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CLIFFORD ALGEBRAS

Clifford algebras

Recall: For n > 3, Spin (n) is a connected simply connected group
fitting into the short exact sequence

0 — {£1} — Spin (n) — SO(n) — 0,

Aim: Construct spinor groups explicitly.
Let V' be a (real) finite dimensional vector space. Denote by TV
the tensor algebraof V: TV =RV & VRV &...

Def. Let q be a quadratic form on V. Then the Clifford algebra is
defined by
Cl(V,q) =TV/(v-v+q(v)).

In other words, the algebra Cl(V, q) is generated by elements of V'
and 1 subject to relations

v-v=—qv) <= v-wtw- -v=-2q9,w).
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Rem. CI(V,q) is Z/2Z-graded: CI(V,q) = CI%(V,q) ® CI}(V,q).

From now on we assume that ¢ is positive definite for the sake of
simplicity.

Prop. There is a (canonical) vector space isomorphism AV —

Cl(V,q).
Proof. Choose an orthogonal basis (e1,...,e,) of V. Then
e; - ej = —e; - ¢; for all ¢, j. Hence, the map

w: AV — CU(V,q)
€y N Nej €y ... €5

is well-defined and surjective. This map is also injective
(excercise). ]

Cor. dimCIl(V,q) = 2", where n = dim V. |

CLIFFORD ALGEBRAS

Rem. AV and CI(V,q) are not isomorphic as algebras (unless
q =0).

In fact we have
Prop. With respect to the isomorphism CI(R™, qs) = A(R™)*,

Clifford multiplication between v € R™ and ¢ € A(R™)* can be
written as

V-0 =qst(v,-) N — iy

Proof. [Lawson, Michelsohn. Prop. 1.3.9] O

Let = be a unit in CI(V, q). Define
Ad, : CUV,q) — ClL(V,q), Adyy = ayx™!

Observe that each non-zero v € V- — CI(V, q) is a unit:

» 1
v = ———.
q(v)
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Prop. For any non-zero v € V' the map Ad, preserves V and the
following equality holds:

q(v,w)

—Ad,w =w —2
q(v,v)

(i.e. —Ad, is the reflection in v ).

Proof.
Ad L L ( + 2¢( )
LW = — Vew-v = v-(v-w q(v, w
q(v,v) q(v,v)
P (0D
q(v,v)

[

Rem. Ad, preserves ¢ but not orientation (in general).
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Spin groups

Def. Spin(V,q) is the group generated by

{v-w]qv)=1=q(w)} C CI*(V,q).

It is well-known that the group O(V, q) is generated by reflections
(recall the normal form for orthogonal matrices and observe that
each rotation of the plane is a product of two reflections). Then
SO(V,q) is generated by compositions of even numbers of
reflections. In other words, the map

Ad: Spin(V,q) — SO(V,q)

IS surjective.

6 /28



CLIFFORD ALGEBRAS

Prop. Ker Ad = {£1}, i.e. we have the short exact sequence

0 — {£1} — Spin(V,q) — SO(V,q) — 0

Proof. Denote by ~ the automorphism of Cl generated by
TV TV, v = —v. Let

Adyw =7 -w-v, we Cl(V,q).
This induces a homomorphism
Ad : CIX(V, q) — GL(CI(V,q)).
Choose an ONB (eq,...,e,) of V. Suppose ¢ € CI1*(V,q)

—_—

belongs to Ker Ad : C1* — GL(V), i.e. ¢ -w =w - for all
w € V. Write o = ¢g + 1, where ¢; € CI*(V,q). Then

$o W =W - Yo

(¢0 — 1) (w0 +¢1) {_wl.w:w.m

CLIFFORD ALGEBRAS

Proof of Ker Ad = {£1} continued

Further, write g = 1o + e111, where 1), 11 are expressions in
€a,...,e, only. We have

e1(to +e1n) = (Yo +erpr)er (by (1) with w = e1)
= Ype1 + e1y1eq
= e19 — €11 (since ; € C1")

Hence, ¥1 =0 = g does not involve e; = g = A - 1.

A similar argument shows that ¢; does not involve any

€; = Y1 = 0.

Thus, Ker(:élvd : C1* — GL(V)) = R*. Therefore,

Ker(Ad : Spin(V,q) — SO(V)) = {£1}. Finally, Ad = Ad on
Spin(V,q).

(1)

[
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Prop. Spin(n) := Spin(R", qst) is a nontrivial double covering of
SO(n). J

Proof. It suffices to show that 1 and —1 can be joined by a path
in Spin(n). The path

~v(t) = (e1 cost + egsint)(egsint — ey cost) =

=cos2t-1+sin2t-ejes

does the job. Il

Cor. Spin(n) is connected and simply connected provided n > 3.)

Proof. Follows from the facts that SO(n) is connected and
m(S0(n)) = {£1}. ]

CLIFFORD ALGEBRAS

Ex. ("accidental isomorphisms in low dimensions”)
1) Spin(2) := U< ) = 51

2) Spin(3) = Sp(1) = SU(2)
8) Spin(4) = Sp()><5@()
4) Spin(5) = Sp(2)

To see this, consider the action of Sp(2) on Ms(H) by
conjugation. Then R® can be identified with the subspace of
traceless, quaternion-Hermitian matrices. Hence,

Sp(2)/ + 12 SO(5).
5) Spin(6) =2 SU(4)



C'l,, ~REPRESENTATIONS

Some facts from representation theory of Clifford
algebras and Spin groups

Let v, and vS denote the number of inequivalent irreducible real
and complex representations of Cl,, := CI(R",qs) and Cl, ® C
respectively. Then

2 = 1(mod 4
VnZ{ n = 1(mod 4),

C 2 n is odd,
1 otherwise

and v, = _
1 n IS even.

v

Proof. [Lawson, Michelsohn. Thm 1.5.7]. O]

C'l,, ~REPRESENTATIONS

Def. The real (complex) spinor representation of Spin(n) is the
homomorphism

A, : Spin(n) — Endgr(5), if real
AC: Spin(n) — Endg(S), if complex

given by restricting an irreducible real (complex) representation of
Cl, (Cl, ® C) to Spin(n).

Let W be a real Cl,-representation. Then there exists a scalar
product on W s.t. (v-w,v-w') = (w,w') Yo €V s.t. ||v|| =1.
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Cor. (v-w,w') = —(w,v-w). |

12 /28



SPIN STRUCTURES

Spin structures

Let P — M be a principal SO(n)-bundle, n > 3.

Def. The Spin-structure on P (equivalently, on

E = P Xgo(n) R") is a principal Spin(n)-bundle P — M together
with a Spin(n)-equivariant map & : P — P, which is (fiberwise) a
2-sheeted covering.

Thus, we have a commutative diagram

P 3 P
T s
M = M

SPIN STRUCTURES

From the short exact sequence
1 — {£1} — Spin(n) — SO(n) — 1
we obtain
H°(M;SO(n)) — HY(M;Zs) — H'(M; Spin(n)) —
— HY(M;SO(n)) > H2(M;Z,).

Then §[P] equals the second Stiefel-Whitney class, w2(P). Hence,
P admits a spin structure iff wy(P) = 0. If this is the case, all spin
structures are classified by H'(M,Zs) (assuming M is connected).

Def. A spin mfld is an oriented Riemannian mfld with a spin
structure on its tangent bundle.

Rem. Thus, M admits a spin structure iff wo(M) = 0. This is a
topological condition on M, not on the Riemannian metric.

Rem. Since fL}N’ — P is a covering, £*y.¢ is a (distinguished)
connection on P.
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SPIN STRUCTURES

For the spinor representation A: Spin(n) — End(S) the
associated spinor bundle

S == P Xgpin(m) S

is equipped with a connection and Euclidean scalar product.

Rem. For any m € M, the fibre S, is a module over CI(T,,M).

Denote by RY € Q%(M; End(S)) the induced curvature form.

Prop. Lete = (ey,...,ey,) be a local section of P = Pso. Then
R%(v,w)o = Z(R(v, w)e;, e5)€eqe; - o. (2)
i\ ]
Proof. [Lawson, Michelson. Thm 1.4.15] O
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PARALLEL SPINORS

Parallel spinors and holonomy groups

Assume M admits a nontrivial parallel spinor. Then M is Ricci—f/at.J

Proof. Assume i) € I'(S) is parallel. Then
dV(Vy) =dY -dVy = 0 <= R°(v,w) - = 0 for any
v,w € X(M). With the help of (2) with v = e; we obtain

0= Z eka €z>€]>6kez€j Y = Z €z>€j €k, >€i€j€k'¢

1,5,k 1,5,k

1
=— Z <R(6i, 6j)6k + R(ej, ek)ei + R(ek, ei)ej, w>e,-ejek X

3
i#jFkF
‘I‘Z 61763 €i, W 626362 ¢+Z 61763 €5, >€iej6j'w

:O+Z<R(€Z’ )6’1,76] e] ¢ Z 6]7 627ej>67: ¢
4, .,

:2Ric(w) -, 16 /28
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Proof of VY =0, v #£0 = Ric=0 continued
Here Ric is viewed as a linear map T'M — T'M, namely
Ric(w) = > R(ej,w)e;. Hence

j=1

Ric(w) -4 =0 = Ric(w)? ¢ = —||Ric(w)||*y = 0.
Hence, Ric(w) = 0 for all w. ]

Clearly, if M admits a parallel spinor then M must have a
non-generic holonomy. Only metrics with the following holonomies

SU(3), Sp(q), G2, Spin(7) (3)

are Ricci-flat.

Let M be a complete, simply-connected, and irreducible Riemannian
spin mfld. Then M admits a not-trivial parallel spinor iff Hol(M) is
one of the four groups listed in (3).

PARALLEL SPINORS

Dirac bundles

Let P — M be the principal SO(n)-bundle of orthonormal
oriented frames. Then CI(M) := P X go(,) CI(R") is called the
Clifford bundle of M. Notice: Cl,,(M) = CI(T,,M).

Def. A Dirac bundle is a bundle S of left modules over CI(M)
equipped with an Euclidean scalar product and a connection s.t.
the following holds:

(v-01,v-09) = |[v]|*(01,02)
Vip-0)= (V) -0+ ¢ (Vo).
Here o, 0, € I'(S), v € X(M), and p € I'(CI(M)).

e Spinor bundle S is a Dirac bundle [See LM. 1.4 for details].

o AT*M = CIl(M) is a Dirac bundle (with the Levi-Civita
connection). Hence, the existence of Dirac bundles does not
require M to be spin.
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DIRAC OPERATORS

Dirac operators
Let S be a Dirac bundle.
Def. The map

D:T(S) = I(T*M ® S) <5 1(S)
is called the Dirac operator.

In terms of a local frame (ey,...,e,) of TM the Dirac operator is
given by

n

Do = Zei - (Ve,0).

=1

19 /28
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Prop. D is elliptic and formally self-adjoint operator (wrt the Lo-
scalar product). J

Proof. Ellipticity: o¢(D) =1i&-: S — S is clearly invertible for any
§#0.

To prove that D is formally self-adjoint, choose a local orthonormal
basis e = (e1,...,e,) of TM s.t. (Ve;)py =0 for all i. Then

<DO‘1,O‘2>m = Z<€j : vej0'1702>m =
J
- Z<v€j017€j $02)m =
J

== (ej-{o1,€5-02) = (01,65 - Ve,09)) ..
j



DIRAC OPERATORS

Proof continued

Further, define v € X(M) by the condition
(v,w) = —(o1,w-o09) forall weX(M).
Then

div,, (v) = Z<Vejva€j>m
—~ Z(ej (v, €j))m
—Z {1165 T

Hence, (Doy,09) = div(v) + (01, Dog) pointwise. Hence, D is
formally self-adjoint. Il
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Eramples of Dirac operators

1) M =R2?. Then CI(R?) has a basis (1,e1,e2,e1-€2). Then we
have the isomorphism of vector spaces
CI(R?) = CI°(R*) @ CI'(R*) =2 C @ C.

Notice that the Clifford multiplication by v € R? is an
antidiagonal operator. Then

0 -9
35 0

2) Similarly, for M = R* one obtains

0 -2
D: o aq )
(a—q X )

where £ : O (R%; )—> C>®(R*; H),

8ch 8:50 , 8;1 —|—j + k 62 is the Fueter operator.
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FEramples of Dirac operators: continued
3) M is a Riemannian mfld, S = CI(M). Then
D=d+d: QM) QM)
This follows from the following two observations:
a) v-p=qu(v,’)Np—iyp if veR" peAR")"

b) d=> €AV, d'=-=) 1,V
J J

This is just a restatement of the facts that the sequences

Alt F(Ak:—i—lT*M)

k vice * k
T(APT* M) 2 T(T*M ® AT M)
k vic * k —contr. k—1rrx
T(AFT*M) X T(T*M ® APT*M) =<2 T(AR17* M)

represent d and d* respectively. Details concerning d* can be
found in [LM. Lemma 11.5.13].
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Weitzenbock formulae and Bochner technique

Assume M is a compact Riemannian mfld. Let & — M be an
Euclidean vector bundle equipped with a connection V. Define

V2w = Vu(Vs) = Vv, ws,
where s € I'(E), v, w € X(M). Notice that
Ve w— Vi, = R(v,w).
Hence, V2 eI(T*M @ T*M ® S).
Def. The map
V'V T(S) Vs (T M @ T*M © §) — T(S)
is called the connection Laplacian.

In terms of local orthonormal frames we have
ViVs=—)» VI s
VR
J

24
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Prop. The operator V*V is formally self-adjoint and satisfies

<V*V81, 82>L2 = <V81, V82>L2.

In particular, V*V is non-negative.

Proof. Similar to the proof of the fact that D is formally
self-adjoint. For details see [LM. Prop. 11.2.1.]. O]

Let S be a Dirac bundle. If R € Q%(M;End(S)) is the curvature
form, define R € I'(End(S)) by

R(s) = 3 Z ejer - R(ej,ex)(s).

gk
DIRAC OPERATORS
D?=V*V+R
Proof. Choose a local frame (ey,...,e,) of TM s.t.

(Ve;)m = 0. Then
D2 — Zeﬂ' Ve, (ex - Vey")

Ik
—Z€j€k°v€J(v6k )
Ik
— , 2
= Z ejer - Ve o
Ik
— 2 E : ' 2 2
- Z €j,€5 + €jCk (ve‘7 er Vek ej)
J J<k
=V'V+R

El 26 /28
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Cor. Let A = dd* + d*d be the Hodge Laplacian and V*V be the
connection Laplacian on T*M. Then

A = V*V + Ric

This follows from the previous thm for D = d + d*, which acts on
CIl(M) = AT*M. The computation of R in this case follows the
same lines as the proof of the implication

V=0 =— Ric(w)- -9y =0.

[LM. Cor. 11.8.3].

Theorem (Bochner)

Ric>0 — bl(M):O.
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Theorem (Lichnerowicz)
Let M be spin and suppose S is a spinor bundle. Then

D*=V*'V+2,

where s is the scalar curvature.

Proof. [LM. Thm. 11.8.8]. O

Cor
s>0 — KerD =0.

Theorem (Hitchin)

In every dimension n > 8, n = 1(mod8) or n = 2(mod8), there
exist compact mflds, which are homeomorpic to S™, but which do
not admit any Riemannian metric with s > 0.
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