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Abstract: An artin algebra A is said to be a higher Auslander algebra provided the global

dimension is bounded by the dominant dimension. We say that a linear Nakayama algebra is

concave, provided its Kupisch series first increases, then decreases. We are going to classify

the concave Nakayama algebras which are higher Auslander algebras. Let us stress that the

classification strongly depends on the parity of the global dimension of A.
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0. Introduction.

Following Iyama [2], an artin algebra A is said to be a higher Auslander algebra pro-
vided the global dimension of A is finite and bounded by the dominant dimension of A. It
is well-known that an artin algebra which is a higher Auslander algebra is either semisimple
(thus the global dimension is zero, the dominant dimension is infinite), or else the global
dimension and the dominant dimension are non-zero, finite and equal (see 5.1).

In the present note, A usually will be a connected Nakayama algebra with n = n(A)
simple modules and with global dimension d(A) ≥ 1. Since for a Nakayama algebra A the
injective envelope of an indecomposable projective module is an indecomposable projective
module, the dominant dimension of A is at least 1.

For simplicity, we assume that A is a k-algebra given by a quiver with relations, where
k is a field. The modules M to be considered are usually left A-modules with finite
length |M |; we denote by PM and IM a projective cover and an injective envelope of
M , respectively, and socM, radM, and topM denote the socle, the radical and the top
of M , respectively. We write ΩM for the first syzygy module of M ; this is the kernel
of a projective cover PM → M and pdM denotes the projective dimension of M ; for
the zero module, we use the convention pd 0 = −∞. An indecomposable module M is
said to be even, or odd, if pdM is even, or odd, respectively. We write ΣM for the first
suspension module of M : it is the cokernel of an injective envelope M → IM . If A is a
linear Nakayama algebra, we denote by ωA its simple injective module.

It is well-known that if A has finite global dimension, then d(A) ≤ 2n(A) − 2 (of
course, if A is a linear Nakayama algebra, then we even have d(A) < n(A)). A quite
surprising recent paper [5] by Madsen, Marczinzik and Zaimi shows that for any numbers
n ≤ d ≤ 2n− 2, there is a unique (necessarily cyclic) Nakayama algebra A with n = n(A)
and d = d(A) which is a higher Auslander algebra. An explanation of this fact has
been given by Sen [7] using the powerful ǫ-reduction which he has analysed in previous
papers. Sen’s reduction shows: in order to classify the Nakayama algebras which are higher
Auslander algebras, it remains to consider the linear ones.
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This is the purpose of the present note: to look at linear Nakayama algebras A which
are higher Auslander algebras of global dimension d. Some of them have been exhibited
already in [8] and [1]. As we will see, the parity of d is a decisive datum.

The maximal length of indecomposable modules will be called the height h(A) of A,
and the indecomposable modules of length h(A) are called summits (they have to be both
projective and injective). A linear Nakayama algebra is said to be concave provided its
Kupisch series is first increasing, then decreasing. If A is a concave algebra, there is a
unique indecomposable module P of length h(A) such that radP is projective. We say
that P is the first summit of A; since we assume that A is not simple, we have |P | ≥ 2.

We are going to provide a complete system of invariants for the concave Nakayama
algebras A which are higher Auslander algebras of global dimension d, say with first summit
P . For d odd, we will look at the module Z(A) = radP/ socP (it is an odd module), for
d even at the module Z ′(A) = rad2 P (again, this is an odd module).

If A is a Nakayama algebra and M is an odd module, let 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm =
M be the composition series of M . We call charM = (pdM1/M0, . . . , pdMm/Mm−1)
the characteristic of M . In addition, we need the characteristic of the zero module: by
definition, char 0 is the empty sequence (later, we will introduce also the characteristic of
an even module, but this is more subtle).

Theorem 1. Let A be a concave Nakayama algebra with first summit P . If A is a
higher Auslander algebra of odd global dimension d, let Z(A) = radP/ socP. Then Z(A)
is an odd module or the zero module and charZ(A) is a decreasing sequence of odd numbers
which are bounded by d.

The assigment A 7→ charZ(A) provides a bijection between the isomorphism classes
of the concave higher Auslander Nakayama algebras A of odd global dimension d and the
decreasing sequences of odd numbers bounded by d.

Theorem 1 asserts that for any decreasing sequence d ≥ c1 ≥ c2 ≥ · · · ≥ cu of odd
numbers, there is a (unique) concave higher Auslander algebraH = Hd(c1, . . . , cu) of global
dimension d with charZ(H) = (c1, . . . , cu). The algebra H = Hd(∅) is the linear Nakayama
algebra H with h(H) = 2 and n(H) = d+1. Here is a sketch of modHd(c1, . . . , cu) in case
u ≥ 1:
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The bullet is Z(H) = radP/ socP ; it is an odd module with charZ(H) = (c1, . . . , cu).
The shaded part are the subfactors of Z(H). We have added below any odd composition
factor of P its projective dimension (since P is the first summit of H, the module radP
is projective, thus pd topP = 1). The socle of P has even projective dimension, namely
c1 − 1, and is marked by a black lozenge �.

Theorem 1′. Let A be a concave Nakayama algebra with first summit P . If A is a
higher Auslander algebra of even global dimension d > 0, let Z ′(A) = rad2 P. Then Z ′(A)
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is an odd module or the zero module and charZ ′(A) is a strictly increasing sequence of odd
numbers bounded by d.

The assigment A 7→ charZ ′(A) provides a bijection between the isomorphism classes
of the concave higher Auslander Nakayama algebras A of even global dimension d > 0 and
the strictly increasing sequences of odd numbers bounded by d.

As in the case of d being odd, Theorem 1′ asserts that for d even and any strictly
increasing sequence c1 ≥ c2 ≥ · · · ≥ cu of odd numbers bounded by d, there is a (unique)
concave higher Auslander algebra H = Hd(c1, . . . , cu) of global dimension d now with
charZ ′(H) = (c1, . . . , cu). The algebra H = Hd(∅) is the linear Nakayama algebra H with
h(H) = 2 and n(H) = d+ 1. Here is a sketch of modHd(c1, . . . , cu) in case u ≥ 1:
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The bullet is Z ′(H) = rad2 P ; it is an odd module with charZ ′(H) = (c1, . . . , cu). The
shaded part are the subfactors of Z ′(H). Again, we have added below any odd composition
factor of P its projective dimension (since P is the first summit of H, the radical radP of
P is projective, thus pd topP = 1). The composition factor top radP has even projective
dimension, namely cu + 1, and has been marked by a black lozenge �.

The algebras Hd(c1, . . . , cu) can be constructed directly quite easily, as the following
Theorems 2 and 2′ show. In order to describe these constructions, we need some further
ingrediants.

If A is a Nakayama algebra of finite global dimension, we attach to every indecompos-
able module M (not only the odd ones), its characteristic sequence charM , see 1.3. If M
has length m, then charM = (z1, . . . , zm) is a sequence of m non-negative numbers, with
all but at most one of the numbers zi being odd (the numbers zi exhibit the projective
dimension of M itself or of composition factors of M).

Starting with a sequence z = (z1, . . . , zm) of non-negative numbers, with one of the
numbers zero, whereas the remaining numbers are odd, there is a concave Nakayama
algebra A(z) of height m with charP (ωA) = z; the algebra A(z) will be called the ascent
algebra of z, see Proposition 2.1.

For any linear Nakayama algebra A, and d a positive integer, the partial d-closure
Cd(A) of A will be defined in section 3.

Theorem 2. Let d be odd. Let c1 ≥ c2 ≥ · · · ≥ cu be odd numbers bounded by d.
Let H = Hd(c1, . . . , cu) be the partial d-closure of A(0, c1, . . . , cu, 1). Then H is a concave
higher Auslander algebra of global dimension d with charZ(H) = (c1, . . . , cu).

Theorem 2′. Let d > 0 be even. Let c1 < c2 < · · · < cu be odd numbers bounded by d.
Let H = Hd(c1, . . . , cu) be the partial d-closure of A(c1, . . . , cu, 0, 1). Then H is a concave
higher Auslander algebra of global dimension d with charZ ′(H) = (c1, . . . , cu).
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Until now, we have considered only the first summit of the algebras Hd(c1, . . . , cu).
Given a concave Nakayama algebra, there is a unique indecomposable module Q of length
h(A) such that Q/ socQ is injective. We say that Q is the last summit of A and call
Q/ socQ the principal cliff module of A.

Theorem 3. Let d be odd. Let c1 ≥ c2 ≥ · · · ≥ cu be odd numbers bounded by d. Let
H = Hd(c1, . . . , cu). Let P be the first summit of H and Q the last summit.

If u = 0, then H has d summits, charP = (0, 1), and charQ = (0, d).
If u ≥ 1, let t = 1

2(d− c1). Then t ≥ 0, the algebra H has (u+ 2)t+ 1 summits, and

charP = (0, c1, . . . , cu, 1), charQ = (0, c1+2t, . . . , cu+2t, 1+2t).

Theorem 3′. Let d > 0 be even. Let c1 < c2 < · · · < cu be odd numbers bounded by
d. Let H = Hd(c1, . . . , cu). Let P be the first summit of H and Q the last summit.

If u = 0, then H has d summits, charP = (0, 1), and charQ = (d−1, 0).
If u ≥ 1, let t = 1

2(d− cu − 1). Then t ≥ 0, H has (u+ 2)t+ u summits, and

charP = (c1, . . . , cu, 0, 1), charQ = (d−1, 0, 1+2t, c1+2t+ 2, · · · , cu−1+2t+ 2).

Outline of the paper.

If M0, . . . ,Mm are indecomposable modules with Hom(Mi−1,Mi) 6= 0 for 1 ≤ i ≤
m, we say that M0 is a predecessor of Mm and Mm a successor of M0. As usual, we
denote by τ the Auslander-Reiten translation (with τP = 0 for P projective). If M is
an indecomposable module, let F(M) be the set of the (isomorphism classes of) non-
zero subfactors of M . A Serre subcategory of modA is the full subcategory given by the
extension closure of a set of simple modules. The Serre subcategory generated by a set of
modules is the Serre subcategory given by the composition factors of these modules. If A
is a Nakayama algebra, the modules with a fixed socle are said to form a ray; those with
a fixed top are said to form a coray.

In section 1, we introduce and analyze the characteristic sequence charM of an inde-
composable module M . This seems to be of independent interest. As we will see in 1.6
(see also 4.8), this sequence determines the projective dimension of all subfactors of M .

A linear Nakayama algebra A is called ascending provided for indecomposable projec-
tive modules P, P ′ with Hom(P, P ′) 6= 0, we have |P | ≤ |P ′|, or, equivalently, provided
|P (τS)| ≤ |PS| for any simple module S. Note that a linear Nakayama algebra A is ascend-
ing iff A is concave and P (ωA) is a summit. In section 2, we construct for any projective
characteristic sequence z its ascent algebra A = A(z); it is an ascending Nakayama algebra
A with charP (ωA) = z. In section 3, we construct the partial d-closure of a Nakayama
algebra.

Section 5 is devoted to Nakayama algebras which are higher Auslander algebras. We
show that if A is a higher Auslander Nakayama algebra of global dimension d and S is a
simple module, then S is torsionless or else pdS = pd IS = d.

Section 7 contains the proof of Theorems 1, 2, and 3; section 8 the proof of Theorems
1′, 2′, and 3′. In both sections, we provide various characterizations of the concave higher
Auslander algebras A of odd or even global dimension, respectively, with reference to the
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existence of suitable modules M of length h(A)− 1. The modules M which we single out
are, on the one hand, the radical of the first summit (and certain τ−-shifts), and, on the
other hand, the principal cliff module (and certain τ -shifts).

Left rotations, right rotations. The main tool used in the paper are the left
rotations (see section 2) and the right rotations (see section 3), both are defined for char-
acteristic sequences. If A is a concave Nakayama algebra and P a summit, left rotations λ
are used in order to reconstruct all predecessors of P : here, using λ, we obtain from PS,
where S is a simple module, the module P (τS). The right rotations are used in order to
construct successors of a given indecomposable module. If I is an indecomposable module
which is both projective and injective, then the right rotation ρ sends rad I to I/ soc I.

Let A be concave and P a summit. Whereas the predecessors of P can be reconstructed
from P using λ, it is not possible in general, to reconstruct the successors of charP . A linear
Nakayama algebra is said to be d-bound provided its global dimension is bounded by d and
any indecomposable module I which is injective, but not projective satisfies pd I = d. In
case A is d-bound, then the characteristic sequence of any summit P determines uniquely
all the successors of P . Here we use the right rotation ρ, see section 6. All algebras which
we are interested in, are d-bound: either by construction (the algebras Hd(c1, . . . , cu)), or
by assumption (the higher Auslander algebras).

Memory quivers. Throughout the paper, we work with “memory functions” on
translation quivers. Special memory quivers will be discussed in section 4. The use of
characteristic sequences in section 1 is already a kind of shadow.

Let Γ be a translation quiver. A function µ : Γ0 → N∪{∞} is called a memory function
provided there is an artin algebra C with a Serre subcategory C ⊆ modC such that Γ is
the Auslander-Reiten quiver of C and we have µ(X) = pdCX for any indecomposable
object X ∈ C. The pair (Γ, µ) will be called a memory translation quiver or just a memory
quiver. In this paper, we only will deal with memory functions with values in N.

Module categories of artin algebras, and more generally, memory quivers, are some-
times exhibited by showing the corresponding (Auslander-Reiten) quiver. Note that a
vertex of an Auslander-Reiten quiver is the isomorphism class x = [M ] of an indecompos-
able module M . In the picures which we provide, it often will be convenient to replace x
by the projective dimension pdM of M , or by the value µ(x) of the memory function in
question.

The parameter d. Note that all semisimple algebras are higher Auslander algebras
(the global dimension is 0, the dominant dimension is ∞). It is easy to see that a connected
higher Auslander algebra of global dimension 1 is the path algebra of a quiver of type An

(without relations). Thus, we usually may assume that d ≥ 2.
Iyama, who has introduced the higher Auslander algebras, called a higher Auslander

algebra A of global dimension d a (d−1)-Auslander algebra, see [3]. Of course, this index
shift is well-thought since in this way the Auslander algebras themselves are just the 1-
Auslander algebras. (There is the similar, and of course related, problem concerning the
calibration of the representation dimension: a shift by 1 has the advantage that then the
value 1 (instead of 2) is attached to the non-semisimple representation-finite algebras.)

However, we have refrained from following this convention (as also several other authors
do), since in our discussion of the higher Auslander algebras of global dimension d, we want
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to stress that it is the number d (and not d− 1) and its parity, which are decisive.

1. The characteristic sequence of an indecomposable module.

For any indecomposable module M , we are going to introduce its characteristic se-
quence charM ; it is a sequence (z1, . . . , zm) of non-negative integers with at most one
even entry, where m = |M |. In addition, let char 0 be the empty sequence. The relevance
of charM relies on Madsen’s maximum principle 1.1 and the subfactor formula 1.4 which
shows that charM determines the projective dimension of all subfactors of M .

1.1. Proposition (Madsen’s maximum principle). Let A be a Nakayama algebra.
Let M be an indecomposable module.
(1) At most one of the composition factors of M is even.
(2) If all composition factors FiM of M are odd, then pdM = maxi pdFiM ; thus M is

odd. Conversely, if M is odd, then all its composition factors are odd.
(3) If at least one composition factor of M is even, then M is even.
(4) If S is simple, with τ iS being odd for 0 ≤ i ≤ m, then |PS| ≥ m+ 2.

In case M is even, we should stress that the projective dimension of the composition
factors of M do not determine the projective dimension of M , see 1.7. For completeness,
we recall from [4] that the existence of an even simple module implies that A has finite
global dimension; this is the reason that (2) implies (3).

Proof of proposition. For (2) and (3), see [4], or also [6].

Thus, let us look at (1). Assume that M has a submodule U with topU even and that
M/U has only odd composition factors. Since S = U/ radU is even, ΩS = radPS is odd,
thus, according to (3), all composition factors of radPS are odd. We have PU = PS and
U = PS/ΩU, thus radU = radPS/ΩU . Since all composition factors of radPS are odd,
all composition factors of radU are odd. We see that U/ radU is the only even composition
factor of M .

Proof of (4). Assume that |PS| ≤ m + 1. The composition factors of PS are the
modules τ iS with 0 ≤ i ≤ |PS| − 1, thus they are odd. According to the maximum
principle, it follows that PS is odd. But pdPS = 0. �

1.2. Further consequences. Let us add some consequences of 1.1 which one should
keep in mind. Recall that an indecomposable module M is said to be multiplicity-free
provided any simple module occurs at most once as a composition factor of M .

Let A be a Nakayama algebra.
(1) If S is simple and not projective, at most one of S, τS can be even.
(2) If A 6= 0, then not all simple modules are odd.
(3) An indecomposable odd module is multiplicity-free.
(4) If A has finite global dimension and rank n, then the height of A is bounded by 2n− 1.

Proofs. (1) If S, τS both would be even, the middle term of the corresponding
Auslander-Reiten sequence would be an indecomposable module with two even compo-
sition factors, in contrast to 1.1 (1).
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(2) If A 6= 0, there is an indecomposable projective module P . Since pdP = 0, we see
that P is even. According to 1.1.(2), not all composition factors of M can be odd.

(3) If M is indecomposable and not multiplicity-free, then all simple modules occur as
composition factors. But if M is odd, then A 6= 0, thus according to (1), there are simple
modules which are not odd.

(4) If an indecomposable module M has length at least 2n, then every simple module
occurs in M with multiplicity at least 2. According to (2), there is an even simple module
S, and 1.1 (1) asserts that S occurs at most once as a composition factor of M . This
contradiction shows that any indecomposable module has length at most 2n− 1. �

1.3. Characteristic sequences. A sequence (z1, . . . , zm) of non-negative numbers
will be said to be a characteristic sequence provided at most one of the entries is even. A
characteristic sequence (z1, . . . , zm) with one entry being zero is said to be projective.

1.4. The characteristic of an indecomposable module. Assume that A has finite
global dimension. To every indecomposable module M we attach a sequence of numbers,
called its characteristic. On a first reading, the choice and the ordering of the numbers
may seem to be rather curious, but we hope to convince the reader that the definition is
natural. The characteristic charM of an indecomposable module of length m will be a
sequence of m non-negative numbers, with all but at most one being odd (and all numbers
being positive iff M is not projective).

Let M be an indecomposable module of length m, say with composition series

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm = M,

thus Fi(M) = Mi/Mi−1 (with 1 ≤ i ≤ m) are the composition factors of M .
We define charM as the following sequence of n non-negative integers

(charM)i =

{

pdFi(M) if Fi(M) is odd,
pdM if Fi(M) is even,

where 1 ≤ i ≤ m. In addition, we look also at the zero module and define char 0 = (∅)
(the empty sequence). The sequence charM will be called the characteristic of M .

Lemma. Let A be a Nakayama algebra of finite global dimension.
(1) The characteristic of an indecomposable module is a characteristic sequence.
(2) An indecomposable module is projective iff its characteristic is projective.
(3) An indecomposable module is odd iff its characteristic has only odd entries.
(4) The characteristic charM = (z1, . . . , zm). of an indecomposable module M determines

pdM (if all zi are odd, then pdM = max zi; if some zi is even, then pdM = zi).
(5) Let M be an indecomposable module of length m.

Then charM = (pdF1(M), . . . , pdFm(M)) iff M has a composition factor S with
pdS = pdM .

(6) Let M be an indecomposable module of length m with pdM = d(A).
Then charM = (pdF1(M), . . . , pdFm(M)).

Proof. (1) At most one of the coefficients of charM is even, see 1.1 (1).
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(2) If (charM)i is even, then by definition (charM)i = pdM . If all coefficients
of charM are odd, then the maximum principle for odd modules asserts that pdM =
maxi charMi. As a consequence, if M is non-zero and projective, not all coefficients of
charM can be odd, since otherwise pdM = 0, but maxi(charMi) > 0. Thus (charM)i is
even, for some i, and then (charM)i = pdM = 0. Conversely, if (charM)i = 0, for some
i, then pdM = (charM)i = 0, thus M is projective (and non-zero).

(3) See 1.1 (2).
(4) Again, see 1.1 (2).

(5) We can assume that M is even. Let charM = (z1, . . . , zm). Let S be a composition
factor of M with pdS = pdM , say S = Fi(M). Since Fi(M) is even, we have zi = pdM ,
thus zi = pdFi(M). Of course, also zj = pdFj(M) for j 6= 0. Conversely, assume that
zj = pdFj(M) for all 1 ≤ j ≤ m. Since M is even, one of the composition factors is
even, say S = Fi(M). By the definition of charM , we have zi = pdM. It follows that
pdS = pdFi(M) = zi = pdM.

(6) Let d = d(A). Then pdFj(M) ≤ d for all j. We cannot have pdFj(M) < d for
all j, since otherwise also pdM < d, contrary to the assumption pdM = d. Thus, there
is some i with pdFi(M) = d. This shows that the composition factor S = Fi(M) satisfies
pdS = pdM. The assertion follows now from (4). �

1.5. Given a projective characteristic sequence (z0, . . . , zm) of length m+ 1, let

Y (z0, . . . , zm) =

{

(z1, . . . , zm) if z0 = 0,
(z1, . . . , zv−1, z0 + 1, zv+1, . . . , zm) if zv = 0, v ≥ 1.

This is a non-projective characteristic sequence of length m.
Given a non-projective characteristic sequence (z1, . . . , zm) of length m, let

P (z1, . . . , zm) =

{

(0, z1, . . . , zm) if all zi are odd,
(zv−1, z1, . . . , zv−1, 0, zv+1, . . . , zm) if zv is even.

This is a projective characteristic sequence of length m+ 1.

The maps Y (−) and P (−) provide bijections between the set of projective characteristic
sequences and the set of non-projective characteristic sequences which are inverse to each
other. �

Lemma. Let A be a Nakayama algebra of finite global dimension. Let P be in-
decomposable projective and Y = P/ socP . If charP = (z0, . . . , zm), then charY =
Y (z0, . . . , zm).

Proof. First, let z0 = 0. Then the numbers zi with 1 ≤ i ≤ m are odd, and are the
projective dimension of the composition factors of Y.

Second, let zv = 0 for some v ≥ 1. Then P/ socP has an even composition factor,
thus socP is an odd composition factor, therefore the first entry of charP is z0 = pd socP.
Since ΩY = socP , we have pd Y = z0 + 1. It follows that for i 6= v, we have (charY )i =
pdFiY = pdFi+1P = zi and (charY )v = pdY = z0 + 1. �
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1.6. The subfactor formula. We consider subfactors X of an indecomposable
module M . In case X is non-zero and even, there is the following important formula for
pdX .

Proposition. Let A be a linear Nakayama algebra. Let M be an indecomposable
module. Let M1 ⊂ M2 ⊆ M be submodules and assume that M2/M1 is even. Then M1

and M/M2 are odd or zero, and

pdM2/M1 = max{pdM1 + 1, pdM, pdM/M2 − 1}.

Proof. According to 1.1, M has precisely one even composition factor, and this has to
be a subfactor of M2/M1. In particular, we see that M1 and M/M2 are odd or zero.

Case 1: M2 = M. If, in addition, M is projective, then the assertion is clear: ifM1 = 0,
then M2/M1 = M is a non-zero projective module (thus both the left hand side and the
right hand side are equal to 0), whereas if M1 6= 0, then Ω(M/M1) = M1 shows that
pdM/M1 = pdM1 + 1.

Thus, let M2 = M and M non-projective (in particular, M1 6= 0). Let PM be a
projective cover of M .
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Then pdM/M1 = pdΩ(M/M1)+1 and there is an exact sequence 0 → ΩM → Ω(M/M1) →
M1 → 0. Since both modules ΩM andM1 are odd, pdΩ(M/M1) = max{pdM1, pdΩM} =
max{pdM1, pdM −1}, therefore pdM/M1 = pdΩ(M/M1)+1 = max{pdM1+1, pdM}.

Case 2: M2 is a proper submodule of M . We first may assume that S = topM is
the simple injective module (we just delete the simple modules τ−iS with i ≥ 1), and
consider the one-point extension B = A[M/M1], say with extension vertex ω (which now
is the simple injective module), thus radP (ω) = M/M1, and therefore Ω(ω) = M/M1. Of
course, B is again a linear Nakayama algebra with τ(ω) = S. Since M/M1 has the even
factor module V = M2/M1, we see that M/M1 is even, thus Ω(ω) = M/M1 shows that ω
is odd.
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The module V is a submodule of the projective-injective module P (ω) and ΣV = P (ω)/V
is an extension of M/M2 by ω and therefore an odd module with

pdΣV = max{pdM/M2, pdω}.

Since P (ω) is projective-injective, we have ΩΣV = V , thus

pdV = −1 + pdΣV = max{−1 + pdM/M2,−1 + pdω}.

Now, −1 + pdω = pdΩ(ω) = pdM/M1. Thus, it remains to observe that

pdM/M1 = max{pdM1 + 1, pdM},

but this we know already, due to case (1). �

Corollary 1. Let A be a linear Nakayama algebra. Let M be an indecomposable
module. Let X be a non-zero subfactor of M . If X is even, then pdX ≥ pdM.

Proof. Let X = M2/M1, where M1 ⊂ M2 are submodules of M . According to the
Proposition, pdM2/M1 = max{pdM1+1, pdM, pdM/M2−1}, thus pdX = pdM2/M1 ≥
pdM. �

As a special case of the Proposition, we see that charM determines pdFi(M) for all
i. This is of course trivial if Fi(M) is odd. In case Fi(M) is even, Proposition provides a
formula for pdFi(M) in terms of the entries of charM :

Corollary 2. Let A be a linear Nakayama algebra. Let M be an indecomposable
module with charM = (z1, . . . , zm). If Fi(M) is even, then

pdFi(M) = max{z1 + 1, . . . , zi−1 + 1, zi, zi+1 − 1, . . . , zm − 1}.

Proof. Take the composition series 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm = M of M , thus
Fi(M) = Mi/Mi−1. Proposition provides the formula

(∗) pdFi(M) = max{pdMi−1 + 1, pdM, pdM/Mi − 1}.

The modules Mi−1 and M/Mi are odd or zero. We have charMi−1 = (z1, . . . , zi−1) and
charM/Mi = (z1+1, . . . , zm). If Mi−1 is non-zero, then pdMi−1 = max{z1, . . . , zi−1}.
If M/Mi−1 is non-zero, then pdM/Mi = max{z1+1, . . . , zm}. If Mi−1 = 0, then the
term pdMi−1 + 1 = −∞ can be omitted in (∗). Similarly, if M/Mi = 0, the term
pdM/Mi − 1 = −∞ can be omitted in (∗). �

Corollary 3. Let A be a linear Nakayama algebra. Let M be an indecomposable
module. If S is an even composition factor of M , then pdM ≤ pdS. �

Thus, we see: If A is a linear Nakayama algebra and M is an indecomposable module
with charM = (z1, . . . , zm), then zi ≤ pdFi(M) for all 1 ≤ i ≤ m.
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Corollary 4. Let M be an indecomposable module and X a subfactor of M . Let
charM = (z1, . . . , zm). Then pdX ≤ 1 +max zi.

Proof. We can assume thatX 6= 0. Let g(M) = 1+maxi zi, and f(M) = maxi pdFi(M).
According to Corollary 3, we have f(M) ≤ g(M). If X is a subfactor of M , then the
composition factors of X are composition factors of M , therefore f(X) ≤ f(M). On
the other hand, for any module N we clearly have pdN ≤ f(N). Altogether, we have
pdX ≤ f(X) ≤ f(M) ≤ g(M). �

1.7. The pd-controlled modules. An indecomposable module M with pdZ ≤
pdM for all subfactors Z of M will be said to be pd-controlled. According to the maximum
principle for odd modules, all odd modules are pd-controlled. Even modules are usually
not pd-controlled: for example, an indecomposable projective module P is pd-controlled
only in case P is simple.

In sections 7 and 8, we are going to work a lot with pd-controlled modules of projective
dimension d(A). Namely, Let A be a linear Nakayama algebra which is a higher Auslander
algebra. If M is an indecomposable module which is not torsionless, then pdM = d(A)
(see 5.5), thus M is pd-controlled. In particular, the indecomposable injective modules I
which are not projective are pd-controlled. The aim of sections 7 and 8 is to characterize
the concave linear Nakayama algebra which are higher Auslander algebras by properties
of the principal cliff module.

There is the following Lemma.

Lemma. Let M be an indecomposable module. If there is a submodule U with pdU ≥
pdZ for all subfactors Z of M , then M is pd-controlled.

Proof of Lemma. Since all odd modules are pd-controlled, we can assume that M is
even. Let U be a submodule of M with e = pdU ≥ pdZ for all subfactors Z of M .

We claim that e is even. Assume for the contrary that e is odd. If U ⊂ U ′ ⊆ M and U ′

is odd, then there is the inequality pdU ≤ pdU ′ (since U ′ is odd), but also the inequality
pdU ≥ pdU ′. Therefore pdU = pdU ′. Thus, we can assume that U is not a proper
submodule of an odd submodule of M . Therefore U = radV for some even submodule
V of M . Let T = V/U ; this is a simple module which has to be even. Consider the pile
Γ with radical M and one summit. There is the vertex U ′ such that ΩΓU

′ = U , thus
pdU ′ = 1 + e. The socle of U ′ is equal to T . Since T ⊆ U ′ are even modules, we have
pdT ≥ pdU ′. Therefore pdT ≥ pdU ′ = 1 + e > e. On the other hand, T is a subfactor
of M , thus pdT ≤ pdU = e. This contradiction shows that U cannot be odd.

If U = M , nothing has to be shown. Thus, assume that U is a proper submodule of
M . There is a submodule V of M such that U = radV . Again, consider the pile Γ with
radical M and one summit. Let U ′ be the vertex of Γ with ΩΓU

′ = U . Thus pdU ′ = e+1
is odd. Let Z = radU ′. This is subfactor of M , and therefore pdZ ≤ e. Since pdU ′ = e+1
and pd radU ′ ≤ e, the maximum principle asserts that pdU ′/ radU ′ = e+1. But we have
ΩΓ(pdU

′/ radU ′) = M . Thus, we see that pdM = e. �

Corollary. Let M be an indecomposable module. Assume that pd socM ≥ pdFi(M)
for all i. Then M is pd-controlled and pdM = pd socM. As a consequence, charM =
(pdF1(M), . . . , pdFm(M)).
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Proof. Let f(M) = maxi pdFi(M). If X is a subfactor of M , then f(X) ≤ f(M).
Also, we have pdX ≤ f(X). Thus we see that f(X) ≤ f(M) ≤ pd socM. This shows that
we can apply the Lemma for = socM and conclude that M is pd-controlled. But if M is
pd-controlled, then pd socM ≤ pdM. On the other hand, we have pdM ≤ f(M). Thus
pd socM ≤ pdM ≤ f(M) ≤ socM. According to 1.4 (5), it follows from pdM = pd socM
that charM = (pdF1(M), . . . , pdFm(M)). �

Remark. Let M be an indecomposable module which is pd-controlled, say with
pdM = e. There is a composition factor Fi(M) = Mi/Mi−1 of M with pdFi(M) = e and
the subfactors of M can be separated into three parts:
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.
M

Fi(M)

Mi

Mi−1

M/Mi

There is the lozenge between Fi(M) and M : all subfactors X = U/V of M with
V ⊆ Mi−1 ⊂ Mi ⊆ V have pdX = e.

The modules Mi−1 and M/Mi have odd projective dimension at most e, thus there
are the two triangles (on the left and on the right) such that all modules in the triangles
have projective dimension at most e (even at most e− 1 in case e is even).

1.8. Remarks. (1) The sequence of numbers pdFi(M) does not determine pdM ,
thus not charM . Examples: Here are three modules M of length 2 (they are encircled),
all with pdF1(M) = 3, pdF2(M) = 4. But we have pdM equal to 0, 2, 4, respectively:
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charM = (3, 0) charM = (3, 2) charM = (3, 4)

(2) Also, charM is not determined by pdM and the sequence of the odd values
pdFi(M) (we have to know in addition the index i with pdFi(M) being even):
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(3) The numbers pd radi P do not determine charP . Here are two projective modules
P, P ′ with charP 6= charP ′, but pd radi P = pd radi P ′ for all i.
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(4) We have seen in 1.6, Corollary 4: If A is a linear Nakayama algebra and M is
an indecomposable module with charM = (z1, . . . , zm), then pdX ≤ 1 + max zi for all
subfactors X of M . Let us stress that the stronger inequality pdX ≤ max zi holds true if
M is odd, but is in general false. We may have already pdM = 1+max zi, see for example
the first two examples in (1).

(5) If A is a linear Nakayama algebra and M is an indecomposable module, and X
a subfactor of M , then pdX is determined by charM , see 1.6. In 4.8 we will provide an
efficient algorithm for calculating pdX in terms of the coefficients of charM , using piles.

2. The ascent algebra of a projective characteristic sequence.

Recall that a linear Nakayama algebra A is said to be ascending provided for indecom-
posable projective modules P, P ′ with Hom(P, P ′) 6= 0, we have |P | ≤ |P ′|.

2.1. The left rotation λ. Assume that m ≥ 1. We define the left rotation λ
of projective characteristic sequences as follows: Let z = (z0, . . . , zm) be a projective
characteristic sequence of length m+ 1. Let

λ(z0, . . . , zm) =







(0, z0, . . . , zm−1) if zm = 0,
(z0, . . . , zm−1) if zm = 1,

(zm − 2, z0, . . . , zm−1) if zm ≥ 2.

2.2. Proposition. Let A,A′ be ascending Nakayama algebras with charP (ωA) =
charP (ωA′). Then A and A′ are isomorphic.

Proof, by induction on the rank n of A. If the rank of A is n = 1, then A = k and
ωA = P (ωA) = k, thus charP (ωA) = (0). If also A′ is a linear algebra with charP (ωA′) =
(0), then P (ωA′) has length 1. Thus ωA′ is projective. Since A′ is connected, we must
have A′ = k, thus A and A′ are isomorphic.

In general, in order to show that two linear Nakayama algebras A,A′ of rank ≥ 2
are isomorphic, it is convenient to write A = B[M ], A′ = B′[M ′] where B,B′ are linear
Nakayama algebras, such that M is an indecomposable B-module with topM = ωB, and
M ′ is an indecomposable B′-module with topM ′ = ωB′ . If we can show that B,B′ are
isomorphic, and that |M | = |M ′|, then A,A′ are isomorphic.

Thus, let us assume that A,A′ are ascending Nakayama algebras such that A has
rank n ≥ 2 and charP (ωA) = charP (ωA′) = z = (z0, . . . , zm). In particular, the A-
module P (ωA) and the A′-module P (ωA′) both have length m + 1, thus the A-module
M = radP (ωA) and the A′-module M ′ = radP (ωA′) both have length m. The Serre
subcategory in modA generated by the simple modules τ iωA with i ≥ 1 is of the form
modB, where B is an ascending Nakayama algebra of rank n − 1. Of course, M is a
B-module with topM = ωB and A = B[M ]. Similarly, the Serre subcategory in modA′

generated by the simple modules τ iωA′ with i ≥ 1 is of the form modB′ for some ascending
Nakayama algebra B′. The B′-module M ′ has topM ′ = ωB′ and A′ = B′[M ′].

Thus, it remains to show that B and B′ are isomorphic. We will show below that

(∗) charP (ωB) = λ z,
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and similarly, charP (ωB′) = λ z. Since the rank ofB is n−1, and charP (ωB) = charP (ωB′)
we know by induction that B is isomorphic to B′, as we want to show.

In order to verify (∗), three cases have to be distinguished.
First case: pdωA = 1, thus z = (z0, . . . , zm−1, 1) and therefore λ z = (z0, . . . , zm−1).

In this case radP (ωA) = P (ωB) and charP (ωB) = (z0, . . . , zm−1), thus charP (ωB) = λ z,
as required.

If pdωA ≥ 2, then radP (ωA) is a proper factor module of P (ωB). Since A is ascending,
we have |P (ωB)| ≤ |P (ωA)|, and therefore radP (ωA) = P (ωB)/ socP (ωB).

We consider now the second case: pdωA ≥ 2, and radP (ωA) is odd. In this case
socP (ωB) has to be even (since an indecomposable projective module has an even compo-
sition factor), thus charP (ωB) = (0, z0, . . . , zm−1) and by definition λ z = (0, z0, . . . , zm−1).
Thus, (∗) holds true also in this case.

Third case: pdωA ≥ 2, and radP (ωA) is even. Since pdωA ≥ 2, we see that
radP (ωA) is not projective. Since radP (ωA) is even, ωA is odd, thus zm = pdωA ≥ 3
and socP (ωB) = Ω2ωA has projective dimension zm − 2. It follows that charP (ωB) =
(zm − 2, z1, . . . , zm−1), but this is just λ z. �

2.3. Proposition. For any projective characteristic sequence z = (z0, . . . , zm), there
is a (necessarily unique) ascending algebra A = A(z) with charP (ωA) = z. The algebra
A(z) will be called the ascent algebra of z.
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Proof of Proposition. If z = (z0, . . . , zm) is a projective characteristic sequence with
zv = 0, let ǫz =

∑

i zi + v, this is a non-negative integer. We use induction on ǫz. The
smallest possible value for ǫz is 0, it occurs for z = (0), and A = k satisfies charP (ωA) =
(0). We assume now that ǫz, thus m ≥ 1.

Claim: If m ≥ 1, then ǫλ(z0, . . . , zm) < ǫ(z0, . . . , zm).
Namely, if zm = 0, then ǫλ(z0, . . . , zm) =

∑

i zi + 0 <
∑

i zi + m = ǫ(z0, . . . , zm).
If zm = 1, and zv is even, then ǫ(z0, . . . , zm) =

∑

i zi + v, whereas ǫ(z0, . . . , zm−1) =
∑m−1

i=0 zi + v =
∑

i zi + v − 1. Finally, if zm ≥ 2, and zv is even, then the even entry
of λ(z0, . . . , zm) has index v + 1, thus again ǫλ(z0, . . . , zm) = ǫ(zm − 2, z0, . . . , zm−1) =
∑

i zi − 2 + v + 1 =
∑

i zi + v − 1. This completes the proof of the claim.

By induction, there is the ascent algebra B = A(λ(z0, . . . , zm)) with last summit P ′

and ω′ = topP ′ = ωB . We have charP ′ = λ(z0, . . . , zm). We are going to construct A as
a one-point extension of B, namely either A = B[P ′] or A = B[P ′/ socP ′]. We denote
the extension vertex by ω = ωA, thus P = P (ω) has radical equal to P ′ or to P ′/ socP ′,
respectively. In both cases, with B also A is ascending (in case A = B[P ′], we have
|P ′| < |P |; in case A = B[P ′/ socP ′], we have |P ′| = |P |). Note that for any B-module
X , we have pdBX = pdAX and the indecomposable A-modules which are not B-modules
are factor modules of P .
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First, let zm = 1, thus λ(z0, . . . , zm) = (z0, . . . , zm−1). In this case, let A = A′[P ′].
Now radP = P ′ shows that the composition factors of P going upwards are those of P ′

followed by ω = P/P ′. Since pdω = 1, we see that charP = (z0, . . . , zm−1, 1), as we want
to show.

Next, let zm 6= 1. Let M = P ′/ socP ′ and A = B[M ]. The composition factors of P
going upwards are those of M followed by ω = P/M . In order to calculate charP , we have
to distinguish two cases.

If zm = 0, then the remaining entries zi with 0 ≤ i ≤ m − 1 are odd and charP ′ =
(0, z0, . . . , zm−1). Then charM = (z0, . . . , zm−1). The composition factors of P are those
of M and in addition ω. Since the composition factors of M are odd, it follows that ω has
to be even, therefore charP = (z0, . . . , zm−1, 0) = (z0, . . . , zm).

Now assume that zm ≥ 2 (and then zm has to be odd, since we deal with a projective
characteristic sequence). We have Ω2ω = ΩM = socP ′, thus pdω = pd(socP ′) + 2. But
pd(socP ′) = zm − 2, thus pdω = zm. Since pd(socP ′) is odd, M has an even composition
factor. Thus (z0, . . . , zm) is obtained from the sequence of numbers pdFiM , replacing the
even number by 0. In order to determine charP , we have to take the sequence of numbers
pdFiP , and replace the even number by 0. Since pdω is odd, we have to take the sequence
of numbers pdFiM , replace the even number by 0 and add at the end pdω. It follows that
charP = (z0, . . . , zm), as we want to show. �

Remark. The proof shows: Let A be a linear Nakayama algebra. If S is a simple
module, and |P (τS)| ≤ |PS|, then

λ charPS = charP (τS).
�

2.4. Corollary. If A is an ascending Nakayama algebra, A = A(char(P (ωA)).

Proof. For any projective characteristic sequence z, we have charP (ωA(z)) = z. Thus,
2.2 asserts that A is isomorphic to A(charP (ωA)). �

2.5. For h ≥ 1, the maps
A 7→ charP (ωA).

and z 7→ A(z) provide inverse bijections between
• the ascending algebras A of height h, and
• the projective characteristic sequences z of length h.

Proof. If we start with a characteristic sequence z and form A = A(z), then, by
construction charP (ωA(z)) = z. On the other hand, Corollary 2.3 asserts that A =
A(charP (ωA)). �

Let us describe the cases h = 1 and h = 2 in detail:

The only ascending algebra of height 1 is k. Similarly, there is just one projective
characteristic sequence of length 1, namely (0).

The ascending algebras of height 2 are the radical-square-zero Nakayama algebras
A of type An with n ≥ 2. The module P (ωA) has two composition factors, namely its
socle with projective dimension n − 2 and its top with projective dimension n − 1, thus
charP (ωA) = (0, n− 1) in case n is even, and charP (ωA) = (n− 2, 0) in case n is odd.
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3. The partial d-closure of a linear Nakayama algebra.

3.1. Let A be a linear Nakayama algebra and d a positive natural number. A simple
module S will be called d-closed provided S is torsionless or there is a module M with
socle S and pdM ≥ d.

The algebra A will be called d-closed provided all simple modules are d-closed. Also,
A will be called almost d-closed provided any simple module which is not d-closed is a
composition factor of P (ωA). And A will be called partially d-closed provided all compo-
sition factors of P (ωA) are d-closed. Thus, A is d-closed iff A is both almost d-closed and
partially d-closed.

3.2. Let A be a linear Nakayama algebra. The algebra B is said to be an extension
of A provided modA is a full subcategory of modB which is closed under submodules,
factor modules and projective covers. Note that in this case modA is also closed under
extensions, thus it is a Serre subcategory of modB; also, the simple B-modules which are
not A-modules are of the form τ−tωA with t ≥ 1.

An extension B of A is said to be descending provided

|P (ωA)| ≥ |P (τ−BωA)| ≥ |P (τ−2
B ωA)| ≥ · · · ,

thus provided pd τ−i
B ωA 6= 1 for all i ≥ 1.

3.3. Let A be a linear Nakayama algebra and d a positive natural number. The d-cliff
module of A is the module YA = P (ωA)/U , where U is the maximal submodule of P (ωA)
whose composition factors are d-closed. Obviously, the algebra A is partially d-closed iff
the d-cliff module of A is zero.

If the d-cliff module YA is non-zero, let Ed(A) = A[YA] be the one-point extension
using YA and call it the d-cliff extension of A. If A is partially d-closed, then we write
Ed(A) = A. If we iterate this procedure, we get a sequence A,Ed(A), E2

d(A), . . . , with all
algebras being descending extensions of A.

Proposition. Let A be a linear Nakayama algebra and d a positive natural number.
There is t ≥ 0 such that Et

d(A) is partially d-closed. If Et
d(A) is partially d-closed, we

write Cd(A) = Et
d(A) and call it the partial d-closure of A.

Proof. Recall that for any indecomposable module M , F(M) denotes the set of non-
zero subfactors. Let ||M ||d be the sum of the values pdN , with N ∈ F(M) and pdN ≤ d.

(a) Assume that the d-cliff module Y of A is non-zero. Let ωE be the extension vertex
of E = Ed(A), then

||P (ωE)/ socP (ωE)||d = ||Y ||d + |Y |.

Proof. Let P = P (ωE), thus radP = Y. Let M = Y/ socY and Z = P/ socP. Let Y be
the set of non-zero submodules of Y and Z the set of non-zero factor modules of Z. There
is the bijection Ω: Z → Y and we have pdΩN +1 = pdN , for N ∈ Z. By assumption, all
Y ∈ Y have projective dimension at most d− 1, thus all N ∈ Z have projective dimension
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at most d. We see that F(Y ) is the disjoint union of the sets Y and F(M), and that F(Z)
is the disjoint union of the sets Z and F(M).
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Since pdN = 1 + pdΩN for N ∈ Z, we see that

∑

N∈Z
pdN = |Y |+

∑

X∈Y
pdX,

therefore ||Z||d = |Y |+ ||Y ||d. �

(b) If Y is the d-cliff module, then ||Y ||d ≤ d|Y |(|Y |+ 1).

Proof. The set F(Y ) has cardinality 1
2 |Y |(|Y | + 1), and any summand of ||Y ||d =

∑

N pdN is bounded by d. �

Consider now a sequence of d-cliff extensions A, Ed(A), . . . , Et
d(A), say Ei

d(A) =
Ei−1

d (A)[Yi−1] for 1 ≤ i ≤ t, where Yi−1 6= 0 is the d-cliff module of Ei−1
d (A).

Let ω0 = ωA and let ωi = τ−i
B ω0 be the extension vertex for the extension Ei−1

d (A) ⊂
Ei

d(A). Then we have |P (ωi)| = |Yi−1|+1 and |P (ω0)| ≥ |P (ω1)| ≥ |P (ω2)| ≥ · · · . Assume
that we have equalities

|P (ω0)| = |P (ω1)| = · · · = |P (ωs)|,

thus |Yi| = |Y0| for 1 ≤ i < s. Applying (a) several times, we have

||Ys−1||d = ||Y0||d + (s− 1)|Y0|.

According to (b), we see that s is bounded. It follows that there is s > 0 such that
|Y0| > |Ys|. By induction, it follows that t has to be bounded. Thus there is t > 0 such
that the d-cliff module of Et

d(A) is zero. �

3.4. Proposition. Let A be a non-zero linear Nakayama algebra of global dimension
1 ≤ d(A) ≤ d. Let B be a descending extension of A. If B is d-closed and has global
dimension at most d, then B = Cd(A) and the global dimension of B is equal to d.

Proof, by induction on the number m of simple B-modules which are not A-modules.
If m = 0, then A = B is d-closed, thus, by definition, Cd(A) = A. Since d(A) ≥ 1, the
module ωA is not projective. Since ωA is d-closed, we have pdωA = d, thus the global
dimension of A = B is d.

Assume now that m ≥ 1. Let T = τ−BωA and M = radPB(T ). We claim that M is
the d-cliff module of A. First of all, M is a factor module of P (ωA), say M = P (ωA)/U ,
where U is a submodule of P (ωA). Since B is a descending extension of A, we have
|P (ωA)| ≥ |PB(T )|, therefore M is a proper factor module of P (ωA). In particular, no
composition factor of M is torsionless (as an A-module).
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We claim that the composition factors S of U are d-closed as A-modules. First of all,
there is the socle S = socU = socP (ωA). Of course, this module is torsionless as an A-
module, thus a d-closed simple A-module. Let S be different from socP (ωA). Then S is not
torsionless as a B-module. Since S is d-closed as a B-module, there is a B-module M with
socM = S and pdB M = d. Clearly, M has to be an A-module, and pdAM = pdB M = d.
This shows that S is d-closed as an A-module.

On the other hand, S = socM is not d-closed as an A-module. Namely, otherwise
there would exist an A-module N with socle S and pdN = d. But then N is a submodule
of PB(T ) and therefore pdB PB(T )/N = 1 + pdN = d + 1. But this contradicts the
assumption that the global dimension of B is at most d.

Altogether, we see that U is the maximal submodule of P (ωA) whose composition
factors are d-closed. This shows that M = P (ωA)/U is the d-cliff module of A.

Let modA′ be the Serre subcategory of modB generated by modA and the simple
module T . Then A′ = A[M ] = Ed(A) is a linear Nakayama algebra and B is a descending
extension of A. The number of simple B-modules which are not A′-modules is m − 1.
Thus, by induction B = Cd(A

′) = Cd(Ed(A)) = Cd(A). �

Corollary. Let B be a concave Nakayama algebra which is d-closed and has global
dimension at most d. Let P be a summit of B. Then B = CdA(charP ).

Proof. Let T = topP and modA the Serre subcategory of modB generated by the
simple modules τ iT with i ≥ 0. Since P is a summit of B, the algebra A is ascending and
the algebra B is a descending extension of A. By construction, P = P (ωA). According to
2.2, A = A(charP ). Thus B = Cd(A) = CdA(charP )). �

3.5. Let A be a linear Nakayama algebra and d a positive natural number. Here are
some properties of Cd(A).

(1) If X is an indecomposable Cd(A)-module, but not an A-module, then pdX ≤ d.

(2) If C = Cd(A) is a proper extension of A, then pdωC = d.

(3) If A is a non-zero algebra, then the global dimension of Cd(A) is the maximum of
d and of the global dimension of A.

(4) If A is concave, also Cd(A) is concave.

Proof. (1), (2) and (4) follow immediately from the definitions involved. (3) is a direct
consequence of (1) and (2). �

3.6. Proposition. Let A be a linear Nakayama algebra and d a positive natural
number. If A is almost d-closed, then Ed(A) is almost d-closed.

Proof. Let A be almost d-closed and Y the d-cliff module of A. Let E = Ed(A) = A[Y ]
with extension vertex ωE . Let P = P (ωA) with socle S and let P ′ = P (ωE) with socle S′.
We have to show that all simple modules T which are predecessors of S′ are d-closed in E.
The simple modules which are predecessors of S are d-closed in A, thus in E, since A is
almost d-closed. If T = S′, then T is torsionless in E, since it is the socle of P ′. Thus, it
remains to assume that T is a proper predecessor of S′ and a proper successor of S. The
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definition of Y implies that IT has a submodule of projective dimension at least d, thus
T is d-closed. �

Corollary. Let A be a linear Nakayama algebra and d a positive natural number. If
A is almost d-closed, then Cd(A) is d-closed. �

3.7. Finally, let us provide another characterization of the ascending algebras which
shows that ascending algebras are almost d-closed.

Lemma. A linear Nakayama algebra A is ascending iff any simple module is torsion-
less or a composition factor of P (ωA).

Proof. First, assume that A is ascending. Let S be a simple module which is not
torsionless. Then IS is not projective, thus |PIS| > |IS|. Assume that S is also not a
composition factor of P (ωA). Then top IS 6= ωA, thus there is a simple module T with
τT = top IS. Since IS is injective, we must have |IS| ≥ |PT |. Therefore |P (τT )| =
|PIS| > |IS| ≥ |PT |, but this contradicts our assumption that A is ascending.

Conversely, let A be a linear Nakayama algebra and assume that A is not ascending,
thus there is a simple module T with |P (τT )| > |PT |. We show that there is a simple
module S which is not torsionless and not a composition factor of P (ωA). Let X be the
factor module of P (τT ) with |X | = |PT |. Since |P (τT )| > |PT |, we see that X is a proper
non-zero factor module of an indecomposable projective module, thus not projective. On
the other hand, it follows from |X | = |PT |, that X is injective. Let S = socX. Then
X = IS. Since IS is not projective, S is not torsionless. Since top IS = τT for some
simple module T , we see that top IS 6= ωA, and therefore S is not a composition factor of
P (ωA). �

Corollary. Let A be an ascending Nakayama algebra and d a positive natural number.
Then A is almost d-closed, thus Cd(A) is d-closed.

Proof. Let A be an ascending Nakayama algebra. Then all the simple modules which
are not composition factors of P (ωA) are torsionless, thus d-closed. Therefore A is almost
d-closed. Corollary 3.5 shows that then Cd(A) is d-closed. �

4. The right rotation ρ (and memory piles).

In this section m ≥ 1 will be a fixed positive integer.

4.1. The rotation ρ. Let Zm be the set of m-tuples of integers with at most one
even entry; in particular, Z1 = Z. Note that the elements of Zm with non-negative entries
are just the characteristic sequences.

We define ρ = ρm : Zm → Zm (and call it the right rotation for Zm) as follows: for
z = (z1, . . . , zm) ∈ Zm, let

ρ z =

{

(z2, . . . , zm, z1+1), if z2, . . . , zm are odd,
(z2, . . . , zv−1, z1+1, zv+1, . . . , zm, zv+1), if v > 1 and zv is even.

(For m = 1, ρ(z) = z + 1 is just the addition by 1.) Note that if z1 is even, then ρ z has
only odd entries; otherwise, ρ z has an even entry (of course, just one).
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Clearly, ρ is bijective (thus invertible), and it is easy to write down the corresponding
formula for ρ−1. Let z = (z1, . . . , zm) ∈ Zm.

ρ−1z =

{

(zm−1, z1, . . . , zm−1), if z1, . . . , zm−1 are odd,
(zv−1, z1, . . . , zv−1, zm−1, zv+1, . . . , zm−1), if v < m and zv is even.

Lemma. Let z ∈ Zm be a characteristic sequence. Then ρ−1(z) has a negative entry
iff z is a projective characteristic sequence.

Proof. If z is projective, then zi = 0 for some i, thus the first entry of ρ−1z is −1 (and
all other entries are non-negative). If z is not projective, then all entries of z are positive,
thus all entries of ρ−1z are non-negative. �

4.2. Memory piles. A pile Γ of height h ≥ 2 is the Auslander-Reiten quiver of a
linear Nakayama algebra A with Kupisch series the form (1, 2, . . . , h−1, h, . . . , h). A pile
has a unique projective vertex R of length h− 1, it is called its radical. Similarly, it has a
unique injective vertex Y of length h− 1, it is called its cliff. If Γ has t summits, we may
label the simple modules of A by S1, . . . , St+h−1, with τSi = Si−1 for i ≥ 2; then ISt+1 is
the cliff module and the A-modules with socle St+1 form the cliff ray.

A memory pile is a pile with a memory function µ such that µ(x) = 0 for all summits
x (actually, we only need to assume that µ(x) = 0 for the first summit x).
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Serre subcategories which are piles play an important role in the sequel, in particular
the summit pile and the descent piles mentioned in 6.5.

Dealing with a Serre subcategory of a module category may lead to confusion. When-
ever it seems necessary, we add a corresponding subscript. If Γ is a pile, and x is a
non-projective vertex in Γ, we may write ΩΓx for the first syzygy of x in Γ, and πΓx for
the Auslander-Reiten translate of x in Γ. Note that for a memory pile (Γ, µ), and x a
non-projective vertex of Γ, we have µ(ΩΓM) = −1 + µ(M). Also, if (Γ, µ) is a memory
quiver, and x is a vertex of Γ, we may write charµ x for the characteristic sequence of x
with respect to µ.

4.3. Lemma (The module theoretic interpretation of ρ). If (Γ, µ) is a memory
pile with a single summit, with radical R and cliff Y, then ρ(charR) = charY.
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Proof. Let charR = (z1, . . . , zm).
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First, let z2, . . . , zm be odd. Then charY = (z2, . . . , zm, x) for some x. If z1 is odd,
then z1 = pd socR. Now Y = IR/ socR, thus pdY = 1 + pd socR = 1 + z1. This
shows that Y is even, therefore topY has to be even, and x = pdY = z1 + 1. If z1 is
even, then z1 = pdR. Now R = Ω topY , thus pd topY = 1 + pd topR is odd, therefore
x = pd topY = 1 + z1.

Second, assume that zv is even, where v > 1. Then zv = pdR. Since Ω topY = R, we
see that the last entry of char Y is zv + 1. We have Fi(Y ) = Fi+1(R) for 1 ≤ i < m. In
particular, Fv−1(Y ) = Fv(R) is even, therefore the entry of ρ(charR) with index v − 1 is
pdY = pdF1(R) + 1 = z1 + 1. The remaining entries are obtained by the obvious index
shift from entries of z. �

By induction on t, we obtain:

Corollary. Let (Γ, µ) be the memory pile with radical R and t summits. Let Y be its
cliff. Then charY = ρt charR. �

4.4. Shift-Lemma. For all characteristic sequences z ∈ Zm, we have

ρm+1(z) = z+ (2, . . . , 2).

Proof. Let Γ be the pile of height m+ 1 with m+ 1 summits. Let R be the radical of
Γ. We assume that (Γ, µ) is a memory pile with charµ R = z = (z1, . . . , zm).

Let Y be the cliff of Γ. Let charµ Y = (z′1, . . . , z
′
m). If zi is odd, then zi = pdFiR

and pdFiY = 2 + pdFiR is also odd, thus z′i = pdFiY = 2 + zi. If zi is even, then
pdFiR is even and zi = pdR. In this case, also pdFiY = 2 + pdFiR is even and
z′i = pdY = 2 + pdR = 2 + zi. Altogether, we see that z′i = 2 + zi for all i, thus
charY = charR + (2, 2, . . . , 2). �

Corollary. Let z = (z1, . . . , zh−1) and t ≥ 1. Then ρth(z) = z+ t(2, . . . , 2). �

Here is the pile Γ of height h with th summits and with radical R. The black squares
mark the vertices Yi = τ−ih

Γ R, the small circles are the vertices S1+ih = τ−ih
Γ (socR).
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4.5. The piles used in section 6. We will consider piles of height m+1 with radical
R, cliff Y , and s summits. In (1) and (2), we start with charR and calculate charY =
ρs charR. In (1′) and (2′), we start with charY and calculate charR = ρ−s char Y.

Let Γ be a pile with radical R, cliff Y and s summits.

(1) If charR = (0, c2, . . . , cm), t ≥ 0 and s = (m + 1)t+ 1, then, of course, the numbers
ci are odd. We have charY = (c2 + 2t, . . . , cm + 2t, 1 + 2t).

(1′) Let charY = (c′1, c
′
2, . . . , c

′
m), with all numbers c′i odd, let 0 ≤ t < 1

2c
′
i for all c′i and let

s = (m+ 1)t+ 1. Then charR = (c′m − 2t− 1, c′1 − 2t, . . . , c′m−1 − 2t).
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(2) If charR = (c1, . . . , cm), t ≥ 0 and s = (m+ 1)t, then charY = (c1 + 2t, . . . , cm + 2t).

(2′) Let char Y = (c′1, . . . , c
′
m), with all numbers c′i being odd. Let 0 ≤ t < 1

2
c′i for all i and

let s = (m+ 1)t. Then charR = (c′1 − 2t, . . . , c′m − 2t).

Proof: Assertion (2) is just the shift lemma 4.3. In order to establish (1), we first use
the definition of ρ which asserts that ρ(0, c2, . . . , cm) = (c2, . . . , cm, 1). Then, according
to (2), we have ρ(m+1)t(c2, . . . , cm, 1) = (c2 + 2t, . . . , cm + 2t, 1 + 2t). Altogether, we get
ρ(m+1)t+1(0, c2, . . . , cm) = (c2 + 2t, . . . , cm + 2t, 1 + 2t).

(2′) is again the shift lemma 4.4, but now formulated for ρ−1. It remains to prove
(1′). According to (2′), ρ−(m+1)t(c′1, . . . , c

′
m) = (c′1 − 2t, . . . , c′m − 2t). We have to apply

ρ−1 once more. We have ρ−1(c′1 − 2t, . . . , c′m − 2t) = (c′m − 2t− 1, c′1 − 2t, . . . , c′m−1 − 2t).
Altogether we see that charR = (c′m − 2t− 1, c′1 − 2t, . . . , c′m−1 − 2t). �

We will use these assertions in section 6 for a given concave algebra. The assertions
(1) and (1′) concern the “summit pile”, whereas the assertions (2) and (2′) concern the
“descent piles”, see 6.5.

4.6. Lemma. Let c1, . . . , cm be odd natural numbers. Then

ρm(c1, . . . , cm) = (cm + 1, c1 + 2, . . . , cm−1 + 2).

Proof. Let R be the radical, Y the cliff of Γ. Let Si = τ−i+1
Γ socR for 1 ≤ i ≤ 2m.

Let ρm(c1, . . . , cm) = (c′1, . . . , c
′
m).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...... ..............................................................................................................................

........ ........ ........ ........ ........ ........ ........ ........ ........ ........ .

...............................
...
...
...
..
...
...
...
...
...
...
..
........................................

...
...
...
...
...
...
...
...
..

R Y• �

�

0 0

S1 Sm Sm+1 S2m

We have ΩSm+1 = R, and pdR = c. Thus Sm+1 is even. It follows that c′1 = pdY.
Since ΩY = Sm, we have pdY = 1 + cm. According to 4.4, we have ρm+1(c1, . . . , cm) =
(c1 + 2, . . . , cm + 2), therefore c′i = ci−1 + 2 for 2 ≤ i ≤ m. �

4.7. Lemma. Let m ≥ 2. Let (z1, . . . , zm) be a characteristic sequence.
(a) Let zm be even. Then

ρm−1(z1, . . . , zm) = (zm−1 + 1, zm + 1, z1 + 2, . . . , zm−2 + 2).

(b) Let (z1, . . . , zm) be non-projective with z1 even. Then

ρ−m+1(z1, . . . , zm) = (z3 − 2, . . . , zm − 2, z1 − 1, z2 − 1).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .........
........
........
........
........
........
........
........
.......
........
........
........
........
........
........
....... ..............................................................................................................................

........ ........ ........ ........ ........ ........ ........ ........

...............................
...
...
...
...
...
..
...
...
...

R Y• �

�

0 0

22



Proof. We consider the pile (Γ) with m − 1 summits and radical R, where charR =
(z1, . . . , zm). Let Y be its cliff. We denote the simple objects by S1, . . . , S2m−1 with
τSi = Si−1 for 2 ≤ i ≤ 2m− 1. We have ΩSm+1 = R, ΩY = Sm−1 and Ω2Si+m−1 = Si−2

for 3 ≤ i ≤ m.
Since zm is even, we have charR = (z1, . . . , zm) = (pdS1, . . . , pdSm−1, pdR) and

charY = (pdY, pdSm+1, . . . , pdS2m−1) = (z′1, . . . , z
′
m).

Since ΩSm+1 = R, we have z′2 = pdSm+1 = pdR + 1 = zm + 1. Since ΩY = Sm−1,
we have z′1 = pdY = pdSm−1 + 1 = zm−1 + 1. Finally, for 3 ≤ i ≤ m, we have z′i =
pdSi+m−1 = zi−2 + 2, since Ω2Si+m−1 = Si−2. This yields (a).

Since ρ is invertible, ρ−m+1(z′1, . . . , z
′
m) = (z1, . . . , zm), and we have zi = z′i+2 − 2, for

1 ≤ i ≤ m− 2 and zm−1 = z′1 − 1, zm = z′2 − 1. This yields the assertion (b). �

4.8. An algorithm for determining the projective dimension of subfactors of
an indecomposable module. Let A be a linear Nakayama algebra and M an indecom-
posable module with charM = (z1, . . . , zm). We have seen in 1.6 that charM determines
the projective dimension of any subfactor of M , but we have refrained from writing down
an explicit formula.

Here we outline an effective algorithm in order to obtain the projective dimension of all
subfactors of M . There is no problem in case M is odd, since one just uses the maximum
principle. Thus, we can assume that M is even. So, let z = (z1, . . . , zm) and assume that
some zv is even. Let Γ be the pile of height m+1 with v summits. We want to determine
a memory function µ on Γ, with µ being obtained from z by applying ρ, ρ2, · · · , ρv. Let Y
be the cliff of Γ, thus

charY = ρvz = (zv+1, . . . , zm, zv+1, z1+2, . . . , zv−1+2).

In particular, all coefficients of ρvz are odd, thus the maximum principle yields immediately
the values µ(x) for all subfactors x of Y. We now use downward induction, in order to
calculate µ(x) for the vertices x in the ray with index i, where 1 ≤ i ≤ v.

Example. Let z = (5, 1, 4, 1). Here v = 3 (since z3 = 4 is even). Thus, we have to
deal with the pile of height 5 with 3 summits.
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We have labeled the pictures. Picture (1) shows the given data (namely, the entries of z
are the projective dimension of M itself and of 3 of the 4 composition factors of M , where

23



M is an indecomposable module with charM = z), whereas the last picture (7) shows
the projective dimension of all non-zero subfactors of M . The formula for ρ3z yields the
numbers exhibited in (2) (then we may forget the remaining numbers mentioned in (1);
they will systematically be recovered). We use the maximum principle in order to obtain
(3). Next, we calculate µ(x) for the vertices in the third ray, this yields (4). Then we
deal with the second ray, this yields (5), and finally with the first ray, this yields (6). The
information which we were aiming at is presented in picture (7).

How to get from picture (1) to picture (2)? We have mentioned that one may use the
formula for ρv. However, the following procedure seems to be more efficient: Note that
we present in (1) the characteristic of an even module M of length m. Let us label the
vertices at the lower boundary by S1, S2, . . . going from left to right. In (1) there is given
pdM as well as pdSi for m− 1 composition factors Si = Fi(M) of M , namely pdSi with
1 ≤ i < v as well as v < i ≤ m. Since ΩSm+1 = M , we obtain pdSm+1 = 1 + pdM (in
our example, this yields the entry 5 = 1 + pdM = pdS5 in (2)). For 1 ≤ i < v, we obtain
pdSm+i by the formula pdSm+1+i = 2 + pdSi, since Ω2Sm+1+i = Si (in our example,
this yields the numbers 7 = 2 + pdS1 = pdS6, and 3 = 2 + pdS2 = pdS7). In this way,
we know pdSi for all the indices i with v < i < m+1+ v, thus for m consecutive vertices
at the lower boundary. All these numbers pdSi are odd, thus we can use the maximum
principle in order to get picture (3).

Warning. On a first sight, this procedure can be interpreted as being purely formal!
On the other hand, the procedure also has a module theoretic interpretation. But we
should stress the following: In case we start with an A-module M and consider “a pile
Γ with radical M”, say with s ≥ 1 summits, this pile Γ usually cannot be realized by
A-modules, but we have to use B-modules for some related linear Nakayama algebra B.
Here is the recipe for obtaining such an algebra B. Let T be the top of M . Let modA0

be the Serre subcategory of modA generated by the simple modules τ tT , with t ≥ 0 ;
this yields a linear Nakayama algebra A0 and we may consider M = M0 as an A0-module
(note that M , considered as an A0-module, is injective). Second, we construct inductively
s one-point extensions as follows: we start with A1 = A0[M0], then we form A2 = A1[M1],
where M1 = τ−A1

M0, and so on, finally let B = As. Note that the operator Ω mentioned in
the previous paragraph is the syzygy functor Ω = ΩB in the category modB.

4.9. We have seen in Corollary 4 of 1.6: Let A be a linear Nakayama algebra and
M an indecomposable module with charM = (z1, . . . , zm). If X is a subfactor of M , then
pdX ≤ 1 + max zi.

The algorithm 4.8 provides a new proof: IfM is odd, then we even have pdX ≤ max zi.
Thus, let us assume that M is even. Say let Fv(M) be even for some 1 ≤ v ≤ m. Then we
have

ρv(z1, . . . , zm) = (zv+1, . . . , zm, zv + 1, z1 + 2, . . . , zv−1 + 2),

and all these numbers are odd, thus pdY ≤ 2 + max zi, where Y is the cliff of the pile Γ
with radical R and v summits. On the other hand, Fv(M) = ΩΓY, therefore pdFv(M) =
−1 + pdY ≤ 1 + max zi.

If X is a subfactor of M , then the set of composition factors of X is a subset of the
set of composition factors of M , and therefore pdX ≤ maxi Fi(M) ≤ 1 + max zi. �
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5. Higher Auslander algebras.

5.1. Let A be an artin algebra. By definition, the algebra A is a higher Auslander
algebra provided d(A) is finite and bounded by the dominant dimension of A. An artin
algebra which is a higher Auslander algebra is either semisimple (and then d(A) = 0,
and the dominant dimension is infinite), or else the global dimension and the dominant
dimension are non-zero, finite and equal.

Proof. Let A be an artin algebra which is a higher Nakayama algebra. If A is semisim-
ple, then d(A) = 0 and the dominant dimension t of A is infinite.

We assume now that d = d(A) > 0 and want to show that d = t. By assumption,
d ≤ t. Assume that d < t. Let

0 −→ AA
δ0−→ I0

δ1−→ I1 −→ · · ·
δd−→ Id −→ · · ·

be a minimal injective coresolution of AA. Since d < t, the modules Ii with 0 ≤ i ≤ d are
projective. In particular,

0 −→ Cok(δ0)
δ1−→ I1 −→ · · ·

δd−→ Id −→ Cok(δd) −→ 0

is a projective resolution of Cok(δd). Since d = d(A), we see that Cok(δ0) is projective.
Thus, δ0 splits. Since AA is a direct summand of I0, it is injective. This shows that A is
self-injective. A self-injective artin algebra of finite global dimension is semi-simple, thus
d(A) = 0, a contradiction. �

We are going to show that for a Nakayama algebra which is a higher Auslander algebra
A of global dimension d, any indecomposable moduleM is torsionless or satisfies pdM = d,
see Proposition 5.5.

In general, there is a converse implication, see Proposition 5.8: If A is an artin algebra
of finite global dimension d and of dominant dimension at least 1, and any indecomposable
module M is torsionless or satisfies pdM = d, then A is a higher Auslander algebra.

For the proof of Proposition 5.5, we need three preliminnary results, namely 5.2, 5.3,
and 5.4.

5.2. Lemma. Let A be an artin algebra with dominant dimension t ≥ 2. Let S be a
simple module. Then S is torsionless or Exti(S,A) = 0 for 1 ≤ i < t.

Proof. We calculate Exti(S,A) using a minimal injective coresolution of AA, say

0 → AA → I0 → · · · → It−1 → It → · · · .

Since the dominant dimension of A is at least t, the modules I0, . . . , It−1 are projective.
Now let 1 ≤ i < t. The group Exti(S,A) 6= 0 is the homology of the complex Hom(S, I•)
at the position i:

Hom(S, Ii−1) → Hom(S, Ii) → Hom(S, Ii+1).

Assume that Exti(S,A) 6= 0. Then, we must have Hom(S, Ii) 6= 0. Since 1 ≤ i < t, the
module Ii is projective, thus S is torsionless. �
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5.3. Lemma. Let A be an artin algebra which is a higher Auslander algebra of global
dimension d. If P is indecomposable projective, idP ∈ {0, d}. If I is indecomposable
injective, pd I ∈ {0, d}.

Proof. We show the first assertion, the second follows by duality. Let P be inde-
composable projective. Assume that 1 ≤ e = idP < d. We take a minimal injective
coresolution of P , say

0 → P → I0 → · · · → Ie−1 → Ie → 0.

Since the dominant dimension of P is d, all the modules I0, . . . , Ie are projective. In
particular, Ie is projective, thus the map Ie−1 → Ie is split epi. But this is impossible. �

5.4. Lemma (Madsen). Let A be a connected Nakayama algebra. Let S be a simple
module with pdS = pd IS. Then A has finite global dimension and pdM = pdS for all
modules M with socM = S.

Proof. Let M be a module with socM = S, thus IM = IS. According to [6], Theorem
3.6, pdS is finite. Thus A has finite global dimension (see for example [6], 3.7 (6)). In
particular, pdM is finite, thus even or odd. Now we use [6] 3.2 (a) and (b). If pdM is
odd, then pdS ≤ pdM and pdS is also odd. Thus pd IS is odd, and therefore M ⊆ IS
shows that pdM ≤ pd IS. Similarly, if pdM is even, then pdM ≥ pd IS and pd IS is
even. Thus pdS is even, and therefore S ⊆ M implies that pdS ≥ pdM. �

5.5. Proposition. Let A be a Nakayama algebra. If A is a higher Auslander algebra
of global dimension d, and M is an indecomposable module, then M is torsionless or
pdM = d.

Proof. We assume that A is an artin algebra which is a higher Auslander algebra of
global dimension d. If d = 0, then A is semi-simple, thus all modules are torsionless.

Thus, we can assume that d ≥ 1. Let M be an indecomposable module which is not
torsionless. We have to show that pdM = d. Since M is not torsionless, it cannot be
projective, thus 1 ≤ pdM ≤ d. If d = 1, then pdM = d. Thus, we can assume that d ≥ 2.

Let S = socM and I = IM = IS. Since M is not torsionless, also S is not torsionless.
Let e = pdS. Since S is not torsionless, it cannot be projective, thus e ≥ 1. Since the
global dimension of A is d, we have e ≤ d. Now ΩeS is projective and a minimal projective
resolution of S yields a non-zero element in Exte(S,ΩeS). This shows that Exte(S,AA) 6= 0.
Lemma 5.2 implies that e = d. According to 5.3, pd I = d. Thus 5.4 asserts that pdM = d.

Corollary. Let A be a Nakayama algebra. If A is a higher Auslander algebra of global
dimension d, then A is d-closed. �

5.6. We now want to look at the converse implication: We look at Nakayama algebras
such that any indecomposable module M is torsionless or satisfies pdM = d for some
fixed number d, or, equivalently, that any indecomposable module M with pdM 6= d is
torsionless.

Lemma. Let A be an artin algebra of dominant dimension at least 1. Let t ≥ 1.
Assume that any module of projective dimension smaller than t is torsionless. Then the
dominant dimension of A is at least t.
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Proof. If t = 1, nothing has to be shown. Thus, we may assume that t ≥ 2. Since the
dominant dimension of A is at least 1, the injective envelope of any projective module P
is projective, thus Σ1P has projective dimension at most 1, thus Σ1P is torsionless and
Σ2P has projective dimension at most 2. By induction, Σt−1P has projective dimension
at most t − 1, thus is torsionless, thus its injective envelope is projective (a torsionless
module N is a submodule of a projective module Q, thus the injective envelope of N is a
submodule, and therefore a direct summand, of the injective envelope of Q). In this way,
we see that the first t terms of a minimal injective coresolution of P are projective. �

5.7. Proposition. Let A be a artin algebra of finite global dimension and of dominant
dimension at least 1. Assume that any indecomposable module M is torsionless or satisfies
pdM = d. Then either d(A) = 0, thus A is semi-simple (and the global dimension is 0,
the dominant dimension is ∞), or else d(A) > 0 and both the global dimension d(A) and
the dominant dimension of A are equal to d.

In particular, A is a higher Auslander algebra.

Proof. We assume that every indecomposable module M is torsionless or satisfies
pdM = d. Let us show that the global dimension of A cannot be greater than d. Namely,
otherwise there exist an indecomposable module M0 with pdM0 = e > d. Then M0 has
to be torsionless, say a submodule of the projective module P . Then M1 = P/M0 satisfies
pdM1 = pdM + 1 = e + 1. Inductively, we obtain modules Mi with pdMi = e + i for
all i ≥ 0. Since by assumption A has finite global dimension, we obtain a contradiction.
Thus, d(A) ≤ d.

First, let us assume that all modules are torsionless, then the injective modules are
torsionless, thus A is selfinjective. A selfinjective algebra of finite global dimension is
semi-simple.

Second, we assume that there exists a module M which is not torsionless, thus, by
assumption pdM = d. Since M is not projective, d > 0. Since we know already that
d(A) ≤ d, we see that d(A) = d. It remains to be seen that the dominant dimension of A
is at least d. By assumption, the dominant dimension of A is at least 1.

According to Lemma 5.7, the dominant dimension of A is at least d. Let us assume
that the dominant dimension of A is greater or equal to d + 1. Then there is an exact
sequence

0 → AA → I0 → I1 → · · · → Id → Z → 0

with all modules Ii injective and projective. Since we know already that the global di-
mension of A is d, we see that the image of the map I0 → I1 is projective. But then
the embedding AA → I0 splits and A is self-injective. But then there is no module with
projective dimension d > 0.

5.8. Remark. Let A be an artin algebra of global dimension d ≥ 1. Then any
torsionless indecomposable module M satisfies pdM < d.

Proof. Let M be indecomposable and torsionless. If M is projective, pdM = 0. Thus
we can assume that M is not projective. Since M is torsionless, there is an embedding
u : M → P where P is a projective module. Since M is indecomposable and not projective,
we can assume that the image of u is contained in the radical of P . Thus P → Cok(u) is
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a projective cover, therefore M = ΩCok(u) and pdCok(u) = 1 + pdM. Since the global
dimension of A is d, we have pdCok(u) ≤ d, thus pdM < d. �

5.9. Remark: The ray property. The modules which are not torsionless form rays:
If the Nakayama algebra A is a higher Auslander algebra of global dimension d, then the
modules M in a fixed ray are either all torsionless with pdM < d or else have pdM = d.

There is also the converse: If A is a Nakayama algebra such that the modules M in
a fixed ray are either all torsionless with pdM < d or else have pdM = d, then A is a
higher Auslander algebra of global dimension d.

Proof. The first assertion follows directly from 5.5 and 5.8. Since the dominant
dimension of a Nakayama algebra is at least 1, the second assertion follows from 5.7. �

6. d-bound algebras and d-piles.

6.1. Lemma. Let A be a linear Nakayama algebra with global dimension at most d.
The following conditions are equivalent.
(i) A is d-closed.
(ii) pd I ∈ {0, d} for all indecomposable injective modules I.

If the (equivalent) conditions of Lemma are satisfied, then A is said to be d-bound.
According to Corollary 5.5, a higher Auslander algebra of global dimension d is d-bound.
But there are other d-bound algebras, see the last algebras exhibited in Remark 1.8 (1)
and (3).

Proof of Lemma. (i) implies (ii). We assume that A is d-closed and that I is in-
decomposable injective. If I is projective, then pd I = 0. Thus, let I be non-projective
and S = soc I. Since S is not torsionless, and A is d-closed, there is a module M with
socM = S and pdM ≥ d. Since the global dimension of A is bounded by d, we have
pdZ ≤ d = pdM for all subfactors Z of M . According to Lemma 1.7, I is pd-controlled
and pd I = d.

(ii) implies (i). Let S be simple, and I = IS. According to (ii), we have pd I = 0, thus
S is torsionless, or else pd I = d. This shows that A is d-closed. �

6.2. Lemma. Let (Γ, µ) be a memory pile with cliff Y. Let e be the maximum of
µ(Y ′), where Y ′ is a subfactor of Y. If X is not a subfactor of Y, then µ(X) < e.

Proof. Assume that X is not a subfactor of Y. If X is a summit, then µ(X) = 0.
Otherwise X = ΩX ′ for some vertex X ′ of the pile, which again is not a summit. By
induction, we see that X = ΩiY ′ for a subfactor Y ′ of Y and i ≥ 1. Therefore µ(X) =
µ(Y ′)− i < µ(Y ′) ≤ e. �

Definition of a d-pile. A memory pile (Γ, µ) is said to be a d-pile provided the
cliff module Y is pd-controlled and pdY = d (thus, provided d = µ(Y ) ≥ µ(Z) for all
subfactors Z of Y , or, equivalently, provided the maximum of the values µ(U), where U is
a submodule of the cliff Y , is d, and second, µ(Z) ≤ d for all non-zero subfactors Z of Y ).

Corollary. Let (Γ, µ) be a d-pile, with cliff module Y. If X is a vertex of Γ and not a
subfactor of Y , then µ(X) < d. �
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6.3. The radical of a d-pile. We are going to characterize the radicals of the d-piles.

Lemma. Let A be a linear Nakayama algebra and R an indecomposable module.
(a) The module R is the radical of a d-pile iff pdU < d for all submodules U of R and

pdX ≤ d for all subfactors X of R.
(b) If R is the radical of a d-pile (Γ, µ), then (Γ, µ) is uniquely determined by charR.

Proof. First, let (Γ, µ) be a d-pile and R its radical. Since µ(x) ≤ d for all vertices of
Γ, we have pdX ≤ d for all subfactors X of R. Also, if U is a submodule of R, then there
is z ∈ Γ such that U = ΩΓz and therefore pdU = −1 + µ(z) < d.

Conversely, let us assume that R is an indecomposable module of length m such that
pdU < d for all submodules U of R and that pdX ≤ d for all subfactors X of R. We want
to show that R is the radical of a d-pile. We may assume that topR = ωA. We consider
the one-point extension A[R], say with extension vertex S. Then radPS = R. Since
all submodules of R have projective dimension at most d − 1, the factor modules of PS
have projective dimension at most d. It follows that all subfactors of PS have projective
dimension at most d.

Let z = charPS and C = Cd(A(z)).We have |PS| = m+1. Let s be minimal such that
|P (τ−sS)| ≤ m, and let Q = P (τ−s+1S). Note that all the projective modules P (τ−iS)
with 0 ≤ i < s have length m + 1. The Serre subcategory generated by these modules
P (τ−iS) with 0 ≤ i < s is a pile Γ with s summits.

We claim that Γ is a d-pile. Since all subfactors of PS have projective dimension at
most d, the definition of Ed shows that the same is true for all subfactors of P (τ−iS) with
i ≥ 0. Also, let Y be the cliff of Γ, thus Y = Q/ socQ. Then there has to be a submodule
U of Y of projective dimension d, since C is d-closed and Y is not torsionless.

Finally, we have to show that Γ is the unique d-pile with radical R. We show this by
induction on the number of summits s of Γ. If s = 1, then Γ is the pile with radical R and
one summit. Now assume that s ≥ 2. Then R determines uniquely the module R′ = π−

Γ R,
and we have charR′ = ρ(charR). Since s ≥ 2, we see that R′ is the radical of a d-pile Γ′

with s− 1 summits, and by induction Γ′ is uniquely determined by R′. �

6.4. Proposition. Let A be a d-bound linear Nakayama algebra. Let S be a simple
module and s ≥ 1 such that

|PS| = |P (τ−S)| = · · · = |P (τ−s+1S)| > |P (τ−sS|.

Let C be the Serre subcategory of modA generated by the modules P (τ−iS) with 0 ≤ i < s.
Let Γ be the Auslander-Reiten quiver of C. Then (Γ, pdA) is a d-pile.
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Proof: Of course, Γ is a pile. Since A has global dimension at most d, we have µ(x) ≤ d
for all vertices x of Γ. Let Y be the cliff of Γ, thus Y = P (τ−s+1S)/ socP (τ−s+1S). Then
Y is not torsionless. Since A is d-closed, there is a submodule U of Y with pdU = d. �
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6.5. Dealing with a Nakayama algebra A, Serre subcategories which are piles play an
important role. In the present paper, we are mainly interested in concave algebras. Such
an algebra has a summit pile and usually several descent piles, defined as follows.

The summit pile. Let A be concave with first summit P and last summit Q. The
non-zero subfactors of the indecomposable injective modules which are successors of P and
predecessors of Q form a pile, the summit pile of A.
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Clearly, the cliff module of the summit pile is the principal cliff module.

The descent piles. Let A be concave. Let h be the height A. Let 0 ≤ i ≤ h−2. It is
easy to see that there is a unique indecomposable injective module Ii of length h−i−1 which
is not projective. The module I0 is the principal cliff module, and we have Ih−2 = ωA.

Assume that i ≥ 1 and that Ii is not a factor module of Ii−1. Then the non-zero
subfactors of the indecomposable injective modules which are successors of Ii−1/ soc Ii−1

and predecessors of Ii form a pile. These piles are called the descend piles of A.
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Corollary. Let A be a d-bound concave Nakayama algebra. Then the summit pile and
the descent piles are d-piles. �

6.6. Lemma. Let A be a d-bound concave Nakayama algebra and R an indecomposable
module. Let Γ be a d-pile with radical R.
(a) If R = radP , where P is the first summit, then Γ is the summit pile.
(b) If R is not injective, and R = I/ soc I, where I is indecomposable injective and not

projective, then Γ is a descent pile.

Proof. (a) Let R = radP with P the first summit. The summit pile is a d-pile with
radical R. According to 6.3 (a), there is at most one d-pile with a given radical.

(b) Assume that R is not injective, and R = I/ soc I, where I is indecomposable
injective and not projective. The corresponding descent pile with radical R is a d-pile.
According to 6.3 (a), there is at most one d-pile with a given radical. �

6.7. Remark. We have seen in 6.2: Given a pile (Γ, µ), the maximum of µ will be
obtained only on subfactors of the cliff. On the other hand, one should be aware that any
indecomposable non-projective module M occurs as the cliff of a uniquely determined pile,
namely of the summit pile of A(charM).
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7. The case d odd.

In this section, d is always an odd natural number.

First, we present a general property of odd modules over Nakayama algebras which
are higher Auslander algebras of odd global dimension.

Let A be a Nakayama algebra. An indecomposable module N will be said to be de-
creasing provided N is odd and charN is a decreasing sequence of odd numbers. An
indecomposable module M will be said to be plus-decreasing provided ρ charM is a de-
creasing sequence of odd numbers.

7.1. Proposition. Let A be a Nakayama algebra which is a higher Auslander algebra
with odd global dimension. Any odd indecomposable module is decreasing.

Proof. We assume that A is a Nakayama algebra which is a higher Auslander algebra
with odd global dimension d. Let us first show the following property:

(a) If M ′ is a non-zero submodule of an odd indecomposable module M , then pdM ′ =
pdM . We use downward induction on e = pdM . Since A has global dimension d, we have
e ≤ d. Since M is odd, we have pdM ′ = e′ ≤ e. If e = d, then M cannot be torsionless,
since otherwise IM is projective and pd IM/M = pdM + 1 > d. Thus, also M ′ is not
torsionless. According to 5.5, pdM ′ = d.

Now assume that e < d. Then, according to 5.5, M is torsionless, thus IM is projective.
There are non-split short exact sequences 0 → M → IM → ΣM → 0 and 0 → M ′ →
IM → ΣM ′ → 0. Since IM is projective, pdΣM = e + 1 and pdΣM ′ = e′ + 1. Since
e′ + 1 ≤ e + 1 < d, the modules ΣM and ΣM ′ both are again torsionless (and non-
projective), thus there are non-split short exact sequences 0 → ΣM → IΣM → Σ2M → 0
and 0 → ΣM ′ → IΣM ′ → Σ2M ′ → 0. Since IΣM and IΣM ′ both are projective,
pdΣ2M = e + 2 and pdΣ2M ′ = e′ + 2. Note that Σ2M ′ is a (non-zero) submodule of
Σ2M . By induction, e′ + 2 = pdΣ2M ′ = pdΣ2M = e + 2 and therefore e′ = e. This
completes the proof of (a).

There is the following consequence: (b) If S is a simple module and both S and τS
are odd, then pd τS ≥ pdS.

Namely, if S is simple and not projective, then there exists an indecomposable module
M of length 2 with topM = S. Now socM = τS and if both S and τS are odd, then the
maximum principle shows that also M is odd, with pdM = max{pdS, pd τS}. According
to (a), pdM = pd τS, thus pd τS = pdM ≥ pdS.

The assertion mentioned in the Proposition is an immediate consequence: Let M be
an odd indecomposable module, say with S = topM. Let charM = (c1, . . . , cm). By the
definition of a characteristic sequence, ci = pd τm−iS, for 1 ≤ i ≤ m. Since M is odd, the
maximum principle asserts that all the numbers ci are odd. According to (b), we have
pd τm−iS ≥ τm−i−1S for 1 ≤ i < m. But this just means that ci ≥ ci+1 for 1 ≤ i < m. �

Let us stress that the property described in Proposition 7.1 has some interesting con-
sequences (and actually is equivalent to these properties, see our proof of 7.1), namely: (a)
If M ′ is a non-zero submodule of an odd indecomposable module M , then pdM ′ = pdM .
And: (b) If S is a simple module and both S and τS are odd, then pd τS ≥ pdS.
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Corollary. Let d be odd. Let A be a Nakayama algebra which is a higher Auslander
algebra of global dimension d. Let I be indecomposable injective, not projective. Then
pd I = d and I is decreasing. �

7.2. Proposition. Let d ≥ c1 ≥ c2 ≥ · · · ≥ cu be odd numbers. Then the algebra
CdA(0, c1, . . . , cu, 1) is a concave higher Auslander algebra of global dimension d.

Proof. Let A = A(0, c1, . . . , cu, 1) and H = CdA. According to 2.3, the algebra A is
ascending. By definition, H is a descending extension of A, thus H is concave. We show
that the cliff modules of the summit pile and of the descent piles have projective dimension
d and decreasing characteristic sequences.

We start with the summit pile. Its radical R has charR = (0, c1, . . . , cu) with de-
creasing odd numbers c1 ≥ c2 ≥ · · · ≥ cu. Thus, let Γ be the pile with radical R, let
t = 1

2 (d − c1) and s = (u + 2)t + 1. Then, according to 4.5 (1), the cliff module Y of Γ
has charY = (c1 + 2t, . . . , cu + 2t, 1 + 2t), thus charY is decreasing. Now, all the entries
are odd, c1 + 2t = d, and the remaining entries of charY are bounded by d. Thus, we see
that Y is odd, thus pd-controlled. Also, pdY = d. It follows that Γ is a d-pile. According
to 6.6, Γ is the summit pile of H. In this way, we have shown that the cliff module of the
summit pile has projective dimension d and a decreasing characteristic sequence.

Since A is concave and of height h, there is a unique indecomposable injective non-
projective module Ii of length h − i for 1 ≤ i ≤ h − 1. We use induction on i in order to
show that Ii has projective dimension d and a decreasing characteristic sequence. We have
already seen that I1 has projective dimension d and that char I1 is a decreasing sequence.
Now assume we know that pd Ii = d and that char Ii is a decreasing characteristic sequence,
for some 1 ≤ i < h − 1. Let char Ii = (c1, . . . , ch−i). Of course, c1 = d. There are two
possibilities.

First case: Ii+1 is a factor module of Ii, thus Ii+1 = Ii/ soc Ii. In this case char Ii+1 =
(c2, . . . , ch−1) is a decreasing sequence and pd Ii+1 = c2. Since c2 is odd, pdU ≤ c2 for all
submodules U of Ii+1. Since A is d-closed and Ii+1 is not torsionless, we must have c2 = d.

Second, Ii+1 is not a factor module of Ii. Let Ri = Ii/ soc Ii. Then there is the pile Γ
with radical Ri and with s summits, where t = 1

2(d − c1) and s = (h − i)t. According to
4.5 (2), the cliff module of Γ is Yi with charYi = (c1 + 2t, . . . , ch−i + 2t). Again, we use
6.6. It asserts that Γ is the descent pile of A with radical Ri, thus Yi = Ii+1. We see that
char Ii+1 = (c1 + 2t, . . . , ch−i + 2t) is a decreasing sequence. Also, pd Ii+1 = c1 + 2t = d.

Let I be an indecomposable module which is injective and not projective. As we have
seen, pd I = d and char I is decreasing. Now, if M is an odd module with decreasing
characteristic sequence, then pdU = pdM for any non-zero submodule U of M . This
shows that any non-zero submodule of I has projective dimension d. According to 5.7, H
is a higher Auslander algebra of global dimension d. �

7.3. Lemma. Let A be a Nakayama algebra. Let M be an indecomposable module
which is plus-decreasing. Then socM is even. If U is a submodule of M , then pdU ≤
pd socM .

Proof. Let ρ charM = (c1, . . . , cm), then c1 ≥ · · · ≥ cm, and all these numbers are
odd. Let (Γ, µ) be the pile with a unique summit and radical M . The maximum principle
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asserts that µ(τ−γ M) = c1 and that µ(y) ≤ c1 for all vertices y which do not lie on the
first ray, thus µ(x) ≤ c1 − 1 for all vertices x on the first ray. Also, µ(τ−γ M) = c1 implies
that pd socM = c1 − 1. Altogether, we see: If U is a non-zero submodule of M , then
pdU ≤ c1 − 1 = pd socM. �

7.4. Proposition. Let d be odd and m ≥ 1. Let A be a concave Nakayama algebra
of height m+ 1 which is d-bound. The following assertions are equivalent:
(1) A is a higher Auslander algebra of global dimension d.
(2) A has a decreasing module Y of length m with pd topY = 1.
(2′) A has a decreasing module Y ′ of length m.
(2′′) A has an injective decreasing module Y ′′ of length m.
(3) A has a projective plus-decreasing module R of length m.
(3′) A has a plus-decreasing module R′ of length m.
(3′′) A has a plus-decreasing module R′′ of length m with pd socR′′ = d− 1.
(4) A = CdA(0, c1, . . . , cm−1, 1) with odd numbers ci such that d ≥ c1 ≥ c2 ≥ · · · ≥ cm−1.

For A a concave Nakayama algebra of height m+1 which is a higher Auslander algebra
of global dimension d, the assertions (2) to (3′′) concern the indecomposable modules N of
length m such that N or τ−N is odd. Here are sketches which show the possible positions
of such modules N = Y ′ of N = R′:
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Proof of Proposition. We assume that A is a concave Nakayama algebra of height
m+ 1, that A is d-closed and has global dimension at most d.

(1) implies (2′′). Here we assume in addition that A is a higher Auslander algebra
of global dimension d. Let Y ′′ be the principal cliff module. Then Y ′′ is indecomposable
injective and not projective. Thus Y ′′ is decreasing by Corollary 7.1.

(2′′) implies (2′). Trivial.

(2′) implies (2): Proof. Let Y ′ be a decreasing module of length m. Let (c′1, . . . , c
′
m)

be the characteristic of Y ′. Then Y ′ is odd and c′1 ≥ c′2 ≥ · · · ≥ c′m. Let t = 1
2 (c

′
m − 1),

thus t is an integer with 0 ≤ t < 1
2
c′i for all c′i. Let s = (m + 1)t. We consider the

pile Γ with s summits and cliff Y ′. Let Y be its radical. According to 4.5 (2), charY =
(c′1 − 2t, . . . , c′m − 2t) and c′m − 2t = 1, by definition of t. This shows that Y is decreasing
with pd topY = 1.

(2) implies (3): Since Y is odd, Y is not projective. Let R = τY. Then R is inde-
composable, not injective, and Y = τ−R is decreasing, thus R is plus-decreasing. Also,
R = radPY. Since pd topY = pd topPY = 1, we see that R is projective.

(3) implies (3′). Trivial.
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(3′) implies (3′′): Here we use again the shift lemma. Let R′ be plus-decreasing of
length m. Let e = pd socR′. According to Lemma 7.3, all submodules U of R′ have
pdU ≤ e. Let t = 1

2 (d−1−e) and s = (m+1)t. Let (Γ, µ) be the pile with s = 2t summits
and radical R′. Now A is d-closed and has global dimension at most d. Since the height of
A is m+1 and the length of R′ is m, we see that Γ is part of the Auslander-Reiten quiver
of A. It follows that R′′ = τ−sR′ is indecomposable with charR′′ = ρsR′. The shift lemma
asserts that R′′ is plus-decreasing and that pd socR′′ = e+ 2t = d− 1.

(3′′) implies (2′′): Let R′′ be a plus-decreasing module of length m with pd socR′′ =
d − 1. Let ρ charR′′ = (c1, . . . , cm), thus c1 ≥ · · · ≥ cm are odd numbers. Let (Γ, µ)
be the pile with a unique summit and radical R′′. The maximum principle asserts that
µ(τ−µ R′′) = c1, thus c1 = 1+ pd socR′′ = d. Since A is d-closed, R′′ is not injective. Since
A has height m+ 1 and R′′ has length m, the injective envelope of R′′ has length m+ 1.
As a consequence, Y ′′ = τ−R′′ is the cliff of Γ and charY ′′ = ρ− charR′′ = (c1, . . . , cm) is
decreasing and pdY ′′ = d. Since the global dimension of A is at most d, the module Y ′′

has to be injective.

(2) implies (4). As in the proof that (2) implies (3), we consider the projective cover
PY of Y. This is a summit, and since R = radPY is projective, PY is the first summit. Let
modB be the predecessors of topP. This is an ascending algebra, namely B = A(P ). Since
C is a concave higher Auslander algebra of global dimension d, it follows that C = Cd(B).
On the other hand, let charY = (c1, . . . , cm). Since Y is odd, we must have charP =
(0, c1, . . . , cm). As we know, d ≥ c1 ≥ c2 ≥ · · · ≥ cm = 1.

(4) implies (1). This is 7.2. �

7.5. Proof of Theorems 1, 2, and 3. First, let d ≥ c1 ≥ · · · ≥ cu be odd numbers
and H = Hd(c1, . . . , cu) = CdA(0, c1, . . . , cu, 1). Now A(0, c1, . . . , cu, 1) is ascending, thus
CdA(0, c1, . . . , cu, 1) is concave. The equivalence of (4) and (1) in 7.4 yields Theorems 1
and 2.

Let P be the first summit of H and R = radP . By construction, we have charP =
(0, c1, . . . , cu, 1) and charR = (0, c1, . . . , cu). If u = 0, then the Auslander-Reiten quiver
of H is just the pile of height 2 with d summits, and charQ = (0, d). Thus, we assume
that u ≥ 1. Let t = 1

2 (d − c1) and s = (u + 2)t. The shift lemma asserts that τ−sR
has characteristic (2t, c1 + 2t, . . . , cu + 2t). It follows that Y = τ−s−1R has charY =
ρ char τ sY = (c1 + 2t, . . . , cu + 2t, 2t + 1). Of course, Y is the principal cliff module and
its projective cover Q (the last summit) has charQ = (0, c1 + 2t, . . . , cu + 2t, 2t+ 1). �

7.6. The characterizations presented in 7.4 refer to the existence of an indecomposable
module of length h − 1, where h is the height of the algebra. Actually, it is sufficient to
assume the existence of a corresponding sequence of simple modules:

Proposition. Let A be a concave Nakayama algebra of height h and let d be an odd
integer.

First, let A be a higher Auslander algebra with global dimension d. Then A is d-closed.
If S is the top of the principal cliff module, then d ≥ pd τh−2S ≥ · · · ≥ pd τS ≥ pdS are
odd numbers.
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Conversely, assume that A is d closed and that there is a simple module S such that
d ≥ pd τh−2S ≥ · · · ≥ pd τS ≥ pdS are odd numbers. Then A is a higher Auslander
algebra with global dimension d.

Proof. First, assume that A is a higher Auslander algebras of odd global dimension
d and height h. According to Corollary 5.5, A is d-closed and there is an indecomposable
module M with charM = (c1, . . . , ch−1), where d ≥ c1 ≥ · · · ≥ ch−1 is a sequence of odd
numbers. Let S = topM . Then pd τ iS = ch−1−i for 0 ≤ i ≤ h − 2. These numbers are
odd and bounded by d.

Conversely, assume that A is d-closed and has height h, with a simple module S such
that

d ≥ pd τh−1S ≥ · · · ≥ pd τS ≥ pdS

are odd numbers. According to 1.1 (4), we have |PS| ≥ h. Since h is the height of A, we
have |PS| = h. Let Y = PS/ socPS. Then charY = (c1, . . . , ch−1) with d ≥ c1 ≥ · · · ≥
ch−1, thus 7.4 asserts that A is a higher Auslander algebra of global dimension d. �

8. The case d even.

In this section, d always will be even.

8.1. Proposition. Let A be a Nakayama algebras which is a higher Auslander algebra
with even global dimension.
(1) There is no chain P1 ⊂ P2 ⊂ P3 of indecomposable projective modules.
(2) There is no composition I1 → I2 → I3 of proper epimorphisms between indecomposable

injective modules.

Proof. We show the second assertion (2); the first one follows by duality. We assume
that A is a higher Auslander algebra with global dimension d being even and that there
is a composition I1 → I2 → I3 of proper epimorphisms between indecomposable injective
modules. Then I2 and I3 are not projective. We may assume that the kernel S of I2 → I3
is simple. Then τ−S is the socle of I3. Both modules S and τ−S are not torsionless, thus
pdS = d = pd τ−S, according to 5.5. In particular, both module S, τ−S are even. This is
a contradiction to 1.2 (1). �

8.2. The indecomposable module Y is called plus-strictly-increasing provided charY =
(e, c2, . . . , cm) with e even and c2 < c3 < · · · < cm < e, or, equivalently, provided ρ charY
has strictly increasing odd entries. The indecomposable module R is called minus-strict-
increasing provided charR = (c1, . . . , cm−1, e) with e even and e − 1 < c1 < · · · < cm−1,
or, equivalently, provided ρ−1 charR has odd strictly increasing entries (since we allow
that e = 0, the first entry of ρ−1 charR can be negative). Note that a simple module is
plus-strictly-increasing iff it is even iff it is minus-strictly-increasing.

8.3. Proposition. Let d be even. Let A be a concave Nakayama algebra which is
a higher Auslander algebra of global dimension d. Let I be indecomposable injective, not
projective and of length at least 2. Then I is plus-strictly-increasing with pd I = d.

Proof. Note that soc I is not torsionless, therefore 5.5 asserts that pd soc I = d. Since
soc I is even, N = I/ soc I has to be odd.
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We use induction on |I| in order to show that charN is strictly increasing. If |I| = 2,
nothing has to be shown. Thus, let m = |I| ≥ 3. Let charN = (c2, . . . , cm). Thus
pdN = c = max ci.

Let Γ be the descent pile with radical N . Let s be the number of summits of Γ.
Let us denote the simple modules which belong to Γ by S1, S2, . . . , Ss+m−1, going from
left to right. According to 5.5, we have pdSi < d, for 1 ≤ i ≤ s, and pdSs+1 = d. The
characteristic of N asserts that pdSi = ci+1 for 1 ≤ i < m and we have pdSm = c+1, since
ΩSm = N . For i > m, we have Ω2Si = Si−m, thus pdSi = 2 + pdSi−m. It follows that
pdSi is even iff m divides i. Since pdSs+1 = d is even, we must have s+ 1 = (t+ 1)m for
some t ≥ 0. Let Y be the cliff module of Γ, thus char Y = ρs(c2, . . . , cm) and s = tm+m−1.
According to the shift lemma, ρtm charN = charN + t(2, . . . , 2) = (c′2, . . . , c

′
m). We use

Lemma 4.6 and get

charY = ρs(c2, . . . , cm) = ρm−1(c′2, . . . , c
′
m)

= (c′m + 1, c′2 + 2, · · · , c′m−1 + 2)

= (cm + 2t+ 1, c2 + 2t+ 2, . . . , cm−1 + 2t+ 2).

The first coefficient cm+2t+1 is even, thus equal to pdY = d. Since the global dimension
of A is d, all the coefficients are bounded by d, thus for 2 ≤ i ≤ m, we have ci + 2t+ 2 ≤
d = cm + 2t+ 1 < cm + 2t+ 2, and therefore ci < cm.

Since Γ is a descend pile of A, the module Y is injective and not projective. Since |Y | =
|N | − 1, we know by induction that Y/ socY is odd with strictly increasing characteristic
sequence. Now char(Y/ socY ) = (c2 + 2t + 2, . . . , cm−1 + 2t + 2), thus c2 < · · · < cm−1.
Since we know already that cm−1 < cm, we see that charN is strictly increasing.

Altogether, we see that char I = (d, c2, . . . , cm) with c2 < · · · < cm < d. �

8.4. Lemma. Let A be a Nakayama algebra of height m+ 1.
(a) If Y is an indecomposable module of length m which is plus-strictly-increasing, then

τm−1Y is minus-strictly-increasing.
(b) If R is an indecomposable module of length m which is minus-strictly-increasing, then

τ−m+1R is plus-strictly-increasing or zero.
(c) Let Y be an indecomposable module which is plus-strictly-increasing. If U is a non-zero

submodule of Y , then pdU = pdY. If Z is a subfactor of Y , then pdZ ≤ pdY. In
particular, Y is pd-controlled.

The relationship between the modules R and Y considered in (a) and (b) is seen in
the following picture (it is important that topR = socY is even):
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Proof of Lemma. For the proof of (a) and (b), we use Lemma 4.7.
(a) We assume that Y is an indecomposable module of length m which is plus-strictly-

increasing. Thus, charY = (e, c2, . . . , cm) with e > 0 even and c2 < c3 < · · · < cm < e.
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Then 4.7 (b) asserts that ρ−m+1 charY = (c3 − 2, . . . , cm − 2, e − 1, c2 − 1). Since c2 is
odd, c2 − 1 is even, and we have c2 − 2 < c3 − 2 < · · · < cm − 2 < e− 1. It remains to be
seen that char τm−1Y = ρ−m+1 charY. But, by assumption, pdY = e > 0, thus Y itself is
not projective, and for 1 ≤ i ≤ m− 2 we have pd τ iY = cm−i − 1 > c1 > 0, therefore also
τ iY is not projective.

(b) Assume that R is an indecomposable module of length m which is minus-strictly-
increasing with charR = (c1, . . . , cm−1, e). According to 4.7 (a), ρm−1R = (cm−1 + 1, e+
1, c1 +2, . . . , cm−2 +2). Since cm−1 is odd, cm−1 +1 is even and we have e+1 < c1 +2 <
· · · < cm−2 + 2 < cm−1 + 1. If τ−m+1R is non-zero, then char τ−m+1R = ρm−1R.

(c) Again, let Y be plus-strictly-increasing. Let char Y = (e, c2, . . . , cm), thus ρ charY =
(c2, . . . , cm, e + 1). Let (Γ, µ) be the memory pile with radical Y and a unique summit,
let Y ′ be the cliff of Γ. Since e + 1 ≥ ci for 2 ≤ i ≤ m, and these are odd numbers, the
maximum principle asserts that µ(z) = e + 1 for all all non-zero factor modules z of Y ′,
thus µ(U) = e for all non-zero submodules U of Y. Also, if Z is a subfactor of Y , and not
a submodule of Y, then Z is a subfactor of Y/ socY. Since Y/ socY is odd with projective
dimension cm, it follows that pdZ ≤ cm < e. �

8.5. Lemma. Let d be even and u ≥ 1. Let c1 < c2 < · · · < cu be odd numbers
bounded by d. Let A = CdA(c1, . . . , cu, 0, 1).
(a) Let t = 1

2
(d−cu−1). Then t ≥ 0 and A has (u+2)t+u summits. If Y is the principal

cliff of A, then char Y = (d, 1 + 2t, c1 + 2t+ 2, . . . , cu−1 + 2t+ 2).
(b) Let I be an indecomposable module which is injective and not projective. Then I is

plus-strictly-increasing with pd I = d.
(c) A is a concave higher Auslander algebra of global dimension d.

Proof. Let A = CdA(c1, . . . , cu, 0, 1).

(a) Let P be the first summit, and R = radP . Thus charR = (c1, . . . , cu, 0). Let
t = 1

2
(d−cu−1) and s = (u+2)t+u. Let (Γ, µ) be the pile with radical R and s summits.

Note that R is minus-strictly-increasing, thus we can use 4.7 (see also 8.4). According
to 4.7 (a), we have x = ρu charR = (cu + 1, 1, c1 + 2, . . . , cu + 2), thus x is plus-strictly-
increasing with µ(x) = cu + 1. The shift lemma 4.4 shows that ρs charR = ρ(u+2)tx =
(cu +1+2t, 1+ 2t, c1 +2+2t, . . . , cu +2+2t). By definition of t, we have cu +1+2t = d.
Thus, y = ρs(charR) is plus-strictly-increasing and µ(y) = d. This shows that Γ is a d-pile.
According to 6.6, we have constructed the summit pile of A. Note that y is the principal
cliff of A.

(b) Let Ii be the indecomposable injective non-projective module which has length
u+ 1− i, where 0 ≤ i ≤ u (these are all the indecomposable injective modules which are
not projective). We show by induction on i that Ii is plus-strictly-increasing and pd Ii = d.

The module I0 is just the principal cliff-module, thus (a) shows that I0 is plus-strictly-
increasing and that pd I0 = d.

Now, let 1 ≤ i ≤ u. Let Ri = Ii−1/ soc Ii−1. We want to construct the descent
pile with radical Ri and cliff module Ii. Since Ii−1 is plus-strictly-increasing, we have
charRi = (z1, . . . , zm) with odd numbers z1 < · · · < zm (here, m = |Ri| = u+1−i, but this
is not relevant). Of course, all zi < d; let t = 1

2(d− zm). We construct the pile (Γ, µ) with
radical Ri and s = (m+1)t+m summits. According to 4.6, we have x = ρm(z1, . . . , zm) =
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(zm + 1, z1 + 2, . . . , zm−1 + 2). Note that x is plus-strictly-increasing and µ(x) = zm + 1.
According to the shift lemma 4.4, y = ρs(charR) = ρ(m+1)t+m(charR) = ρ(m+1)tx is
also plus-strictly-increasing, and µ(y) = zm + 1 + 2t = d. This shows that Γ is a d-pile.
According to 6.6, we have constructed the descent pile of A with radical Ri, thus with cliff
module Ii = y. As we have shown, Ii is plus-strictly-increasing and pd Ii = d.

(c) If M is indecomposable and not torsionless, then IM is indecomposable, injective
and non-projective, thus equal to Ii for some 0 ≤ i ≤ u. According to (b), Ii is plus-
strictly-increasing with pd Ii = d. According to Lemma 8.4 (c), we have pdM = d, since
M is a non-zero submodule of IM . According to 5.7, A is a higher Auslander algebra of
global dimension d. �

8.6. Proposition. Let d be even and m ≥ 2. Let A be a concave Nakayama algebra
of height m+ 1 which is d-bound.

The following assertions are equivalent:
(1) A is a higher Auslander algebra of global dimension d.
(2) A has a plus-strictly-increasing module Y of length m with pd soc(Y/ socY ) = 1.
(2′) A has a plus-strictly-increasing module Y ′ of length m.
(2′′) A has a plus-strictly-increasing module Y ′′ of length m which is injective.
(3) A has a minus-strictly-increasing module R of length m which is projective.
(3′) A has a minus-strictly-increasing module R′ of length m.
(3′′) A has a minus-strictly-increasing module R′′ of length m with pd topR′′ = d.
(4) A = CdA(c1, . . . , cm−1, 0, 1) with odd numbers ci such that c1 < c2 < · · · < cm−1 < d.

There is also the following condition:

(5) A has an odd indecomposable module N of length m with charN strictly increasing.

It implies the equivalent conditions (1) to (4), but the converse is not true.

For A a concave Nakayama algebra of height m+1 which is a higher Auslander algebra
of global dimension d, the assertions (2) to (3′′) concern the indecomposable modules N of
length m which are plus-strictly-increasing or minus-strictly-increasing. Here are sketches
which show the possible positions of such modules N = Y ′ of N = R′:
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Proof of Proposition. We assume that A is a concave Nakayama algebra of height
m+ 1 which is d-closed and has global dimension at most d.

(1) implies (2′′). Here, we assume in addition that A is a higher Auslander algebra of
global dimension d.
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Let Y ′′ be the principal cliff module. It has length m and is indecomposable, injective
and not projective. Thus Y ′′ is plus-strictly-increasing, see 8.3.

(2′′) implies (2′). Trivial.

(2′) implies (2). Let Y ′ be plus-strictly-increasing of lengthm with char Y ′ = (z′1, . . . , z
′
m).

Let t = 1
2
(z′2 − 1) and s = (m+ 1)t. We consider the pile with cliff Y ′ and s summits. Let

Y be its radical. The shift lemma asserts that char Y = char Y ′ − 2t(1, . . . , 1), thus Y is
plus-strictly-increasing with charY = (z′1 − 2t, . . . , z′m − 2t), where z2 = z′2 − 2t = 1.

The equivalences of (2) and (3), of (2′) and (3′) as well as of (2′′) and (3′′) are given
by Lemma 8.4.

(4) implies (3). Trivial.

(3) implies (4). We assume that (3) holds. Let charR = (c1, . . . , cm−1, 0). Clearly, A
is a descending extension of A(c1, . . . , cm−1, 0, 1) and c1 < c2 < · · · < cm−1 < d. According
to Lemma 8.5 (c), A(c1, . . . , cm−1, 0, 1) has global dimension at most d. By assumption,
A is d-closed, Also, A is a descending extension of A(c1, . . . , cm−1, 0, 1). It follows from
Proposition 3.4 that A = CdA(c1, . . . , cm−1, 0, 1).

(4) implies (1): see Lemma 8.5.

Finally, let us deal with condition (5). If we assume that there exists an odd indecom-
posable module of length m with charN strictly increasing, then N is not projective and
τN is plus-strictly-increasing, thus the condition (3′) is satisfied.

However there are many concave higher Auslander algebras with even global dimension
and height m + 1, which have no odd indecomposable module of length m, for example
H4(3) or H4(1, 3). �

8.7. Proof of Theorems 1′, 2′, and 3′. Let c1 < · · · < cu be odd numbers bounded
by d and let H = CdA(c1, . . . , cu, 0, 1). According to 8.5, H is a concave higher Auslander
algebra of global dimension d and according to 8.6 any such algebra is obtained in this
way.

Let P be the first summit of H, and R = radP . By construction, we have charP =
(c1, . . . , cu, 0, 1) and charR = (c1, . . . , cu, 0). Let Q be the last summit and Y = Q/ socQ.
We have calculated charY in 8.5 (a). It follows that pd socQ = d− 1, since socQ = ΩY.
In this way, we obtain the explicit form of charQ as mentioned. �

8.8. The characterizations presented in 8.5 refer to the existence of indecomposable
modules of length h − 1, where h is the height of the algebra. Actually, it is sufficient to
assume the existence of corresponding sequences of simple modules.

Proposition. Let d be even and m ≥ 2. Let A be a concave Nakayama algebra of
height m+ 1 and global dimension d.

Let A be a higher Auslander algebra. Then A is d-closed. If S is the top of the principal
cliff module and zi = pd τ iS with 0 ≤ i ≤ m − 1, then the numbers z0, . . . , zm−2 are odd,
zm−1 is even, and zm−2 < zm−2 < · · · < z0 < zm−1.

Conversely, assume that A is d-closed and that there exists a simple module S such that
the numbers zi = pd τ iS with 0 ≤ i ≤ m− 1 satisfy the following conditions: z0, . . . , zm−2

are odd, zm−1 is even, and zm−2 < zm−2 < · · · < z0 < zm−1. Then A is a higher Auslander
algebra.
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Proof. First, we assume that A is a higher Auslander algebra. According to Corollary
5.5, A is d-closed. Let Y be the principal cliff module and S its top. According to 8.4 (b),
Y is plus-increasing and pdY = d.

Let charY = (z1, . . . , zm). Since pdY = d, Lemma 1.4 (5) asserts that zi = pdFm−i(M)
for all i. But Fm−i(M) = τ iS, thus zi = pd τ iS. Since Y is plus-increasing, we have
zm−2 < · · · < z0 < zm−1. Since pdY = d is even, one of the numbers zi is equal to pdY,
thus equal to d. Now for all j, we have zj ≤ d, therefore zm−1 = d. Since only one of
the numbers zj is even, all other are odd, thus the numbers z0, . . . , zm−2 are odd. This
completes the proof of the first part.

For the converse, we assume that A is d-closed and that there exists a simple module
S such that the numbers zi = pd τ iS with 0 ≤ i ≤ m− 1 satisfy the following conditions:
z0, . . . , zm−2 are odd, zm−1 is even, and zm−2 < zm−2 < · · · < z0 < zm−1.

According to 1.1 (4), we have |PS| ≥ m. If we would have |PS| = m, then socPS =
τm−1S. Thus pd socPS = zm−1 and therefore pd(PS/ socPS) = zm−1 + 1, whereas
the maximum principle asserts that pd(PS/ socPS) = z0, a contradiction. This shows
that |PS| = m + 1. Let Y = PS/ socPS. Then Y is plus-strictly-increasing (with
charY = (zm−1, . . . , z0)), thus condition (2′) of 8.5 is satisfied. �

9. Final remark: Parity.

The paper shows that the higher Auslander algebras A with global dimension d(A)
have a quite extreme homological behavior, and that the extreme conditions satisfied by
higher Auslander algebras A depend on the parity of d(A): they are of completely different
nature, depending on whether d(A) is even or odd.

Let A be a higher Auslander algebra. Let I be indecomposable injective. Then pd I ∈
{0, d(A)}. For d even, there are many Nakayama algebras with pd I ∈ {0, d} for all
indecomposable injective modules (for example, this happens always, if the Kupisch series
is of the form (2m, 2m+ 1), but for m ≥ 2, these algebras have infinite global dimension),
whereas for d odd, this condition implies that A has finite global dimension.

Similarly, if A is a higher Auslander algebra and S is simple, then S is torsionless or
else pdS = d(A). For d odd, there are many Nakayama algebras such that any simple
module is torsionless or has projective dimension d (for example, if the Kupisch series is of
the form (2m−1, 2m), then A has two simple modules, one of them is torsionless, the other
has projective dimension 1, and for m ≥ 2, the algebra A has infinite global dimension).
On the other hand, if A is a Nakayama algebra such that any simple module is torsionless
or has even projective dimension, then A has to be self-injective.

Acknowledgment. The author thanks the referee for a very careful reading of two
preliminary versions, pointing out a huge number of inaccuracies and misprints. In fact,
on the basis of the first comments, the paper was completely rewritten.

10. References.

[1] A. Chan, O. Iyama, R. Marczinzik. Auslander-Gorenstein algebras from Serre-formal
algebras via replication. Adv. Math. 345 (2019), 222–262.

40



[2] O. Iyama. Auslander correspondence. Adv. Math. 210 (2007). 51–82.
[3] O. Iyama. Cluster tilting for higher Auslander algebras. Advances in Mathematics

226 (2011), 1–61.
[4] D. O. Madsen. Projective dimensions and Nakayama algebras. Fields Institute Com-

munications. 45. Amer. Math. Soc., Providence, RI (2005). 247–265.
[5] D. O. Madsen, R. Marczinzik, G. Zaimi. On the classification of higher Auslander

algebras for Nakayama algebras. Journal of Algebra 556 (2020), 776–805.
[6] C. M. Ringel. The finitistic dimension of a Nakayama algebra. Journal of Algebra

(2021). https://doi.org/10.1016/j.jalgebra.2021.01.040
[7] E. Sen. Nakayama Algebras which are Higher Auslander Algebras. (2020).

arXiv:2009.03383.
[8] L. Vaso. n-cluster tilting subcategories of representation-directed algebras. (2017)

https://doi.org/10.1016/j.jpaa.2018.07.010

C. M. Ringel
Fakultät für Mathematik, Universität Bielefeld
POBox 100131, D-33501 Bielefeld, Germany
ringel@math.uni-bielefeld.de

41



Some examples: the concave higher Auslander algebras H = Hd(c) of height 2, 3, 4
with d = 3 and d = 4. The set of subfactors of Z(H) (for d odd) or Z ′(H) (for d even) has
been shaded. First, we deal with d = 3.
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Second, d = 4
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In general, for arbitrary height h, there are h−1 algebras H3(c) of height h. But there
are no algebras H4(c) of height greater than 4.
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