Algebra 1, Übungsblatt 2

Abgabe Donnerstag 24.10.2019 bis 8:25 Uhr im Postfach des Tutors in V3-216

Die Abgabe ist in Zweiergruppen möglich.

Aufgabe 1. Es sei $G = \{e, x, y, z\}$ eine Gruppe der Ordnung 4, die nicht zyklisch ist. Zeigen Sie, dass G isomorph ist zu $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Hinweis: Welche Ordnung können x, y, z haben? Was kann xy sein usw.?

Aufgabe 2. Es sei G eine Gruppe. Zeigen Sie

- 1. Das Zentrum Z(G) ist eine normale Untergruppe von G.
- 2. Für zwei Normalteiler N, K von G mit $N \cap K = \{e\}$ und zwei Elemente $a \in N$ und $b \in K$ gilt ab = ba.
- 3. Für eine Untergruppe $H \subseteq G$ operiert G auf der Menge der Nebeklassen G/H durch $G \times G/H \to G/H$, $(a,bH) \mapsto abH$. Bestimmen Sie den Stabilisator $\operatorname{Stab}_G(bH)$ bezüglich dieser Operation.

Aufgabe 3. Zeigen Sie:

- 1. Es gibt drei Möglichkeiten, die Menge $\{1, 2, 3, 4\}$ in zwei gleich große Teile zu zerlegen, deren Reihenfolge nicht beachtet wird.
- 2. Die natürliche Operation von S_4 auf der Menge dieser Zerlegungen definiert einen surjektiven Gruppenhomomorphismus $S_4 \to S_3$.
- 3. Der Kern dieses Homomorphismus ist isomorph zu $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Aufgabe 4. Es seien $f: G \to H$ ein Gruppenhomomorphismus und $N \subseteq H$ eine normale Untergruppe. Zeigen Sie:

- 1. Das Urbild $f^{-1}(N)$ ist eine normale Untergruppe von G.
- 2. Der Homomorphismus f induziert einen injektiven Gruppenhomomorphismus $\bar{f}: G/f^{-1}(N) \to H/N$.
- 3. \bar{f} ist genau dann ein Isomorphismus, wenn $H = f(G) \cdot N$ gilt.