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Groups Spin(3), Spin(4), and Sp(1)

Recall: For n > 3, Spin (n) is a connected simply connected group
fitting into the short exact sequence

0 — {+1} — Spin (n) — SO(n) — 0,
In other words, SO(n) = Spin (n)/ £ 1.

The group Sp(1) ={q € H | qg =1} actson ImH: ¢ -z = qzq.
Hence, we have the short exact sequence

0— {1} = Sp(1) = SO(3) — 0,
which establishes the isomorphism Spin (3) = Sp(1) = SU(2).

Consider also the action of Spy(1) x Sp_(1) on H:
(q+,q—) - * = qrxG—. This leads to the short exact sequence

0—{£l} = Sp+(1) x Sp_(1) — SO(4) — 0.
Hence, Spin (4) = Spy(1) x Sp_(1).
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The group G
Put V = ImH, © H, = R7, which is considered as oriented
Euclidean vector space. SO(4) acts on V:
9+, 9-] - (z,y) = (¢-2q-, q+yq-).
Write
T dy A dy =wii + waj + wsk
=(dyo A\ dy1 — dyz2 A\ dys)i + (dyo A dy2 + dy1 A dysz)j+
+ (dyo A dys — dy1 A dya)k.
Notice that (w1, ws,ws3) is the standard basis of A2 (R*)*. Put
¢ = vol, — 3Re (dz A dy A dy)
= dx1 Ndxo Ndrs + dry N\ wi + dzo A wo + dars N\ ws.

Def. The stabilizer of ¢ in GL7(R) is called Ga.

© = vol, — %Re (dx N\ dy N dy).

Observe the following:

dyNdy =q_dyNdyq- = Re(dz AdyAdy) is
SO(4)-invariant = SO(4) C Ga.

e Write V= (R&C,)®C2, ,,.

xot + zJ + w1 + woj. Then

('CUOa 2y ’LUl,’lUQ) =

¢ = 3dzo Alm(dz A dz + dwy A diwg + dws A dia)
+ Re (dz A dwy A dws)

Hence, G2 D SU(3).

e SO(4) C Gg, SU(3) C G2 = G2N SO(7) acts transitively
on S°.



Ga

e For Q:V — ATV, Q(v) = (i,)? A ¢ we have
Q(e1) = |le1||*voly = Q(v) = ||v||*vol7 for all v € V.

* g€ G2 = g"Q(gv) = Q(v) = (detg) - [lgv]|* = [Jv|®
=detg=1, i.e. Gy C SO(7)

o {g€Gy|ger =er} = SU(3). Hence, we have that
topologically G5 is the fibre bundle

SU(S) > Gy

SG
In particular, dim G = 14; G is connected and simply

connected.
o AV* D GL7(R) - ¢ & GL7(R)/G2 has dimension
35 = dim A3V*. Hence, GL7(R) - ¢ is an open set in A3V*.

Fact. GG, is the automorphism group of octonions, i.e.

{9 € GLs(R) | g(ab) = g(a) - g(b)} = Ga.

Some representation theory of G
Consider V =2 R as a Go-representation via the embedding

Go C SO(7). Then V is irreducible.

Further A2V* contains the following Gs-invariant subspaces
o Af,V* =gy
o AM2V* ={iyp|lveV}xV

which are irreducible. By dimension counting,

A2V* =2 AT,V @ A2V,
Rem. The subspaces A2 and A%, can be described equivalently as
follows:
A2 ={a|*(pAa)=2a}
Ay ={a|*pra)=—a}
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To decompose A3V*, consider
v:End(V) 2V oV — AV, v(a) = a*p.

Then Kery = go. Since dimIm~y =7 x 7 — dim Kerv = 35
= dim A3V*, v is surjective. Hence,

NV SV AV 2RSSV @V
and SgV* is irreducible. We summarize,
Lem.

AMVixg oV,
ANV ROV ® SV

G5 AS HOLONOMY GP

G as a structure group

A Go-structure on M7 is determined by a 3-form ¢, which is
pointwise linearly equivalent to the 3—form ¢ € A3(R7)*. In
particular, ¢ determines a Riemannian metric g, and an
orientation.

The following Lemma is auxiliary and will be proved in the next
lecture.

Lem. Denote by o : R™ ® AF(R™)* — A*=1(R™)* the contraction
map. Then, for any Riemannian mfld M, the map

vLC’

D(A*T*M) — T(T*M @ A*T* M) —Z T (A*1T* M)

coincides with d* : QF — QF—1.
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@ is parallel wrt the Levi-Vita connection of g, iff dp = 0 = d(*,¢).

Proof. Recall that the intrinsic torsion of the Go—structure can be
identified with V. In particular, Vi takes values in

ViRg 2V V2 (S2V*OR)@ (g2 V). Observe that dyp
and d(xp) can be obtained from V¢ by means of the algebraic
maps

VEQV SV @AV — AV 2NV 2Ra Ve SHV*
V*QV SV @AV —» A2V 2 g V.

One can show that both maps are surjective. Comparing
components of target spaces with the components of

V*QVESV*oRG g oV
we obtain that Vi = 0 <= dy = 0 = d(xp). N

GQ AS HOLONOMY GP

Curvature of a Go—manifold

Let ¢ : S?gy — S2V* be the Ricci contraction. Denote F' = Kerc.
This is an irreducible GGo-representation of dimension 77.

Recall that RE2 =2 Ker b N S2gs, where
b:S?(A2V*) = AV
is the Bianchi map. Notice that

S?g, 2 F o SEV* O R,
AMV* 2NV 2V o SV oR

The Bianchi map is injective on S3V* @ R. Hence R“2 = F. We
summarize

Prop. R% = F. A 7-mfld with holonomy in Gy is Ricci-flat.

)
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The group Spin(7)

Put U = H, @ H,. Let Spp(1) x Sp4+(1) x Sp_(1) act on U via

(90,9+,9-) - (z,y) = (0TG-, q+Yq—).

Define the Cayley 4-form Qg € Q*(V) by

Qo:volx—l—w}c/\w;—kwi/\wz—l—wg/\w;’—l—vol@/:

= vol, — Re(dz A dx N\ dy N\ dy) + vol,,.

Denote by K the stabilizer of 2y in GLg(R). The following facts
are obtained in a similar fashion as for the group Ga:

Qo =dxog N\ pg+ x40 — G2 IKQSO('?)

SU(4) C K

K C S50O(8)

K is a compact, connected and simply connected Lie group of
dimension 21 acting transitively on S7

Spin(T)

Consider U as a Ga-representation. Then
UZRAV = ANUZAN VeV =g,V V. By
dimension counting, K = go & V. Hence,

ANU > A &Y with dim &t =7,

Obviously, —1,; € K acts trivially on A?U. One can show
that the map
K/+1— SO(8h)

is an isomorphism. Hence,

K = Spin(7).

Rem. Unlike in the G2 case, the orbit of Qg in A*(R®)* is not
open.
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Spin(7) as a structure group

A Spin(7)-structure on M? is determined by Q0 € Q*(M), which is
pointwise linearly equivalent to the Cayley form.

Q) is parallel wrt the Levi-Civita connection of gq iff dS2 = 0.

Proof. [Salamon, Prop. 12.4]. O

Prop. RP™M7) = W, where W is an irreducible Spin(7)-
representation of dimension 168. In particular, an 8-mfld with holon-
omy in Spin(7) is Ricci-flat.

Proof. [Salamon, Cor. 12.6]. O

EXAMPLES

FExamples

Ex.
e Since SU(3) C Gy, for any Z with Hol(Z) C SU(3),
M = Z x R can be considered as G5-mfld
e First local examples were constructed by Bryant in 1987.

Let M be a positive self-dual Einstein four-manifold. Then there
exists a metric with holonomy in G on the total space of A2 T* M.

Sketch of the proof. Let P — M be the principal SO(4)-bundle.

Since s0(4) = s04(3) ® s0_(3) we can decompose the Levi-Vita

connection: 7 = 74 + 7_. Further, since Sp(1) = Spin(3) we have
s0(3) = spin(3) = sp(1) = Im H.

Hence, 7+ € Q' (P;ImH). Similarly, the canonical 1-form 6 can be
thought of as an element of Q!(P;H). 14/ 23
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Consider the action of SO(4) = Sp4+(1) x Sp_(1)/ £+ 1 on
P x ImH,

[Q-i-aq—] ) (pax) - (p ) [Q-i-aq—]?q_xq_—)‘
Clearly, P x ImH/SO(4) = A2T*M.

Puta=dr+7_2—27_ € QY(P x ImH, ImH). It is easy to
check that the following forms are SO(4)-equivariant:

Y1 =a1 Aoz A as,
v2=—Re(aANOAO) =a; Awy + as Aws + az A ws,
e1 =gRe (O NG NOAG) =T voly,

eo =1Re(a AaAONG) =

=g Nag ANwi +az Aoy \Nwy +ap A ag A\ ws.

EXAMPLES

Moreover, for any functions f = f(|x|?), h = h(|z|?) without zeros
the symmetric tensor

g=f*(af + a3+ a3) + h*(05 + 07 + 05 + 05)
determines a metric on A2T*M. Then
o = 7+ fh*y
determines a Gy-structure on A2 T*M. We have also
k= hteq — f2h2€2_

With the help of the fact that M is positive, self-dual, and
Einstein, equations dp = 0 = d * ¢ essentially imply that

fr)y=(1+r)" h(r) = V2e(1 4 1)t

Here s = (sc.curv.)/12 > 0. O

16
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Rem. Hitchin showed that the only complete self-dual Einstein
A-mflds with positive sc. curvature are S* and CP? with their
standard metrics. For these 4-mflds the holonomy of the
Bryant-Salamon metric equals Go.

Using similar technique, Bryant and Salamon prove the following.

Let M3 be S3 or its quotient by a finite group. Then there exists
an explicite metric with holonomy G5 on M x R* (total space of
the spinor bundle).

Consider S* as HP!. Let S denote the tautological quaternionic
line bundle (the spinor bundle).

The total space of S carries an explicite metric with holonomy
Spin(7).

COMPACT EXAMPLE

Clalabi metric revisited

Recall: If ST acts on C* =2 H? via
M- (21, 22, w1, wa) = (Az1, Azg, Awy, AMws),
then the hyperKahler moment map is given by
p=—(21"+ |22 = [w1|* = [w2]*)i — 2k(z101 + z2w2).

In particular, the induced metric on p=1(7)/S! = T*CP! has
holonomy Sp(1) = SU(2).
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Want to study asymptotic properties of the Calabi metric. First
consider

5;8 }(:){ (w1>w2‘)a‘::a(122:_21)

Hence, the map C? — C*
(t17t2) = (tla t27t27 _tl)

induces a diffeomorphism C?/ 41 = ;~1(0)/St (away from the
singular pt). It is easy to see that in fact this is an isometry.

COMPACT EXAMPLE

Observe also that we have a commutative diagram

pH(=1) = p'(0)
/S /C*

TP X 2/ 41

where the map  is induced by the inclusion in the top row.
Moreover, x is holomorphic and

-1 . pt, < 7& 0
ce={ 8 7

i.e. x is a resolution of singularity.
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Prop. Let g denote the Calabi metric on T*CP'. Then

X' = G + O™ %),

where 1 is the radial function on C?/ 4 1.

A metric with asymptotics as in the Prop. above is called ALE
(asymptotically locally Euclidean).

The fact that the leading term is gy, follows from the following
observation. Denote by M, = u=!(—ip)/S!, where p € R. Clearly,
M, is diffeomorphic to T*CP! for any p. As p — 0, the metric 9p
tends to the flat metric on My = C?/ 4+ 1 (away from the
singularity).

21/23

COMPACT EXAMPLE

A sketch of the construction of a compact Go-mfld

Consider T” with its flat Go-structure (go, ©o). The group Z3 acts
on T7 via

Oé(il?l, v ,$7> — (xla X2,X3, —T4, —T5, —L6, —377)
1
ﬁ(xla S ,.CU?) — (Qfl, —x2, —X3,x4,T5, 5 — T, —337)
1 1
7(3717 <. 7:[;7) — (_xla X2, —I3,T4, 5 — X5, Te, 5 - 337)

Lem. The singular set S of T' /73 consists of 12 disjoint T3 with
singularities modelled on T3 x C?/ 4 1.

22 /23
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Since T*P! is asymptotic to flat C2/ £ 1, we can cut out a small
neihbourhood of each connected component of S and replace it
with T3 x T*P!. The metric on the resulting mfld, as well as a
(o-structure, is obtained by glueing the flat metric on T” to the
product (non-flat) metric on T3 x T*P!. The 3-form ¢ is not
parallel, but can be chosen so that dp =0 and d * ¢ is small.

Then Joyce proves that such (g, @) can be deformed into a metric
with holonomy Gs.

Examples of compact Spin(7)-mflds can be constructed in a
similar manner.
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