Holonomy groups in Riemannian geometry

Lecture 6

December 1, 2011

 $1 \, / \, 26$

CY AND KE MFLDS

HyperKähler mflds

QUATERNION-KAHLER MFLDS

Some results from the previous lecture

Prop. The first Chern class $c_1(M)$ is represented by $\frac{1}{2\pi}\rho$, where ρ is the Ricci form.

Cor. The curvature tensor of the canonical line bundle $K_M = \Lambda^{m,0}T^*M = \Lambda^m (T^*M)^{1,0}$ equals $i\rho$.

Theorem

Let M^{2m} be a Kähler mfld. Then $\operatorname{Hol}^0(M) \subset SU(m)$ iff $Ric \equiv 0$.

Theorem

 $Hol(M) \subset SU(M)$ iff M admits a parallel (m, 0)-form.

Calabi-Yau and Kähler-Einstein metrics

Let (M, I) be be a closed connected complex mfld.

Def. A Kähler metric g is said to be Kähler-Einstein if it is Einstein, i.e. if there exists a constant λ such that

$$\rho = \lambda \omega. \tag{1}$$

Rem.

(i) $\lambda: M \to \mathbb{R}$ in (1) $\implies \lambda = const.$ (ii) (1) $\iff R(\omega) = \lambda \omega.$

Def. A class $c \in H^2(M; \mathbb{R})$ is said to be

- positive, if $\exists \beta \in c \cap \Omega^{1,1}$ s.t. $\beta(\cdot, I \cdot) > 0$;
- negative, if $\exists \beta \in c \cap \Omega^{1,1}$ s.t. $\beta(\cdot, I \cdot) < 0$.

3 / 26

CY AND KE MFLDS

HyperKähler mflds

QUATERNION-KAHLER MFLDS

Main Theorems

Theorem (Calabi-Yau)

Let $\rho' \in 2\pi c_1(M)$ be a closed real (1,1)-form. Then there exists a unique Kähler metric g' on M with Kähler form ω' cohomologous to ω and with Ricci form ρ' .

Cor. If $c_1(M) = 0$, then M has a unique Ricci-flat Kähler metric g' with $[\omega'] = [\omega]$.

Theorem (Aubin-Calabi-Yau)

Assume $c_1(M) < 0$. Then, up to a scaling constant, M has a unique Kähler-Einstein metric (with negative Einstein constant).

On the proof of Calabi-Yau and Aubin-Calabi-Yau theorems

Let $\Omega \in \Omega^{m,0}(U)$, where $U \subset M$ is open. Write

 $\nabla \Omega = \psi \otimes \Omega,$

where ψ is a local connection form of $\Lambda^{m,0}T^*M$.

Observe: $\Omega \in \Omega^{m,0} \Rightarrow \partial \Omega = 0 \Rightarrow \overline{\partial}\Omega = d\Omega = \psi \wedge \Omega$. By definition, Ω is holomorphic, if $\overline{\partial}\Omega = 0$. Since Ω is a complex volume form,

$$\bar{\partial}\Omega = 0 \quad \Longleftrightarrow \quad \psi^{0,1} \wedge \Omega = 0 \quad \Longleftrightarrow \quad \psi \in \Omega^{1,0}.$$

 $\rm CY$ and $\rm KE$ mflds

IyperKähler mflds

QUATERNION-KAHLER MFLDS

We have

$$d(\log \|\Omega\|^2) = \frac{1}{\|\Omega\|^2} d\langle \Omega, \Omega \rangle$$
$$= \frac{1}{\|\Omega\|^2} (\psi \|\Omega\|^2 + \bar{\psi} \|\Omega\|^2)$$
$$= \psi + \bar{\psi}.$$

 $\Omega \text{ is holomorphic} \Longrightarrow \quad \psi = (d(\log \|\Omega\|^2))^{1,0} = \partial(\log \|\Omega\|^2).$

Hence, the curvature of $\Lambda^{m,0}T^*M$ is represented by $d\psi = \bar{\partial}\partial \log \|\Omega\|^2$. In particular, $d\psi$ is purely imaginary (1,1)-form. Hence,

$$\rho = i \, d\psi = -i \, \partial \bar{\partial} \log \|\Omega\|^2.$$

HyperKähler mflds

Further, observe that

$$*\Omega = a \cdot \Omega,$$

where $a \in \mathbb{C}^*$. Hence, $a \cdot m! \Omega \wedge \overline{\Omega} = \|\Omega\|^2 \omega^m$. If g' is another Kähler metric s.t. $[\omega'] = [\omega]$, then

$$(\omega')^m = e^f \cdot \omega^m$$

for some $f: M \to \mathbb{R}$. Therefore,

$$\|\Omega\|_{g'}^2 = e^{-f} \|\Omega\|_g^2 \implies \rho' = \rho - i\partial\bar{\partial}f.$$

Vice versa, by the $\partial \bar{\partial}$ -Lemma, for any real closed (1,1)-form ρ' cohomologous to ρ , there exists $f: M \to \mathbb{R}$ s.t.

$$\rho' - \rho = -i\,\partial\bar{\partial}f.$$

Moreover, f is unique up to an additive constant. Similarly,

$$\omega' - \omega = i \,\partial \bar{\partial} \varphi, \qquad \varphi \colon M \to \mathbb{R}.$$

7/26

CY AND KE MFLDS

HyperKähler mflds

QUATERNION-KAHLER MFLDS

Thus, in the setting of the CY thm, we are looking for φ s.t. (i) $(\omega + i \partial \overline{\partial} \varphi)^m = e^f \cdot \omega^m$, (*) (ii) $\omega + i \partial \overline{\partial} \varphi > 0$, where f is a fixed function.

Claim. $(i) \Rightarrow (ii)$ **Proof.** [Ballmann. Lectures on Kähler mflds, p.90].

Rem. For Kähler mflds, eqn Ric(g) = 0 is therefore equivalent to (*). Notice that

- (*) is an eqn for a *function* rather than for a metric tensor,
- (*) is highly nonlinear (nonlinear in derivatives of the highest order).

Claim. The Kähler-Einstein condition (under the setup of Aubin-Calabi-Yau thm) is equivalent to the eqn

$$(\omega + i\,\partial\bar\partial\varphi)^m = e^{f-\lambda\varphi}\cdot\omega^m$$

where ω is a suitably chosen Kähler metric on M. **Proof.** [see Ballmann, p.91 for details].

8/26

Idea of the proof of the Calabi-Yau thm

Uniqueness: Let φ_1 , φ_2 be solutions of the eqn

$$(\omega + i\,\partial\bar{\partial}\varphi)^m = e^{F(p,\varphi)}\omega^m.$$

It can be shown that

$$\frac{1}{m} \int |\operatorname{grad}(\varphi_1 - \varphi_2)|_{g_1}^2 \omega_1^m + \int (\varphi_1 - \varphi_2) (e^{F(p,\varphi_1)} - (e^{F(p,\varphi_2)}) \omega^m \le 0.$$

Hence, uniqueness follows from the (weak) monotonicity of F in φ (for each fixed $p \in M$).

Existence (by the continuity method): Consider the eqn

$$(\omega + i\,\partial\bar\partial\varphi)^m = e^{tf}\omega^m,$$

where $t \in [0,1]$ is a parameter. Denote by \mathcal{T} the set of those t, for which there exists a solution. Then $\mathcal{T} \ni 0$, hence $\mathcal{T} \neq \emptyset$. Moreover, \mathcal{T} is open and closed. Hence, $1 \in \mathcal{T}$.

```
CY AND KE MFLDS
```

yperKähler mflds

QUATERNION-KAHLER MFLDS

9/26

Examples of Calabi-Yau manifolds

A compact (simply connected) Riemannian mfld with $Hol(M,g) \subset SU(m)$ is called *Calabi-Yau*. If $\pi_1(M) = \{1\}$ this is equivalent to $c_1(M) = 0$.

Ex.

1) Let M be a degree d hypersurface in $\mathbb{C}P^N$. From the adjunction formula we have

$$K_M = \left(K_{\mathbb{CP}^N} \otimes \mathcal{O}(d) \right) \Big|_M \cong \mathcal{O}(-N-1+d) \Big|_M$$

Therefore, $c_1(K_M) = 0 \Leftrightarrow d = N + 1$. Hence, the Fermat quartic $M = \{z_0^4 + z_1^4 + z_2^4 + z_3^4 = 0\} \subset \mathbb{CP}^3$ admits a metric with holonomy SU(2).

2) Let M be a complete intersection: $M = M_{d_1} \cap \cdots \cap M_{d_k} \subset \mathbb{C}P^N$. Then $c_1(M) = 0 \iff d_1 + \cdots + d_k = N + 1$.

A non-compact example: Calabi metric

Theorem (Calabi)

Let M be Kähler–Einstein with positive sc. curvature. Then there exists a metric on the total space of K_M with $\operatorname{Hol}^0 \subset SU(m+1)$.

Proof. Let $P \to M$ be the U(m)-structure. Since $\mathfrak{u}(m) \cong \mathfrak{su}(m) \oplus i\mathbb{R}$, the Levi-Civita connection on P decomposes: $\varphi_{LC} = \varphi_0 + \psi i$. Observe that ψi is essentially the connection of K_M . It follows that M is KE iff $d\psi = \lambda \pi^* \omega$, where $\pi : P \to M$. Consider $\beta = dz + z\psi i \in \Omega^1(P \times \mathbb{C}; \mathbb{C})$, where z is a coordinate on \mathbb{C} . Put $\rho = |z|^2 = z\overline{z}$. With the help of

$$d\beta = (\beta \wedge \psi + \lambda z \pi^* \omega)i, \qquad d\rho = dz \cdot \bar{z} + z d\bar{z} = \beta \cdot \bar{z} + z\beta,$$

one easily shows that the 2-form

$$ilde{\omega} = u\pi^*\omega - rac{1}{\lambda}u'\cdot ieta\wedgear{eta}$$

is closed, where $u = u(\rho)$.

CY AND KE MFLDS

IyperKähler mfld

QUATERNION-KAHLER MFLDS

11/26

Proof of the Calabi theorem (continued)

Moreover, $\tilde{\omega} = u\pi^*\omega - \frac{1}{\lambda}u' \cdot i\beta \wedge \bar{\beta}$ is U(m)-invariant and basic and therefore descends to a (1,1)-form $\tilde{\omega}$ on $(P \times \mathbb{C})/U(m) = K$. If both u and u' are positive, $\tilde{\omega}$ is also positive. Recall that each $p \in P$ is a unitary basis of $T_{\pi(p)}M$, i.e. $p = (p_1, \ldots, p_m)$. Then $\Omega = p_1^* \wedge \cdots \wedge p_m^*$ is a global complex m-form on P. Consider

$$\tilde{\Omega} = \beta \wedge \Omega.$$

Just like $\tilde{\omega}$, $\tilde{\Omega}$ descends to an (m+1,0)-form on K. Then $\tilde{\Omega}$ is parallel iff $\|\tilde{\Omega}\| = const \Rightarrow u^m u' = \lambda(m+1) \Rightarrow$ $u(\rho) = (\lambda \rho + l)^{\frac{1}{m+1}}$. Hence we obtain an explicit metric on K with $\operatorname{Hol}^0 \subset SU(m+1)$, namely

$$g = u(p)\pi_K^* g_M \oplus u'(\rho) \operatorname{Re}(\beta \otimes \overline{\beta}).$$

Rem. If the scalar curvature of M is negative, the Calabi metric is defined on a neighbourhood of the zero section only.

HyperKähler manifolds

A quaternionic vector space is a real vector space V equipped with a triple (I_1, I_2, I_3) of endomorphisms s.t.

$$I_r^2 = -1, \quad I_1 I_2 = I_3 = -I_2 I_1.$$

In other words, V is an \mathbb{H} -module.

V is quaternion-Hermitian, if V is equipped with an Euclidean scalar product, which is Hermitian wrt each complex structure I_r . Denote $\omega_r(\cdot, \cdot) = \langle I_r \cdot, \cdot \rangle$, $\omega = \omega_1 i + \omega_2 j + \omega_3 k$.

Ex.
$$V = \mathbb{H}^m$$
, $I_1(h) = h\bar{i}$, $I_2(h) = h\bar{j}$, $I_3(h) = hk$,
 $\langle h_1, h_2 \rangle = \operatorname{Re}(\bar{h}_1 h_2)$. Then $\omega(h_1, h_2) = \operatorname{Im}(\bar{h}_1 h_2)$

Put $h = \langle \cdot, \cdot \rangle + i\omega_1$ and $\omega_c = \omega_2 + \omega_3 i$. Then h is an Hermitian scalar product and ω_c is a complex symplectic form. Hence,

$$Sp(m) = \{A \in O(\mathbb{H}^n) | AI_r = I_r A, \quad r = 1, 2, 3\}$$
$$= O(4n) \cap GL_n(\mathbb{H})$$
$$= U(2n) \cap Sp(2n; \mathbb{C}).$$

CY AND KE MFLDS

HyperKähler MFLDS

QUATERNION-KAHLER MFLDS

13/26

Assume M^{4m} is endowed with with an Sp(m)-structure. In other words, M is a Riemannian mfld equipped with a triple (I_1, I_2, I_3) of almost complex structures s.t. the metric is Hermitian wrt each I_r .

Alternatively, M can be seen as an almost Hermitian mfld equipped with a complex symplectic form $\omega_c \in \Omega^{2,0}(M)$.

M is called *hyperKähler*, if $\mathrm{Hol}(\mathrm{M}) \subset Sp(m)$. This is equivalent to one of the following conditions:

(i)
$$\nabla I_1 = \nabla I_2 = \nabla I_3 = 0;$$

(ii)
$$\nabla \omega_1 = \nabla \omega_2 = \nabla \omega_3 = 0;$$

(*iii*) g is Kähler wrt each complex structure I_r .

Prop. For an almost hyperKähler manifold the following holds:

$$\nabla \omega_1 = \nabla \omega_2 = \nabla \omega_3 = 0 \quad \Longleftrightarrow \quad d\omega_1 = d\omega_2 = d\omega_3 = 0.$$

Proof. Need to show that each almost complex structure is integrable. Observe: $v \in \mathfrak{X}_{I_1}^{1,0}(M) \Leftrightarrow \imath_v \omega_2 = i \imath_v \omega_3$. Indeed,

$$i_v\omega_2 = g(I_2v, \cdot) = g(I_3I_1v, \cdot) = \omega_3(I_1v, \cdot).$$

Then $i_v \omega_2 = i i_v \omega_3 \Leftrightarrow I_1 v = i v$. Assume now $v, w \in \mathfrak{X}_{I_1}^{1,0}(M)$. Then

$$\begin{split} \imath_{[v,w]}\omega_2 &= \mathcal{L}_v(\imath_w\omega_2) - \imath_w(\mathcal{L}_v\omega_2) \\ &= \mathcal{L}_v(\imath_w\omega_2) - \imath_w(\imath_v\omega_2) \\ &= \mathcal{L}_v(\imath_w\omega_3) - \imath_w(\imath_w\omega_3) \\ &= i\,\imath_{[v,w]}\omega_3. \end{split}$$
(Cartan)

15/26

CY AND KE MFLDS

HyperKähler mflds

QUATERNION-KAHLER MFLDS

Examples of hyperKähler manifolds

Ex.

(i) We have an exceptional isomorphism $Sp(1) \cong SU(2)$, since $\omega_c \in \lambda^{2,0} \mathbb{C}^2$ is a complex volume form. Hence, if $\dim_{\mathbb{R}} M = 4$ Calabi-Yau \equiv hyperKähler

Hence, there is a hK metric on the Fermat quartic.

(ii) Similar methods as in the proof of the fact that for KE M the total space of K_M has a Ricci-flat metric, also give that the total space of $T^* \mathbb{C}P^m$ has a complete metric with holonomy Sp(m) for any m (this fact is also due to Calabi).

Let M^{4m} be a *compact* Kähler with a complex sympl. form ω_c . Then ω_c^m trivializes K_M and hence there exists a Ricci-flat Kähler metric on M.

Observe that any closed (p, 0)-form on closed Ricci-flat Kähler mfld must be parallel. This follows from the fact that the Weitzenböck formula for (p, 0)-forms involves Ricci-curvature only.

Hence, with respect to the new Ricci–flat metric $\nabla \omega_c = 0$. Thus if M is compact Kähler

hyperKähler \equiv complex symplectic

This is used to show that there are compact 8-mflds with holonomy Sp(2) by blowing-up the diagonal in $M_4 \times M_4$ and quotening by the involution. Further generalization of this yields compact mflds with holonomy Sp(m).

CY AND KE MFLDS

HyperKähler mflds

QUATERNION-KAHLER MFLDS

HyperKähler reduction

Let M be a hK mfld and assume G acts on M preserving hK structure. Then for any $\xi\in\mathfrak{g}$

$$0 = \mathcal{L}_{K_{\xi}}\omega_r = \imath_{K_{\xi}}d\omega_r + d\imath_{K_{\xi}}\omega_r = 0 + d\imath_{K_{\xi}}\omega_r,$$

where K_{ξ} is the Killing v.f. Assume there exists $\mu_r(\xi) : M \to \mathbb{R}$ s.t. $i_{K_{\xi}}\omega_r = d\mu_r(\xi)$. Construct a *G*-equivariant map

$$\mu = \mu_1 i + \mu_2 j + \mu_3 k : \quad M \to \mathfrak{g}^* \otimes \operatorname{Im} \mathbb{H},$$

which is called the hK moment map.

Theorem

If $M/\!\!/_{\tau} G = \mu^{-1}(\tau)/G$ is a mfld, where $\tau \in \mathfrak{g}^*$ is central, then it is hyperKähler (with respect to the induces metric).

Proof. For $m \in \mu^{-1}(\tau)$ put $\mathcal{K}_m = \{K_{\xi}(m) \mid \xi \in \mathfrak{g}\}$. Since $d\mu_r(\xi) = g(I_r K_{\xi}, \cdot)$, the orthogonal complement to

 $\mathcal{K}_m \oplus I_1 \mathcal{K}_m \oplus I_2 \mathcal{K}_m \oplus I_3 \mathcal{K}_m$

can be identified with $T_{[m]}(M/\!\!/_{\tau} G)$. Hence $M/\!\!/_{\tau} G$ is almost hyperKähler. The corresponding 2-forms are closed, hence $M/\!\!/_{\tau} G$ is hyperKähler.

CY AND KE MFLDS

HyperKähler MFLDS

QUATERNION-KAHLER MFLDS

Further examples of hyperKähler manifolds

Ex.

1) S^1 acts on \mathbb{H}^{n+1} by multiplication on the left. The moment map is

$$\mu(x) = -\sum_{p=1}^{n+1} \bar{x}_p i x_p = i \sum_{p=1}^{n+1} (|w_p|^2 - |z_p|^2) - 2k \sum_{p=1}^{n+1} z_p w_p,$$

where $x_p = z_p + jw_p$, $z_p, w_p \in \mathbb{C}$. Clearly, $\mathbb{H}^{n+1} /\!\!/ S^1 = \mu^{-1}(-i)/S^1 \cong$ $\cong \{(z_p, w_p) \in \mathbb{C}^{2n+2} | \sum_{p=1}^{n+1} z_p w_p = 0, (z_1, \dots, z_{n+1}) \neq 0\} / \mathbb{C}^*$ $\cong T^* \mathbb{C}P^n$.

Hence, the total space of $T^*\mathbb{CP}^n$ is hK and the metric obtained via the hK reduction coincides with the Calabi metric.

Ex.

- 2) $T^*Gr_p(\mathbb{C}^{p+q})$ is hK. This is also obtained as a hK reduction: $T^*Gr_p(\mathbb{C}^{p+q}) \cong \mathbb{H}^{p(p+q)}/\!\!/ U(p).$
- 3) Let X^4 be a hK mfld. Pick a *G*-bundle $P \to X$. Then the space $\mathcal{A}(P)$ inherits a hK structure. The action of the gauge gp $\mathcal{G} = AutP$ preserves this hK structure and the moment map is

$$\mu: A \longmapsto F_A^+ \in \Omega^2_+(X; \operatorname{ad} P) \cong$$
$$\cong \Gamma(\operatorname{ad} P) \otimes \operatorname{Im} \mathbb{H} \cong$$
$$\cong \operatorname{Lie}(\mathcal{G})^* \otimes \operatorname{Im} \mathbb{H}.$$

Hence, the moduli space of asd instantons

$$\mu^{-1}(0)/\mathcal{G} \cong \{A \mid F_A^+ = 0\}/\mathcal{G}$$

is hyperKähler.

21/26

CY AND KE MFLDS

yperKähler mflds

QUATERNION-KAHLER MFLDS

Quaternion-Kähler manifolds

Consider the action of $Sp(n) \times Sp(1)$ on \mathbb{H}^n :

$$(A,q)\cdot x = Ax\bar{q}.$$

Obviously, (-1, -1) acts trivially and we define

$$Sp(n)Sp(1) = Sp(n) \times Sp(1)/\pm 1 \subset SO(4n).$$

Consider $\Lambda^1 = \mathbb{R}^{4n}$ as Sp(n)Sp(1)-representation. Then

$$\Lambda^1_{\mathbb{C}} \cong E \otimes_{\mathbb{C}} W,$$

where E denotes the complex tautological representation of $Sp(n) \subset SU(2n)$ of dimension 2n and W denotes the two dimensional complex representation of $Sp(1) \cong SU(2)$. Explicitly,

$$v \longmapsto v^{1,0} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} + I_2 v^{0,1} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Then

en
$$\mathfrak{so}(4n) \cong \Lambda^2(\mathbb{R}^{4n})^* \cong \Lambda^2[E \otimes W]_r$$

 $\cong [S^2 E \otimes \Lambda^2 W]_r \oplus [\Lambda^2 E \otimes S^2 W]_r$
 $\cong \mathfrak{sp}(n) \oplus [\Lambda^2 E \otimes W_2]_r$
 $\cong \mathfrak{sp}(n) \oplus \mathfrak{sp}(1) \oplus [\Lambda_0^2 E \otimes W_2]_r.$

Here: $W_p = S^p W$ is the irreducible (p+1)-dimensional Sp(1)-representation. In particular, $W_1 = W$, $W_2 = \mathfrak{sp}(1)_{\mathbb{C}}$. Consider the 4-form

 $\Omega_0 = \omega_1 \wedge \omega_1 + \omega_2 \wedge \omega_2 + \omega_3 \wedge \omega_3 \quad \in \Lambda^4(\mathbb{R}^{4n})^*,$

which is Sp(n)Sp(1)-invariant.

Lem. For $n \ge 2$, the subgp of $GL_{4n}(\mathbb{R})$ preserving Ω_0 is equal to Sp(n)Sp(1).

Proof. [Salamon. Lemma 9.1]

Rem. Hence, the 4-form Ω_0 determines the Euclidean scalar product.

23 / 26

```
CY AND KE MFLDS
```

HyperKähler mflds

QUATERNION-KAHLER MFLDS

An Sp(n)Sp(1)-structure on M^{4n} , $n \geq 2$ can be described by $\Omega \in \Omega^4(M)$, which is linearly equivalent to Ω_0 at each pt. Then M is quaternion-Kähler, i.e. $Hol(M) \subset Sp(n)Sp(1)$, iff $\nabla \Omega = 0$. In particular, $d\Omega = 0$.

Theorem (Swann) If dim M > 12, then $\nabla \Omega = 0 \iff d\Omega = 0$.

In contrast to hK mflds, qK mflds do not have global almost complex structures but rather are endowed with rank 3 subbundle of End(TM) admitting *local* trivialization (I_1, I_2, I_3) satisfying quaternionic relations. This is apparent from the decomposition

$$\mathfrak{so}(4n) \cong \mathfrak{sp}(n) \oplus \mathfrak{sp}(1) \oplus [\Lambda_0^2 E \otimes W_2]_r.$$

Prop. The spaces of algebraic curvature tensors for qK and hK mflds are given respectively by

$$\mathcal{R}^{Sp(n)Sp(1)} \cong [S^4 E]_r \oplus \mathbb{R},$$
$$\mathcal{R}^{Sp(n)} \cong [S^4 E]_r.$$

Proof. Similar to the corresponding proof for Kähler mflds. For details see [Salamon. Prop. 9.3].

Cor. Any qK mfld is Einstein, and its Ricci tensor vanishes iff it is locally hK, i.e. $\operatorname{Hol}^0 \subset Sp(n)$.

Ex. $\mathbb{H}P^n = \mathbb{H}^{n+1} \setminus \{0\} / \mathbb{H}^* \cong \frac{Sp(n+1)}{Sp(n) \times Sp(1)}$ is a symmetric qK mfld. All qK symmetric spaces were classified by Woff.

25 / 26

CY AND KE MFLDS QUATERNION-KAHLER MFLDS
Theorem (Swann)
Let
$$M^{4n}$$
 be a positive qK mfld with the corresponding $Sp(n)Sp(1)$ -
structure P . Then the total space of the bundle $U(M) = P \times_{Sp(n)Sp(1)} \mathbb{H}^*/\pm 1$ carries a hK metric.

The construction of this hK metric is similar to the construction of the Calabi metrics (Ricci-flat on K_M and hK on $T^*\mathbb{CP}^n$).