Holonomy groups
 in Riemannian geometry

Lecture 8

Spin Geometry

December 15, 2011

Clifford algebras

Recall: For $n \geq 3$, Spin (n) is a connected simply connected group fitting into the short exact sequence

$$
0 \rightarrow\{ \pm 1\} \rightarrow \operatorname{Spin}(n) \rightarrow S O(n) \rightarrow 0
$$

Aim: Construct spinor groups explicitly.
Let V be a (real) finite dimensional vector space. Denote by $T V$ the tensor algebra of $V: T V=\mathbb{R} \oplus V \oplus V \otimes V \oplus \ldots$

Def. Let q be a quadratic form on V. Then the Clifford algebra is defined by

$$
C l(V, q)=T V /\langle v \cdot v+q(v)\rangle .
$$

In other words, the algebra $C l(V, q)$ is generated by elements of V and 1 subject to relations

$$
v \cdot v=-q(v) \quad \Longleftrightarrow \quad v \cdot w+w \cdot v=-2 q(v, w) .
$$

Rem. $C l(V, q)$ is $\mathbb{Z} / 2 \mathbb{Z}$-graded: $C l(V, q)=C l^{0}(V, q) \oplus C l^{1}(V, q)$.

From now on we assume that q is positive definite for the sake of simplicity.

Prop. There is a (canonical) vector space isomorphism $\Lambda V \longrightarrow$ $C l(V, q)$.

Proof. Choose an orthogonal basis $\left(e_{1}, \ldots, e_{n}\right)$ of V. Then $e_{i} \cdot e_{j}=-e_{j} \cdot e_{i}$ for all i, j. Hence, the map

$$
\begin{aligned}
\varphi: \Lambda V & \longrightarrow C l(V, q) \\
e_{i_{1}} \wedge \cdots \wedge e_{i_{k}} & \mapsto e_{i_{1}} \ldots e_{i_{k}}
\end{aligned}
$$

is well-defined and surjective. This map is also injective (excercise).

Cor. $\operatorname{dim} C l(V, q)=2^{n}$, where $n=\operatorname{dim} V$.

Rem. ΛV and $C l(V, q)$ are not isomorphic as algebras (unless $q=0$).

In fact we have
Prop. With respect to the isomorphism $C l\left(\mathbb{R}^{n}, q_{s t}\right) \cong \Lambda\left(\mathbb{R}^{n}\right)^{*}$, Clifford multiplication between $v \in \mathbb{R}^{n}$ and $\varphi \in \Lambda\left(\mathbb{R}^{n}\right)^{*}$ can be written as

$$
v \cdot \varphi=q_{s t}(v, \cdot) \wedge \varphi-i_{v} \varphi
$$

Proof. [Lawson, Michelsohn. Prop. I.3.9]
Let x be a unit in $C l(V, q)$. Define

$$
A d_{x}: C l(V, q) \longrightarrow C l(V, q), \quad A d_{x} y=x y x^{-1}
$$

Observe that each non-zero $v \in V \hookrightarrow C l(V, q)$ is a unit:

$$
v^{-1}=-\frac{1}{q(v)} v
$$

Prop. For any non-zero $v \in V$ the $m a p ~ A d v$ preserves V and the following equality holds:

$$
-A d_{v} w=w-2 \frac{q(v, w)}{q(v, v)} v
$$

(i.e. $-A d_{v}$ is the reflection in v^{\perp}).

Proof.

$$
\begin{aligned}
A d_{v} w & =-\frac{1}{q(v, v)} v \cdot w \cdot v=\frac{1}{q(v, v)} v \cdot(v \cdot w+2 q(v, w)) \\
& =-w+2 \frac{q(v, w)}{q(v, v)} v
\end{aligned}
$$

Rem. $A d_{v}$ preserves q but not orientation (in general).

Spin groups

Def. $\operatorname{Spin}(V, q)$ is the group generated by

$$
\{v \cdot w \mid q(v)=1=q(w)\} \subset C l^{\times}(V, q) .
$$

It is well-known that the group $O(V, q)$ is generated by reflections (recall the normal form for orthogonal matrices and observe that each rotation of the plane is a product of two reflections). Then $S O(V, q)$ is generated by compositions of even numbers of reflections. In other words, the map

$$
A d: \operatorname{Spin}(V, q) \longrightarrow S O(V, q)
$$

is surjective.

Prop. Ker $A d \cong\{ \pm 1\}$, i.e. we have the short exact sequence

$$
0 \longrightarrow\{ \pm 1\} \longrightarrow \operatorname{Spin}(V, q) \longrightarrow S O(V, q) \longrightarrow 0
$$

Proof. Denote by ~ the automorphism of Cl generated by $\tilde{\sim}: T V \rightarrow T V, \tilde{v}=-v$. Let

$$
\widetilde{A d}_{v} w=\tilde{v} \cdot w \cdot v, \quad w \in C l(V, q)
$$

This induces a homomorphism

$$
\widetilde{A d}: C l^{\times}(V, q) \longrightarrow G L(C l(V, q))
$$

Choose an ONB $\left(e_{1}, \ldots, e_{n}\right)$ of V. Suppose $\varphi \in C l^{\times}(V, q)$ belongs to $\operatorname{Ker} \widetilde{A d}: C l^{\times} \rightarrow G L(V)$, i.e. $\tilde{\varphi} \cdot w=w \cdot \varphi$ for all $w \in V$. Write $\varphi=\varphi_{0}+\varphi_{1}$, where $\varphi_{i} \in C l^{i}(V, q)$. Then

$$
\left(\varphi_{0}-\varphi_{1}\right) w=w\left(\varphi_{0}+\varphi_{1}\right) \quad \Longleftrightarrow \quad\left\{\begin{array}{r}
\varphi_{0} \cdot w=w \cdot \varphi_{0} \tag{1}\\
-\varphi_{1} \cdot w=w \cdot \varphi_{1}
\end{array}\right.
$$

$$
\text { Proof of Ker } A d=\{ \pm 1\} \text { continued }
$$

Further, write $\varphi_{0}=\psi_{0}+e_{1} \psi_{1}$, where ψ_{0}, ψ_{1} are expressions in e_{2}, \ldots, e_{n} only. We have

$$
\begin{array}{rlrl}
e_{1}\left(\psi_{0}+e_{1} \psi_{1}\right) & =\left(\psi_{0}+e_{1} \psi_{1}\right) e_{1} & & \left(\text { by }(1) \text { with } w=e_{1}\right) \\
& =\psi_{0} e_{1}+e_{1} \psi_{1} e_{1} & \\
& =e_{1} \psi_{0}-e_{1}^{2} \psi_{1} & & \left(\text { since } \psi_{i} \in C l^{i}\right)
\end{array}
$$

Hence, $\psi_{1}=0 \Rightarrow \varphi_{0}$ does not involve $e_{1} \Rightarrow \varphi_{0}=\lambda \cdot 1$.
A similar argument shows that φ_{1} does not involve any $e_{j} \Rightarrow \varphi_{1}=0$.
Thus, $\operatorname{Ker}\left(\widetilde{A d}: C l^{\times} \rightarrow G L(V)\right) \cong \mathbb{R}^{*}$. Therefore,
$\operatorname{Ker}(\widetilde{A d}: \operatorname{Spin}(V, q) \rightarrow S O(V)) \cong\{ \pm 1\}$. Finally, $\widetilde{A d}=A d$ on $\operatorname{Spin}(V, q)$.

Prop. $\operatorname{Spin}(n):=\operatorname{Spin}\left(\mathbb{R}^{n}, q_{s t}\right)$ is a nontrivial double covering of $S O(n)$.

Proof. It suffices to show that 1 and -1 can be joined by a path in $\operatorname{Spin}(n)$. The path

$$
\begin{aligned}
\gamma(t) & =\left(e_{1} \cos t+e_{2} \sin t\right)\left(e_{2} \sin t-e_{1} \cos t\right)= \\
& =\cos 2 t \cdot 1+\sin 2 t \cdot e_{1} e_{2}
\end{aligned}
$$

does the job.

Cor. $\operatorname{Spin}(n)$ is connected and simply connected provided $n \geq 3$.

Proof. Follows from the facts that $S O(n)$ is connected and $\pi_{1}(S O(n)) \cong\{ \pm 1\}$.

Ex. ("accidental isomorphisms in low dimensions")

1) $\operatorname{Spin}(2):=U(1) \cong S^{1}$
2) $\operatorname{Spin}(3) \cong S p(1) \cong S U(2)$
3) $\operatorname{Spin}(4) \cong S p(1) \times S p(1)$
4) $\operatorname{Spin}(5) \cong S p(2)$

To see this, consider the action of $S p(2)$ on $M_{2}(\mathbb{H})$ by conjugation. Then \mathbb{R}^{5} can be identified with the subspace of traceless, quaternion-Hermitian matrices. Hence, $S p(2) / \pm 1 \cong S O(5)$.
5) $\operatorname{Spin}(6) \cong S U(4)$

Some facts from representation theory of Clifford algebras and Spin groups

Theorem

Let ν_{n} and $\nu_{n}^{\mathbb{C}}$ denote the number of inequivalent irreducible real and complex representations of $C l_{n}:=C l\left(\mathbb{R}^{n}, q_{s t}\right)$ and $C l_{n} \otimes \mathbb{C}$ respectively. Then

$$
\nu_{n}=\left\{\begin{array}{ll}
2 & n \equiv 1(\bmod 4), \\
1 & \text { otherwise }
\end{array} \quad \text { and } \quad \nu_{n}^{\mathbb{C}}= \begin{cases}2 & n \text { is odd } \\
1 & n \text { is even }\end{cases}\right.
$$

Proof. [Lawson, Michelsohn. Thm I.5.7].

Def. The real (complex) spinor representation of $\operatorname{Spin}(n)$ is the homomorphism

$$
\begin{array}{ll}
\Delta_{n}: \operatorname{Spin}(n) \rightarrow \operatorname{End}_{\mathbb{R}}(S), & \text { if real } \\
\Delta_{n}^{\mathbb{C}}: \operatorname{Spin}(n) \rightarrow \operatorname{End}_{\mathbb{C}}(S), & \text { if complex }
\end{array}
$$

given by restricting an irreducible real (complex) representation of $C l_{n}\left(C l_{n} \otimes \mathbb{C}\right)$ to $\operatorname{Spin}(n)$.

Theorem

Let W be a real $C l_{n}$-representation. Then there exists a scalar product on W s.t. $\left\langle v \cdot w, v \cdot w^{\prime}\right\rangle=\left\langle w, w^{\prime}\right\rangle \forall v \in V$ s.t. $\|v\|=1$.

Cor. $\left\langle v \cdot w, w^{\prime}\right\rangle=-\left\langle w, v \cdot w^{\prime}\right\rangle$.

Spin structures

Let $P \rightarrow M$ be a principal $S O(n)$-bundle, $n \geq 3$.
Def. The Spin-structure on P (equivalently, on $E=P \times_{S O(n)} \mathbb{R}^{n}$) is a principal $\operatorname{Spin}(n)$-bundle $\widetilde{P} \rightarrow M$ together with a $\operatorname{Spin}(n)$-equivariant map $\xi: \widetilde{P} \rightarrow P$, which is (fiberwise) a 2 -sheeted covering.

Thus, we have a commutative diagram

From the short exact sequence

$$
1 \rightarrow\{ \pm 1\} \rightarrow S \operatorname{pin}(n) \rightarrow S O(n) \rightarrow 1
$$

we obtain

$$
\begin{aligned}
H^{0}(M ; S O(n)) & \rightarrow H^{1}\left(M ; \mathbb{Z}_{2}\right) \rightarrow H^{1}(M ; S p i n(n)) \rightarrow \\
& \rightarrow H^{1}(M ; S O(n)) \xrightarrow{\delta} H^{2}\left(M ; \mathbb{Z}_{2}\right) .
\end{aligned}
$$

Then $\delta[P]$ equals the second Stiefel-Whitney class, $w_{2}(P)$. Hence, P admits a spin structure iff $w_{2}(P)=0$. If this is the case, all spin structures are classified by $H^{1}\left(M, \mathbb{Z}_{2}\right)$ (assuming M is connected).

Def. A spin mfld is an oriented Riemannian mfld with a spin structure on its tangent bundle.

Rem. Thus, M admits a spin structure iff $w_{2}(M)=0$. This is a topological condition on M, not on the Riemannian metric.

Rem. Since $\xi: \widetilde{\sim} P \rightarrow P$ is a covering, $\xi^{*} \varphi_{L C}$ is a (distinguished) connection on \widetilde{P}.

For the spinor representation $\Delta: \operatorname{Spin}(n) \rightarrow \operatorname{End}(S)$ the associated spinor bundle

$$
S:=\widetilde{P} \times_{\operatorname{Spin}(n)} S
$$

is equipped with a connection and Euclidean scalar product.
Rem. For any $m \in M$, the fibre S_{m} is a module over $C l\left(T_{m} M\right)$.
Denote by $R^{S} \in \Omega^{2}(M ; \operatorname{End}(S))$ the induced curvature form.
Prop. Let $e=\left(e_{1}, \ldots, e_{n}\right)$ be a local section of $P=P_{S O}$. Then

$$
\begin{equation*}
R^{S}(v, w) \sigma=\sum_{i, j}\left\langle R(v, w) e_{i}, e_{j}\right\rangle e_{i} e_{j} \cdot \sigma \tag{2}
\end{equation*}
$$

Proof. [Lawson, Michelson. Thm I.4.15]

Parallel spinors and holonomy groups

Theorem

Assume M admits a nontrivial parallel spinor. Then M is Ricci-flat.
Proof. Assume $\psi \in \Gamma(S)$ is parallel. Then
$d^{\nabla}(\nabla \psi)=d^{\nabla} \cdot d^{\nabla} \psi=0 \Longleftrightarrow R^{S}(v, w) \cdot \psi=0$ for any $v, w \in \mathfrak{X}(M)$. With the help of (2) with $v=e_{k}$ we obtain

$$
\begin{aligned}
& 0= \sum_{i, j, k}\left\langle R\left(e_{k}, w\right) e_{i}, e_{j}\right\rangle e_{k} e_{i} e_{j} \cdot \psi=\sum_{i, j, k}\left\langle R\left(e_{i}, e_{j}\right) e_{k}, w\right\rangle e_{i} e_{j} e_{k} \cdot \psi \\
&=\frac{1}{3} \sum_{i \neq j \neq k \neq i}\left\langle R\left(e_{i}, e_{j}\right) e_{k}+R\left(e_{j}, e_{k}\right) e_{i}+R\left(e_{k}, e_{i}\right) e_{j}, w\right\rangle e_{i} e_{j} e_{k} \cdot \psi \\
&+\sum_{i, j}\left\langle R\left(e_{i}, e_{j}\right) e_{i}, w\right\rangle e_{i} e_{j} e_{i} \cdot \psi+\sum_{i, j}\left\langle R\left(e_{i}, e_{j}\right) e_{j}, w\right\rangle e_{i} e_{j} e_{j} \cdot \psi \\
&=0+\sum_{i, j,}\left\langle R\left(e_{i}, w\right) e_{i}, e_{j}\right\rangle e_{j} \cdot \psi-\sum_{i, j,}\left\langle R\left(e_{j}, w\right) e_{i}, e_{j}\right\rangle e_{i} \cdot \psi
\end{aligned}
$$

$$
=2 \operatorname{Ric}(w) \cdot \psi
$$

$$
\text { Proof of } \nabla \psi=0, \psi \neq 0 \Rightarrow \text { Ric }=0 \text { continued }
$$

Here Ric is viewed as a linear map $T M \rightarrow T M$, namely
$\operatorname{Ric}(w)=\sum_{j=1}^{n} R\left(e_{j}, w\right) e_{j}$. Hence

$$
\operatorname{Ric}(w) \cdot \psi=0 \quad \Longrightarrow \quad \operatorname{Ric}(w)^{2} \cdot \psi=-\|\operatorname{Ric}(w)\|^{2} \psi=0
$$

Hence, $\operatorname{Ric}(w)=0$ for all w.
Clearly, if M admits a parallel spinor then M must have a non-generic holonomy. Only metrics with the following holonomies

$$
\begin{equation*}
S U\left(\frac{n}{2}\right), S p\left(\frac{n}{4}\right), G_{2}, \operatorname{Spin}(7) \tag{3}
\end{equation*}
$$

are Ricci-flat.

Theorem

Let M be a complete, simply-connected, and irreducible Riemannian spin mfld. Then M admits a not-trivial parallel spinor iff $\operatorname{Hol}(M)$ is one of the four groups listed in (3).

Dirac bundles

Let $P \rightarrow M$ be the principal $S O(n)$-bundle of orthonormal oriented frames. Then $C l(M):=P \times_{S O(n)} C l\left(\mathbb{R}^{n}\right)$ is called the Clifford bundle of M. Notice: $C l_{m}(M)=C l\left(T_{m} M\right)$.

Def. A Dirac bundle is a bundle S of left modules over $C l(M)$ equipped with an Euclidean scalar product and a connection s.t. the following holds:

$$
\begin{aligned}
& \left\langle v \cdot \sigma_{1}, v \cdot \sigma_{2}\right\rangle=\|v\|^{2}\left\langle\sigma_{1}, \sigma_{2}\right\rangle \\
& \nabla(\varphi \cdot \sigma)=\left(\nabla^{L C} \varphi\right) \cdot \sigma+\varphi \cdot(\nabla \sigma)
\end{aligned}
$$

Here $\sigma, \sigma_{i} \in \Gamma(S), v \in \mathfrak{X}(M)$, and $\varphi \in \Gamma(C l(M))$.

- Spinor bundle S is a Dirac bundle [See LM. II. 4 for details].
- $\Lambda T^{*} M \cong C l(M)$ is a Dirac bundle (with the Levi-Civita connection). Hence, the existence of Dirac bundles does not require M to be spin.

Dirac operators

Let S be a Dirac bundle.
Def. The map

$$
D: \Gamma(S) \xrightarrow{\nabla} \Gamma\left(T^{*} M \otimes S\right) \xrightarrow{C l} \Gamma(S)
$$

is called the Dirac operator.
In terms of a local frame $\left(e_{1}, \ldots, e_{n}\right)$ of $T M$ the Dirac operator is given by

$$
D \sigma=\sum_{i=1}^{n} e_{i} \cdot\left(\nabla_{e_{i}} \sigma\right)
$$

Prop. D is elliptic and formally self-adjoint operator (wrt the L_{2} scalar product).

Proof. Ellipticity: $\sigma_{\xi}(D)=i \xi \cdot: S \rightarrow S$ is clearly invertible for any $\xi \neq 0$.
To prove that D is formally self-adjoint, choose a local orthonormal basis $e=\left(e_{1}, \ldots, e_{n}\right)$ of $T M$ s.t. $\left(\nabla e_{i}\right)_{m}=0$ for all i. Then

$$
\begin{aligned}
\left\langle D \sigma_{1}, \sigma_{2}\right\rangle_{m} & =\sum_{j}\left\langle e_{j} \cdot \nabla_{e_{j}} \sigma_{1}, \sigma_{2}\right\rangle_{m}= \\
& =-\sum_{j}\left\langle\nabla_{e_{j}} \sigma_{1}, e_{j} \cdot \sigma_{2}\right\rangle_{m}= \\
& =-\sum_{j}\left(e_{j} \cdot\left\langle\sigma_{1}, e_{j} \cdot \sigma_{2}\right\rangle-\left\langle\sigma_{1}, e_{j} \cdot \nabla_{e_{j}} \sigma_{2}\right\rangle\right)_{m}
\end{aligned}
$$

Proof continued

Further, define $v \in \mathfrak{X}(M)$ by the condition

$$
\langle v, w\rangle=-\left\langle\sigma_{1}, w \cdot \sigma_{2}\right\rangle \quad \text { for all } \quad w \in \mathfrak{X}(M)
$$

Then

$$
\begin{aligned}
\operatorname{div}_{m}(v) & =\sum_{j}\left\langle\nabla_{e_{j}} v, e_{j}\right\rangle_{m} \\
& =\sum_{j}\left(e_{j} \cdot\left\langle v, e_{j}\right\rangle\right)_{m} \\
& =-\sum_{j}\left(e_{j} \cdot\left\langle\sigma_{1}, e_{j} \cdot \sigma_{2}\right\rangle\right)_{m}
\end{aligned}
$$

Hence, $\left\langle D \sigma_{1}, \sigma_{2}\right\rangle=\operatorname{div}(v)+\left\langle\sigma_{1}, D \sigma_{2}\right\rangle$ pointwise. Hence, D is formally self-adjoint.

Examples of Dirac operators

1) $M=\mathbb{R}^{2}$. Then $C l\left(\mathbb{R}^{2}\right)$ has a basis $\left(1, e_{1}, e_{2}, e_{1} \cdot e_{2}\right)$. Then we have the isomorphism of vector spaces

$$
C l\left(\mathbb{R}^{2}\right)=C l^{0}\left(\mathbb{R}^{2}\right) \oplus C l^{1}\left(\mathbb{R}^{2}\right) \cong \mathbb{C} \oplus \mathbb{C}
$$

Notice that the Clifford multiplication by $v \in \mathbb{R}^{2}$ is an antidiagonal operator. Then

$$
D=\left(\begin{array}{cc}
0 & -\frac{\partial}{\partial z} \\
\frac{\partial}{\partial \bar{z}} & 0
\end{array}\right)
$$

2) Similarly, for $M=\mathbb{R}^{4}$ one obtains

$$
D=\left(\begin{array}{cc}
0 & -\frac{\partial}{\partial q} \\
\frac{\partial}{\partial \bar{q}} & 0
\end{array}\right)
$$

where $\frac{\partial}{\partial \bar{q}}: C^{\infty}\left(\mathbb{R}^{4} ; \mathbb{H}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{4} ; \mathbb{H}\right)$,
$\frac{\partial f}{\partial \bar{q}}=\frac{\partial f}{\partial x_{0}}+i \frac{\partial f}{\partial x_{1}}+j \frac{\partial f}{\partial x_{2}}+k \frac{\partial f}{\partial x_{3}}$ is the Fueter operator.

Examples of Dirac operators: continued

3) M is a Riemannian mfld, $S=C l(M)$. Then

$$
D=d+d^{*}: \quad \Omega(M) \rightarrow \Omega(M) .
$$

This follows from the following two observations:
a) $v \cdot \varphi=q_{s t}(v, \cdot) \wedge \varphi-i_{v} \varphi \quad$ if $\quad v \in \mathbb{R}^{n}, \quad \varphi \in \Lambda\left(\mathbb{R}^{n}\right)^{*}$
b) $d=\sum_{j} e_{j}^{*} \wedge \nabla_{e_{j}}, \quad d^{*}=-\sum_{j} \imath_{e_{j}} \nabla_{e_{j}}$

This is just a restatement of the facts that the sequences
$\Gamma\left(\Lambda^{k} T^{*} M\right) \xrightarrow{\nabla^{L C}} \Gamma\left(T^{*} M \otimes \Lambda^{k} T^{*} M\right) \xrightarrow{\text { Alt }} \Gamma\left(\Lambda^{k+1} T^{*} M\right)$
$\Gamma\left(\Lambda^{k} T^{*} M\right) \xrightarrow{\nabla^{L C}} \Gamma\left(T^{*} M \otimes \Lambda^{k} T^{*} M\right) \xrightarrow{- \text { contr. }} \Gamma\left(\Lambda^{k-1} T^{*} M\right)$
represent d and d^{*} respectively. Details concerning d^{*} can be found in [LM. Lemma II.5.13].

Weitzenböck formulae and Bochner technique

Assume M is a compact Riemannian mfld. Let $E \rightarrow M$ be an Euclidean vector bundle equipped with a connection ∇. Define

$$
\nabla_{v, w}^{2} s=\nabla_{v}\left(\nabla_{w} s\right)-\nabla_{\nabla_{v} w} s
$$

where $s \in \Gamma(E), v, w \in \mathfrak{X}(M)$. Notice that

$$
\nabla_{v, w}^{2}-\nabla_{w, v}^{2}=R(v, w)
$$

Hence, $\quad \nabla_{\cdot, \cdot}^{2} \in \Gamma\left(T^{*} M \otimes T^{*} M \otimes S\right)$.
Def. The map

$$
\nabla^{*} \nabla: \Gamma(S) \xrightarrow{\nabla^{2}} \Gamma\left(T^{*} M \otimes T^{*} M \otimes S\right) \xrightarrow{-t r} \Gamma(S)
$$

is called the connection Laplacian.
In terms of local orthonormal frames we have

$$
\nabla^{*} \nabla s=-\sum_{j} \nabla_{e_{j}, e_{j}}^{2} s
$$

Prop. The operator $\nabla^{*} \nabla$ is formally self-adjoint and satisfies

$$
\left\langle\nabla^{*} \nabla s_{1}, s_{2}\right\rangle_{L_{2}}=\left\langle\nabla s_{1}, \nabla s_{2}\right\rangle_{L_{2}}
$$

In particular, $\nabla^{*} \nabla$ is non-negative.

Proof. Similar to the proof of the fact that D is formally self-adjoint. For details see [LM. Prop. II.2.1.].

Let S be a Dirac bundle. If $R \in \Omega^{2}(M ; \operatorname{End}(S))$ is the curvature form, define $\mathcal{R} \in \Gamma(\operatorname{End}(S))$ by

$$
\mathcal{R}(s)=\frac{1}{2} \sum_{j, k} e_{j} e_{k} \cdot R\left(e_{j}, e_{k}\right)(s)
$$

Theorem (general Bochner identity)

$$
D^{2}=\nabla^{*} \nabla+\mathcal{R}
$$

Proof. Choose a local frame $\left(e_{1}, \ldots, e_{n}\right)$ of $T M$ s.t. $\left(\nabla e_{j}\right)_{m}=0$. Then

$$
\begin{aligned}
D^{2} & =\sum_{j, k} e_{j} \cdot \nabla_{e_{j}}\left(e_{k} \cdot \nabla_{e_{k}} \cdot\right) \\
& =\sum_{j, k} e_{j} e_{k} \cdot \nabla_{e_{j}}\left(\nabla_{e_{k}} \cdot\right) \\
& =\sum_{j, k} e_{j} e_{k} \cdot \nabla_{e_{j}, e_{k}}^{2} \\
& =-\sum_{j} \nabla_{e_{j}, e_{j}}^{2}+\sum_{j<k} e_{j} e_{k} \cdot\left(\nabla_{e_{j}, e_{k}}^{2}-\nabla_{e_{k}, e_{j}}^{2}\right) \\
& =\nabla^{*} \nabla+\mathcal{R} .
\end{aligned}
$$

Cor. Let $\Delta=d d^{*}+d^{*} d$ be the Hodge Laplacian and $\nabla^{*} \nabla$ be the connection Laplacian on $T^{*} M$. Then

$$
\Delta=\nabla^{*} \nabla+\text { Ric }
$$

This follows from the previous thm for $D=d+d^{*}$, which acts on $C l(M) \cong \Lambda T^{*} M$. The computation of \mathcal{R} in this case follows the same lines as the proof of the implication

$$
\nabla \psi=0 \quad \Longrightarrow \quad \operatorname{Ric}(w) \cdot \psi=0
$$

[LM. Cor. II.8.3].

Theorem (Bochner)

$$
\text { Ric }>0 \quad \Longrightarrow \quad b_{1}(M)=0
$$

Theorem (Lichnerowicz)

Let M be spin and suppose S is a spinor bundle. Then

$$
D^{2}=\nabla^{*} \nabla+\frac{s}{4},
$$

where s is the scalar curvature.
Proof. [LM. Thm. II.8.8].

Cor.

$$
s>0 \quad \Longrightarrow \quad \text { Ker } D=0
$$

Theorem (Hitchin)

In every dimension $n>8, n \equiv 1(\bmod 8)$ or $n \equiv 2(\bmod 8)$, there exist compact mflds, which are homeomorpic to S^{n}, but which do not admit any Riemannian metric with $s>0$.

