Holonomy groups
 in Riemannian geometry

Lecture 7

Exceptional holonomy groups

December 8, 2011

Groups $\operatorname{Spin}(3), \operatorname{Spin}(4)$, and $\operatorname{Sp}(1)$

Recall: For $n \geq 3$, $\operatorname{Spin}(n)$ is a connected simply connected group fitting into the short exact sequence

$$
0 \rightarrow\{ \pm 1\} \rightarrow \operatorname{Spin}(n) \rightarrow S O(n) \rightarrow 0
$$

In other words, $S O(n) \cong \operatorname{Spin}(n) / \pm 1$.
The group $S p(1)=\{q \in \mathbb{H} \mid q \bar{q}=1\}$ acts on $\operatorname{Im} \mathbb{H}: \quad q \cdot x=q x \bar{q}$. Hence, we have the short exact sequence

$$
0 \rightarrow\{ \pm 1\} \rightarrow S p(1) \rightarrow S O(3) \rightarrow 0
$$

which establishes the isomorphism $\operatorname{Spin}(3) \cong S p(1) \cong S U(2)$.
Consider also the action of $S p_{+}(1) \times S p_{-}(1)$ on \mathbb{H} :
$\left(q_{+}, q_{-}\right) \cdot x=q_{+} x \bar{q}_{-}$. This leads to the short exact sequence

$$
0 \rightarrow\{ \pm 1\} \rightarrow S p_{+}(1) \times S p_{-}(1) \rightarrow S O(4) \rightarrow 0
$$

Hence, $\operatorname{Spin}(4) \cong S p_{+}(1) \times S p_{-}(1)$.

The group G_{2}

Put $V=\operatorname{Im} \mathbb{H}_{x} \oplus \mathbb{H}_{y} \cong \mathbb{R}^{7}$, which is considered as oriented Euclidean vector space. $S O(4)$ acts on V :

$$
\left[q_{+}, q_{-}\right] \cdot(x, y)=\left(q_{-} x \bar{q}_{-}, q_{+} y \bar{q}_{-}\right)
$$

Write

$$
\begin{aligned}
& \frac{1}{2} d \bar{y} \wedge d y=\omega_{1} i+\omega_{2} j+\omega_{3} k \\
& =\left(d y_{0} \wedge d y_{1}-d y_{2} \wedge d y_{3}\right) i+\left(d y_{0} \wedge d y_{2}+d y_{1} \wedge d y_{3}\right) j+ \\
& +\left(d y_{0} \wedge d y_{3}-d y_{1} \wedge d y_{2}\right) k .
\end{aligned}
$$

Notice that $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ is the standard basis of $\Lambda_{-}^{2}\left(\mathbb{R}^{4}\right)^{*}$. Put

$$
\begin{aligned}
\varphi & =\operatorname{vol}_{x}-\frac{1}{2} \operatorname{Re}(d x \wedge d y \wedge d \bar{y}) \\
& =d x_{1} \wedge d x_{2} \wedge d x_{3}+d x_{1} \wedge \omega_{1}+d x_{2} \wedge \omega_{2}+d x_{3} \wedge \omega_{3}
\end{aligned}
$$

Def. The stabilizer of φ in $G L_{7}(\mathbb{R})$ is called G_{2}.

$$
\varphi=\operatorname{vol}_{x}-\frac{1}{2} \operatorname{Re}(d x \wedge d y \wedge d \bar{y})
$$

Observe the following:

- $L_{\left[q_{+}, q_{-}\right]}^{*} d \bar{y} \wedge d y=q_{-} d \bar{y} \wedge d y \bar{q}_{-} \Rightarrow \operatorname{Re}(d x \wedge d y \wedge d \bar{y})$ is $S O(4)$-invariant $\Rightarrow S O(4) \subset G_{2}$.
- Write $V=\left(\mathbb{R} \oplus \mathbb{C}_{z}\right) \oplus \mathbb{C}_{w_{1}, w_{2}}^{2},\left(x_{0}, z, w_{1}, w_{2}\right) \mapsto$ $x_{0} i+z j+\bar{w}_{1}+w_{2} j$. Then

$$
\begin{aligned}
\varphi= & \frac{1}{2} d x_{0} \wedge \operatorname{Im}\left(d z \wedge d \bar{z}+d w_{1} \wedge d \bar{w}_{1}+d w_{2} \wedge d \bar{w}_{2}\right) \\
& +\operatorname{Re}\left(d z \wedge d w_{1} \wedge d w_{2}\right)
\end{aligned}
$$

Hence, $G_{2} \supset S U(3)$.

- $S O(4) \subset G_{2}, S U(3) \subset G_{2} \Rightarrow G_{2} \cap S O(7)$ acts transitively on S^{6}.
- For $Q: V \rightarrow \Lambda^{7} V, Q(v)=\left(i_{v} \varphi\right)^{2} \wedge \varphi$ we have $Q\left(e_{1}\right)=\left\|e_{1}\right\|^{2} \operatorname{vol}_{7} \Rightarrow Q(v)=\|v\|^{2}$ vol $_{7}$ for all $v \in V$.
- $g \in G_{2} \Rightarrow g^{*} Q(g v)=Q(v) \Rightarrow(\operatorname{det} g) \cdot\|g v\|^{2}=\|v\|^{2}$
$\Rightarrow \operatorname{det} g=1$, i.e. $G_{2} \subset S O(7)$
- $\left\{g \in G_{2} \mid g e_{1}=e_{1}\right\} \cong S U(3)$. Hence, we have that topologically G_{2} is the fibre bundle

$$
S U(3) \subsetneq G_{2}
$$

In particular, $\operatorname{dim} G=14 ; G$ is connected and simply connected.

- $\Lambda^{3} V^{*} \supset G L_{7}(\mathbb{R}) \cdot \varphi \cong G L_{7}(\mathbb{R}) / G_{2}$ has dimension $35=\operatorname{dim} \Lambda^{3} V^{*}$. Hence, $G L_{7}(\mathbb{R}) \cdot \varphi$ is an open set in $\Lambda^{3} V^{*}$.
Fact. G_{2} is the automorphism group of octonions, i.e.

$$
\left\{g \in G L_{8}(\mathbb{R}) \mid g(a b)=g(a) \cdot g(b)\right\} \cong G_{2}
$$

Some representation theory of G_{2}

Consider $V \cong \mathbb{R}^{7}$ as a G_{2}-representation via the embedding $G_{2} \subset S O(7)$. Then V is irreducible.
Further $\Lambda^{2} V^{*}$ contains the following G_{2}-invariant subspaces

- $\Lambda_{14}^{2} V^{*} \cong \mathfrak{g}_{2}$
- $\Lambda_{7}^{2} V^{*}=\left\{i_{v} \varphi \mid v \in V\right\} \cong V$
which are irreducible. By dimension counting,

$$
\Lambda^{2} V^{*} \cong \Lambda_{14}^{2} V^{*} \oplus \Lambda_{7}^{2} V^{*}
$$

Rem. The subspaces Λ_{7}^{2} and Λ_{14}^{2} can be described equivalently as follows:

$$
\begin{aligned}
\Lambda_{7}^{2} & =\{\alpha \mid *(\varphi \wedge \alpha)=2 \alpha\} \\
\Lambda_{14}^{2} & =\{\alpha \mid *(\varphi \wedge \alpha)=-\alpha\}
\end{aligned}
$$

To decompose $\Lambda^{3} V^{*}$, consider

$$
\gamma: \operatorname{End}(V) \cong V \otimes V \mapsto \Lambda^{3} V^{*}, \quad \gamma(a)=a^{*} \varphi
$$

Then $\operatorname{Ker} \gamma=\mathfrak{g}_{2}$. Since $\operatorname{dim} \operatorname{Im} \gamma=7 \times 7-\operatorname{dim} \operatorname{Ker} \gamma=35$ $=\operatorname{dim} \Lambda^{3} V^{*}, \gamma$ is surjective. Hence,

$$
\Lambda^{3} V^{*} \cong S^{2} V^{*} \oplus \Lambda_{7}^{2} V^{*} \cong \mathbb{R} \oplus S_{0}^{2} V^{*} \oplus V^{*}
$$

and $S_{0}^{2} V^{*}$ is irreducible. We summarize,

Lem.

$$
\begin{aligned}
& \Lambda^{2} V^{*} \cong \mathfrak{g}_{2} \oplus V \\
& \Lambda^{3} V^{*} \cong \mathbb{R} \oplus V \oplus S_{0}^{2} V^{*}
\end{aligned}
$$

G_{2} as a structure group

A G_{2}-structure on M^{7} is determined by a 3 -form φ, which is pointwise linearly equivalent to the 3-form $\varphi_{0} \in \Lambda^{3}\left(\mathbb{R}^{7}\right)^{*}$. In particular, φ determines a Riemannian metric g_{φ} and an orientation.

The following Lemma is auxiliary and will be proved in the next lecture.

Lem. Denote by $\sigma: \mathbb{R}^{n} \otimes \Lambda^{k}\left(\mathbb{R}^{n}\right)^{*} \rightarrow \Lambda^{k-1}\left(\mathbb{R}^{n}\right)^{*}$ the contraction map. Then, for any Riemannian mfld M, the map

$$
\Gamma\left(\Lambda^{k} T^{*} M\right) \xrightarrow{\nabla^{L C}} \Gamma\left(T^{*} M \otimes \Lambda^{k} T^{*} M\right) \xrightarrow{-\sigma} \Gamma\left(\Lambda^{k-1} T^{*} M\right)
$$

coincides with $d^{*}: \Omega^{k} \rightarrow \Omega^{k-1}$.

Theorem

φ is parallel wrt the Levi-Vita connection of g_{φ} iff $d \varphi=0=d\left(*_{\varphi} \varphi\right)$.

Proof. Recall that the intrinsic torsion of the G_{2}-structure can be identified with $\nabla \varphi$. In particular, $\nabla \varphi$ takes values in $V^{*} \otimes \mathfrak{g}_{2}^{\perp} \cong V^{*} \otimes V \cong\left(S_{0}^{2} V^{*} \oplus \mathbb{R}\right) \oplus\left(\mathfrak{g}_{2} \oplus V\right)$. Observe that $d \varphi$ and $d(* \varphi)$ can be obtained from $\nabla \varphi$ by means of the algebraic maps

$$
\begin{aligned}
& V^{*} \otimes V \hookrightarrow V^{*} \otimes \Lambda^{3} V^{*} \longrightarrow \Lambda^{4} V^{*} \cong \Lambda^{3} V^{*} \cong \mathbb{R} \oplus V \oplus S_{0}^{2} V^{*} . \\
& V^{*} \otimes V \hookrightarrow V^{*} \otimes \Lambda^{3} V^{*} \mapsto \Lambda^{2} V^{*} \cong \mathfrak{g}_{2} \oplus V .
\end{aligned}
$$

One can show that both maps are surjective. Comparing components of target spaces with the components of

$$
V^{*} \otimes V \cong S_{0}^{2} V^{*} \oplus \mathbb{R} \oplus \mathfrak{g}_{2} \oplus V
$$

we obtain that $\nabla \varphi=0 \Longleftrightarrow d \varphi=0=d(* \varphi)$.

Curvature of a G_{2}-manifold

Let $c: S^{2} \mathfrak{g}_{2} \rightarrow S^{2} V^{*}$ be the Ricci contraction. Denote $F=\operatorname{Ker} c$. This is an irreducible G_{2}-representation of dimension 77 .

Recall that $\mathcal{R}^{G_{2}} \cong \operatorname{Ker} b \cap S^{2} \mathfrak{g}_{2}$, where

$$
b: S^{2}\left(\Lambda^{2} V^{*}\right) \rightarrow \Lambda^{4} V^{*}
$$

is the Bianchi map. Notice that

$$
\begin{aligned}
S^{2} \mathfrak{g}_{2} & \cong F \oplus S_{0}^{2} V^{*} \oplus \mathbb{R} \\
\Lambda^{4} V^{*} & \cong \Lambda^{3} V^{*} \cong V \oplus S_{0}^{2} V^{*} \oplus \mathbb{R}
\end{aligned}
$$

The Bianchi map is injective on $S_{0}^{2} V^{*} \oplus \mathbb{R}$. Hence $\mathcal{R}^{G_{2}} \cong F$. We summarize

Prop. $\quad \mathcal{R}^{G_{2}} \cong F$. A 7 -mfld with holonomy in G_{2} is Ricci-flat.

The group $\operatorname{Spin}(7)$

Put $U=\mathbb{H}_{x} \oplus \mathbb{H}_{y}$. Let $S p_{0}(1) \times S p_{+}(1) \times S p_{-}(1)$ act on U via

$$
\left(q_{0}, q_{+}, q_{-}\right) \cdot(x, y)=\left(q_{0} x \bar{q}_{-}, q_{+} y \bar{q}_{-}\right)
$$

Define the Cayley 4-form $\Omega_{0} \in \Omega^{4}(V)$ by

$$
\begin{aligned}
\Omega_{0} & =\operatorname{vol}_{x}+\omega_{x}^{1} \wedge \omega_{y}^{1}+\omega_{x}^{2} \wedge \omega_{y}^{2}+\omega_{x}^{3} \wedge \omega_{y}^{3}+\operatorname{vol}_{y}= \\
& =\operatorname{vol}_{x}-\operatorname{Re}(d \bar{x} \wedge d x \wedge d \bar{y} \wedge d y)+\operatorname{vol}_{y}
\end{aligned}
$$

Denote by K the stabilizer of Ω_{0} in $G L_{8}(\mathbb{R})$. The following facts are obtained in a similar fashion as for the group G_{2} :

- $\Omega_{0}=d x_{0} \wedge \varphi_{0}+*_{4} \varphi_{0} \quad \Longrightarrow \quad G_{2}=K \cap S O(7)$
- $S U(4) \subset K$
- $K \subset S O(8)$
- K is a compact, connected and simply connected Lie group of dimension 21 acting transitively on S^{7}
- Consider U as a G_{2}-representation. Then
$U \cong \mathbb{R} \oplus V \Rightarrow \Lambda^{2} U \cong \Lambda^{2} V \oplus V \cong \mathfrak{g}_{2} \oplus V \oplus V$. By dimension counting, $\mathfrak{K} \cong \mathfrak{g}_{2} \oplus V$. Hence,

$$
\Lambda^{2} U \cong \mathfrak{K} \oplus \mathfrak{K}^{\perp} \quad \text { with } \quad \operatorname{dim} \mathfrak{K}^{\perp}=7
$$

- Obviously, $-\mathbf{1}_{U} \in K$ acts trivially on $\Lambda^{2} U$. One can show that the map

$$
K / \pm 1 \rightarrow S O\left(\mathfrak{K}^{\perp}\right)
$$

is an isomorphism. Hence,

$$
K \cong \operatorname{Spin}(7)
$$

Rem. Unlike in the G_{2} case, the orbit of Ω_{0} in $\Lambda^{4}\left(\mathbb{R}^{8}\right)^{*}$ is not open.

Spin(7) as a structure group

A $\operatorname{Spin}(7)$-structure on M^{8} is determined by $\Omega \in \Omega^{4}(M)$, which is pointwise linearly equivalent to the Cayley form.

Theorem

Ω is parallel wrt the Levi-Civita connection of g_{Ω} iff $d \Omega=0$.

Proof. [Salamon, Prop. 12.4].

Prop. $\quad \mathcal{R}^{\operatorname{Spin}(7)} \cong W$, where W is an irreducible $\operatorname{Spin}(7)$ representation of dimension 168. In particular, an 8-mfld with holonomy in $\operatorname{Spin}(7)$ is Ricci-flat.

Proof. [Salamon, Cor. 12.6].

Examples

Ex.

- Since $S U(3) \subset G_{2}$, for any Z with $\operatorname{Hol}(Z) \subset S U(3)$, $M=Z \times \mathbb{R}$ can be considered as G_{2}-mfld
- First local examples were constructed by Bryant in 1987.

Theorem (Bryant-Salamon)

Let M be a positive self-dual Einstein four-manifold. Then there exists a metric with holonomy in G_{2} on the total space of $\Lambda_{-}^{2} T^{*} M$.

Sketch of the proof. Let $P \rightarrow M$ be the principal $S O(4)$-bundle. Since $\mathfrak{s o}(4)=\mathfrak{s o}_{+}(3) \oplus \mathfrak{s o}_{-}(3)$ we can decompose the Levi-Vita connection: $\tau=\tau_{+}+\tau_{-}$. Further, since $\operatorname{Sp}(1) \cong \operatorname{Spin}(3)$ we have

$$
\mathfrak{s o}(3)=\mathfrak{s p i n}(3) \cong \mathfrak{s p}(1)=\operatorname{Im} \mathbb{H} .
$$

Hence, $\tau_{ \pm} \in \Omega^{1}(P ; \operatorname{Im} \mathbb{H})$. Similarly, the canonical 1-form θ can be thought of as an element of $\Omega^{1}(P ; \mathbb{H})$.

Consider the action of $S O(4)=S p_{+}(1) \times S p_{-}(1) / \pm 1$ on $P \times \operatorname{Im} \mathbb{H}_{x}$

$$
\left[q_{+}, q_{-}\right] \cdot(p, x)=\left(p \cdot\left[q_{+}, q_{-}\right], q_{-} x \bar{q}_{-}\right)
$$

Clearly, $P \times \operatorname{Im} \mathbb{H} / S O(4) \cong \Lambda_{-}^{2} T^{*} M$.
Put $\alpha=d x+\tau_{-} x-x \tau_{-} \in \Omega^{1}(P \times \operatorname{Im} \mathbb{H}, \operatorname{Im} \mathbb{H})$. It is easy to check that the following forms are $S O(4)$-equivariant:

$$
\begin{aligned}
\gamma_{1} & =\alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3}, \\
\gamma_{2} & =-\operatorname{Re}(\alpha \wedge \bar{\theta} \wedge \theta)=\alpha_{1} \wedge \omega_{1}+\alpha_{2} \wedge \omega_{2}+\alpha_{3} \wedge \omega_{3}, \\
\varepsilon_{1} & =\frac{1}{6} \operatorname{Re}(\bar{\theta} \wedge \theta \wedge \bar{\theta} \wedge \theta)=\pi^{*} v o l_{M}, \\
\varepsilon_{2} & =\frac{1}{4} \operatorname{Re}(\alpha \wedge \alpha \wedge \bar{\theta} \wedge \theta)= \\
& =\alpha_{2} \wedge \alpha_{3} \wedge \omega_{1}+\alpha_{3} \wedge \alpha_{1} \wedge \omega_{2}+\alpha_{1} \wedge \alpha_{2} \wedge \omega_{3} .
\end{aligned}
$$

Moreover, for any functions $f=f\left(|x|^{2}\right), h=h\left(|x|^{2}\right)$ without zeros the symmetric tensor

$$
g=f^{2}\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right)+h^{2}\left(\theta_{0}^{2}+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{4}^{2}\right)
$$

determines a metric on $\Lambda_{-}^{2} T^{*} M$. Then

$$
\varphi=f^{3} \gamma_{1}+f h^{2} \gamma_{2}
$$

determines a G_{2}-structure on $\Lambda_{-}^{2} T^{*} M$. We have also

$$
* \varphi=h^{4} \varepsilon_{1}-f^{2} h^{2} \varepsilon_{2}
$$

With the help of the fact that M is positive, self-dual, and Einstein, equations $d \varphi=0=d * \varphi$ essentially imply that

$$
f(r)=(1+r)^{-1 / 4} \quad h(r)=\sqrt{2 \varkappa}(1+r)^{1 / 4}
$$

Here $\varkappa=($ sc.curv. $) / 12>0$.

Rem. Hitchin showed that the only complete self-dual Einstein 4 -mflds with positive sc. curvature are S^{4} and $\mathbb{C} P^{2}$ with their standard metrics. For these 4 -mflds the holonomy of the Bryant-Salamon metric equals G_{2}.

Using similar technique, Bryant and Salamon prove the following.

Theorem

Let M^{3} be S^{3} or its quotient by a finite group. Then there exists an explicite metric with holonomy G_{2} on $M \times \mathbb{R}^{4}$ (total space of the spinor bundle).

Consider S^{4} as $\mathbb{H} \mathbb{P}^{1}$. Let \mathbb{S} denote the tautological quaternionic line bundle (the spinor bundle).

Theorem

The total space of \mathbb{S} carries an explicite metric with holonomy $\operatorname{Spin}(7)$.

Calabi metric revisited

Recall: If S^{1} acts on $\mathbb{C}^{4} \cong \mathbb{H}^{2}$ via

$$
\lambda \cdot\left(z_{1}, z_{2}, w_{1}, w_{2}\right)=\left(\lambda z_{1}, \lambda z_{2}, \bar{\lambda} w_{1}, \bar{\lambda} w_{2}\right)
$$

then the hyperKähler moment map is given by

$$
\mu=-\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|w_{1}\right|^{2}-\left|w_{2}\right|^{2}\right) i-2 k\left(z_{1} w_{1}+z_{2} w_{2}\right)
$$

In particular, the induced metric on $\mu^{-1}(i) / S^{1} \cong T^{*} \mathbb{C} P^{1}$ has holonomy $S p(1) \cong S U(2)$.

Want to study asymptotic properties of the Calabi metric. First consider

$$
\left.\begin{array}{c}
\mu=0 \\
z \neq 0
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{c}
\left(w_{1}, w_{2}\right)=a\left(z_{2},-z_{1}\right) \\
|a|=1
\end{array}\right.
$$

Hence, the map $\mathbb{C}^{2} \rightarrow \mathbb{C}^{4}$

$$
\left(t_{1}, t_{2}\right) \mapsto\left(t_{1}, t_{2}, t_{2},-t_{1}\right)
$$

induces a diffeomorphism $\mathbb{C}^{2} / \pm 1 \cong \mu^{-1}(0) / S^{1}$ (away from the singular pt). It is easy to see that in fact this is an isometry.

Observe also that we have a commutative diagram

where the map χ is induced by the inclusion in the top row. Moreover, χ is holomorphic and

$$
\chi^{-1}(z)= \begin{cases}p t, & z \neq 0 \\ \mathbb{P}^{1}, & z=0\end{cases}
$$

i.e. χ is a resolution of singularity.

Prop. Let g denote the Calabi metric on $T^{*} \mathbb{C P}^{1}$. Then

$$
\chi^{*} g=g_{f l a t}+O\left(r^{-4}\right)
$$

where r is the radial function on $\mathbb{C}^{2} / \pm 1$.

A metric with asymptotics as in the Prop. above is called ALE (asymptotically locally Euclidean).
The fact that the leading term is $g_{\text {flat }}$ follows from the following observation. Denote by $M_{\rho}=\mu^{-1}(-i \rho) / S^{1}$, where $\rho \in \mathbb{R}$. Clearly, M_{ρ} is diffeomorphic to $T^{*} \mathbb{C} P^{1}$ for any ρ. As $\rho \rightarrow 0$, the metric g_{ρ} tends to the flat metric on $M_{0} \cong \mathbb{C}^{2} / \pm 1$ (away from the singularity).

A sketch of the construction of a compact G_{2}-mfld Consider \mathbb{T}^{7} with its flat G_{2}-structure $\left(g_{0}, \varphi_{0}\right)$. The group \mathbb{Z}_{2}^{3} acts on \mathbb{T}^{7} via

$$
\begin{aligned}
\alpha\left(x_{1}, \ldots, x_{7}\right) & =\left(x_{1}, x_{2}, x_{3},-x_{4},-x_{5},-x_{6},-x_{7}\right) \\
\beta\left(x_{1}, \ldots, x_{7}\right) & =\left(x_{1},-x_{2},-x_{3}, x_{4}, x_{5}, \frac{1}{2}-x_{6},-x_{7}\right) \\
\gamma\left(x_{1}, \ldots, x_{7}\right) & =\left(-x_{1}, x_{2},-x_{3}, x_{4}, \frac{1}{2}-x_{5}, x_{6}, \frac{1}{2}-x_{7}\right)
\end{aligned}
$$

Lem. The singular set S of $\mathbb{T}^{7} / \mathbb{Z}_{2}^{3}$ consists of 12 disjoint \mathbb{T}^{3} with singularities modelled on $\mathbb{T}^{3} \times \mathbb{C}^{2} / \pm 1$.

Since $T^{*} \mathbb{P}^{1}$ is asymptotic to flat $\mathbb{C}^{2} / \pm 1$, we can cut out a small neihbourhood of each connected component of S and replace it with $\mathbb{T}^{3} \times T^{*} \mathbb{P}^{1}$. The metric on the resulting mfld, as well as a G_{2}-structure, is obtained by glueing the flat metric on \mathbb{T}^{7} to the product (non-flat) metric on $\mathbb{T}^{3} \times T^{*} \mathbb{P}^{1}$. The 3 -form φ is not parallel, but can be chosen so that $d \varphi=0$ and $d * \varphi$ is small.

Then Joyce proves that such (g, φ) can be deformed into a metric with holonomy G_{2}.

Examples of compact $\operatorname{Spin}(7)$-mflds can be constructed in a similar manner.

