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Clifford algebras

Recall: For n ≥ 3, Spin (n) is a connected simply connected group
fitting into the short exact sequence

0→ {±1} → Spin (n)→ SO(n)→ 0,

Aim: Construct spinor groups explicitly.

Let V be a (real) finite dimensional vector space. Denote by TV
the tensor algebra of V : TV = R⊕ V ⊕ V ⊗ V ⊕ . . .

Def. Let q be a quadratic form on V . Then the Clifford algebra is
defined by

Cl(V, q) = TV/〈v · v + q(v)〉.

In other words, the algebra Cl(V, q) is generated by elements of V
and 1 subject to relations

v · v = −q(v) ⇐⇒ v · w + w · v = −2q(v, w).
2 / 28



Clifford algebras Cln–representations Spin structures Parallel spinors Dirac operators

Rem. Cl(V, q) is Z/2Z-graded: Cl(V, q) = Cl0(V, q)⊕Cl1(V, q).

From now on we assume that q is positive definite for the sake of
simplicity.

Prop. There is a (canonical) vector space isomorphism ΛV −→
Cl(V, q).

Proof. Choose an orthogonal basis (e1, . . . , en) of V . Then
ei · ej = −ej · ei for all i, j. Hence, the map

ϕ : ΛV −→ Cl(V, q)

ei1 ∧ · · · ∧ eik 7→ ei1 . . . eik

is well-defined and surjective. This map is also injective
(excercise).

Cor. dimCl(V, q) = 2n, where n = dimV .
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Rem. ΛV and Cl(V, q) are not isomorphic as algebras (unless
q = 0).

In fact we have

Prop. With respect to the isomorphism Cl(Rn, qst) ∼= Λ(Rn)∗,
Clifford multiplication between v ∈ Rn and ϕ ∈ Λ(Rn)∗ can be
written as

v · ϕ = qst(v, ·) ∧ ϕ− ivϕ

Proof. [Lawson, Michelsohn. Prop. I.3.9]

Let x be a unit in Cl(V, q). Define

Adx : Cl(V, q) −→ Cl(V, q), Adxy = xyx−1

Observe that each non-zero v ∈ V ↪→ Cl(V, q) is a unit:

v−1 = − 1

q(v)
v.

4 / 28



Clifford algebras Cln–representations Spin structures Parallel spinors Dirac operators

Prop. For any non-zero v ∈ V the map Adv preserves V and the
following equality holds:

−Advw = w − 2
q(v, w)

q(v, v)
v

(i.e. −Adv is the reflection in v⊥).

Proof.

Advw = − 1

q(v, v)
v · w · v =

1

q(v, v)
v · (v · w + 2q(v, w))

= −w + 2
q(v, w)

q(v, v)
v.

Rem. Adv preserves q but not orientation (in general).
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Spin groups

Def. Spin(V, q) is the group generated by

{v · w | q(v) = 1 = q(w)} ⊂ Cl×(V, q).

It is well-known that the group O(V, q) is generated by reflections
(recall the normal form for orthogonal matrices and observe that
each rotation of the plane is a product of two reflections). Then
SO(V, q) is generated by compositions of even numbers of
reflections. In other words, the map

Ad : Spin(V, q) −→ SO(V, q)

is surjective.
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Prop. KerAd ∼= {±1}, i.e. we have the short exact sequence

0 −→ {±1} −→ Spin(V, q) −→ SO(V, q) −→ 0

Proof. Denote by ·̃ the automorphism of Cl generated by
·̃ : TV → TV , ṽ = −v. Let

Ãdvw = ṽ · w · v, w ∈ Cl(V, q).

This induces a homomorphism

Ãd : Cl×(V, q) −→ GL(Cl(V, q)).

Choose an ONB (e1, . . . , en) of V . Suppose ϕ ∈ Cl×(V, q)

belongs to Ker Ãd : Cl× → GL(V ), i.e. ϕ̃ · w = w · ϕ for all
w ∈ V . Write ϕ = ϕ0 + ϕ1, where ϕi ∈ Cli(V, q). Then

(ϕ0 − ϕ1)w = w(ϕ0 + ϕ1) ⇐⇒
{

ϕ0 · w = w · ϕ0

−ϕ1 · w = w · ϕ1
(1)
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Proof of KerAd = {±1} continued

Further, write ϕ0 = ψ0 + e1ψ1, where ψ0, ψ1 are expressions in
e2, . . . , en only. We have

e1(ψ0 + e1ψ1) = (ψ0 + e1ψ1)e1 (by (1) with w = e1)

= ψ0e1 + e1ψ1e1

= e1ψ0 − e2
1ψ1 (since ψi ∈ Cli)

Hence, ψ1 = 0 ⇒ ϕ0 does not involve e1 ⇒ ϕ0 = λ · 1.

A similar argument shows that ϕ1 does not involve any
ej ⇒ ϕ1 = 0.

Thus, Ker
(
Ãd : Cl× → GL(V )

) ∼= R∗. Therefore,

Ker
(
Ãd : Spin(V, q)→ SO(V )

) ∼= {±1}. Finally, Ãd = Ad on
Spin(V, q).
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Prop. Spin(n) := Spin(Rn, qst) is a nontrivial double covering of
SO(n).

Proof. It suffices to show that 1 and −1 can be joined by a path
in Spin(n). The path

γ(t) = (e1 cos t+ e2 sin t)(e2 sin t− e1 cos t) =

= cos 2t · 1 + sin 2t · e1e2

does the job.

Cor. Spin(n) is connected and simply connected provided n ≥ 3.

Proof. Follows from the facts that SO(n) is connected and
π1(SO(n)) ∼= {±1}.
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Ex. (”accidental isomorphisms in low dimensions”)

1) Spin(2) := U(1) ∼= S1

2) Spin(3) ∼= Sp(1) ∼= SU(2)

3) Spin(4) ∼= Sp(1)× Sp(1)

4) Spin(5) ∼= Sp(2)
To see this, consider the action of Sp(2) on M2(H) by
conjugation. Then R5 can be identified with the subspace of
traceless, quaternion-Hermitian matrices. Hence,
Sp(2)/± 1 ∼= SO(5).

5) Spin(6) ∼= SU(4)
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Some facts from representation theory of Clifford
algebras and Spin groups

Theorem

Let νn and νCn denote the number of inequivalent irreducible real
and complex representations of Cln := Cl(Rn, qst) and Cln ⊗ C
respectively. Then

νn =

{
2 n ≡ 1(mod 4),

1 otherwise
and νCn =

{
2 n is odd,

1 n is even.

Proof. [Lawson, Michelsohn. Thm I.5.7].
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Def. The real (complex) spinor representation of Spin(n) is the
homomorphism

∆n : Spin(n)→ EndR(S), if real

∆C
n : Spin(n)→ EndC(S), if complex

given by restricting an irreducible real (complex) representation of
Cln (Cln ⊗ C) to Spin(n).

Theorem

Let W be a real Cln-representation. Then there exists a scalar
product on W s.t. 〈v · w, v · w′〉 = 〈w,w′〉 ∀v ∈ V s.t. ‖v‖ = 1.

Cor. 〈v · w,w′〉 = −〈w, v · w′〉.

12 / 28



Clifford algebras Cln–representations Spin structures Parallel spinors Dirac operators

Spin structures

Let P →M be a principal SO(n)-bundle, n ≥ 3.

Def. The Spin-structure on P (equivalently, on
E = P ×SO(n) Rn) is a principal Spin(n)-bundle P̃ →M together

with a Spin(n)-equivariant map ξ : P̃ → P , which is (fiberwise) a
2-sheeted covering.

Thus, we have a commutative diagram

P̃
ξ

- P

M

π̃

?
= M

π

?
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From the short exact sequence

1→ {±1} → Spin(n)→ SO(n)→ 1

we obtain

H0(M ;SO(n))→ H1(M ;Z2)→ H1(M ;Spin(n))→

→ H1(M ;SO(n))
δ−→ H2(M ;Z2).

Then δ[P ] equals the second Stiefel-Whitney class, w2(P ). Hence,
P admits a spin structure iff w2(P ) = 0. If this is the case, all spin
structures are classified by H1(M,Z2) (assuming M is connected).

Def. A spin mfld is an oriented Riemannian mfld with a spin
structure on its tangent bundle.

Rem. Thus, M admits a spin structure iff w2(M) = 0. This is a
topological condition on M , not on the Riemannian metric.

Rem. Since ξ : P̃ → P is a covering, ξ∗ϕLC is a (distinguished)
connection on P̃ .
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For the spinor representation ∆: Spin(n)→ End(S) the
associated spinor bundle

S := P̃ ×Spin(n) S

is equipped with a connection and Euclidean scalar product.

Rem. For any m ∈M , the fibre Sm is a module over Cl(TmM).

Denote by RS ∈ Ω2(M ;End(S)) the induced curvature form.

Prop. Let e = (e1, . . . , en) be a local section of P = PSO. Then

RS(v, w)σ =
∑
i,j

〈R(v, w)ei, ej〉eiej · σ. (2)

Proof. [Lawson, Michelson. Thm I.4.15]
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Parallel spinors and holonomy groups

Theorem

Assume M admits a nontrivial parallel spinor. Then M is Ricci-flat.

Proof. Assume ψ ∈ Γ(S) is parallel. Then
d∇(∇ψ) = d∇ · d∇ψ = 0 ⇐⇒ RS(v, w) · ψ = 0 for any
v, w ∈ X(M). With the help of (2) with v = ek we obtain

0 =
∑
i,j,k

〈R(ek, w)ei, ej〉ekeiej · ψ =
∑
i,j,k

〈R(ei, ej)ek, w〉eiejek · ψ

=
1

3

∑
i 6=j 6=k 6=i

〈
R(ei, ej)ek +R(ej , ek)ei +R(ek, ei)ej , w

〉
eiejek · ψ

+
∑
i,j

〈R(ei, ej)ei, w〉eiejei · ψ +
∑
i,j

〈R(ei, ej)ej , w〉eiejej · ψ

=0 +
∑
i,j,

〈R(ei, w)ei, ej〉ej · ψ −
∑
i,j,

〈R(ej , w)ei, ej〉ei · ψ

=2Ric(w) · ψ. 16 / 28
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Proof of ∇ψ = 0, ψ 6= 0 ⇒ Ric = 0 continued

Here Ric is viewed as a linear map TM → TM , namely

Ric(w) =
n∑
j=1

R(ej , w)ej . Hence

Ric(w) · ψ = 0 =⇒ Ric(w)2 · ψ = −‖Ric(w)‖2ψ = 0.

Hence, Ric(w) = 0 for all w.

Clearly, if M admits a parallel spinor then M must have a
non-generic holonomy. Only metrics with the following holonomies

SU(n2 ), Sp(n4 ), G2, Spin(7) (3)

are Ricci-flat.

Theorem

Let M be a complete, simply-connected, and irreducible Riemannian
spin mfld. Then M admits a not-trivial parallel spinor iff Hol(M) is
one of the four groups listed in (3).
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Dirac bundles

Let P →M be the principal SO(n)-bundle of orthonormal
oriented frames. Then Cl(M) := P ×SO(n) Cl(Rn) is called the
Clifford bundle of M . Notice: Clm(M) = Cl(TmM).

Def. A Dirac bundle is a bundle S of left modules over Cl(M)
equipped with an Euclidean scalar product and a connection s.t.
the following holds:

〈v · σ1, v · σ2〉 = ‖v‖2〈σ1, σ2〉
∇(ϕ · σ) = (∇LCϕ) · σ + ϕ · (∇σ).

Here σ, σi ∈ Γ(S), v ∈ X(M), and ϕ ∈ Γ(Cl(M)).

• Spinor bundle S is a Dirac bundle [See LM. II.4 for details].

• ΛT ∗M ∼= Cl(M) is a Dirac bundle (with the Levi-Civita
connection). Hence, the existence of Dirac bundles does not
require M to be spin.
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Dirac operators

Let S be a Dirac bundle.

Def. The map

D : Γ(S)
∇−−→ Γ(T ∗M ⊗ S)

Cl−−−→ Γ(S)

is called the Dirac operator.

In terms of a local frame (e1, . . . , en) of TM the Dirac operator is
given by

Dσ =
n∑
i=1

ei · (∇eiσ).
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Prop. D is elliptic and formally self-adjoint operator (wrt the L2-
scalar product).

Proof. Ellipticity: σξ(D) = iξ· : S → S is clearly invertible for any
ξ 6= 0.

To prove that D is formally self-adjoint, choose a local orthonormal
basis e = (e1, . . . , en) of TM s.t. (∇ei)m = 0 for all i. Then

〈Dσ1, σ2〉m =
∑
j

〈ej · ∇ejσ1, σ2〉m =

= −
∑
j

〈∇ejσ1, ej · σ2〉m =

= −
∑
j

(
ej · 〈σ1, ej · σ2〉 − 〈σ1, ej · ∇ejσ2〉

)
m
.
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Proof continued

Further, define v ∈ X(M) by the condition

〈v, w〉 = −〈σ1, w · σ2〉 for all w ∈ X(M).

Then

divm(v) =
∑
j

〈∇ejv, ej〉m

=
∑
j

(ej · 〈v, ej〉)m

= −
∑
j

(ej · 〈σ1, ej · σ2〉)m

Hence, 〈Dσ1, σ2〉 = div(v) + 〈σ1, Dσ2〉 pointwise. Hence, D is
formally self-adjoint.
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Examples of Dirac operators

1) M = R2. Then Cl(R2) has a basis (1, e1, e2, e1 · e2). Then we
have the isomorphism of vector spaces

Cl(R2) = Cl0(R2)⊕ Cl1(R2) ∼= C⊕ C.

Notice that the Clifford multiplication by v ∈ R2 is an
antidiagonal operator. Then

D =

(
0 − ∂

∂z
∂
∂z̄ 0

)
.

2) Similarly, for M = R4 one obtains

D =

(
0 − ∂

∂q
∂
∂q̄ 0

)
,

where ∂
∂q̄ : C∞(R4;H)→ C∞(R4;H),

∂f
∂q̄ = ∂f

∂x0
+ i ∂f∂x1 + j ∂f∂x2 + k ∂f

∂x3
is the Fueter operator.
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Examples of Dirac operators: continued

3) M is a Riemannian mfld, S = Cl(M). Then

D = d+ d∗ : Ω(M)→ Ω(M).

This follows from the following two observations:

a) v · ϕ = qst(v, ·) ∧ ϕ− ivϕ if v ∈ Rn, ϕ ∈ Λ(Rn)∗

b) d =
∑
j

e∗j ∧∇ej , d∗ = −
∑
j

ıej∇ej

This is just a restatement of the facts that the sequences

Γ(ΛkT ∗M)
∇LC

−−−→ Γ(T ∗M ⊗ ΛkT ∗M)
Alt−−−→ Γ(Λk+1T ∗M)

Γ(ΛkT ∗M)
∇LC

−−−→ Γ(T ∗M ⊗ ΛkT ∗M)
−contr.−−−−−−→ Γ(Λk−1T ∗M)

represent d and d∗ respectively. Details concerning d∗ can be
found in [LM. Lemma II.5.13].
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Weitzenböck formulae and Bochner technique

Assume M is a compact Riemannian mfld. Let E →M be an
Euclidean vector bundle equipped with a connection ∇. Define

∇2
v,ws = ∇v(∇ws)−∇∇vws,

where s ∈ Γ(E), v, w ∈ X(M). Notice that

∇2
v,w −∇2

w,v = R(v, w).

Hence, ∇2
·,· ∈ Γ(T ∗M ⊗ T ∗M ⊗ S).

Def. The map

∇∗∇ : Γ(S)
∇2

−−−→ Γ(T ∗M ⊗ T ∗M ⊗ S)
−tr−−−→ Γ(S)

is called the connection Laplacian.

In terms of local orthonormal frames we have

∇∗∇s = −
∑
j

∇2
ej ,ejs.
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Prop. The operator ∇∗∇ is formally self-adjoint and satisfies

〈∇∗∇s1, s2〉L2 = 〈∇s1,∇s2〉L2 .

In particular, ∇∗∇ is non-negative.

Proof. Similar to the proof of the fact that D is formally
self-adjoint. For details see [LM. Prop. II.2.1.].

Let S be a Dirac bundle. If R ∈ Ω2(M ; End(S)) is the curvature
form, define R ∈ Γ(End(S)) by

R(s) = 1
2

∑
j,k

ejek ·R(ej , ek)(s).
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Theorem (general Bochner identity)

D2 = ∇∗∇+R

Proof. Choose a local frame (e1, . . . , en) of TM s.t.
(∇ej)m = 0. Then

D2 =
∑
j,k

ej · ∇ej (ek · ∇ek ·)

=
∑
j,k

ejek · ∇ej (∇ek ·)

=
∑
j,k

ejek · ∇2
ej ,ek

= −
∑
j

∇2
ej ,ej +

∑
j<k

ejek · (∇2
ej ,ek
−∇2

ek,ej
)

= ∇∗∇+R.
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Cor. Let ∆ = dd∗ + d∗d be the Hodge Laplacian and ∇∗∇ be the
connection Laplacian on T ∗M . Then

∆ = ∇∗∇+Ric

This follows from the previous thm for D = d+ d∗, which acts on
Cl(M) ∼= ΛT ∗M . The computation of R in this case follows the
same lines as the proof of the implication

∇ψ = 0 =⇒ Ric(w) · ψ = 0.

[LM. Cor. II.8.3].

Theorem (Bochner)

Ric > 0 =⇒ b1(M) = 0.
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Theorem (Lichnerowicz)

Let M be spin and suppose S is a spinor bundle. Then

D2 = ∇∗∇+ s
4 ,

where s is the scalar curvature.

Proof. [LM. Thm. II.8.8].

Cor.
s > 0 =⇒ KerD = 0.

Theorem (Hitchin)

In every dimension n > 8, n ≡ 1(mod 8) or n ≡ 2(mod 8), there
exist compact mflds, which are homeomorpic to Sn, but which do
not admit any Riemannian metric with s > 0.

28 / 28


	Clifford algebras
	Cln–representations
	Spin structures
	Parallel spinors
	Dirac operators

