Algebra 1, Übungsblatt 6

Abgabe Donnerstag 21.11.2019 bis 8:25 Uhr im Postfach des Tutors in V3-216

Die Abgabe ist in Zweiergruppen möglich.

Aufgabe 1. Es sei $f \in \mathbb{Z}[X]$ ein Polynom vom Grad n und p eine Primzahl, so dass die Reduktion $\bar{f} \in \mathbb{F}_p[X]$ irreduzibel vom Grad n ist. Zeigen Sie:

- 1. Wenn f primitiv ist, dann ist f irreduzibel in $\mathbb{Z}[X]$.
- 2. In jedem Fall ist f irreduzibel in $\mathbb{Q}[X]$.

Aufgabe 2. Zeigen sie, dass die folgenden Polynome in den angegebenen Ringen irreduzibel sind.

- 1. $f = X^5 + 12X^2 6X + 18$ in $\mathbb{Z}[X]$.
- 2. $g = 2X^4 + 20X^3 + 200X^2 200X 20$ in $\mathbb{Q}[X]$.
- 3. $h = 73X^2 + 35X 57$ in $\mathbb{Z}[X]$. Hinweis: $X^2 + X + 1$ ist in $\mathbb{F}_2[X]$ irreduzibel (warum?).
- 4. $s = (X^p 1)/(X 1) = 1 + X + \ldots + X^{p-1}$ in $\mathbb{Z}[X]$ für eine Primzahl p. Hinweis: Betrachten Sie s(X + 1).

Aufgabe 3. Es sei R ein Ring. Ein Element $x \in R$ heißt nilpotent, wenn $x^n = 0$ für eine natürliche Zahl n. Mit \mathcal{N}_R wird die Menge aller nilpotenten Elemente von R bezeichnet. Zeigen Sie:

- 1. Die Menge \mathcal{N}_R ist ein Ideal von R.
- 2. Im Fall $R = \mathbb{Z}/n\mathbb{Z}$ gilt $\mathcal{N}_R = (0)$ genau dann, wenn n quadratfrei ist, d.h. wenn es keine Primzahl p gibt mit $p^2 \mid n$.

Aufgabe 4. Es sei R ein faktorieller Ring. Zeigen Sie:

- 1. Für eine multiplikative Menge $S \subseteq R$ ist der Ring $S^{-1}R$ faktoriell.
- 2. Für ein Primelement $p \in R$ sei $S = R \setminus pR$. Dann ist der Ring $R' = S^{-1}R$ ein Hauptidealring mit dem einzigen maximalen Ideal pR'.