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A complex structure on a real vector space V (necessarily of even
dimension) is an endomorphism J s.t. J2 = −1. This establishes
the correspondence

{real vector spaces equipped with J} ∼= {complex vector spaces}
Notice: J∗ is a complex structure on V ∗.

Let V be a real vector space. Then VC = V ⊗ C is a complex
vector space endowed with an antilinear map ·̄ : VC → VC,
v ⊗ z 7→ v ⊗ z̄.

Prop. Let V be a real vector space equpped with a complex struc-
ture. Then

• VC = V 1,0 ⊕ V 0,1, where V 1,0 and V 0,1 are eigenspaces of J
corresponding to eigenvalues +i and −i respectively;

• V 1,0 = {v ⊗ 1− Jv ⊗ i | v ∈ V }, V 0,1 = {v ⊗ 1 + Jv ⊗ i};
• ·̄ : V 1,0 → V 0,1 is an (antilinear) isomorphism.

• V 1,0 ∼= (V, J), V 0,1 ∼= (V,−J).
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Similarly, V ∗C
∼= (V ∗)1,0 ⊕ (V ∗)0,1 and therefore

ΛkV ∗C
∼=
⊕
p+q=k

Λp,qV ∗, where Λp,qV ∗ = Λp(V ∗)1,0⊗Λq(V ∗)0,1.

A Hermitian scalar product on (V, J) is a scalar product h on V
s.t. h(Jv, Jw) = h(v, w). Then ω(v, w) = h(Jv,w) is
skew–symmetric. Since ω(Jv, Jw) = ω(v, w) we obtain ω ∈ Λ1,1.

Consider the case (V, J) = (R2m, J0), where

J0 =

(
0 −1m
1m 0

)
Thus, (R2m, J0) can be identified with Cm. Then the standard
Euclidean scalar product is Hermitian and ω0 = 2

∑m
j=1 dxj ∧ dyj .
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Denote

Sp(2m;R) = {A ∈ GL2m(R) | ω0(A·, A·) = ω0(·, ·) ⇔ AJ0A
T = J0},

GLm(C) = {A ∈ GL2m(R) | A ◦ J0 = J0 ◦A}.

Then we have

U(m) = SO(2m) ∩ Sp(2m;R)

= SO(2m) ∩GLm(C)

= GLm(C) ∩ Sp(2m;R).
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Representations of U(m)

Observe that Λp,p is invariant subspace wrt the conjugation.
Hence, Λp,p is the complexification of some real vector space:

Λp,p ∼= [Λp,p]r ⊗ C.

Namely, [Λp,p]r = {α | ᾱ = α}. Similarly, if p 6= q

Λp,q ⊕ Λq,p = [Λp,q]r ⊗ C.

In particular, we have

(R2m)∗ ∼= [Λ1,0]r, Λ2(R2m)∗ ∼= [Λ1,1]r ⊕ [Λ2,0]r.

Since U(m) ⊂ SO(2m), we also have

Λ2(R2m)∗ ∼= so(2m) = u(m)⊕ u(m)⊥.

Prop. u(m) = [Λ1,1]r, u(m)⊥ ∼= [Λ2,0]r.

Proof. Exercise.
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Let (V, J, h) be a Hermitian vector space, ω = h(J ·, ·). Consider
the map L : ΛV ∗C → ΛV ∗C , L(α) = ω ∧ α, which is
U(V )–equivariant. Denote Λ = L∗, B = [Λ, L]. Then

[B,L] = −2L and [B,Λ] = 2Λ,

i.e. ΛV ∗C is an sl2(C)–representation. This leads to the following
decomposition of Λp,q into irreducible components.
For p+ q ≤ m, denote Λp,q0 = L(Λp−1,q−1)⊥. It is called the space
of primitive (p, q)–forms.

Theorem (Lefschetz decomposition)

For p ≥ q and p+ q ≤ m there is a U(V )–invariant decomposition

Λp,q ∼= Λp,q0 ⊕ Λp−1,q−1
0 ⊕ · · · ⊕ Λp−q+1,1

0 ⊕ Λp−q,0.

See [Wells. Differential analysis on cx mflds. 5.1] for details.
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Complex manifolds

For a real mfld M , a section I of End(TM) s.t. I2 = −id is called
an almost complex structure. If M admits an almost complex
structure, then M is necessarily orientable mfld of even dimension.
To each I, we associate the Nijenhuis tensor:

NI(v, w) = [Iv, Iw]− I[Iv, w]− I[v, Iw]− [v, w], v, w ∈ (M).
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Denote Ωp,q(M) = Γ(Λp,qT ∗M).

Theorem

For an almost complex mfld the following statements are equivalent:

(i) v, w ∈ Γ(T 1,0M) ⇒ [v, w] ∈ Γ(T 1,0M);

(ii) dΩ1,0 ⊂ Ω2,0 + Ω1,1;

(iii) dΩp,q ⊂ Ωp+1,q + Ωp,q+1;

(iv) NI ≡ 0.

Proof. (i)⇔ (ii)⇔ (iii): Exercise.
To prove (i)⇔ (iv) observe that v ∈ Γ(T 1,0M) ⇔ v = v0− iIv0,
v0 ∈ X(M), and similarly for w. Denote x = [v, w]. Then

2(x+ iIx) = −N(v0, w0)− iIN(v0, w0).

Hence, x0,1 = 0 ⇔ N(v0, w0) = 0.

Exercise. Let α ∈ Ω1,0(M). Show that (dα)0,2 can be identified
with α ◦NI .
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Newlander–Nirenberg Theorem

α1, . . . , αm ∈ Ω1,0(U), m = dimRM/2,M ⊃ U is open

Assume αj are closed and pointwise linearly independent. Then
N ≡ 0, since (dαj)

0,2 ∼= 0 for all j. After restricting to a possibly
smaller domain, all αj can be assumed to be exact:
αj = dfj , fj = xj + yji : U → C. Then each fj is I–holomorphic,
i.e.

dfj ◦ I = idfj ⇐⇒ dfj ∈ Ω1,0.

Hence we obtain local holomorphic coordinates on M .

Rem. This reasoning shows that if NI 6= 0 usually there are no
holomorphic functions on M (even locally).

Theorem (Newlander–Nirenberg)

NI ≡ 0 iff M is a complex mfld, i.e. admits an atlas whose transition
functions are holomorphic.
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Write

∂ = d1,0 : Ωp,q → Ωp+1,q, ∂̄ = d0,1 : Ωp,q → Ωp,q+1.

For complex mflds, d = ∂ + ∂̄. Hence,

d2 = 0 ⇐⇒ ∂2 = 0, ∂̄2 = 0, ∂∂̄ + ∂̄∂ = 0. (1)

Any α ∈ Ωp,q can be written locally as a sum of the following
forms: β = fdzj1 ∧ · · · ∧ dzjp ∧ dz̄k1 ∧ · · · ∧ dz̄kq . Then

∂β =

n∑
j=1

∂f
∂zj
dzj ∧ . . . , ∂β =

n∑
j=1

∂f
∂z̄j
dz̄j ∧ . . .

From (1) we obtain that

Ωp,0 ∂̄−−→ Ωp,1 ∂̄−−→ . . .
∂̄−−→ Ωp,n

is a complex for any p. It is called Dolbeault complex.

Hp,q =
Ker

(
∂̄ : Ωp,q → Ωp,q+1

)
Im
(
∂̄ : Ωp,q−1 → Ωp,q

)
are called Dolbeault cohomology groups.
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Structure function of an H–structure

Recall: Let P ⊂ FrM be an H–structure endowed with two
connections ω and ω′ = ω − ξ. Then T ′ − T = δξ. Here
T, T ′ : P → Λ2(Rn)∗ ⊗ Rn, ξ : P → (Rn)∗ ⊗ h are regarded as
H–equivariant maps and

δ : (Rn)∗ ⊗ h ↪→ (Rn)∗ ⊗ (Rn)∗ ⊗ Rn −→ Λ2(Rn)∗ ⊗ Rn.

For H = SO(n) the map δ is an isomorphism.

Consider

T0 : P
T−−→ Λ2(Rn)∗ ⊗ Rn → Coker δ = Λ2(Rn)∗ ⊗ Rn/ Im δ.

By construction, T0 does not depend on the choice of connection
and is called the structure function of P . It is the obstruction to
the existence of a torsion–free connection on P .
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Structure function of a GLm(C)–structure

Theorem

Let P ⊂ Fr be a GLm(C)–structure, i.e. M is an almost cx mfld.
Then P admits a connection, whose torsion is given by T = 1

8N .

Proof. [KN, Thm IX.3.4].

Cor. The structure function of a GLm(C)–structure can be iden-
tified with the Nijenhuis tensor.
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Assume that V is an SO(n)–representation and
H = Stabη, η ∈ V . Then

Λ2(Rn)∗ ∼= so(n) = h⊕ h⊥.

Since δso(n) is an isomorphism, we have

• δ : (Rn)∗ ⊗ h→ Λ2(Rn)∗ ⊗ Rn is injective;

• Coker δ ∼= (Im δ)⊥ ∼= (Rn)∗ ⊗ h⊥.

Recall that η defines an equivariant map η̃ : FrSO → V .

Prop. The obstruction T0(p) to the existence of a torsion–free
H–connection can be identified with (∇η̃)(p), and has values in the
space (Rn)∗ ⊗ h⊥.
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Prop. The obstruction T0(p) to the existence of a torsion–free
H–connection can be identified with (∇η̃)(p), and has values in the
space (Rn)∗ ⊗ h⊥.

Proof. The obstruction T0(p) is a component of the torsion of
any H–connection ω′ on P ⊂ FrSO. Extend ω′ to a connection on
P and denote ξ = ω − ω′ : P → (Rn)∗ ⊗ so(n), where ω is the
Levi–Civita connection. Since T ≡ 0, T ′ is identified with ξ.
Observe

∇′η̃ = 0 ⇒ ∇η̃(p) = −ξ(p)η̃. (2)

Consider the map ν : so(n)→ EndV
evη−−−→ V, where the first

arrow is the infinitesimal SO(n)–action. Then Ker ν = h and
ν : h⊥ → V is an embedding. From (2), ξ(p)η̃ ≡ T0(p) has values
in (Rn)∗ ⊗ h⊥ and can be identified with ∇η̃.
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Recall: U(m) = SO(2m) ∩ Sp(2m;R)

= SO(2m) ∩GLm(C)

= GLm(C) ∩ Sp(2m;R).

Hence, a U(m)–structure on M is given by one of the following
piece of data

(i) A Riemannian metric g and an “almost symplectic form” ω

s.t. TM
ĝ−−→ T ∗M

ω̂−1

−−−−→ TM is an almost cx structure;

(ii) A Riemannian metric g and an orthogonal almost cx str. I;

(iii) An almost complex structure I and an “almost symplectic
form” ω s.t. ω(·, I·) is positive–definite.

Recalling that u(m)⊥ ∼= [Λ0,2]r we obtain

Prop. The structure function T0 of a U(m)–structure can be
identified with ∇ω and takes values in

(R2m)∗ ⊗ [Λ0,2]r ∼= [Λ0,1 ⊗ Λ0,2]r ⊕ [Λ1,2]r.
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Kähler metrics

A manifold M equipped with a U(m)–structure P is called Kähler
if the Levi–Civita connection reduces to P . This is equivalent to
any of the following conditions

(i) ∇ω = 0;

(ii) ∇J = 0;

(iii) Hol(M) ⊂ U(m);

(iv) P admits a torsion–free connection.

Prop. Let (M, g) be a Riemannian mfld equipped with an orthog-
onal integrable complex structure I. Denote ω(I·, ·). Then g is
Kähler iff

dω = 0 ⇔ ∂̄ω = 0.

Cor. Let M be Kähler and Z ⊂ M be a complex submanifold.
Then the induces metric on Z is also Kähler.
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Prop. Let (M, g) be a Riemannian mfld equipped with an orthog-
onal integrable complex structure I. Denote ω(·, ·) = g(I·, ·). Then
g is Kähler iff

dω = 0 ⇔ ∂̄ω = 0.

Proof. First observe that dω = 0 ⇔ ∂̄ω = 0, since ω is a real
(1, 1)–form and (dω)0,3 = 0 = (dω)3,0 by the integrability of the
complex structure.

If g is Kähler, then ∇ω = 0 ⇒ dω = 0.

Assume now dω = 0. First observe that the component of ∇ω
lying in [Λ0,1 ⊗ Λ0,2]r can be identified with the structure function
of the corresponding GLm(C)–structure and therefore vanishes.
dω is the image of ∇ω under the antisymmetrisation map:

[Λ1,2]r ∼= [Λ1,2
0 ]r ⊕ [Λ0,1]r −→ Λ3 ∼= [Λ0,3]r ⊕ [Λ2,1

0 ]⊕ [Λ0,1]r.

Hence, the component of ∇ω in [Λ1,2]r is determined by (dω)1,2

and therefore vanishes.
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Kähler potentials

Let f : Cm → R. The Levi form of f

−i∂∂̄f = −i
m∑
j,k

∂2f

∂zj∂z̄k
dzj ∧ dz̄k

is of type (1, 1), real, and closed, since ∂∂̄ = 1
2d(∂̄ − ∂). The Levi

form defines a Kähler metric iff it is positive definite. Conversely, a
real closed (1, 1)–form ω is locally expressible as −i∂∂̄f for some
real function f . If ω is a Kähler form, the function f is called a
Kähler potential.

Ex.

(i) f =
∑m

j=1 |zj |2 is a Kähler potential of the flat metric on Cm;
(ii) − log f : Cm \ 0→ R determines a Kähler potential on

CPm−1. This metric is called the Fubini–Study metric.

Cor. Any complex submanifold of CPm is Kähler.
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Cohomology of Kähler manifolds

Let (M, I, g, ω) be an almost Kähler mfld. Then
H(v, ω) = g(v, w̄) is a Hermitian scalar product on TCM , i.e. H is
a sesquilinear and positive-definite. The Hodge operator for
complexified forms is defined similarly to the real case:

α ∧ ∗β = H(α, β)vol.

Hence, ∗ is antilinear. Moreover, ∗ : Ωp,q → Ωm−q,m−p. By
analogy with the real case, define

∂̄∗ = − ∗ ∂̄ ∗ and ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄.

Then, just like for the de Rham cohomology, we have

Theorem

Every Dolbeault cohomology class on a compact Hermitian mfld
has a unique ∆∂̄–harmonic representative and Hp,q ∼= Hp,q =
Ker

(
∆∂̄ : Ωp,q → Ωp,q).
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Prop. If M is Kähler, then 2∆∂̄ = ∆.

Hence, we obtain

Theorem

Let M be a compact Kähler mfld. Then

Hk(M ;C) =
⊕
p+q=k

Hp,q(M).

Moreover, Hp,q = Hq,p and Hp,q ∼= (Hm−p,m−q)
∗

(Serre duality).

Serre duality: If α ∈ Hp,q, then ∗α ∈ Hm−q,m−p. Since∫
M

α ∧ ∗α =
∫
M

‖α‖2vol, the pairing

Hp,q ×Hn−p,n−q → C, (α, β) 7→
∫
M

α ∧ β is nondegenerate.

Hence, Hp,q ∼= (Hn−p,n−q)∗.
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Define the Hodge numbers hp,q by hp,q = dimHp,q(M). Then for
compact Kähler mflds we have

bk =
k∑
j=0

hj,k−j and hp,q = hq,p = hm−p,m−q = hm−q,m−p.

Cor. If M is compact Kähler mfld, then odd Betti numbers of M
are even.

Theorem (Hard Lefschetz theorem)

On a compact Kähler mfld M2m, there is a decomposition

Hk(M,R) =
⊕
p+q=k

min(p,q)⊕
r=0

Hp−r,q−r
0 (M), 0 ≤ k ≤ m.

Idea of the proof: The sl2(C)-action on Ω•(M,C) descents to
H•(M ;C) and respects bidegree and real structure. See [Wells] or
[Huybrechts, Complex geometry] for details.
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Curvature of Kähler mflds

Recall: R = Ker
(
b : S2(Λ2(Rn))→ S2(Λ2Rn)

)
is the space of

algebraic curvature tensors, where b : S2(Λ2Rn)→ Λ4Rn is the
Bianchi map (full antisymmetrization).
Let P ⊂ FrSO be a principal H-bundle equipped with a connection
ϕ. then the curvature tensor takes values in h. Hence, we obtain

Prop. For any p ∈ P the curvature R(p) belongs to the space

RH = Ker(b : S2h→ S2h)

and we have the commutative diagram

R ⊂ - S2(Λ2Rn)
b
- Λ4Rn

RH
∪

6

⊂ - S2h

∪

6

- Λ4Rn

wwwwwwwwww
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Consider now the case H = U(m) and recall that u(m) ∼= [Λ1,1]r.
Hence,

S2(u(m)C) ∼= S2(Λ1,1)

∼= S2(Λ1,0)⊗ S2(Λ0,1)⊕ Λ2(Λ1,0)⊗ Λ2(Λ0,1)

∼= S2,2 ⊕ Λ2,2.

In analogy to the decomposition

Λ2,2 ∼= Λ2,2
0 ⊕ Λ1,1

0 ⊕ C

we may write
S2,2 ∼= BC ⊕ Λ1,1

0 ⊕ C,

where BC denotes the primitive component.

Prop. RU(m) ∼= B⊕ [Λ1,1
0 ]r ⊕ R, RSU(m) ∼= B.

Proof. [Salamon, Prop. 4.7].
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Ricci form

Observe: RU(m) ⊂ End(Λ1,1).

Prop. For R ∈ RU(m) denote r = c(R), where c is the Ricci
contraction. Then R(ω0) = r(I·, ·) =: ρ.

Proof. Let (e1, I0e1, . . . , em, I0em) be an orthonormal basis of
R2m. Then

r(x, y) =
∑
j

〈R(ej , x)ej , y〉+
∑
j

〈R(I0ej , x)I0ej , y〉

=
∑
j

〈R(ej , x)I0ej , I0y〉 −
∑
j

〈R(ej , x)ej , I0y〉

=
∑
j

〈R(ej , I0ej)x, I0y〉,

where 1 ≤ j ≤ m and the last equality follows from the Bianchi
identity. The statement follows since ω0 is identified with∑
ej ∧ I0ej .
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If M is Kähler with curvature tensor R, then the associated
(1, 1)-form ρ is called the Ricci form.

Prop. The Ricci form is closed.

Proof. The Ricci form is obtained as contraction of R and ω.
Then dρ = 0 follows from d∇R = 0 and dω = 0.

Any β ∈ [Λ1,1]r ∼= u(m) can be viewed as a C-linear
endomorphism of Cm. Then trCβ is purely imaginary.

Rem. If β is viewed as R-linear map of R2m, then trRβ = 0.

The proof of the previous Proposition shows that iρ = trCR, where
R is viewed as a (1, 1)-form with values in EndC(TM). Hence,

Prop. The first Chern class c1(M) is represented by 1
2πρ

Cor. The curvature tensor of the canonical line bundle Λm,0T ∗M =
Λm(T ∗M)1,0 equals iρ.
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Theorem

Let M2m be a Kähler mfld. Then Hol0(M) ⊂ SU(m) iff Ric ≡ 0.

Proof. Let P be the holonomy bundle. Then Hol0(M) ⊂ SU(m)
iff for any p ∈ P R(p) takes values in su(m). Observe that

su(m) = {A ∈ u(m) | trCA = 0}.

Hence, R(p) ∈ su(m) iff iρπ(p) = trCR(p) = 0 ⇔
Ric(p) = 0.

Theorem

Hol(M) ⊂ SU(M) iff M admits a parallel (m, 0)–form.
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Recall:
R ∼= R⊕ S2

0Rn ⊕W,

R = s
2n(n−1) q ? q + 1

n−2 Ric0 ? q +W.

Tracing the identifications for Kähler mflds we can write

RU(m) ∼= R⊕ [Λ1,1
0 ]r ⊕B,

R = s
2m2ω ⊗ ω + 1

mω ⊗ ρ0 + 1
mρ0 ⊗ ω +B,

where ρ0 is the primitive component of ρ. In particular, we have
the diagram (m ≥ 3):

RSO(2m) ∼= R ⊕ W ⊕ S2
0Rn

RU(m) ∼= R ⊕ B ⊕ [Λ1,1
0 ]
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