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ALGEBRAIC PRELIMINARIES

A complex structure on a real vector space V' (necessarily of even
dimension) is an endomorphism J s.t. J? = —1. This establishes
the correspondence

{real vector spaces equipped with J} = {complex vector spaces}
Notice: J* is a complex structure on V™.

Let V' be a real vector space. Then Vo =V ® C is a complex
vector space endowed with an antilinear map ~: Vg — V¢,
VR®Z—UVR Z.

Prop. LetV be a real vector space equpped with a complex struc-
ture. Then

o Vo =V VOl where VIV and VO! are eigenspaces of J
corresponding to eigenvalues +ti and —i respectively;

e VW =fy®1-Jvi|lveV}, Vil ={vel+Jv®i};
o = VIO — VOl s an (antilinear) isomorphism.
o VL0 = (v ), VOl =2 (V, —J).
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Similarly, V& = (V*)20 @ (V*)%1 and therefore
AFVE =~ @ APAY*, where APIV* = AP(V*)LOgAd(1*)01,
p+q=k

A Hermitian scalar product on (V. J) is a scalar product h on V
s.t. h(Jv,Jw) = h(v,w). Then w(v,w) = h(Jv,w) is
skew—symmetric. Since w(Jv, Jw) = w(v, w) we obtain w € AbL,

Consider the case (V,J) = (R?>™, Jy), where

B 0\—1m
JO‘(lm\ 0 )

Thus, (R?™, Jy) can be identified with C™. Then the standard
Euclidean scalar product is Hermitian and wo = 2 7, dx; A dy;.
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Denote

Sp(2m:R) = {A € GLom(R) | wo(A- A) = wo(-,-) < AJAT = o},
GLm(C) = {A € GLQm(R) | AoJy=Jyo A}

Then we have

U(m) = SO(2m) N Sp(2m;R)
= SO(2m) N GL,,(C)
= GLp(C)N Sp(2m;R).
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Representations of U(m)

Observe that APP is invariant subspace wrt the conjugation.
Hence, APP is the complexification of some real vector space:

APP =2 [APP]  C.
Namely, [APP], = {«a | & = a}. Similarly, if p # ¢
AP @ AP = [AP4), @ C.
In particular, we have
(R2™)* = [AL9),. AZ(R27™)* = [ALY, @ [A2],.
Since U(m) C SO(2m), we also have
A%(R*™)* 2 50(2m) = u(m) ® u(m)>.

Prop. u(m)=[AY],, u(m)* = [A%7],.

Proof. Exercise. ]

ALGEBRAIC PRELIMINARIES

Let (V,J, h) be a Hermitian vector space, w = h(J-,-). Consider
the map L: AVE — AV, L(a) = w A o, which is
U(V')—equivariant. Denote A = L*, B =[A, L]. Then

[B,L] = —2L and [B,A]=2A,

i.e. AV is an sly(C)-representation. This leads to the following
decomposition of AP'? into irreducible components.

For p+ ¢ < m, denote AD'? = L(AP~14=1)L It is called the space
of primitive (p, q)—forms.

For p > q and p + q < m there is a U(V')—invariant decomposition

Ap;q ) A%))?q @ Ag_:l,q_l @ .. @ Ag_q+1,1 @ Ap—q,o.

See [Wells. Differential analysis on cx mflds. 5.1] for details.
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Complex manifolds

For a real mfld M, a section I of End(T'M) s.t. I? = —id is called
an almost complex structure. If M admits an almost complex
structure, then M is necessarily orientable mfld of even dimension.
To each I, we associate the Nijenhuis tensor:

Ni(v,w) = [Iv, [w] — I[Tv,w] — I[v, Iw] — [v, w], v,we (M).

CoMPLEX MFLDS

Denote QP4(M) = T(APAT*M).

For an almost complex mfld the following statements are equivalent:
(Z) v, W E F(Tl’OM) = [U,w] c F(Tl’OM);

(ii) QM0 c Q20 4+ Qb1

(iii) dQP9 C QPTLa 4 Qpatl

(iv) Ni = 0.

Proof. (i) < (it) < (iii): Exercise.
To prove (i) < (iv) observe that v € T'(T1OM) < v = vy —ilvy,
vo € X(M), and similarly for w. Denote x = [v,w]. Then

2(x +ilx) = —N(vg,wp) — iI N (vg, wp).
Hence, 29! =0 < N(vg,wp) = 0. ]

Exercise. Let o € QM9(M). Show that (da)®? can be identified
with o o Nj.
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Newlander—Nirenberg Theorem

at,...,am € QYO(U), m = dimg M/2, M D U is open
Assume «; are closed and pointwise linearly independent. Then
N =0, since (da;)%? =20 for all j. After restricting to a possibly
smaller domain, all «; can be assumed to be exact:
aj =df;, fj =x; +yji: U— C. Then each f; is I-holomorphic,
i.e.

dfjol =idfj <= dfj € Q™.

Hence we obtain local holomorphic coordinates on M.

Rem. This reasoning shows that if N; # 0 usually there are no
holomorphic functions on M (even locally).

N1 =0 iff M is a complex mfld, i.e. admits an atlas whose transition
functions are holomorphic.

CoMPLEX MFLDS

Write
9 =dl: QP — Qptla 0 =d%: QP — Qpatl,
For complex mflds, d = 9 4+ 0. Hence,
*=0 <= 0°=0,0*=0, 00+ 090 =0. (1)

Any o € QP9 can be written locally as a sum of the following
forms: 0 = fdz; A--- Ndzj, NdzZg, N--- Ndzg,. Then

0 Of 71—
aﬁzza—idsz..., 86:28—%@]-/\...
j=1 j=1
From (1) we obtain that

apo O, et 9, 9, gpn
is a complex for any p. It is called Dolbeault complex.
.- ) ’ +1
v Ker(0: 0p1  qrat)
fm(9: Qpa-T — Q)

are called Dolbeault cohomology groups.
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Structure function of an H—structure

Recall: Let P C F'rp; be an H—structure endowed with two
connections w and w’ = w — & Then T" — T = §£. Here
T.T7: P — A’R")*@R", £: P — (R")* @b are regarded as
H—-equivariant maps and

§: RY*®@bh— (R)* ® (R")* @ R" — A?(R™)* @ R".
For H = SO(n) the map ¢ is an isomorphism.

Consider
Ty: P -5 A2(R™)* @ R” — Coker§ = A2(R")* ® R"/Im 6.

By construction, Tj does not depend on the choice of connection
and is called the structure function of P. It is the obstruction to
the existence of a torsion—free connection on P.

STRUCTURE FUNCTION

Structure function of a G L,,(C)—structure

Let P C Fr be a GL,(C)—structure, i.e. M is an almost cx mfld.
Then P admits a connection, whose torsion is given by T' = %N :

Proof. [KN, Thm IX.3.4]. O]

Cor. The structure function of a G Ly, (C)—structure can be iden-
tified with the Nijenhuis tensor.
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Assume that V' is an SO(n)-representation and
H = Stab,, n € V. Then

A2(R™)* = so(n) = h @ ht.

Since dgq(p) IS an isomorphism, we have
e 5: (RM*®bh — A%(R™)* ® R™ is injective;
o Cokerd = (Imd)* = (R")* ® h=.
Recall that 1 defines an equivariant map n: Frgo — V.

Prop. The obstruction Ty(p) to the existence of a torsion—free
H—connection can be identified with (V1)(p), and has values in the
space (R™)* ® h=.

STRUCTURE FUNCTION

Prop. The obstruction Ty(p) to the existence of a torsion—free
H—connection can be identified with (V1)(p), and has values in the
space (R™)* ® h=.

Proof. The obstruction Ty(p) is a component of the torsion of
any H—connection w’ on P C Frgo. Extend &’ to a connection on
P and denote { =w —w': P — (R")* ® s0(n), where w is the
Levi—Civita connection. Since T'= 0, T" is identified with &.
Observe

V=0 = Vi) =—-£(p)7. (2)

Consider the map v: s0(n) — End V. ——2» V, where the first
arrow is the infinitesimal SO(n)—action. Then Kerv = and

v: bt — V is an embedding. From (2), £(p)ii = To(p) has values
n (R")* ® h* and can be identified with V7. ]
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Recall: U(m) = 50(2m) N Sp(2m; R)
= SO(2m) N GL,,(C)
= GLy(C)N Sp(2m;R).
Hence, a U(m)-structure on M is given by one of the following
piece of data
(i) A Rlemannlan metric 9 and an “almost symplectic form” w
s.t. TM —> T*M —> T'M is an almost cx structure;

(i) A Riemannian metric g and an orthogonal almost cx str. I;

(7i1) An almost complex structure I and an “almost symplectic
form” w s.t. w(-, I-) is positive—definite.
Recalling that u(m)+ = [A%2], we obtain

Prop.  The structure function Ty of a U(m)-structure can be
identified with Vw and takes values in

(RQm)* ® [AO’Q]T ~ [AO,l ® AO’Q]T D [A1’2]r-

KAHLER METRICS

Kahler metrics

A manifold M equipped with a U(m)-structure P is called Kahler
if the Levi—Civita connection reduces to P. This is equivalent to
any of the following conditions

(i) Vw = 0;

(i) VJ =0;
(i1i) Hol(M) C U(m);
(iv) P admits a torsion—free connection.

Prop. Let (M,g) be a Riemannian mfld equipped with an orthog-
onal integrable complex structure I. Denote w(I-,-). Then g is
Kahler iff

dov=0 < OJw=0.

Cor. Let M be Kahler and Z C M be a complex submanifold.
Then the induces metric on Z is also Kahler.
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Prop. Let (M,g) be a Riemannian mfld equipped with an orthog-
onal integrable complex structure I. Denote w(-,-) = g(I-,-). Then
g is Kahler iff

dv=0 & Ow=0.

Proof. First observe that dw =0 < dw = 0, since w is a real
(1,1)=form and (dw)?3 = 0 = (dw)>" by the integrability of the
complex structure.

If g is Kahler, then Vw =0 = dw = 0.

Assume now dw = 0. First observe that the component of Vw
lying in [A®! ® A®2], can be identified with the structure function
of the corresponding G L,,(C)-structure and therefore vanishes.
dw is the image of Vw under the antisymmetrisation map:

AV 2 (A7) @ [A™], — A% = [A%F), @ [Ag"] @ [A%];.

Hence, the component of Vw in [A}?], is determined by (dw)!?
and therefore vanishes. [

KAHLER METRICS

Kahler potentials
Let f: C"™ — R. The Levi form of f

—i00f = —’LZ 5z, aka dz; N\ dzy,

is of type (1,1), real, and cIosed, since 99 = 1d(0 — 0). The Levi
form defines a Kahler metric iff it is positive definite. Conversely, a
real closed (1,1)—form w is locally expressible as —i9df for some
real function f. If w is a Kahler form, the function f is called a
Kahler potential.

Ex.
(i) f= ZT:1 24| is a Kahler potential of the flat metric on C™;
(ii) —log f: C™\ 0 — R determines a Kahler potential on
CP™ 1. This metric is called the Fubini-Study metric.

Cor. Any complex submanifold of CP™ is Kahler. |
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C'ohomology of Kahler manifolds

Let (M, I,g,w) be an almost Kahler mfld. Then

H(v,w) = g(v,w) is a Hermitian scalar product on TcM, i.e. H is
a sesquilinear and positive-definite. The Hodge operator for
complexified forms is defined similarly to the real case:

a A3 = H(a, B)vol.

Hence, * is antilinear. Moreover, * : QP4 — QM~9™m~P By
analogy with the real case, define

"= —%x0x* and Agzéé*—l—é*é.

Then, just like for the de Rham cohomology, we have

Every Dolbeault cohomology class on a compact Hermitian mfld

has a unique Agz—harmonic representative and HP1 = HPI1 =
Ker(Ag: QP71 — QP9).

KAHLER METRICS

Prop. [If M is Kahler, then 2A5 = A. J

Hence, we obtain

Let M be a compact Kahler mfld. Then

H*(M;C)= @ H(M).
ptq=k

Moreover, HP4 = H9P and HP4 = (H™ P™m=49)* (Serre duality).

Serre duality: If a € HP4, then xa € H™ 9™7P, Since

[ an*a= [|a|?vol, the pairing

M M

HPE x H P — C, (o, ) — [ aA B is nondegenerate.
M

Hence, Hpaq ~ (H’ﬂ_p;n_Q)*.
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Define the Hodge numbers h?¢ by hP? = dim HP*2(M). Then for
compact Kahler mflds we have

k
by = E :hjak?—J and  APY = p4P — pm—pm—q _ pm—gm—p
J=0

Cor. [If M is compact Kahler mfld, then odd Betti numbers of M
are even.

On a compact Kahler mfld M?™, there is a decomposition

min(p,q)
H'MR) =@ P H ™M), 0<k<m.
p+q=k r=0

Idea of the proof: The sly(C)-action on Q°(M, C) descents to
H*(M:;C) and respects bidegree and real structure. See [Wells] or
[Huybrechts, Complex geometry]| for details. O

KAHLER METRICS

Curvature of Kahler mflds

Recall: R = Ker(b: S?(A*(R")) — S*(A?R")) is the space of
algebraic curvature tensors, where b : S?(A?R"™) — A1R" is the
Bianchi map (full antisymmetrization).

Let P C F'rgo be a principal H-bundle equipped with a connection
©. then the curvature tensor takes values in fj. Hence, we obtain

Prop. For any p € P the curvature R(p) belongs to the space
R = Ker(b: S*h — 5°p)

and we have the commutative diagram

b
R —— SZ(A’R") — A'R"

ERH C 52[) A4Rn
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Consider now the case H = U(m) and recall that u(m) = [A11],.
Hence,

S%(u(m)c) = S*(AM)
~ SQ(AI,O) ® S2(AO,1) D AQ(AI,O) ® AQ(AO,l)
~ 52,2 EBA2’2-
In analogy to the decomposition
A= N2 A @ C

we may write

$¥2 =B oAy @C,

where B¢ denotes the primitive component.

Prop. RV =B g [A)'], @R, RV =3, J
Proof. [Salamon, Prop. 4.7]. O
KAHLER METRICS
Riccr form

Observe: RU(™) c End(AM1).

Prop. For R € RY("™ denote r = ¢(R), where c is the Ricci
contraction. Then R(wp) =r(I-,-) =: p.

Proof. Let (ey, lgel, ..., em, loen) be an orthonormal basis of
R?™. Then
T(iﬁ,y) — Z<R 8]7 eja + Z 106]7 I()eja >
J
= > (R(ej, ) oe;;, on> — ) (R(ej, x)ej, Ioy)
J J
=Y (R(ej, loej)z, Toy),
J

where 1 < 5 < m and the last equality follows from the Bianchi
identity. The statement follows since wy is identified with

Zej N I()ej. L]
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It M is Kahler with curvature tensor R, then the associated
(1,1)-form p is called the Ricci form.

Prop. The Ricci form is closed. J

Proof. The Ricci form is obtained as contraction of R and w.
Then dp = 0 follows from d¥YR = 0 and dw = 0. Il

Any 8 € [AY1], =2 u(m) can be viewed as a C-linear
endomorphism of C™. Then trc/S3 is purely imaginary.

Rem. If 3 is viewed as R-linear map of R?™, then trg3 = 0.

The proof of the previous Proposition shows that ip = trc R, where
R is viewed as a (1, 1)-form with values in Endc(7'M). Hence,

Prop. The first Chern class ci(M) is represented by 5-p

Cor. The curvature tensor of the canonical line bundle A™9T* M =
A™(T*M)'P equals ip.

KAHLER METRICS

Let M?™ be a Kihler mfld. Then Hol®(M) c SU(m) iff Ric = 0.

Proof. Let P be the holonomy bundle. Then Hol’(M) C SU(m)
iff for any p € P R(p) takes values in su(m). Observe that

su(m) = {A € u(m) | trc A = 0}.

Hence, R(p) € su(m) iff ip,,) = trc R(p) =0 &
Ric(p) = 0. ]

Hol(M) C SU(M) iff M admits a parallel (m,0)—form.
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Recall:
R=RPSIR" W,

R= g4 0 q+ ;75 Rico ® g + W.
Tracing the identifications for Kahler mflds we can write

RV ~ R @ [AL], @ B,
R = 27‘22w®w+%w®p0+%pg®w+3,

where pg is the primitive component of p. In particular, we have
the diagram (m > 3):

RO~ R W @ SR"

3
=
2
I
=
&

B @ [Ay]
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