Holonomy groups in Riemannian geometry

Lecture 7

Exceptional holonomy groups

December 8, 2011

1/23

G_2	G_2 as holonomy gp	Spin(7)	Examples	Compact example
	$Groups \ Spin(3$	S), Spin(4)	, and $Sp(1)$	

Recall: For $n \ge 3$, Spin(n) is a connected simply connected group fitting into the short exact sequence

$$0 \to \{\pm 1\} \to \operatorname{Spin}(n) \to SO(n) \to 0,$$

In other words, $SO(n) \cong \text{Spin}(n) / \pm 1$.

The group $Sp(1) = \{q \in \mathbb{H} \mid q\bar{q} = 1\}$ acts on $\operatorname{Im} \mathbb{H}$: $q \cdot x = qx\bar{q}$. Hence, we have the short exact sequence

$$0 \to \{\pm 1\} \to Sp(1) \to SO(3) \to 0,$$

which establishes the isomorphism $Spin(3) \cong Sp(1) \cong SU(2)$.

Consider also the action of $Sp_+(1) \times Sp_-(1)$ on \mathbb{H} : $(q_+, q_-) \cdot x = q_+ x \bar{q}_-$. This leads to the short exact sequence

$$0 \to \{\pm 1\} \to Sp_+(1) \times Sp_-(1) \to SO(4) \to 0.$$

Hence, $\operatorname{Spin}(4) \cong Sp_+(1) \times Sp_-(1)$.

2 / 23

The group G_2

Put $V = \text{Im } \mathbb{H}_x \oplus \mathbb{H}_y \cong \mathbb{R}^7$, which is considered as oriented Euclidean vector space. SO(4) acts on V:

$$[q_+, q_-] \cdot (x, y) = (q_- x\bar{q}_-, q_+ y\bar{q}_-).$$

Write

$$\begin{aligned} \frac{1}{2} d\bar{y} \wedge dy = &\omega_1 i + \omega_2 j + \omega_3 k \\ = &(dy_0 \wedge dy_1 - dy_2 \wedge dy_3)i + (dy_0 \wedge dy_2 + dy_1 \wedge dy_3)j + \\ &+ (dy_0 \wedge dy_3 - dy_1 \wedge dy_2)k. \end{aligned}$$

Notice that $(\omega_1, \omega_2, \omega_3)$ is the standard basis of $\Lambda^2_{-}(\mathbb{R}^4)^*$. Put

$$\varphi = vol_x - \frac{1}{2} \operatorname{Re} \left(dx \wedge dy \wedge d\bar{y} \right)$$

= $dx_1 \wedge dx_2 \wedge dx_3 + dx_1 \wedge \omega_1 + dx_2 \wedge \omega_2 + dx_3 \wedge \omega_3.$

Def. The stabilizer of φ in $GL_7(\mathbb{R})$ is called G_2 .

 G_2 G_2 as holonomy gp Spin(7) Examples Compact example

$$\varphi = vol_x - \frac{1}{2} \operatorname{Re} \left(dx \wedge dy \wedge d\bar{y} \right).$$

Observe the following:

- $L^*_{[q_+,q_-]}d\bar{y} \wedge dy = q_-d\bar{y} \wedge dy \bar{q}_- \Rightarrow \operatorname{Re}(dx \wedge dy \wedge d\bar{y})$ is SO(4)-invariant $\Rightarrow SO(4) \subset G_2$.
- Write $V = (\mathbb{R} \oplus \mathbb{C}_z) \oplus \mathbb{C}^2_{w_1,w_2}$, $(x_0, z, w_1, w_2) \mapsto x_0 i + zj + \overline{w}_1 + w_2 j$. Then

$$\varphi = \frac{1}{2} dx_0 \wedge \operatorname{Im}(dz \wedge d\bar{z} + dw_1 \wedge d\bar{w}_1 + dw_2 \wedge d\bar{w}_2) + \operatorname{Re}(dz \wedge dw_1 \wedge dw_2)$$

Hence, $G_2 \supset SU(3)$.

• $SO(4) \subset G_2$, $SU(3) \subset G_2 \Rightarrow G_2 \cap SO(7)$ acts transitively on S^6 .

 G_2

3/23

 G_2

- For $Q: V \to \Lambda^7 V$, $Q(v) = (i_v \varphi)^2 \land \varphi$ we have $Q(e_1) = ||e_1||^2 vol_7 \Rightarrow Q(v) = ||v||^2 vol_7$ for all $v \in V$. • $g \in G_2 \Rightarrow g^*Q(gv) = Q(v) \Rightarrow (\det g) \cdot ||gv||^2 = ||v||^2$
- $g \in G_2 \Rightarrow g \ Q(gv) = Q(v) \Rightarrow (\det g) \cdot ||gv|| = ||v|$ $\Rightarrow \det g = 1, \text{ i.e. } G_2 \subset SO(7)$
- $\{g \in G_2 \mid ge_1 = e_1\} \cong SU(3)$. Hence, we have that topologically G_2 is the fibre bundle

In particular, $\dim G = 14$; G is connected and simply connected.

• $\Lambda^3 V^* \supset GL_7(\mathbb{R}) \cdot \varphi \cong GL_7(\mathbb{R})/G_2$ has dimension $35 = \dim \Lambda^3 V^*$. Hence, $GL_7(\mathbb{R}) \cdot \varphi$ is an open set in $\Lambda^3 V^*$.

Fact. G_2 is the automorphism group of octonions, i.e.

$$\{g \in GL_8(\mathbb{R}) \mid g(ab) = g(a) \cdot g(b)\} \cong G_2.$$
 5/23

 G_2

G_2 as holonomy gp

Spin(7)

Compact example

Some representation theory of G_2

Consider $V \cong \mathbb{R}^7$ as a G_2 -representation via the embedding $G_2 \subset SO(7)$. Then V is irreducible.

Further $\Lambda^2 V^*$ contains the following G_2 -invariant subspaces

• $\Lambda_{14}^2 V^* \cong \mathfrak{g}_2$

•
$$\Lambda_7^2 V^* = \{i_v \varphi \mid v \in V\} \cong V$$

which are irreducible. By dimension counting,

$$\Lambda^2 V^* \cong \Lambda_{14}^2 V^* \oplus \Lambda_7^2 V^*.$$

Rem. The subspaces Λ_7^2 and Λ_{14}^2 can be described equivalently as follows:

$$\Lambda_7^2 = \{ \alpha \mid *(\varphi \land \alpha) = 2\alpha \}$$
$$\Lambda_{14}^2 = \{ \alpha \mid *(\varphi \land \alpha) = -\alpha \}$$

To decompose $\Lambda^3 V^*$, consider

$$\gamma \colon \operatorname{End}(V) \cong V \otimes V \mapsto \Lambda^3 V^*, \qquad \gamma(a) = a^* \varphi.$$

Then Ker $\gamma = \mathfrak{g}_2$. Since dim Im $\gamma = 7 \times 7 - \dim \operatorname{Ker} \gamma = 35$ = dim $\Lambda^3 V^*$, γ is surjective. Hence,

$$\Lambda^3 V^* \cong S^2 V^* \oplus \Lambda^2_7 V^* \cong \mathbb{R} \oplus S^2_0 V^* \oplus V^*$$

and $S_0^2 V^*$ is irreducible. We summarize,

Lem.

$$\Lambda^2 V^* \cong \mathfrak{g}_2 \oplus V,$$

$$\Lambda^3 V^* \cong \mathbb{R} \oplus V \oplus S_0^2 V^*$$

$$G_2$$
 G_2 as holonomy gp $Spin(7)$ Examples Compact example G_2 as a structure group

A G_2 -structure on M^7 is determined by a 3-form φ , which is pointwise linearly equivalent to the 3-form $\varphi_0 \in \Lambda^3(\mathbb{R}^7)^*$. In particular, φ determines a Riemannian metric g_{φ} and an orientation.

The following Lemma is auxiliary and will be proved in the next lecture.

Lem. Denote by $\sigma : \mathbb{R}^n \otimes \Lambda^k(\mathbb{R}^n)^* \to \Lambda^{k-1}(\mathbb{R}^n)^*$ the contraction map. Then, for any Riemannian mfld M, the map

$$\Gamma(\Lambda^k T^* M) \xrightarrow{\nabla^{LC}} \Gamma(T^* M \otimes \Lambda^k T^* M) \xrightarrow{-\sigma} \Gamma(\Lambda^{k-1} T^* M)$$

coincides with $d^*: \Omega^k \to \Omega^{k-1}$.

Theorem

 G_2 as holonomy gp

 φ is parallel wrt the Levi-Vita connection of g_{φ} iff $d\varphi = 0 = d(*_{\varphi}\varphi)$.

Proof. Recall that the intrinsic torsion of the G_2 -structure can be identified with $\nabla \varphi$. In particular, $\nabla \varphi$ takes values in $V^* \otimes \mathfrak{g}_2^\perp \cong V^* \otimes V \cong (S_0^2 V^* \oplus \mathbb{R}) \oplus (\mathfrak{g}_2 \oplus V)$. Observe that $d\varphi$ and $d(*\varphi)$ can be obtained from $\nabla \varphi$ by means of the algebraic maps

$$V^* \otimes V \hookrightarrow V^* \otimes \Lambda^3 V^* \longrightarrow \Lambda^4 V^* \cong \Lambda^3 V^* \cong \mathbb{R} \oplus V \oplus S_0^2 V^*.$$
$$V^* \otimes V \hookrightarrow V^* \otimes \Lambda^3 V^* \mapsto \Lambda^2 V^* \cong \mathfrak{g}_2 \oplus V.$$

One can show that both maps are surjective. Comparing components of target spaces with the components of

$$V^* \otimes V \cong S_0^2 V^* \oplus \mathbb{R} \oplus \mathfrak{g}_2 \oplus V$$

we obtain that $\nabla \varphi = 0 \iff d\varphi = 0 = d(*\varphi).$

 G_2 G_2 as holonomy gp Spin(7) Examples Compact example $Curvature \ of \ a \ G_2-manifold$

Let $c: S^2 \mathfrak{g}_2 \to S^2 V^*$ be the Ricci contraction. Denote $F = \operatorname{Ker} c$. This is an irreducible G_2 -representation of dimension 77.

Recall that $\mathcal{R}^{G_2} \cong \operatorname{Ker} b \cap S^2 \mathfrak{g}_2$, where

$$b: S^2(\Lambda^2 V^*) \to \Lambda^4 V^*$$

is the Bianchi map. Notice that

$$S^{2}\mathfrak{g}_{2} \cong F \oplus S_{0}^{2}V^{*} \oplus \mathbb{R},$$
$$\Lambda^{4}V^{*} \cong \Lambda^{3}V^{*} \cong V \oplus S_{0}^{2}V^{*} \oplus \mathbb{R}$$

The Bianchi map is injective on $S_0^2 V^* \oplus \mathbb{R}$. Hence $\mathcal{R}^{G_2} \cong F$. We summarize

Prop. $\mathcal{R}^{G_2} \cong F$. A 7-mfld with holonomy in G_2 is Ricci-flat.

9/23

Spin(7)

EXAMPLES

 G_2

The group Spin(7)

Put $U = \mathbb{H}_x \oplus \mathbb{H}_y$. Let $Sp_0(1) \times Sp_+(1) \times Sp_-(1)$ act on U via

$$(q_0, q_+, q_-) \cdot (x, y) = (q_0 x \bar{q}_-, q_+ y \bar{q}_-).$$

Define the Cayley 4-form $\Omega_0 \in \Omega^4(V)$ by

$$\Omega_0 = vol_x + \omega_x^1 \wedge \omega_y^1 + \omega_x^2 \wedge \omega_y^2 + \omega_x^3 \wedge \omega_y^3 + vol_y = vol_x - \operatorname{Re}(d\bar{x} \wedge dx \wedge d\bar{y} \wedge dy) + vol_y.$$

Denote by K the stabilizer of Ω_0 in $GL_8(\mathbb{R})$. The following facts are obtained in a similar fashion as for the group G_2 :

- $\Omega_0 = dx_0 \wedge \varphi_0 + *_4 \varphi_0 \implies G_2 = K \cap SO(7)$
- $SU(4) \subset K$
- $K \subset SO(8)$
- K is a compact, connected and simply connected Lie group of dimension 21 acting transitively on S^7

11/23

G_2	G_2 as holonomy gp	Spin(7)	Examples	Compact example		
• Consider U as a G_2 -representation. Then						
	$U \cong \mathbb{R} \oplus V \Rightarrow \Lambda^2$	$U \cong \Lambda^2 V \oplus V$	$\cong \mathfrak{g}_2 \oplus V \oplus V.$	By		
	dimension counting,	$\mathfrak{K} \cong \mathfrak{g}_2 \oplus V.$	Hence,	5		

$$\Lambda^2 U \cong \mathfrak{K} \oplus \mathfrak{K}^{\perp} \quad \text{with} \quad \dim \mathfrak{K}^{\perp} = 7.$$

• Obviously, $-\mathbf{1}_U \in K$ acts trivially on $\Lambda^2 U$. One can show that the map

$$K/\pm 1 \to SO(\mathfrak{K}^{\perp})$$

is an isomorphism. Hence,

$$K \cong Spin(7).$$

Rem. Unlike in the G_2 case, the orbit of Ω_0 in $\Lambda^4(\mathbb{R}^8)^*$ is not open.

Spin(7) as a structure group

A Spin(7)-structure on M^8 is determined by $\Omega \in \Omega^4(M)$, which is pointwise linearly equivalent to the Cayley form.

Theorem

 Ω is parallel wrt the Levi-Civita connection of g_{Ω} iff $d\Omega = 0$.

Proof. [Salamon, Prop. 12.4].

Prop. $\mathcal{R}^{Spin(7)} \cong W$, where W is an irreducible Spin(7)-representation of dimension 168. In particular, an 8-mfld with holonomy in Spin(7) is Ricci-flat.

Proof. [Salamon, Cor. 12.6].

13/23

Ex.

- Since $SU(3) \subset G_2$, for any Z with $Hol(Z) \subset SU(3)$, $M = Z \times \mathbb{R}$ can be considered as G_2 -mfld
- First local examples were constructed by Bryant in 1987.

Theorem (Bryant-Salamon)

Let M be a positive self-dual Einstein four-manifold. Then there exists a metric with holonomy in G_2 on the total space of $\Lambda^2_-T^*M$.

Sketch of the proof. Let $P \to M$ be the principal SO(4)-bundle. Since $\mathfrak{so}(4) = \mathfrak{so}_+(3) \oplus \mathfrak{so}_-(3)$ we can decompose the Levi-Vita connection: $\tau = \tau_+ + \tau_-$. Further, since $Sp(1) \cong Spin(3)$ we have

 $\mathfrak{so}(3) = \mathfrak{spin}(3) \cong \mathfrak{sp}(1) = \operatorname{Im} \mathbb{H}.$

Hence, $\tau_{\pm} \in \Omega^1(P; \operatorname{Im} \mathbb{H})$. Similarly, the canonical 1-form θ can be thought of as an element of $\Omega^1(P; \mathbb{H})$.

Consider the action of $SO(4) = Sp_+(1) \times Sp_-(1)/\pm 1$ on $P \times \operatorname{Im} \mathbb{H}_x$

$$[q_+, q_-] \cdot (p, x) = (p \cdot [q_+, q_-], q_- x \bar{q}_-).$$

Clearly, $P \times \operatorname{Im} \mathbb{H} / SO(4) \cong \Lambda^2_{-} T^* M$.

Put $\alpha = dx + \tau_- x - x\tau_- \in \Omega^1(P \times \operatorname{Im} \mathbb{H}, \operatorname{Im} \mathbb{H})$. It is easy to check that the following forms are SO(4)-equivariant:

$$\begin{split} \gamma_1 &= \alpha_1 \wedge \alpha_2 \wedge \alpha_3, \\ \gamma_2 &= -\operatorname{Re}\left(\alpha \wedge \overline{\theta} \wedge \theta\right) = \alpha_1 \wedge \omega_1 + \alpha_2 \wedge \omega_2 + \alpha_3 \wedge \omega_3, \\ \varepsilon_1 &= \frac{1}{6} \operatorname{Re}\left(\overline{\theta} \wedge \theta \wedge \overline{\theta} \wedge \theta\right) = \pi^* vol_M, \\ \varepsilon_2 &= \frac{1}{4} \operatorname{Re}\left(\alpha \wedge \alpha \wedge \overline{\theta} \wedge \theta\right) = \\ &= \alpha_2 \wedge \alpha_3 \wedge \omega_1 + \alpha_3 \wedge \alpha_1 \wedge \omega_2 + \alpha_1 \wedge \alpha_2 \wedge \omega_3. \end{split}$$

15 / 23

 G_2

 G_2

 G_2 as holonomy gp

Spin(7)

EXAMPLES

Compact example

Moreover, for any functions $f = f(|x|^2)$, $h = h(|x|^2)$ without zeros the symmetric tensor

$$g = f^2(\alpha_1^2 + \alpha_2^2 + \alpha_3^2) + h^2(\theta_0^2 + \theta_1^2 + \theta_2^2 + \theta_4^2)$$

determines a metric on $\Lambda^2_-T^*M$. Then

$$\varphi = f^3 \gamma_1 + f h^2 \gamma_2$$

determines a G_2 -structure on $\Lambda^2_-T^*M$. We have also

$$*\varphi = h^4 \varepsilon_1 - f^2 h^2 \varepsilon_2.$$

With the help of the fact that M is positive, self-dual, and Einstein, equations $d\varphi = 0 = d * \varphi$ essentially imply that

$$f(r) = (1+r)^{-1/4}$$
 $h(r) = \sqrt{2\varkappa}(1+r)^{1/4}.$

Here $\varkappa = (sc.curv.)/12 > 0.$

Rem. Hitchin showed that the only complete self-dual Einstein 4-mflds with positive sc. curvature are S^4 and $\mathbb{C}P^2$ with their standard metrics. For these 4-mflds the holonomy of the Bryant-Salamon metric equals G_2 .

Using similar technique, Bryant and Salamon prove the following.

Theorem

Let M^3 be S^3 or its quotient by a finite group. Then there exists an explicite metric with holonomy G_2 on $M \times \mathbb{R}^4$ (total space of the spinor bundle).

Consider S^4 as \mathbb{HP}^1 . Let \mathbb{S} denote the tautological quaternionic line bundle (the spinor bundle).

G_2	G_2 as holonomy gp	Spin(7)	Examples	Compact example
-------	----------------------	---------	----------	-----------------

Calabi metric revisited

Recall: If S^1 acts on $\mathbb{C}^4 \cong \mathbb{H}^2$ via

$$\lambda \cdot (z_1, z_2, w_1, w_2) = (\lambda z_1, \lambda z_2, \overline{\lambda} w_1, \overline{\lambda} w_2),$$

then the hyperKähler moment map is given by

$$\mu = -(|z_1|^2 + |z_2|^2 - |w_1|^2 - |w_2|^2)i - 2k(z_1w_1 + z_2w_2).$$

In particular, the induced metric on $\mu^{-1}(i)/S^1 \cong T^* \mathbb{C}P^1$ has holonomy $Sp(1) \cong SU(2)$.

 G_2

Want to study asymptotic properties of the Calabi metric. First consider

$$\begin{array}{c} \mu = 0 \\ z \neq 0 \end{array} \right\} \Longleftrightarrow \left\{ \begin{array}{c} (w_1, w_2) = a(z_2, -z_1) \\ |a| = 1 \end{array} \right.$$

Hence, the map $\mathbb{C}^2 \to \mathbb{C}^4$

$$(t_1, t_2) \mapsto (t_1, t_2, t_2, -t_1)$$

induces a diffeomorphism $\mathbb{C}^2/\pm 1 \cong \mu^{-1}(0)/S^1$ (away from the singular pt). It is easy to see that in fact this is an isometry.

19/23

$$\chi^{-1}(z) = \begin{cases} pt, & z \neq 0\\ \mathbb{P}^1, & z = 0 \end{cases}$$

i.e. χ is a resolution of singularity.

 G_2 as holonomy gp

Prop. Let g denote the Calabi metric on $T^*\mathbb{CP}^1$. Then

$$\chi^* g = g_{flat} + O(r^{-4}),$$

where r is the radial function on $\mathbb{C}^2/\pm 1$.

A metric with asymptotics as in the Prop. above is called ALE (asymptotically locally Euclidean).

The fact that the leading term is g_{flat} follows from the following observation. Denote by $M_{\rho} = \mu^{-1}(-i\rho)/S^1$, where $\rho \in \mathbb{R}$. Clearly, M_{ρ} is diffeomorphic to $T^*\mathbb{C}P^1$ for any ρ . As $\rho \to 0$, the metric g_{ρ} tends to the flat metric on $M_0 \cong \mathbb{C}^2/\pm 1$ (away from the singularity).

COMPACT EXAMPLE

A sketch of the construction of a compact G_2 -mfld

Spin(7)

Consider \mathbb{T}^7 with its flat G_2 -structure (g_0, φ_0) . The group \mathbb{Z}_2^3 acts on \mathbb{T}^7 via

$$\alpha(x_1, \dots, x_7) = (x_1, x_2, x_3, -x_4, -x_5, -x_6, -x_7)$$

$$\beta(x_1, \dots, x_7) = (x_1, -x_2, -x_3, x_4, x_5, \frac{1}{2} - x_6, -x_7)$$

$$\gamma(x_1, \dots, x_7) = (-x_1, x_2, -x_3, x_4, \frac{1}{2} - x_5, x_6, \frac{1}{2} - x_7)$$

Lem. The singular set S of $\mathbb{T}^7/\mathbb{Z}_2^3$ consists of 12 disjoint \mathbb{T}^3 with singularities modelled on $\mathbb{T}^3 \times \mathbb{C}^2/\pm 1$.

Since $T^*\mathbb{P}^1$ is asymptotic to flat $\mathbb{C}^2/\pm 1$, we can cut out a small neihbourhood of each connected component of S and replace it with $\mathbb{T}^3 \times T^*\mathbb{P}^1$. The metric on the resulting mfld, as well as a G_2 -structure, is obtained by glueing the flat metric on \mathbb{T}^7 to the product (non-flat) metric on $\mathbb{T}^3 \times T^*\mathbb{P}^1$. The 3-form φ is not parallel, but can be chosen so that $d\varphi = 0$ and $d * \varphi$ is small.

Then Joyce proves that such (g, φ) can be deformed into a metric with holonomy G_2 .

Examples of compact Spin(7)-mflds can be constructed in a similar manner.

23 / 23