Algebra 1, Übungsblatt 5

Abgabe Donnerstag 14.11.2019 bis 8:25 Uhr im Postfach des Tutors in V3-216 Die Abgabe ist in Zweiergruppen möglich.

Aufgabe 1. Es sei $f: R \to S$ ein Ringhomomorphismus. Zeigen Sie:

- 1. Für ein Primideal $I \subseteq S$ ist das Urbild $f^{-1}(I)$ ein Primideal von R.
- 2. Die entsprechende Aussage für maximale Ideale trifft nicht immer zu.

Aufgabe 2. Eigenschaften von Ringen. Zeigen Sie:

- 1. Für $\omega = (\sqrt{-3} + 1)/2$ sei $\mathbb{Z}[\omega] = \{f(\omega) \mid f \in \mathbb{Z}[X]\}$ als Unterring von \mathbb{C} . Dann gilt $\mathbb{Z}[\omega] = \{a + b\omega \mid a, b \in \mathbb{Z}\}$, und dies ist ein Euklidischer Ring bezüglich der Gradabbildung $\delta(z) = |z|^2$.
- 2. Der Ring $\mathbb{Z}[X]$ ist kein Hauptidealring, z.B. ist für jedes $m \in \mathbb{Z}$ mit $m \geq 2$ das Ideal (m, X) kein Hauptideal.

Aufgabe 3. Zeigen Sie, dass für einen Ring R äquivalent ist:

- 1. Jedes Ideal von R ist endlich erzeugt.
- 2. Jede aufsteigende Kette von Idealen $I_1 \subseteq I_2 \subseteq I_3 \subseteq ...$ in R wird stationär, d.h. es gibt ein n mit $I_n = I_m$ für alle $m \ge n$.

Finden Sie einen Ring, für den diese Bedingungen nicht gelten.

Aufgabe 4. Bruchrechnung.

- 1. Es sei S eine multiplikative Menge in einem (kommutativen) Ring R und $j:R\to S^{-1}R$ der Ringhomomorphismus $j(a)=\frac{a}{1}$. Zeigen Sie: Für einen Ringhomomorphismus $f:R\to B$ mit $f(S)\subseteq B^*$ gibt es einen eindeutigen Ringhomomorphismus $\tilde{f}:S^{-1}R\to B$ mit $\tilde{f}\circ j=f$.
- 2. Im Ring $R=\mathbb{Z}/36\mathbb{Z}$ ist die Menge $S=\{2^n\mid n\geq 0\}$ multiplikativ. Zeigen Sie, dass $S^{-1}R\cong \mathbb{Z}/9\mathbb{Z}$. Verallgemeinern Sie dieses Beispiel sinnvoll.