Lineare Algebra 2, Präsenzübungsblatt 10

Aufgabe 1. Zeigen Sie, dass die symmetrische reelle Matrix $A = \begin{pmatrix} 8 & -2 \\ -2 & 5 \end{pmatrix}$ positiv definit ist und bestimmen Sie die Quadratwurzel von A.

Aufgabe 2. Es sei V ein unitärer Vektorraum mit dem Skalarprodukt $\langle \ , \ \rangle$ und $f \in \operatorname{End}(V)$. Zeigen Sie, dass f genau dann selbstadjungiert ist, wenn die Sesquilinearform $\beta(x,y) = \langle x, f(y) \rangle$ Hermitesch ist.

Nun sei f selbstadjungiert und \mathcal{B} eine Orthonormalbasis von V bezüglich $\langle \ , \ \rangle$. Zeigen Sie, dass \mathcal{B} genau dann eine Orthogonalbasis bezüglich β ist, wenn \mathcal{B} aus Eigenvektoren von f besteht.

Aufgabe 3. Sei V ein Euklidischer Vektorraum und $f \in \operatorname{End}(V)$ invertierbar. Zeigen Sie: Es gibt eine Orthonormalbasis \mathcal{B} von V, so dass die Matrix $A = M_{\mathcal{B}}(f)$ eine Darstellung A = SD hat, wobei S orthogonal ist und D diagonal mit positiven Diagonaleinträgen. Interpretieren Sie die Aussage geometrisch.

Hinweis: Cartan-Zerlegung