Lineare Algebra 2, Präsenzübungsblatt 6

Aufgabe 1. Es seien $A, B \in M_n(K)$ zwei kongruente Matrizen. Zeigen Sie, dass $det(A) = c^2 det(B)$ für ein $c \in K$ mit $c \neq 0$.

Aufgabe 2. Es sei β die durch $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ bestimmte symmetrische Bilinearform auf $V = \mathbb{R}^2$ und $W = \langle \begin{pmatrix} a \\ b \end{pmatrix} \rangle$ ein eindimensionaler Untervektorraum von V.

- 1. Bestimmen Sie das orthogonale Komplement W^{\perp} .
- 2. Für welche a, b ist die Einschränkung von β auf W nicht-ausgeartet?
- 3. Für welche a, b gilt $V = W \oplus W^{\perp}$?

Aufgabe 3. Es seien $\beta:V\times W\to K$ eine Bilinearform und $V_0\subseteq V$ sowie $W_0\subseteq W$ die Nullräume von β . Zeigen Sie: Wenn V und W endlichdimensional sind, dann gilt

$$\dim(V) - \dim(V_0) = \dim(W) - \dim(W_0).$$

Aufgabe 4. Es sei V ein endlichdimensionaler K-Vektorraum. Zeigen Sie:

1. Die Abbildung

$$\gamma: V \times V^* \to K, \qquad \gamma(v,h) = h(v)$$

ist eine nicht ausgeartete Bilinearform.

2. Universelle Eigenschaft von γ : Für jede Bilinearform $\beta: V \times W \to K$ gibt es eine eindeutige lineare Abbildung $f: W \to V^*$ so dass $\beta(v, w) = \gamma(v, f(w))$ für alle $v \in V$ und $w \in W$.