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Some results from the previous lecture

Prop. The first Chern class c1(M) is represented by 1
2πρ, where ρ

is the Ricci form.

Cor. The curvature tensor of the canonical line bundle KM =
Λm,0T ∗M = Λm(T ∗M)1,0 equals iρ.

Theorem

Let M2m be a Kähler mfld. Then Hol0(M) ⊂ SU(m) iff Ric ≡ 0.

Theorem

Hol(M) ⊂ SU(M) iff M admits a parallel (m, 0)–form.
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Calabi-Yau and Kähler-Einstein metrics

Let (M, I) be be a closed connected complex mfld.

Def. A Kähler metric g is said to be Kähler-Einstein if it is
Einstein, i.e. if there exists a constant λ such that

ρ = λω. (1)

Rem.

(i) λ : M → R in (1) =⇒ λ = const.

(ii) (1) ⇐⇒ R(ω) = λω.

Def. A class c ∈ H2(M ;R) is said to be

• positive, if ∃β ∈ c ∩ Ω1,1 s.t. β(·, I·) > 0;

• negative, if ∃β ∈ c ∩ Ω1,1 s.t. β(·, I·) < 0.
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Main Theorems

Theorem (Calabi-Yau)

Let ρ′ ∈ 2π c1(M) be a closed real (1, 1)-form. Then there exists a
unique Kähler metric g′ on M with Kähler form ω′ cohomologous
to ω and with Ricci form ρ′.

Cor. If c1(M) = 0, then M has a unique Ricci-flat Kähler metric
g′ with [ω′] = [ω].

Theorem (Aubin-Calabi-Yau)

Assume c1(M) < 0. Then, up to a scaling constant, M has a unique
Kähler-Einstein metric (with negative Einstein constant) .
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On the proof of Calabi-Yau and Aubin-Calabi-Yau
theorems

Let Ω ∈ Ωm,0(U), where U ⊂M is open. Write

∇Ω = ψ ⊗ Ω,

where ψ is a local connection form of Λm,0T ∗M .

Observe: Ω ∈ Ωm,0 ⇒ ∂Ω = 0 ⇒ ∂̄Ω = dΩ = ψ ∧ Ω. By
definition, Ω is holomorphic, if ∂̄Ω = 0. Since Ω is a complex
volume form,

∂̄Ω = 0 ⇐⇒ ψ0,1 ∧ Ω = 0 ⇐⇒ ψ ∈ Ω1,0.
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We have

d(log ‖Ω‖2) =
1

‖Ω‖2
d〈Ω,Ω〉

=
1

‖Ω‖2
(ψ‖Ω‖2 + ψ̄‖Ω‖2)

= ψ + ψ̄.

Ω is holomorphic =⇒ ψ = (d(log ‖Ω‖2))1,0 = ∂(log ‖Ω‖2).

Hence, the curvature of Λm,0T ∗M is represented by
dψ = ∂̄∂ log ‖Ω‖2. In particular, dψ is purely imaginary
(1, 1)-form. Hence,

ρ = i dψ = −i ∂∂̄ log ‖Ω‖2.
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Further, observe that
∗Ω = a · Ω̄,

where a ∈ C∗. Hence, a ·m! Ω ∧ Ω̄ = ‖Ω‖2ωm. If g′ is another
Kähler metric s.t. [ω′] = [ω], then

(ω′)m = ef · ωm

for some f : M → R. Therefore,

‖Ω‖2g′ = e−f‖Ω‖2g =⇒ ρ′ = ρ− i∂∂̄f.

Vice versa, by the ∂∂̄-Lemma, for any real closed (1, 1)-form ρ′

cohomologous to ρ, there exists f : M → R s.t.

ρ′ − ρ = −i ∂∂̄f.

Moreover, f is unique up to an additive constant. Similarly,

ω′ − ω = i ∂∂̄ϕ, ϕ : M → R.
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Thus, in the setting of the CY thm, we are looking for ϕ s.t.

(i) (ω + i ∂∂̄ϕ)m = ef · ωm, (∗)
(ii) ω + i ∂∂̄ϕ > 0,

where f is a fixed function.

Claim. (i) ⇒ (ii)
Proof. [Ballmann. Lectures on Kähler mflds, p.90].

Rem. For Kähler mflds, eqn Ric(g) = 0 is therefore equivalent to
(∗). Notice that
• (∗) is an eqn for a function rather than for a metric tensor,
• (∗) is highly nonlinear (nonlinear in derivatives of the highest

order).

Claim. The Kähler-Einstein condition (under the setup of
Aubin-Calabi-Yau thm) is equivalent to the eqn

(ω + i ∂∂̄ϕ)m = ef−λϕ · ωm,
where ω is a suitably chosen Kähler metric on M .
Proof. [see Ballmann, p.91 for details]. 8 / 26
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Idea of the proof of the Calabi-Yau thm

Uniqueness: Let ϕ1, ϕ2 be solutions of the eqn

(ω + i ∂∂̄ϕ)m = eF (p,ϕ)ωm.

It can be shown that
1

m

∫
|grad(ϕ1 − ϕ2)|2g1ω

m
1 +

+

∫
(ϕ1 − ϕ2)(e

F (p,ϕ1) − (eF (p,ϕ2))ωm ≤ 0.

Hence, uniqueness follows from the (weak) monotonicity of F in ϕ
(for each fixed p ∈M).

Existence (by the continuity method): Consider the eqn

(ω + i ∂∂̄ϕ)m = etfωm,

where t ∈ [0, 1] is a parameter. Denote by T the set of those t, for
which there exists a solution. Then T 3 0, hence T 6= ∅.
Moreover, T is open and closed. Hence, 1 ∈ T .
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Examples of Calabi–Yau manifolds

A compact (simply connected) Riemannian mfld with
Hol(M, g) ⊂ SU(m) is called Calabi-Yau. If π1(M) = {1} this is
equivalent to c1(M) = 0.

Ex.

1) Let M be a degree d hypersurface in CPN . From the
adjunction formula we have

KM =
(
KCPN ⊗O(d)

)∣∣
M
∼= O(−N − 1 + d)

∣∣
M
.

Therefore, c1(KM ) = 0 ⇔ d = N + 1. Hence, the Fermat
quartic M = {z40 + z41 + z42 + z43 = 0} ⊂ CP3 admits a metric
with holonomy SU(2).

2) Let M be a complete intersection:
M = Md1 ∩ · · · ∩Mdk ⊂ CPN . Then
c1(M) = 0 ⇔ d1 + · · ·+ dk = N + 1.
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A non-compact example: Calabi metric

Theorem (Calabi)

Let M be Kähler–Einstein with positive sc. curvature. Then there
exists a metric on the total space of KM with Hol0 ⊂ SU(m+ 1).

Proof. Let P →M be the U(m)-structure. Since
u(m) ∼= su(m)⊕ iR, the Levi-Civita connection on P decomposes:
ϕLC = ϕ0 + ψi. Observe that ψi is essentially the connection of
KM . It follows that M is KE iff dψ = λπ∗ω, where π : P →M .

Consider β = dz + zψi ∈ Ω1(P × C;C), where z is a coordinate
on C. Put ρ = |z|2 = zz̄. With the help of

dβ = (β ∧ ψ + λzπ∗ω)i, dρ = dz · z̄ + zdz̄ = β · z̄ + zβ,

one easily shows that the 2-form

ω̃ = uπ∗ω − 1

λ
u′ · iβ ∧ β̄

is closed, where u = u(ρ). 11 / 26
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Proof of the Calabi theorem (continued)

Moreover, ω̃ = uπ∗ω − 1
λu
′ · iβ ∧ β̄ is U(m)-invariant and basic

and therefore descends to a (1, 1)-form ω̃ on (P × C)/U(m) = K.
If both u and u′ are positive, ω̃ is also positive.
Recall that each p ∈ P is a unitary basis of Tπ(p)M , i.e.
p = (p1, . . . , pm). Then Ω = p∗1 ∧ · · · ∧ p∗m is a global complex
m-form on P . Consider

Ω̃ = β ∧ Ω.

Just like ω̃, Ω̃ descends to an (m+ 1, 0)-form on K. Then Ω̃ is
parallel iff ‖Ω̃‖ = const⇒ umu′ = λ(m+ 1)⇒
u(ρ) = (λρ+ l)

1
m+1 . Hence we obtain an explicit metric on K with

Hol0 ⊂ SU(m+ 1), namely

g = u(p)π∗KgM ⊕ u′(ρ)Re(β ⊗ β̄).

Rem. If the scalar curvature of M is negative, the Calabi metric
is defined on a neighbourhood of the zero section only.
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HyperKähler manifolds

A quaternionic vector space is a real vector space V equipped with
a triple (I1, I2, I3) of endomorphisms s.t.

I2r = −1, I1I2 = I3 = −I2I1.
In other words, V is an H-module.

V is quaternion-Hermitian, if V is equipped with an Euclidean
scalar product, which is Hermitian wrt each complex structure Ir.
Denote ωr(·, ·) = 〈Ir·, ·〉, ω = ω1i+ ω2j + ω3k.

Ex. V = Hm, I1(h) = hī, I2(h) = hj̄, I3(h) = hk̄,
〈h1, h2〉 = Re(h̄1h2). Then ω(h1, h2) = Im(h̄1h2)

Put h = 〈·, ·〉+ iω1 and ωc = ω2 + ω3i. Then h is an Hermitian
scalar product and ωc is a complex symplectic form. Hence,

Sp(m) = {A ∈ O(Hn)|AIr = IrA, r = 1, 2, 3}
= O(4n) ∩GLn(H)

= U(2n) ∩ Sp(2n;C). 13 / 26
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Assume M4m is endowed with with an Sp(m)–structure. In other
words, M is a Riemannian mfld equipped with a triple (I1, I2, I3) of
almost complex structures s.t. the metric is Hermitian wrt each Ir.

Alternatively, M can be seen as an almost Hermitian mfld
equipped with a complex symplectic form ωc ∈ Ω2,0(M).

M is called hyperKähler, if Hol(M) ⊂ Sp(m). This is equivalent to
one of the following conditions:

(i) ∇I1 = ∇I2 = ∇I3 = 0;

(ii) ∇ω1 = ∇ω2 = ∇ω3 = 0;

(iii) g is Kähler wrt each complex structure Ir.
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Prop. For an almost hyperKähler manifold the following holds:

∇ω1 = ∇ω2 = ∇ω3 = 0 ⇐⇒ dω1 = dω2 = dω3 = 0.

Proof. Need to show that each almost complex structure is
integrable. Observe: v ∈ X1,0

I1
(M)⇔ ıvω2 = i ıvω3. Indeed,

ivω2 = g(I2v, ·) = g(I3I1v, ·) = ω3(I1v, ·).

Then ıvω2 = iıvω3 ⇔ I1v = iv.
Assume now v, w ∈ X1,0

I1
(M). Then

ı[v,w]ω2 = Lv(ıwω2)− ıw(Lvω2)

= Lv(ıwω2)− ıw(ıvω2) (Cartan)

= Lv(iıwω3)− ıw(iıwω3)

= i ı[v,w]ω3.
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Examples of hyperKähler manifolds

Ex.

(i) We have an exceptional isomorphism Sp(1) ∼= SU(2), since
ωc ∈ λ2,0C2 is a complex volume form. Hence, if dimRM = 4

Calabi-Yau ≡ hyperKähler

Hence, there is a hK metric on the Fermat quartic.

(ii) Similar methods as in the proof of the fact that for KE M the
total space of KM has a Ricci-flat metric, also give that the
total space of T ∗CPm has a complete metric with holonomy
Sp(m) for any m (this fact is also due to Calabi).
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Let M4m be a compact Kähler with a complex sympl. form ωc.
Then ωmc trivializes KM and hence there exists a Ricci-flat Kähler
metric on M .

Observe that any closed (p, 0)–form on closed Ricci–flat Kähler
mfld must be parallel. This follows from the fact that the
Weitzenböck formula for (p, 0)–forms involves Ricci–curvature only.

Hence, with respect to the new Ricci–flat metric ∇ωc = 0. Thus if
M is compact Kähler

hyperKähler ≡ complex symplectic

This is used to show that there are compact 8-mflds with
holonomy Sp(2) by blowing-up the diagonal in M4 ×M4 and
quotening by the involution. Further generalization of this yields
compact mflds with holonomy Sp(m).

17 / 26

CY and KE mflds HyperKähler mflds Quaternion–Kahler mflds

HyperKähler reduction

Let M be a hK mfld and assume G acts on M preserving hK
structure. Then for any ξ ∈ g

0 = LKξωr = ıKξdωr + dıKξωr = 0 + dıKξωr,

where Kξ is the Killing v.f.
Assume there exists µr(ξ) : M → R s.t. iKξωr = dµr(ξ).
Construct a G-equivariant map

µ = µ1i+ µ2j + µ3k : M → g∗ ⊗ ImH,

which is called the hK moment map.
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Theorem

If M///τ G = µ−1(τ)/G is a mfld, where τ ∈ g∗ is central, then it is
hyperKähler (with respect to the induces metric).

Proof. For m ∈ µ−1(τ) put Km = {Kξ(m) | ξ ∈ g}. Since
dµr(ξ) = g(IrKξ, ·), the orthogonal complement to

Km ⊕ I1Km ⊕ I2Km ⊕ I3Km

can be identified with T[m](M///τ G). Hence M///τG is almost
hyperKähler. The corresponding 2-forms are closed, hence M///τ G
is hyperKähler.
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Further examples of hyperKähler manifolds

Ex.

1) S1 acts on Hn+1 by multiplication on the left. The moment
map is

µ(x) = −
n+1∑
p=1

x̄pixp = i

n+1∑
p=1

(|wp|2 − |zp|2)− 2k

n+1∑
p=1

zpwp,

where xp = zp + jwp, zp, wp ∈ C. Clearly,

Hn+1///S1 = µ−1(−i)/S1 ∼=

∼={(zp, wp) ∈ C2n+2|
n+1∑
p=1

zpwp = 0, (z1, . . . , zn+1) 6= 0}/C∗

∼=T ∗CPn.
Hence, the total space of T ∗CPn is hK and the metric
obtained via the hK reduction coincides with the Calabi
metric. 20 / 26
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Ex.

2) T ∗Grp(Cp+q) is hK. This is also obtained as a hK reduction:
T ∗Grp(Cp+q) ∼= Hp(p+q)///U(p).

3) Let X4 be a hK mfld. Pick a G-bundle P → X. Then the
space A(P ) inherits a hK structure. The action of the gauge
gp G = AutP preserves this hK structure and the moment
map is

µ : A 7−→F+
A ∈ Ω2

+(X; adP ) ∼=
∼= Γ(adP )⊗ ImH ∼=
∼= Lie(G)∗ ⊗ ImH.

Hence, the moduli space of asd instantons

µ−1(0)/G ∼= {A | F+
A = 0}/G

is hyperKähler.
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Quaternion-Kähler manifolds

Consider the action of Sp(n)× Sp(1) on Hn:

(A, q) · x = Axq̄.

Obviously, (−1,−1) acts trivially and we define

Sp(n)Sp(1) = Sp(n)× Sp(1)/±1 ⊂ SO(4n).

Consider Λ1 = R4n as Sp(n)Sp(1)-representation. Then

Λ1
C
∼= E ⊗C W,

where E denotes the complex tautological representation of
Sp(n) ⊂ SU(2n) of dimension 2n and W denotes the two
dimensional complex representation of Sp(1) ∼= SU(2). Explicitly,

v 7−→ v1,0 ⊗
(

1
0

)
+ I2v

0,1 ⊗
(

0
1

)
.
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Then so(4n) ∼= Λ2(R4n)∗ ∼= Λ2[E ⊗W ]r
∼= [S2E ⊗ Λ2W ]r ⊕ [Λ2E ⊗ S2W ]r
∼= sp(n)⊕ [Λ2E ⊗W2]r
∼= sp(n)⊕ sp(1)⊕ [Λ2

0E ⊗W2]r.

Here: Wp = SpW is the irreducible (p+ 1)-dimensional
Sp(1)-representation. In particular, W1 = W , W2 = sp(1)C.
Consider the 4-form

Ω0 = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3 ∈ Λ4(R4n)∗,

which is Sp(n)Sp(1)-invariant.

Lem. For n ≥ 2, the subgp of GL4n(R) preserving Ω0 is equal to
Sp(n)Sp(1).

Proof. [Salamon. Lemma 9.1]

Rem. Hence, the 4-form Ω0 determines the Euclidean scalar
product. 23 / 26

CY and KE mflds HyperKähler mflds Quaternion–Kahler mflds

An Sp(n)Sp(1)-structure on M4n, n ≥ 2 can be described by
Ω ∈ Ω4(M), which is linearly equivalent to Ω0 at each pt. Then
M is quaternion-Kähler, i.e. Hol(M) ⊂ Sp(n)Sp(1), iff ∇Ω = 0.
In particular, dΩ = 0.

Theorem (Swann)

If dimM ≥ 12, then ∇Ω = 0 ⇔ dΩ = 0.

In contrast to hK mflds, qK mflds do not have global almost
complex structures but rather are endowed with rank 3 subbundle
of End(TM) admitting local trivialization (I1, I2, I3) satisfying
quaternionic relations. This is apparent from the decomposition

so(4n) ∼= sp(n)⊕ sp(1)⊕ [Λ2
0E ⊗W2]r.
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Prop. The spaces of algebraic curvature tensors for qK and hK
mflds are given respectively by

RSp(n)Sp(1) ∼=[S4E]r ⊕ R,

RSp(n) ∼=[S4E]r.

Proof. Similar to the corresponding proof for Kähler mflds. For
details see [Salamon. Prop. 9.3].

Cor. Any qK mfld is Einstein, and its Ricci tensor vanishes iff it is
locally hK, i.e. Hol0 ⊂ Sp(n).

Ex. HPn = Hn+1\{0} /H∗ ∼= Sp(n+1)
Sp(n)×Sp(1) is a symmetric qK

mfld. All qK symmetric spaces were classified by Woff.
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Theorem (Swann)

Let M4n be a positive qK mfld with the corresponding Sp(n)Sp(1)-
structure P . Then the total space of the bundle U(M) =
P ×Sp(n)Sp(1) H∗/± 1 carries a hK metric.

The construction of this hK metric is similar to the construction of
the Calabi metrics (Ricci–flat on KM and hK on T ∗CPn).
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