5.1] for details.

Complex manifolds

For a real mfld M, a section I of End(TM) s.t. $I^2 = -id$ is called an *almost complex structure*. If M admits an almost complex structure, then M is necessarily orientable mfld of even dimension. To each I, we associate the *Nijenhuis tensor*:

$$N_I(v, w) = [Iv, Iw] - I[Iv, w] - I[v, Iw] - [v, w], \quad v, w \in (M).$$

De	note $\Omega^{p,q}(M) = \Gamma(\Lambda^{p,q}T^*M).$
Th	eorem
Fo	r an almost complex mfld the following statements are equivalent:
(i) $v,w\in \Gamma(T^{1,0}M) \Rightarrow [v,w]\in \Gamma(T^{1,0}M)$;
(ii) $d\Omega^{1,0}\subset \Omega^{2,0}+\Omega^{1,1}$;
("	$\int a_2 c = c_2 c + c_2 c$

Complex Mflds

(iii)
$$d\Omega^{p,q} \subset \Omega^{p+1,q} + \Omega^{p,q+1};$$

(iv) $N_I \equiv 0.$

Proof. $(i) \Leftrightarrow (ii) \Leftrightarrow (iii)$: Exercise.

To prove $(i) \Leftrightarrow (iv)$ observe that $v \in \Gamma(T^{1,0}M) \Leftrightarrow v = v_0 - iIv_0$, $v_0 \in \mathfrak{X}(M)$, and similarly for w. Denote x = [v, w]. Then

$$2(x + iIx) = -N(v_0, w_0) - iIN(v_0, w_0)$$

Hence, $x^{0,1} = 0 \iff N(v_0, w_0) = 0.$

Exercise. Let $\alpha \in \Omega^{1,0}(M)$. Show that $(d\alpha)^{0,2}$ can be identified with $\alpha \circ N_I$.

Newlander-Nirenberg Theorem

 $\alpha_1, \ldots, \alpha_m \in \Omega^{1,0}(U), \ m = \dim_{\mathbb{R}} M/2, M \supset U$ is open Assume α_j are closed and pointwise linearly independent. Then $N \equiv 0$, since $(d\alpha_j)^{0,2} \cong 0$ for all j. After restricting to a possibly smaller domain, all α_j can be assumed to be exact: $\alpha_j = df_j, \ f_j = x_j + y_j i \colon U \to \mathbb{C}$. Then each f_j is *I*-holomorphic, i.e.

$$df_j \circ I = i df_j \quad \Longleftrightarrow \quad df_j \in \Omega^{1,0}.$$

Hence we obtain local holomorphic coordinates on M.

Rem. This reasoning shows that if $N_I \neq 0$ usually there are no holomorphic functions on M (even locally).

Theorem (Newlander–Nirenberg)

 $N_I \equiv 0$ iff M is a complex mfld, i.e. admits an atlas whose transition functions are holomorphic.

Algebraic preliminaries	Complex Mflds	STRUCTURE FUNCTION	Kähler metrics
Write			
$\partial = d^{1,0}$: Ω	$\Omega^{p,q} \to \Omega^{p+1,q},$	$\bar{\partial} = d^{0,1} \colon \Omega^{p,q} \to \Omega^{p,q}$	q+1.

For complex mflds, $d = \partial + \overline{\partial}$. Hence,

$$d^2 = 0 \quad \iff \quad \partial^2 = 0, \ \bar{\partial}^2 = 0, \ \partial\bar{\partial} + \bar{\partial}\partial = 0.$$
 (1)

Any $\alpha \in \Omega^{p,q}$ can be written locally as a sum of the following forms: $\beta = f dz_{j_1} \wedge \cdots \wedge dz_{j_p} \wedge d\overline{z}_{k_1} \wedge \cdots \wedge d\overline{z}_{k_q}$. Then

$$\partial \beta = \sum_{j=1}^{n} \frac{\partial f}{\partial z_j} dz_j \wedge \dots, \qquad \partial \beta = \sum_{j=1}^{n} \frac{\partial f}{\partial \overline{z}_j} d\overline{z}_j \wedge \dots$$

From (1) we obtain that

$$\Omega^{p,0} \xrightarrow{\bar{\partial}} \Omega^{p,1} \xrightarrow{\bar{\partial}} \dots \xrightarrow{\bar{\partial}} \Omega^{p,n}$$

is a complex for any p. It is called *Dolbeault complex*.

$$H^{p,q} = \frac{\operatorname{Ker}(\bar{\partial} \colon \Omega^{p,q} \to \Omega^{p,q+1})}{\operatorname{Im}(\bar{\partial} \colon \Omega^{p,q-1} \to \Omega^{p,q})}$$

are called Dolbeault cohomology groups.

Structure function of an H-structure

Recall: Let $P \subset Fr_M$ be an H-structure endowed with two connections ω and $\omega' = \omega - \xi$. Then $T' - T = \delta \xi$. Here $T, T' \colon P \to \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$, $\xi \colon P \to (\mathbb{R}^n)^* \otimes \mathfrak{h}$ are regarded as H-equivariant maps and

$$\delta \colon (\mathbb{R}^n)^* \otimes \mathfrak{h} \hookrightarrow (\mathbb{R}^n)^* \otimes (\mathbb{R}^n)^* \otimes \mathbb{R}^n \longrightarrow \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n.$$

For H = SO(n) the map δ is an isomorphism.

Consider

$$T_0\colon P \xrightarrow{T} \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n \to \operatorname{Coker} \delta = \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n / \operatorname{Im} \delta.$$

By construction, T_0 does not depend on the choice of connection and is called the *structure function* of P. It is the obstruction to the existence of a torsion-free connection on P.

Cor. The structure function of a $GL_m(\mathbb{C})$ -structure can be identified with the Nijenhuis tensor.

Assume that V is an SO(n)-representation and $H = \operatorname{Stab}_{\eta}, \ \eta \in V$. Then

$$\Lambda^2(\mathbb{R}^n)^* \cong \mathfrak{so}(n) = \mathfrak{h} \oplus \mathfrak{h}^{\perp}.$$

Since $\delta_{\mathfrak{so}(n)}$ is an isomorphism, we have

- $\delta : (\mathbb{R}^n)^* \otimes \mathfrak{h} \to \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$ is injective;
- Coker $\delta \cong (\operatorname{Im} \delta)^{\perp} \cong (\mathbb{R}^n)^* \otimes \mathfrak{h}^{\perp}$.

Recall that η defines an equivariant map $\tilde{\eta} \colon Fr_{SO} \to V$.

Prop. The obstruction $T_0(p)$ to the existence of a torsion-free H-connection can be identified with $(\nabla \tilde{\eta})(p)$, and has values in the space $(\mathbb{R}^n)^* \otimes \mathfrak{h}^{\perp}$.

Algebraic	PRELIMINARIE
-----------	--------------

Complex Mflds

STRUCTURE FUNCTION

KÄHLER METRICS

Prop. The obstruction $T_0(p)$ to the existence of a torsion-free H-connection can be identified with $(\nabla \tilde{\eta})(p)$, and has values in the space $(\mathbb{R}^n)^* \otimes \mathfrak{h}^{\perp}$.

Proof. The obstruction $T_0(p)$ is a component of the torsion of any *H*-connection ω' on $P \subset Fr_{SO}$. Extend ω' to a connection on P and denote $\xi = \omega - \omega' \colon P \to (\mathbb{R}^n)^* \otimes \mathfrak{so}(n)$, where ω is the Levi-Civita connection. Since $T \equiv 0$, T' is identified with ξ . Observe

$$\nabla' \tilde{\eta} = 0 \quad \Rightarrow \quad \nabla \tilde{\eta}(p) = -\xi(p)\tilde{\eta}.$$
 (2)

Consider the map $\nu : \mathfrak{so}(n) \to \operatorname{End} V \xrightarrow{ev_{\eta}} V$, where the first arrow is the infinitesimal SO(n)-action. Then $\operatorname{Ker} \nu = \mathfrak{h}$ and $\nu : \mathfrak{h}^{\perp} \to V$ is an embedding. From (2), $\xi(p)\tilde{\eta} \equiv T_0(p)$ has values in $(\mathbb{R}^n)^* \otimes \mathfrak{h}^{\perp}$ and can be identified with $\nabla \tilde{\eta}$.

$$U(m) = SO(2m) \cap Sp(2m; \mathbb{R})$$
$$= SO(2m) \cap GL_m(\mathbb{C})$$
$$= GL_m(\mathbb{C}) \cap Sp(2m; \mathbb{R}).$$

Hence, a $U(\boldsymbol{m})\text{-}\mathsf{structure}$ on M is given by one of the following piece of data

(i) A Riemannian metric g and an "almost symplectic form" ω s.t. $TM \xrightarrow{\hat{g}} T^*M \xrightarrow{\hat{\omega}^{-1}} TM$ is an almost cx structure;

- (*ii*) A Riemannian metric g and an orthogonal almost cx str. I;
- (*iii*) An almost complex structure I and an "almost symplectic form" ω s.t. $\omega(\cdot, I \cdot)$ is positive-definite.

Recalling that $\mathfrak{u}(m)^{\perp} \cong [\Lambda^{0,2}]_r$ we obtain

Prop. The structure function T_0 of a U(m)-structure can be identified with $\nabla \omega$ and takes values in

$$(\mathbb{R}^{2m})^* \otimes [\Lambda^{0,2}]_r \cong [\Lambda^{0,1} \otimes \Lambda^{0,2}]_r \oplus [\Lambda^{1,2}]_r.$$

Algee	BRAIC	PRELIMINARIE	S

Complex Mflds

STRUCTURE FUNCTION

Kähler metrics

Kähler metrics

A manifold M equipped with a U(m)-structure P is called Kähler if the Levi-Civita connection reduces to P. This is equivalent to any of the following conditions

(i) $\nabla \omega = 0;$

(*ii*)
$$\nabla J = 0$$
;

(*iii*)
$$\operatorname{Hol}(M) \subset U(m);$$

(iv) P admits a torsion-free connection.

Prop. Let (M, g) be a Riemannian mfld equipped with an orthogonal integrable complex structure I. Denote $\omega(I \cdot, \cdot)$. Then g is Kähler iff

$$d\omega = 0 \quad \Leftrightarrow \quad \bar{\partial}\omega = 0.$$

Cor. Let M be Kähler and $Z \subset M$ be a complex submanifold. Then the induces metric on Z is also Kähler. **Prop.** Let (M,g) be a Riemannian mfld equipped with an orthogonal integrable complex structure I. Denote $\omega(\cdot, \cdot) = g(I \cdot, \cdot)$. Then g is Kähler iff

 $d\omega = 0 \quad \Leftrightarrow \quad \bar{\partial}\omega = 0.$

Proof. First observe that $d\omega = 0 \Leftrightarrow \overline{\partial}\omega = 0$, since ω is a real (1,1)-form and $(d\omega)^{0,3} = 0 = (d\omega)^{3,0}$ by the integrability of the complex structure.

If g is Kähler, then $\nabla \omega = 0 \Rightarrow d\omega = 0$.

Assume now $d\omega = 0$. First observe that the component of $\nabla \omega$ lying in $[\Lambda^{0,1} \otimes \Lambda^{0,2}]_r$ can be identified with the structure function of the corresponding $GL_m(\mathbb{C})$ -structure and therefore vanishes. $d\omega$ is the image of $\nabla \omega$ under the antisymmetrisation map:

$$[\Lambda^{1,2}]_r \cong [\Lambda^{1,2}_0]_r \oplus [\Lambda^{0,1}]_r \longrightarrow \Lambda^3 \cong [\Lambda^{0,3}]_r \oplus [\Lambda^{2,1}_0] \oplus [\Lambda^{0,1}]_r.$$

Hence, the component of $\nabla \omega$ in $[\Lambda^{1,2}]_r$ is determined by $(d\omega)^{1,2}$
and therefore vanishes.

Algebraic preliminaries

Complex Mflds

STRUCTURE FUNCTION

KÄHLER METRICS

Kähler potentials

Let $f: \mathbb{C}^m \to \mathbb{R}$. The *Levi form* of f

$$-i\partial\bar{\partial}f = -i\sum_{j,k}^{m} \frac{\partial^2 f}{\partial z_j \partial \bar{z}_k} dz_j \wedge d\bar{z}_k$$

is of type (1,1), real, and closed, since $\partial \bar{\partial} = \frac{1}{2}d(\bar{\partial} - \partial)$. The Levi form defines a Kähler metric iff it is positive definite. Conversely, a real closed (1,1)-form ω is locally expressible as $-i\partial \bar{\partial} f$ for some real function f. If ω is a Kähler form, the function f is called a Kähler potential.

Ex.

(i) $f = \sum_{j=1}^{m} |z_j|^2$ is a Kähler potential of the flat metric on \mathbb{C}^m ; (ii) $-\log f \colon \mathbb{C}^m \setminus 0 \to \mathbb{R}$ determines a Kähler potential on \mathbb{CP}^{m-1} . This metric is called the *Fubini–Study* metric.

Cor. Any complex submanifold of \mathbb{CP}^m is Kähler.

Cohomology of Kähler manifolds

Let (M, I, g, ω) be an almost Kähler mfld. Then $H(v, \omega) = g(v, \overline{w})$ is a Hermitian scalar product on $T_{\mathbb{C}}M$, i.e. H is a sesquilinear and positive-definite. The Hodge operator for complexified forms is defined similarly to the real case:

$$\alpha \wedge *\beta = H(\alpha, \beta) vol.$$

Hence, * is antilinear. Moreover, $*:\Omega^{p,q}\to\Omega^{m-q,m-p}.$ By analogy with the real case, define

$$\bar{\partial}^* = - * \bar{\partial} *$$
 and $\Delta_{\bar{\partial}} = \bar{\partial} \bar{\partial}^* + \bar{\partial}^* \bar{\partial}.$

Then, just like for the de Rham cohomology, we have

Every Dolbeault cohomology class on a compact Hermitian mfld has a unique $\Delta_{\bar{\partial}}$ -harmonic representative and $H^{p,q} \cong \mathcal{H}^{p,q} = \operatorname{Ker}(\Delta_{\bar{\partial}} \colon \Omega^{p,q} \to \Omega^{p,q}).$

Algebraic preliminaries	Complex Mflds	STRUCTURE FUNCTION	Kähler metrics
Prop. If M	is Kähler. then $2\Delta_{\bar{2}} =$	$= \Delta$.	
	d = d = d		

Hence, we obtain

Theorem

Theorem

Let M be a compact Kähler mfld. Then

$$H^k(M; \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(M).$$

Moreover, $\overline{H^{p,q}} = H^{q,p}$ and $H^{p,q} \cong (H^{m-p,m-q})^*$ (Serre duality).

Serre duality: If $\alpha \in \mathcal{H}^{p,q}$, then $*\alpha \in \mathcal{H}^{m-q,m-p}$. Since $\int_{M} \alpha \wedge *\alpha = \int_{M} \|\alpha\|^2 vol$, the pairing $\mathcal{H}^{p,q} \times \mathcal{H}^{n-p,n-q} \to \mathbb{C}, \quad (\alpha,\beta) \mapsto \int_{M} \alpha \wedge \beta$ is nondegenerate. Hence, $\mathcal{H}^{p,q} \cong (\mathcal{H}^{n-p,n-q})^*$. Define the Hodge numbers $h^{p,q}$ by $h^{p,q} = \dim H^{p,q}(M)$. Then for compact Kähler mflds we have

$$b_k = \sum_{j=0}^k h^{j,k-j}$$
 and $h^{p,q} = h^{q,p} = h^{m-p,m-q} = h^{m-q,m-p}$.

Cor. If M is compact Kähler mfld, then odd Betti numbers of M are even.

Theorem (Hard Lefschetz theorem)

On a compact Kähler mfld M^{2m} , there is a decomposition

$$H^k(M,\mathbb{R}) = \bigoplus_{p+q=k} \bigoplus_{r=0}^{\min(p,q)} H_0^{p-r,q-r}(M), \quad 0 \le k \le m.$$

Idea of the proof: The $\mathfrak{sl}_2(\mathbb{C})$ -action on $\Omega^{\bullet}(M, \mathbb{C})$ descents to $H^{\bullet}(M; \mathbb{C})$ and respects bidegree and real structure. See [Wells] or [Huybrechts, Complex geometry] for details.

Curvature of Kähler mflds

Recall: $\mathfrak{R} = \operatorname{Ker}(b: S^2(\Lambda^2(\mathbb{R}^n)) \to S^2(\Lambda^2\mathbb{R}^n))$ is the space of algebraic curvature tensors, where $b: S^2(\Lambda^2\mathbb{R}^n) \to \Lambda^4\mathbb{R}^n$ is the Bianchi map (full antisymmetrization).

Let $P \subset Fr_{SO}$ be a principal *H*-bundle equipped with a connection φ . then the curvature tensor takes values in \mathfrak{h} . Hence, we obtain

Prop. For any
$$p \in P$$
 the curvature $R(p)$ belongs to the space
 $\mathfrak{R}^{H} = \operatorname{Ker}(b: S^{2}\mathfrak{h} \to S^{2}\mathfrak{h})$
and we have the commutative diagram
 $\mathfrak{R} \longrightarrow S^{2}(\Lambda^{2}\mathbb{R}^{n}) \xrightarrow{b} \Lambda^{4}\mathbb{R}^{n}$

 $\Lambda^4 \mathbb{R}^n$

 $\mathfrak{R}^H \longrightarrow S^2 \mathfrak{h}$ ——

Consider now the case H = U(m) and recall that $\mathfrak{u}(m) \cong [\Lambda^{1,1}]_r$. Hence,

$$S^{2}(\mathfrak{u}(m)_{\mathbb{C}}) \cong S^{2}(\Lambda^{1,1})$$
$$\cong S^{2}(\Lambda^{1,0}) \otimes S^{2}(\Lambda^{0,1}) \oplus \Lambda^{2}(\Lambda^{1,0}) \otimes \Lambda^{2}(\Lambda^{0,1})$$
$$\cong S^{2,2} \oplus \Lambda^{2,2}.$$

In analogy to the decomposition

$$\Lambda^{2,2} \cong \Lambda^{2,2}_0 \oplus \Lambda^{1,1}_0 \oplus \mathbb{C}$$

we may write

$$S^{2,2} \cong \mathfrak{B}_{\mathbb{C}} \oplus \Lambda_0^{1,1} \oplus \mathbb{C},$$

where $\mathfrak{B}_{\mathbb{C}}$ denotes the primitive component.

Prop. $\mathfrak{R}^{U(m)} \cong \mathfrak{B} \oplus [\Lambda_0^{1,1}]_r \oplus \mathbb{R}, \quad \mathfrak{R}^{SU(m)} \cong \mathfrak{B}.$

Proof. [Salamon, Prop. 4.7].

Algebraic preliminaries	Complex Mflds	STRUCTURE FUNCTION	Kähler metrics

Ricci form

Observe: $\mathfrak{R}^{U(m)} \subset End(\Lambda^{1,1}).$

Prop. For $R \in \mathfrak{R}^{U(m)}$ denote r = c(R), where c is the Ricci contraction. Then $R(\omega_0) = r(I \cdot, \cdot) =: \rho$.

Proof. Let $(e_1, I_0 e_1, \ldots, e_m, I_0 e_m)$ be an orthonormal basis of \mathbb{R}^{2m} . Then

$$\begin{aligned} r(x,y) &= \sum_{j} \langle R(e_j,x)e_j,y \rangle + \sum_{j} \langle R(I_0e_j,x)I_0e_j,y \rangle \\ &= \sum_{j} \langle R(e_j,x)I_0e_j,I_0y \rangle - \sum_{j} \langle R(e_j,x)e_j,I_0y \rangle \\ &= \sum_{j} \langle R(e_j,I_0e_j)x,I_0y \rangle, \end{aligned}$$

where $1 \leq j \leq m$ and the last equality follows from the Bianchi identity. The statement follows since ω_0 is identified with $\sum e_j \wedge I_0 e_j$.

If M is Kähler with curvature tensor R, then the associated (1, 1)-form ρ is called the Ricci form.

Prop. The Ricci form is closed.

Proof. The Ricci form is obtained as contraction of R and ω . Then $d\rho = 0$ follows from $d^{\nabla}R = 0$ and $d\omega = 0$.

Any $\beta \in [\Lambda^{1,1}]_r \cong \mathfrak{u}(m)$ can be viewed as a \mathbb{C} -linear endomorphism of \mathbb{C}^m . Then $\operatorname{tr}_{\mathbb{C}}\beta$ is purely imaginary.

Rem. If β is viewed as \mathbb{R} -linear map of \mathbb{R}^{2m} , then $\operatorname{tr}_{\mathbb{R}}\beta = 0$.

The proof of the previous Proposition shows that $i\rho = \operatorname{tr}_{\mathbb{C}} R$, where R is viewed as a (1,1)-form with values in $\operatorname{End}_{\mathbb{C}}(TM)$. Hence,

Prop. The first Chern class $c_1(M)$ is represented by $\frac{1}{2\pi}\rho$

Cor. The curvature tensor of the canonical line bundle $\Lambda^{m,0}T^*M = \Lambda^m (T^*M)^{1,0}$ equals $i\rho$.

Algei	BRAIC PRELIMINARIES	Complex Mflds	STRUCTURE FUNCTION	Kähler metrics
	Theorem			
	Let M^{2m} be a	Kähler mfld. Then	$\operatorname{Hol}^0(M) \subset SU(m)$ if	$\mathcal{F}Ric \equiv 0.$

Proof. Let P be the holonomy bundle. Then $\operatorname{Hol}^0(M) \subset SU(m)$ iff for any $p \in P$ R(p) takes values in $\mathfrak{su}(m)$. Observe that

$$\mathfrak{su}(m) = \{ A \in \mathfrak{u}(m) \mid \operatorname{tr}_{\mathbb{C}} A = 0 \}.$$

Hence, $R(p) \in \mathfrak{su}(m)$ iff $i\rho_{\pi(p)} = \operatorname{tr}_{\mathbb{C}} R(p) = 0 \iff Ric(p) = 0.$

Theorem

 $Hol(M) \subset SU(M)$ iff M admits a parallel (m, 0)-form.

$$\mathfrak{R} \cong \mathbb{R} \oplus S_0^2 \mathbb{R}^n \oplus \mathcal{W},$$
$$R = \frac{s}{2n(n-1)} q \oslash q + \frac{1}{n-2} \operatorname{Ric}_0 \oslash q + W.$$

Tracing the identifications for Kähler mflds we can write

$$\mathfrak{R}^{U(m)} \cong \mathbb{R} \oplus [\Lambda_0^{1,1}]_r \oplus \mathfrak{B},$$
$$R = \frac{s}{2m^2}\omega \otimes \omega + \frac{1}{m}\omega \otimes \rho_0 + \frac{1}{m}\rho_0 \otimes \omega + B,$$

where ρ_0 is the primitive component of ρ . In particular, we have the diagram $(m \ge 3)$:

