Choose any 3 of the following problems and send me your solutions no later than Feb 2, 2012.

Problem 1. Let R be an algebraic Riemannian curvature tensor, i.e. R belongs to $\Lambda^{2} \mathbb{R}^{n} \otimes \Lambda^{2} \mathbb{R}^{n}$ and satisfies the algebraic identity. Prove that $R \in S^{2}\left(\Lambda^{2} \mathbb{R}^{n}\right)$.

Problem 2. Prove that there exists a complex manifold, which does not admit a Kähler metric.

Problem 3. Prove that $T^{*} G r_{p}\left(\mathbb{C}^{p+q}\right)$ admits a hyperKähler metric.
Problem 4. Let $\Omega \in \Lambda^{4}\left(\mathbb{R}^{8}\right)^{*}$ be the Cayley form. Denote by U the 8 -dimensional $\operatorname{Spin}(7)$-representation, given by the embedding $\operatorname{Spin}(7)=$ $S t a b_{\Omega} \subset S O(8)$. Prove that there exists the decomposition $\Lambda^{2} U=\Lambda_{+}^{2} \oplus \Lambda_{-}^{2}$, where Λ_{+}^{2} and Λ_{-}^{2} are eigenspaces of the linear map

$$
T: \Lambda^{2} \rightarrow \Lambda^{2}, \quad \omega \mapsto-*(\omega \wedge \Omega)
$$

Problem 5. Identify \mathbb{R}^{7} with the space of imaginary octonions $\operatorname{Im} \mathbb{O}$. Define an almost complex structure J on $S^{6} \subset \operatorname{Im} \mathbb{O}$ as follows: J_{u} is the restriction of the right multiplication by u to u^{\perp}. Prove that J is not integrable.

Problem 6. Let M^{4} be an oriented Riemannian 4-manifold, which is self-dual. Denote by $P \rightarrow M$ the principal $S O(4)$-bundle of orthonormal oriented frames. Let $\varphi_{-} \in \Omega^{1}(P ; \operatorname{Im} \mathbb{H})$ be the component of the Levi-Civita connection. Prove that

$$
d \varphi_{-}+\varphi_{-} \wedge \varphi_{-}=\varkappa \bar{\theta} \wedge \theta
$$

where $\theta \in \Omega^{1}(P ; \mathbb{H})$ is the canonical 1 -form and \varkappa is proportional to the scalar curvature.

