Holonomy groups in Riemannian geometry

Lecture 8

Spin Geometry

December 15, 2011

1/28

Clifford Algebras
$$Cl_n$$
-representations Spin structures Parallel spinors Dirac operators

Clifford algebras

Recall: For $n \ge 3$, Spin(n) is a connected simply connected group fitting into the short exact sequence

 $0 \to \{\pm 1\} \to \operatorname{Spin}(n) \to SO(n) \to 0,$

Aim: Construct spinor groups explicitly.

Let V be a (real) finite dimensional vector space. Denote by TV the tensor algebra of V: $TV = \mathbb{R} \oplus V \oplus V \otimes V \oplus \ldots$

Def. Let q be a quadratic form on V. Then the Clifford algebra is defined by

$$Cl(V,q) = TV/\langle v \cdot v + q(v) \rangle.$$

In other words, the algebra Cl(V,q) is generated by elements of V and 1 subject to relations

 $v \cdot v = -q(v) \iff v \cdot w + w \cdot v = -2q(v, w).$

3/28

Rem. Cl(V,q) is $\mathbb{Z}/2\mathbb{Z}$ -graded: $Cl(V,q) = Cl^0(V,q) \oplus Cl^1(V,q)$.

From now on we assume that q is positive definite for the sake of simplicity.

Prop. There is a (canonical) vector space isomorphism $\Lambda V \longrightarrow Cl(V,q)$.

Proof. Choose an orthogonal basis (e_1, \ldots, e_n) of V. Then $e_i \cdot e_j = -e_j \cdot e_i$ for all i, j. Hence, the map

$$\varphi \colon \Lambda V \longrightarrow Cl(V,q)$$

$$e_{i_1} \wedge \cdots \wedge e_{i_k} \mapsto e_{i_1} \dots e_{i_k}$$

is well-defined and surjective. This map is also injective (excercise).

Cor. dim
$$Cl(V,q) = 2^n$$
, where $n = \dim V$.

CLIFFORD ALGEBRAS
$$Cl_n$$
-representations Spin structures Parallel spinors Dirac operators

Rem. ΛV and Cl(V,q) are not isomorphic as algebras (unless q = 0).

In fact we have

Prop. With respect to the isomorphism $Cl(\mathbb{R}^n, q_{st}) \cong \Lambda(\mathbb{R}^n)^*$, Clifford multiplication between $v \in \mathbb{R}^n$ and $\varphi \in \Lambda(\mathbb{R}^n)^*$ can be written as

$$v\cdotarphi=q_{st}(v,\cdot)\wedgearphi-i_varphi$$

Proof. [Lawson, Michelsohn. Prop. 1.3.9]

Let x be a unit in Cl(V,q). Define

$$Ad_x: Cl(V,q) \longrightarrow Cl(V,q), \quad Ad_xy = xyx^{-1}$$

Observe that each non-zero $v \in V \hookrightarrow Cl(V,q)$ is a unit:

$$v^{-1} = -\frac{1}{q(v)}v.$$

Prop. For any non-zero $v \in V$ the map Ad_v preserves V and the following equality holds:

$$-Ad_v w = w - 2\frac{q(v,w)}{q(v,v)}v$$

(i.e. $-Ad_v$ is the reflection in v^{\perp}).

Proof.

$$Ad_v w = -\frac{1}{q(v,v)}v \cdot w \cdot v = \frac{1}{q(v,v)}v \cdot (v \cdot w + 2q(v,w))$$
$$= -w + 2\frac{q(v,w)}{q(v,v)}v.$$

Rem. Ad_v preserves q but not orientation (in general).

5/28

CLIFFORD ALGEBRAS	Cl_n -representations	Spin structures	PARALLEL SPINORS	DIRAC OPERATORS	
$Spin \ groups$					

Def. Spin(V,q) is the group generated by

$$\{v \cdot w \mid q(v) = 1 = q(w)\} \subset Cl^{\times}(V, q).$$

It is well-known that the group O(V,q) is generated by reflections (recall the normal form for orthogonal matrices and observe that each rotation of the plane is a product of two reflections). Then SO(V,q) is generated by compositions of even numbers of reflections. In other words, the map

$$Ad: Spin(V,q) \longrightarrow SO(V,q)$$

is surjective.

Prop. Ker $Ad \cong \{\pm 1\}$, *i.e. we have the short exact sequence*

$$0 \longrightarrow \{\pm 1\} \longrightarrow Spin(V,q) \longrightarrow SO(V,q) \longrightarrow 0$$

Proof. Denote by $\tilde{\cdot}$ the automorphism of Cl generated by $\tilde{\cdot}: TV \to TV$, $\tilde{v} = -v$. Let

$$Ad_v w = \tilde{v} \cdot w \cdot v, \quad w \in Cl(V,q).$$

This induces a homomorphism

$$\widetilde{Ad}: Cl^{\times}(V,q) \longrightarrow GL(Cl(V,q)).$$

Choose an ONB (e_1, \ldots, e_n) of V. Suppose $\varphi \in Cl^{\times}(V, q)$ belongs to $\operatorname{Ker} \widetilde{Ad} : Cl^{\times} \to GL(V)$, i.e. $\tilde{\varphi} \cdot w = w \cdot \varphi$ for all $w \in V$. Write $\varphi = \varphi_0 + \varphi_1$, where $\varphi_i \in Cl^i(V, q)$. Then

$$(\varphi_0 - \varphi_1)w = w(\varphi_0 + \varphi_1) \quad \Longleftrightarrow \quad \begin{cases} \varphi_0 \cdot w = w \cdot \varphi_0 \\ -\varphi_1 \cdot w = w \cdot \varphi_1 \end{cases}$$
(1)

CLIFFORD ALGEBRAS Cl_n -representationsSpin structuresParallel spinorsDirac operators

Proof of Ker $Ad = \{\pm 1\}$ continued

Further, write $\varphi_0 = \psi_0 + e_1 \psi_1$, where ψ_0 , ψ_1 are expressions in e_2, \ldots, e_n only. We have

$$e_{1}(\psi_{0} + e_{1}\psi_{1}) = (\psi_{0} + e_{1}\psi_{1})e_{1} \qquad \text{(by (1) with } w = e_{1})$$
$$= \psi_{0}e_{1} + e_{1}\psi_{1}e_{1}$$
$$= e_{1}\psi_{0} - e_{1}^{2}\psi_{1} \qquad \text{(since } \psi_{i} \in Cl^{i})$$

Hence, $\psi_1 = 0 \Rightarrow \varphi_0$ does not involve $e_1 \Rightarrow \varphi_0 = \lambda \cdot 1$. A similar argument shows that φ_1 does not involve any $e_j \Rightarrow \varphi_1 = 0$. Thus, $\operatorname{Ker}(\widetilde{Ad} : Cl^{\times} \to GL(V)) \cong \mathbb{R}^*$. Therefore, $\operatorname{Ker}(\widetilde{Ad} : Spin(V, q) \to SO(V)) \cong \{\pm 1\}$. Finally, $\widetilde{Ad} = Ad$ on Spin(V, q).

Prop. $Spin(n) := Spin(\mathbb{R}^n, q_{st})$ is a nontrivial double covering of SO(n).

Proof. It suffices to show that 1 and -1 can be joined by a path in Spin(n). The path

$$\gamma(t) = (e_1 \cos t + e_2 \sin t)(e_2 \sin t - e_1 \cos t) = \\ = \cos 2t \cdot 1 + \sin 2t \cdot e_1 e_2$$

does the job.

Cor. Spin(n) is connected and simply connected provided $n \ge 3$.

Proof. Follows from the facts that SO(n) is connected and $\pi_1(SO(n)) \cong \{\pm 1\}.$

9/28

CLIFFORD ALGEBRAS	Cl _n -representations	Spin structures	PARALLEL SPINORS	DIRAC OPERATORS
Ex. ("ac	cidental isomorphis	ms in low dime	ensions")	
1) Spin	$U(2) := U(1) \cong S^1$			
2) Spin	$(3) \cong Sp(1) \cong SU$	(2)		
3) Spin	$(4) \cong Sp(1) \times Sp($	1)		
4) Spin	$S(5) \cong Sp(2)$			
To se	ee this, consider the	e action of $Sp($	(2) on $M_2(\mathbb{H})$ b	у
conju	ıgation. Then \mathbb{R}^5 c	an be identifie	d with the subs	pace of
traceless, quaternion-Hermitian matrices. Hence,				
Sp(2	$)/\pm 1 \cong SO(5).$			
5) Spin	$(6) \cong SU(4)$			

Some facts from representation theory of Clifford algebras and Spin groups

Theorem

Let ν_n and $\nu_n^{\mathbb{C}}$ denote the number of inequivalent irreducible real and complex representations of $Cl_n := Cl(\mathbb{R}^n, q_{st})$ and $Cl_n \otimes \mathbb{C}$ respectively. Then

$$\nu_n = \begin{cases} 2 & n \equiv 1 \pmod{4}, \\ 1 & \text{otherwise} \end{cases} \quad \text{and} \quad \nu_n^{\mathbb{C}} = \begin{cases} 2 & n \text{ is odd}, \\ 1 & n \text{ is even.} \end{cases}$$

Proof. [Lawson, Michelsohn. Thm I.5.7].

11/28

Def. The real (complex) spinor representation of Spin(n) is the homomorphism

$$\Delta_n \colon Spin(n) \to \operatorname{End}_{\mathbb{R}}(S),$$
 if real
 $\Delta_n^{\mathbb{C}} \colon Spin(n) \to \operatorname{End}_{\mathbb{C}}(S),$ if complex

given by restricting an irreducible real (complex) representation of Cl_n ($Cl_n \otimes \mathbb{C}$) to Spin(n).

Theorem

Let W be a real Cl_n -representation. Then there exists a scalar product on W s.t. $\langle v \cdot w, v \cdot w' \rangle = \langle w, w' \rangle \ \forall v \in V \text{ s.t. } \|v\| = 1.$

Cor.
$$\langle v \cdot w, w' \rangle = -\langle w, v \cdot w' \rangle.$$

Spin structures

Let $P \to M$ be a principal SO(n)-bundle, $n \ge 3$.

Def. The Spin-structure on P (equivalently, on $E = P \times_{SO(n)} \mathbb{R}^n$) is a principal Spin(n)-bundle $\tilde{P} \to M$ together with a Spin(n)-equivariant map $\xi : \tilde{P} \to P$, which is (fiberwise) a 2-sheeted covering.

Thus, we have a commutative diagram

13/28

Clifford algebras Cl_n -representations **Spin structures** Parallel spinors Dirac operators

From the short exact sequence

 $1 \to \{\pm 1\} \to Spin(n) \to SO(n) \to 1$

we obtain

$$H^{0}(M; SO(n)) \to H^{1}(M; \mathbb{Z}_{2}) \to H^{1}(M; Spin(n)) \to \\ \to H^{1}(M; SO(n)) \xrightarrow{\delta} H^{2}(M; \mathbb{Z}_{2}).$$

Then $\delta[P]$ equals the second Stiefel-Whitney class, $w_2(P)$. Hence, P admits a spin structure iff $w_2(P) = 0$. If this is the case, all spin structures are classified by $H^1(M, \mathbb{Z}_2)$ (assuming M is connected).

Def. A spin mfld is an oriented Riemannian mfld with a spin structure on its tangent bundle.

Rem. Thus, M admits a spin structure iff $w_2(M) = 0$. This is a topological condition on M, not on the Riemannian metric.

Rem. Since $\xi : \widetilde{P} \to P$ is a covering, $\xi^* \varphi_{LC}$ is a (distinguished) connection on \widetilde{P} .

For the spinor representation $\Delta\colon Spin(n)\to End(S)$ the associated spinor bundle

$$S := \widetilde{P} \times_{Spin(n)} S$$

is equipped with a connection and Euclidean scalar product.

Rem. For any $m \in M$, the fibre S_m is a module over $Cl(T_mM)$.

Denote by $R^S \in \Omega^2(M; End(S))$ the induced curvature form.

Prop. Let
$$e = (e_1, \dots, e_n)$$
 be a local section of $P = P_{SO}$. Then

$$R^S(v, w)\sigma = \sum_{i,j} \langle R(v, w)e_i, e_j \rangle e_i e_j \cdot \sigma.$$
(2)

Proof. [Lawson, Michelson. Thm I.4.15]

15/28

/28

Clifford algebras
$$Cl_n$$
-representations Spin structures **Parallel spinors** Dirac operators

Parallel spinors and holonomy groups

Theorem

Assume M admits a nontrivial parallel spinor. Then M is Ricci-flat.

Proof. Assume
$$\psi \in \Gamma(S)$$
 is parallel. Then
 $d^{\nabla}(\nabla\psi) = d^{\nabla} \cdot d^{\nabla}\psi = 0 \iff R^{S}(v,w) \cdot \psi = 0$ for any
 $v, w \in \mathfrak{X}(M)$. With the help of (2) with $v = e_{k}$ we obtain
 $0 = \sum_{i,j,k} \langle R(e_{k},w)e_{i},e_{j}\rangle e_{k}e_{i}e_{j} \cdot \psi = \sum_{i,j,k} \langle R(e_{i},e_{j})e_{k},w\rangle e_{i}e_{j}e_{k} \cdot \psi$
 $= \frac{1}{3} \sum_{i \neq j \neq k \neq i} \langle R(e_{i},e_{j})e_{k} + R(e_{j},e_{k})e_{i} + R(e_{k},e_{i})e_{j},w\rangle e_{i}e_{j}e_{k} \cdot \psi$
 $+ \sum_{i,j} \langle R(e_{i},e_{j})e_{i},w\rangle e_{i}e_{j}e_{i} \cdot \psi + \sum_{i,j} \langle R(e_{i},e_{j})e_{j},w\rangle e_{i}e_{j}e_{j} \cdot \psi$
 $= 0 + \sum_{i,j} \langle R(e_{i},w)e_{i},e_{j}\rangle e_{j} \cdot \psi - \sum_{i,j,} \langle R(e_{j},w)e_{i},e_{j}\rangle e_{i} \cdot \psi$
 $= 2Ric(w) \cdot \psi.$

Proof of $\nabla \psi = 0, \ \psi \neq 0 \Rightarrow Ric = 0$ continued

Here
$$Ric$$
 is viewed as a linear map $TM \to TM$, namely
 $Ric(w) = \sum_{j=1}^{n} R(e_j, w)e_j$. Hence
 $Ric(w) \cdot \psi = 0 \implies Ric(w)^2 \cdot \psi = -\|Ric(w)\|^2 \psi = 0.$
Hence, $Ric(w) = 0$ for all w .

Clearly, if M admits a parallel spinor then M must have a non-generic holonomy. Only metrics with the following holonomies

$$SU(\frac{n}{2}), Sp(\frac{n}{4}), G_2, Spin(7)$$
 (3)

are Ricci-flat.

Theorem

Let M be a complete, simply-connected, and irreducible Riemannian spin mfld. Then M admits a not-trivial parallel spinor iff Hol(M) is one of the four groups listed in (3).

17/28

Dirac bundles

Let $P \to M$ be the principal SO(n)-bundle of orthonormal oriented frames. Then $Cl(M) := P \times_{SO(n)} Cl(\mathbb{R}^n)$ is called the Clifford bundle of M. Notice: $Cl_m(M) = Cl(T_mM)$.

Def. A *Dirac bundle* is a bundle S of left modules over Cl(M) equipped with an Euclidean scalar product and a connection s.t. the following holds:

$$\langle v \cdot \sigma_1, v \cdot \sigma_2 \rangle = \|v\|^2 \langle \sigma_1, \sigma_2 \rangle$$

$$\nabla(\varphi \cdot \sigma) = (\nabla^{LC} \varphi) \cdot \sigma + \varphi \cdot (\nabla \sigma).$$

Here σ , $\sigma_i \in \Gamma(S)$, $v \in \mathfrak{X}(M)$, and $\varphi \in \Gamma(Cl(M))$.

- Spinor bundle S is a Dirac bundle [See LM. II.4 for details].
- ΛT*M ≅ Cl(M) is a Dirac bundle (with the Levi-Civita connection). Hence, the existence of Dirac bundles does not require M to be spin.

Dirac operators

Let S be a Dirac bundle.

Def. The map

$$D\colon \Gamma(S) \xrightarrow{\nabla} \Gamma(T^*M \otimes S) \xrightarrow{Cl} \Gamma(S)$$

is called the Dirac operator.

In terms of a local frame (e_1, \ldots, e_n) of TM the Dirac operator is given by

$$D\sigma = \sum_{i=1}^{n} e_i \cdot (\nabla_{e_i} \sigma).$$

19/28

CLIFFORD ALGEBRAS
$$Cl_n$$
-REPRESENTATIONS SPIN STRUCTURES PARALLEL SPINORS DIRAC OPERATORS
Prop. D is elliptic and formally self-adjoint operator (wrt the L_2 -
scalar product).

Proof. Ellipticity: $\sigma_{\xi}(D) = i\xi : S \to S$ is clearly invertible for any $\xi \neq 0$.

To prove that D is formally self-adjoint, choose a local orthonormal basis $e = (e_1, \ldots, e_n)$ of TM s.t. $(\nabla e_i)_m = 0$ for all i. Then

$$\langle D\sigma_1, \sigma_2 \rangle_m = \sum_j \langle e_j \cdot \nabla_{e_j} \sigma_1, \sigma_2 \rangle_m = = -\sum_j \langle \nabla_{e_j} \sigma_1, e_j \cdot \sigma_2 \rangle_m = = -\sum_j \left(e_j \cdot \langle \sigma_1, e_j \cdot \sigma_2 \rangle - \langle \sigma_1, e_j \cdot \nabla_{e_j} \sigma_2 \rangle \right)_m.$$

Proof continued

Further, define $v \in \mathfrak{X}(M)$ by the condition

$$\langle v, w \rangle = -\langle \sigma_1, w \cdot \sigma_2 \rangle$$
 for all $w \in \mathfrak{X}(M)$.

Then

$$\operatorname{div}_{m}(v) = \sum_{j} \langle \nabla_{e_{j}} v, e_{j} \rangle_{m}$$
$$= \sum_{j} (e_{j} \cdot \langle v, e_{j} \rangle)_{m}$$
$$= -\sum_{j} (e_{j} \cdot \langle \sigma_{1}, e_{j} \cdot \sigma_{2} \rangle)_{m}$$

Hence, $\langle D\sigma_1, \sigma_2 \rangle = \operatorname{div}(v) + \langle \sigma_1, D\sigma_2 \rangle$ pointwise. Hence, D is formally self-adjoint.

21/28

Clifford Algebras Cl_n -represent.	IONS SPIN STRUCTURES	PARALLEL SPINORS	DIRAC OPERATORS
--------------------------------------	----------------------	------------------	-----------------

Examples of Dirac operators

1) $M = \mathbb{R}^2$. Then $Cl(\mathbb{R}^2)$ has a basis $(1, e_1, e_2, e_1 \cdot e_2)$. Then we have the isomorphism of vector spaces

$$Cl(\mathbb{R}^2) = Cl^0(\mathbb{R}^2) \oplus Cl^1(\mathbb{R}^2) \cong \mathbb{C} \oplus \mathbb{C}.$$

Notice that the Clifford multiplication by $v \in \mathbb{R}^2$ is an antidiagonal operator. Then

$$D = \left(\begin{array}{cc} 0 & -\frac{\partial}{\partial z} \\ \frac{\partial}{\partial \overline{z}} & 0 \end{array}\right).$$

2) Similarly, for $M = \mathbb{R}^4$ one obtains

$$D = \left(\begin{array}{cc} 0 & -\frac{\partial}{\partial q} \\ \frac{\partial}{\partial \bar{q}} & 0 \end{array}\right),$$

where $\frac{\partial}{\partial \bar{q}} : C^{\infty}(\mathbb{R}^4; \mathbb{H}) \to C^{\infty}(\mathbb{R}^4; \mathbb{H})$, $\frac{\partial f}{\partial \bar{q}} = \frac{\partial f}{\partial x_0} + i \frac{\partial f}{\partial x_1} + j \frac{\partial f}{\partial x_2} + k \frac{\partial f}{\partial x_3}$ is the Fueter operator.

Examples of Dirac operators: continued

3) M is a Riemannian mfld, S = Cl(M). Then

$$D = d + d^*: \quad \Omega(M) \to \Omega(M).$$

This follows from the following two observations:

a)
$$v \cdot \varphi = q_{st}(v, \cdot) \wedge \varphi - i_v \varphi$$
 if $v \in \mathbb{R}^n$, $\varphi \in \Lambda(\mathbb{R}^n)^*$
b) $d = \sum_j e_j^* \wedge \nabla_{e_j}, \qquad d^* = -\sum_j i_{e_j} \nabla_{e_j}$

This is just a restatement of the facts that the sequences

$$\Gamma(\Lambda^{k}T^{*}M) \xrightarrow{\nabla^{LC}} \Gamma(T^{*}M \otimes \Lambda^{k}T^{*}M) \xrightarrow{Alt} \Gamma(\Lambda^{k+1}T^{*}M)$$

$$\Gamma(\Lambda^{k}T^{*}M) \xrightarrow{\nabla^{LC}} \Gamma(T^{*}M \otimes \Lambda^{k}T^{*}M) \xrightarrow{-contr.} \Gamma(\Lambda^{k-1}T^{*}M)$$

represent d and d^* respectively. Details concerning d^* can be found in [LM. Lemma II.5.13].

23 / 28

Clifford algebras Cl_n -representations Spin structures Parallel spinors **Dirac operators**

Weitzenböck formulae and Bochner technique

Assume M is a compact Riemannian mfld. Let $E \to M$ be an Euclidean vector bundle equipped with a connection ∇ . Define

$$\nabla_{v,w}^2 s = \nabla_v (\nabla_w s) - \nabla_{\nabla_v w} s,$$

where $s \in \Gamma(E)$, $v, w \in \mathfrak{X}(M)$. Notice that

$$\nabla_{v,w}^2 - \nabla_{w,v}^2 = R(v,w).$$

Hence, $\nabla^2_{\cdot,\cdot} \in \Gamma(T^*M \otimes T^*M \otimes S).$

Def. The map

$$\nabla^* \nabla \colon \Gamma(S) \xrightarrow{\nabla^2} \Gamma(T^* M \otimes T^* M \otimes S) \xrightarrow{-tr} \Gamma(S)$$

is called the *connection Laplacian*.

In terms of local orthonormal frames we have

$$\nabla^* \nabla s = -\sum_j \nabla^2_{e_j, e_j} s.$$

Prop. The operator $\nabla^* \nabla$ is formally self-adjoint and satisfies

$$\langle \nabla^* \nabla s_1, s_2 \rangle_{L_2} = \langle \nabla s_1, \nabla s_2 \rangle_{L_2}.$$

In particular, $\nabla^* \nabla$ is non-negative.

Proof. Similar to the proof of the fact that D is formally self-adjoint. For details see [LM. Prop. II.2.1.].

Let S be a Dirac bundle. If $R \in \Omega^2(M; \operatorname{End}(S))$ is the curvature form, define $\mathcal{R} \in \Gamma(\operatorname{End}(S))$ by

$$\mathcal{R}(s) = \frac{1}{2} \sum_{j,k} e_j e_k \cdot R(e_j, e_k)(s).$$

	25	/	2	8
--	----	---	---	---

Proof. Choose a local frame (e_1, \ldots, e_n) of TM s.t. $(\nabla e_j)_m = 0$. Then

$$D^{2} = \sum_{j,k} e_{j} \cdot \nabla_{e_{j}} (e_{k} \cdot \nabla_{e_{k}} \cdot)$$

$$= \sum_{j,k} e_{j} e_{k} \cdot \nabla_{e_{j}} (\nabla_{e_{k}} \cdot)$$

$$= \sum_{j,k} e_{j} e_{k} \cdot \nabla_{e_{j},e_{k}}^{2}$$

$$= -\sum_{j} \nabla_{e_{j},e_{j}}^{2} + \sum_{j < k} e_{j} e_{k} \cdot (\nabla_{e_{j},e_{k}}^{2} - \nabla_{e_{k},e_{j}}^{2})$$

$$= \nabla^{*} \nabla + \mathcal{R}.$$

Cor. Let $\Delta = dd^* + d^*d$ be the Hodge Laplacian and $\nabla^*\nabla$ be the connection Laplacian on T^*M . Then

$$\Delta = \nabla^* \nabla + Ric$$

This follows from the previous thm for $D = d + d^*$, which acts on $Cl(M) \cong \Lambda T^*M$. The computation of \mathcal{R} in this case follows the same lines as the proof of the implication

 $\nabla \psi = 0 \implies Ric(w) \cdot \psi = 0.$

[LM. Cor. II.8.3].

Theorem (Bochner)

$$Ric > 0 \implies b_1(M) = 0.$$

27 / 28

$$s > 0 \implies \operatorname{Ker} D = 0.$$

Theorem (Hitchin)

In every dimension n > 8, $n \equiv 1 \pmod{8}$ or $n \equiv 2 \pmod{8}$, there exist compact mflds, which are homeomorpic to S^n , but which do not admit any Riemannian metric with s > 0.