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ABSTRACT. It is shown that well known product decompositions of formal power se-
ries arise from combinatorially defined canonical isomorphisms between the Burnside
ring of the infinite cyclic group on the one hand and Grothendieck’s ring of formal
power series with constant term 1 as well as the universal ring of Witt vectors on the
other hand.

[o.]

1 Introduction. Let a = a(t) =1+ Z ap - t" € Z[[t]] be a formal power series
n=1

with integral coefficients and with constant term 1. It is well known that there

exist uniquely determined infinite sequences b = (by,bo,...), 9 = (¢1,¢2,...) and
d = (dy,ds,...) of integers such that

(1-1) a(t) = T[ ()"

n=1
il 1
B 71;[1 1 —gptn
= exp(/ f: dpt™ 1 dt)
n=1

and that for any n € N := {1,2,3,...} the b,, ¢, and d, can be computed
from the aq,...,a, by evaluating certain uniquely determined universal polyno-
mials B(zy,...,2,), Q(z1,...,2,) and D(zq,...,2,) in Qz1,...,2,] at 1 =
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ai,...,x, = an. Moreover any sequence b = (by,bo,...)or q = (q1,¢2,...) of
integers can occur that way, while a sequence d = (dj,ds,...) of integers occurs
that way if and only if

= n
(1-2) > dimy =Y w(j)dj =0 (mod n)
i=1 jln
for all n € N (cf [DS 2])—where (i,n) := ged(i,n) denotes the greatest common

divisor of 7 and n and ¢ is the Euler function—or equivalently (cf [Do]) if and only
if

(1-3) Zu(ﬁ_)dj =0 (mod n)
iin 7
for all n € N — where pu is the Md&bius function.

For specific functions a = a(t) it has often proved rather useful to rewrite a from
any one such form into another one. The formalism by which such rewriting can be
achieved has also been studied and has been related to the universal ring of Witt
vectors and the necklace algebra (cf [C] and [MR 1]). In this paper we want to pro-
pose a surprisingly simple combinatorial interpretation of the relations between the
various parameter systems (a1, as, ... ), (b1,b2,...), (q1,G2,...) and (dy,ds,...) as-
sociated with a given a = a(t).

More precisely, let C denote the (multiplicatively written) infinite cyclic group
with neutral element 1. A set X on which C is acting from the left will be called
a cyclic set —as suggested by G.-C.Rota. The orbit of an element of the cyclic
set X is a finite or an infinite cycle. Since cycles of equal length are isomorphic as
cyclic sets we may denote the cycle of length n, n € N, := N U {oco}, by C(n).
Note that every cyclic set decomposes uniquely into a disjoint union of cycles.

A cyclic set X containing no infinite cycles will be called an almost finite cyclic
set if in addition for every integer n there are only finitely many cycles contained in
X which have length n. Since the disjoint union X; LI X5 and the cartesian product
X1 x X5 of two almost finite cyclic sets X; and X5 again are an almost finite
cyclic sets, we may consider the Burnside-Grothendieck ring Q(C) (of isomorphism
classes) of almost finite cyclic sets. Often we shall identify an almost finite cyclic
set X with the element [X] in Q(C) represented by it.

Note that the Burnside-Grothendieck ring Q(C) of finite cyclic sets is a proper
subring of Q(C). We will see in a moment that Q(C) is a complete topological ring
with respect to a canonical topology which can be defined on it and that Q(C) is
a dense subring of Q(C) with respect to that topology.

If one associates to an almost finite cyclic set X the number pcn(X) of those
elements of X which are invariant under the operation of the unique subgroup C”
of C which has the index n in C, then the map X — @pcn(X) extends to a ring
homomorphism ¢cn : Q(C) — Z.. The family of ring homomorphisms ¢pcn provides
us with another ring homomorphism

p:= H ocn : Q(C) = gh(C) :=ZN
neN

(1-4) with ((2))(n) := ¢ (z)
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where the ghost ring gh(C)—well known from the context of Witt vectors (cf
[L])— is defined to be the ring of all maps a : N — Z with addition and multiplica-
tion defined componentwise. It follows easily from arguments already well known
to Burnside that @ : Q(C) — gh(C) is injective. It is also well known (cf [Do], [DS
2], [Dr 3], [tD] that @ is not surjective and that d € gh(C) is in the image of & if
and only if

(1-5) > dlged(im) =3 gp(%) .d(i)=0 (mod n)

or equivalently if and only if

(1-6) Zu(%) -d(i)=0 (mod n)

iln

for all n € N. In particular Q(C) is a complete topological ring with respect
to the coarsest topology on Q(C) for which all the maps ¢cn from Q(C) into the
discrete ring Z are continuous and the image of Q(C) under the continuous injection

% : Q(C) — gh(C) is a closed subring of gh(C) if gh(C) = H Z is provided

n=1

with the product topology. Of course, it is this topology, for which Q(C) is a
dense subring of Q(C), i.e. Q(C) could also have been defined as the completion
of (C), if Q(C) is provided with the coarsest topology, for which all the maps
wcn : Q(C) — Z are continuous. We prefer the definition in terms of almost finite
cyclic sets, given above, since it does not need any topological considerations.

The present paper will mainly be concerned with the following commutative
diagram:

Nr(Z)
linterpretation
17 W(Zz) —— Q) ——— AZ)
@J{ P Lzl
HZ obvious gh(C) identification tZ[[t]]

N

where the upper horizontal arrows 7 and s; are combinatorially defined canonical
isomorphisms and the vertical arrow interpretation as well as the lower horizontal ar-
rows obvious—identification are canonical isomorphisms resulting from inspection.
As usual W(Z) denotes the universal ring of Witt vectors and A(Z) = 1 + tZ[[t]]
is the multiplicative group of formal power series with integer coefficients and con-
stant term 1 which can be considered as the additive group of a commutative ring
whose multiplication has been introduced by A.Grothendieck in terms of certain
universal polynomials (cf [Gr]). The ring homomorphism ® has been defined by
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P.Cartier in [C] and the functorial mapping Lz is given by logarithmic derivative
(cf. [E],[Ga)]), i.e. by

(1-8) a(t) — Lz(a(t)) :==t- %log a(t)=t- C;,((tt)).

Moreover, the composition W(Z) A(Z) coincides with the isomorphism F :
W(Z) — A(Z) which has been defined by P.Cartier in [C] in a purely formal way.

It will turn out that the above diagram is closely related to the rewriting pro-
cedures for formal power series mentioned above. More precisely, for a sequence
b = (by, by, ...) of integers let

StoT
—_—

(1-9) X(b) := i b, - C(n) € Q(C)

denote the almost finite (and in case b, < 0 for some n only “virtual”) cyclic set
with exactly b, cycles of length n. In other words if I, := {n € N | b, > 0} and
I_:={n €N |b, <0}, then X(b) is the formal difference of the two almost finite
cyclic sets

(1-10) Xi(b):= | | bp-C(n)
(1-11) X_(b):= | | (~bn)-C(n),

considered as elements in SAZ(C), where—as usual— for an integer b € N and a
cyclic set X the product b - X denotes the disjoint union of b copies of X.

Recall that the necklace algebra Nr(Z) with integer coefficients as defined by
N.Metropolis and G.—C.Rota in [MR 1] is the set Z™ of infinite sequences of integers
with addition defined componentwise while the n-th component of the product of
two sequences b = (by,bo,...) and b’ = (b}, b5, ...) is given by

(1-12) (b-b)y:= > (i,5)-bib}
[i,5]=n
where—as usual—{i, j] := lem(i, j) is the least common multiple of the integers i

and j and (i, j) := ged(i, j) their greatest common divisor. It will be easy to deduce
from this definition our first theorem:

Theorem 1. The interpretation map
ZN - Q(C)
b — X(b)
defines a ring isomorphism
itp = interpretation : Nr(Z) — Q(C).

It was this interpretation of the necklace algebra in terms of cyclic sets which
started our investigations in this field.

The next results provide combinatorial interpretations of more formally defined
isomorphisms between Nr(Z), A(Z) andW (Z), studied in [MR 1]. Here we have
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Theorem 2. If for the sequence b = (by,ba, . ..) of integers the (virtual) cyclic set
X (b) is defined as above and if

dn = pcn (X (b)) := pcn (X4(b)) — pcn (X—(b))
forn=1,2,... i.e. if
d=(di,ds,...) € gh(C) = ZN

is the image of X (b) under the map

5= ][ vcr : Q(C) — gh(C)
neN
as defined above, then the sequence d is related to the sequence b by

H 1—t" —exp/Zdt” 1dt

Moreover the composition Nr(Z) .0 Q(C) 2, gh(C) coincides modulo the obvious

identification of the ghost ring and H Z, with the map
N

gh:Nr(Z) - []Z

b= (b, ba,...) — gh(b) =b
where (g)n = Zz - b;.
iln
Similarily let S™(X) denote the n-th symmetric power of the cyclic set X, i.e. the
set of all maps g : X — Ny := N U {0} with finite support and with Z g(z) =n,

reX
which is a cyclic set via the canonical action of C on S™(X) given by

C x S"(X) — S™(X)
(2:9) = (2-9: X — No)

(1-13) with z - g defined by (z - ¢)(z) = g(z '2).

Note that S™(X) is almost finite if X is almost finite and that

(1-14) SMX1UXp) 2 || SU(Xy) x S (X)
i+i=n

(see for instance [DS 2]). On the level of the Burnside ring, the relation (1-14) can
be interpreted as follows: associate with any almost finite cyclic set X the formal
power series

se(X) =14 oc(S™(X))-t"

n=1

(1-15) =1+ pc(SMX)) t+oc(S*(X)) -2+ -+ € A(Z)
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Then
(1—16) St(Xl L X2) == St(Xl) . St(XQ).

Hence, the map s; extends naturally to an additive homomorphism, also denoted
by s; from Q(C) into A(X) satisfying

(1-17) se(x1 + x2) = s¢(x1) - se(w2).

We claim

Theorem 3. If A(Z) = 1 + tZ][[t]] is provided with Grothendieck’s ring structure,
then

si: Q(C) — A(Z)

becomes a ring isomorphism. Moreover, if a = (ay,az,...) andb = (b1, by, ...) are
two sequences of integers as above, then

1.€.

if and only if

- bn - n
H(l—tn) :1+Za" ¢
n=1 n=1

In particular, the isomorphism s; maps the cycle C(n) of length n onto the series

1
=14t 42"+ . ...
T + "+t +

Finally, the canonical isomorphism 7 : W(Z) — €(C) will be defined in such
a way that for a given (universal) Witt vector q = (¢1,q2,...) € W(Z)—i.e. for
any infinite sequence q = (g1, ¢2, - - . ) of integers, interpreted as an element of the
universal ring W(Z) of Witt vectors according to [B], [C] or [L]—one has

(1-18) Hﬁ=ﬂ(lftn)b’z

n=1 n=1

if and only if

To define 7 consider for any ¢; € N the set qgc) of congruence maps from

C into the finite set ¢, := {1,2,...,q1}, i.e. of such maps g : C — ¢, for which
there exists some integer n € N such that g(z1) = g(z2) for all 21, 25 € C for which
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212, € C* = {2" | z € C}. Note that qgc) is an almost finite cyclic set with

respect to the canonical C—action on qic) given by

Cx g — g7
(2,9) = (2:9:C— q1)
(1-19) with (z-¢)(2) = g(z7 %)
and that moreover
(1-20) (g1 0) @ = ¢{ x ¢
One easily checks that
(1-21) pon(67) = #(aa' V) = #(a ) = 0"
and that the map
N — Q(C)
(1-22) qQ — qic)
has a canonical extension Z — Q(C) (also denoted by ¢q; — q%c) ) such that
(1-23) eon(a ) =a"
for all ¢; € Z.
Obviously
(1_24) @(qZ(LC)) = (Q1aQ127---,CI1n7---)

and therefore

s(@l?) = eXp(/ > gttt dt)
n=1

1 oo
1-25 = =1 otn.
(1-25) 1=t +ZQ1

n=1

To extend the map Z — Q(C) : q1 — qgc) to a map from W(Z) into Q(C) one
has to observe that for any almost finite cyclic set X and any integer n € N one
has another almost finite cyclic set ind, X defined by induction with respect to
the n-th power map o, : C — C : z — 2". To define ind, X one considers the
cartesian product C x X as a cyclic set relative to the C-action

Cx(CxX)—CxX
(1-26) (u, (z,2)) — (zu™ ", uzx).



8 ANDREAS W.M.DRESS CHRISTIAN SIEBENEICHER

Then ind, X is defined as the set of C-orbits ||z, z|| := C - (2,z) in C x X with
respect to this action. The group C acts again on this orbit space via

C xind,X — ind, X
(1-27) (2, [lz,2ll) = 1|2z, 2.

On can show that ind, is additive, i.e. that

(1—28) Z?’Ldn(Xl (] X2) = ’L’I’Lanl L inang
and that
(1-29) ind, (C()) = C(ni)

which shows that these two properties could also have been used to define ind, X
in a purely formal way. In particular ind, induces an additive map, also denoted
by ind,, from Q(C) into itself such that X (b) is mapped onto X (b’) where

i /n if n divides j
(1-30) b(j) = {b(]/ ) j

0 otherwise

One can also show that

n - @cm/m(X) if n divides m

(1-31) pom (ind, X) = { 0 otherwise

and therefore

- m ) (C)
(1-32) pcm (indngy, 0 otherwise

- { n - qnm/" if n divides m

Combining all this one can define a (well defined!) map from the set W(Z) := {q =
(q1,G2,-..) | ¢ € Z} into Q(C), namely the map

7 W(Z) — Q(C)
(1—33) q= (q1,CJ2,---) — Zlndn(Qn(C))

which satisfies

(1-34) pom(r(@) =) d-qa™",
dlm

and one has

I
—?
~—
—_
N
~
S
S~—
S
S

R 1
=+

n=1
if and only if
(1-35) 7(q) = X (b).

In other words, we claim:
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Theorem 4. For a sequence q = (q1,qs,...) of integers let 7(q) denote the well
defined (!) wvirtual cyclic set Zindn(qn(c)) € QC). Then 7 :ZN — Q(C) is a

n=1
ring isomorphism, if ZN is considered as the universal ring of Witt vectors W (Z)
with coefficients in Z as defined in [C| or [L]. Moreover, for a given sequence
b = (b1, ba,...) of integers, as above, we have 7(q) = X (b) if and only if

(o]

Hl—qt” loj

As a consequence we get in view of (1-34), (1-5) and (1-6) (or (1-2) and (1-31))
the following

Corollary. Given a sequence d = (dy,ds,...) of integers, there erists a sequence
qa=(q1,q,...) of integers with

for allm =1,2,... if and only if

Zd(lm) —Z(p =0 (mod m)

ilm

for allm =1,2,... if and only if

Z,u(%) -d; =0 (mod m)

forallm=1,2,....

Remark: As shown in [DS 2], the isomorphism 7 : W(Z) — Q(C) can be used to
introduce the concept of Witt vectors and to prove the essential fact that addition
and multiplication in ZN = W(Z) are described by universal polynomials with
integral coefficients and therefore induce a canonical ring structure on AN = W(A)
for every commutative ring A satisfying all the functorial properties described in
[C].

Another obvious, but worthwile observation concerning almost finite cyclic sets
is that for any such X the cyclic set res, X which—as a set—coincides with X
while C acts on res, X via n—th powers, i.e. via

C xres,X — res, X
(1-36) (z,z) — 2"z

is also almost finite. Moreover the obvious isomorphisms

(1-37) res, (X1 U Xo) 2 res, X1 U res, Xo
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and
(1-38) resn(Xy x Xo) & res, X1 X res, Xo

show that res,, induces a ring endomorphism, also denoted by res,,, of Q(C) The
following theorem relates restriction and induction to Frobenius and Verschiebung
operators, well known in the context of Witt vectors and provides combinatorial
proofs of the usual identities for Frobenius and Verschiebung.

Theorem 5.
(1) res,C(m) = (n,
(2) ind,C(m) = C(nm)
(3) Ker(res,) = {z € Q(C) | pcm () =0 for all multiples m of n}
(4) Im(ind,) = {z € QC) | pcm(x) = 0 for all m not divided by n}
(5) If the Frobenius operators f, : Nr(Z) — Nr(Z) and the Verschiebung op-
erators v, : Nr(Z) — Nr(Z) are defined according to [MR 1] by

(bl,bg,...)l—> Z (’)’L,Z)bz, Z (n,z)bz,

[n,i]=n [n,i]=2n
and

(bl,bg,...)H(O,...,O,bl, 0,...,0,b2, 0,...,0,b3,...)
N—_—— N—_—— N—_——

n—1 times n—1 times n—1 times

respectively, then the diagrams

N’I‘(Z) interpretation Q(C) NT‘(Z) interpretation Q(C)

frl J/""esr 'Url lindr

Nr(Z) interpretation Q(C) NT(Z) interpretation Q(C)

are commutative.
(6) res, oress = resys
and therefore
fr © fs = frs
(7) ind, o inds = ind,
and therefore
Ur O Vs = Urs
(8) Frobenius reciprocity for restriction and induction:

ind,(resy(z) - y) = x - ind,.(y) for all z,y € Q(C)
and therefore

or(fr(2) - y) =2 - v (y) forall z,y € Nr(Z)
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(9) Mackey’s subgroup formula for restriction and induction:
res, oinds = (r,8)indjy ) /r © T€S[y 5)/5
and therefore
frovs = (r,8)Vrs)/r © fir.s)/s
As observed already by F.Adams [A], the fact that
(1-14) SMX UX) = | | SU(Xy) x S9(Xa)
i+j=n

can be used to define additive endomorphisms ¢" of Q(C)(n = 1,2,...) such that
for any (virtual) cyclic set X the identity

- in-S"(X
t- %log(z Sn(X) ") = =L
n=1 L+ SM(X

n=1

(1-39) =N (X) -t + (X)) -2+ ...

holds in the ring Q(C)[[#]] of formal power series with coefficients in Q(C). The
Adams operations ¥™ have already proved useful in many situations. In our context
we have:

Theorem 6. The n—th Adams operation ¢¥" : Q(C) — Q(C) coincides with the
restriction map res, : Q(C) — Q(C) Hence in particular, 1™ is multiplicative and
Y™ o™ = Y™™ holds for all n,m € N, i.e. Q(C) is a so—called special A-ring
with respect to the A\—ring structure defined by symmetric powers of cyclic sets.

Remark: While for any group symmetric powers provide a A-ring structure for
the associated Burnside ring (cf.[DS 2]), these A-rings turn out to be special A-rings
if and only if the group is cyclic (cf. [S] for the case of finite groups. The argument
given there generalizes immediately to the infinite case).

Finally we will show directly, i.e. without using the ghost ring as above (cf.(1-25)),
that the number of C—invariant elements of the n—th symmetric power of the cyclic
set ¢(©) equals ¢™. This provides a combinatorial proof of the so called cyclotomic
identity (cf.[MR 2])

| ) M)
1-4
(1-40) 1—qt 1:[ ’

where M (q,n) denotes the number of n—cycles in ¢©). We will show that this
identity is a simple consequence of a more general and more precise result charac-
terizing the cyclic sets ¢{©) (virtual if ¢ < 0) among all (virtual) cyclic sets. For
this purpose define for any element x € Q(C) the formal power series

(1-41) SHX) =1+ i S™M(X) - t"

in Grothendieck’s ring A(€(C)) of formal power series with coefficients in (C)
and constant term 1. Then we have
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Theorem 7. A (virtual) almost finite cyclic set x € Q(C) is of the form ¢'©) for

some q € Ng (q € Z) if and only if for every n € N the two (virtual) almost finite
cyclic sets ™ and S™(x) are isomorphic, i.e. if and only if

x)zl-l—ZS"(az) _1+antn_1—a}t
n=1

holds in A(Q(C)), in which case the decomposition

r=q© =3 M(g,n)-C(n)

n=1

leads to

1
- (¢©) yM(a:n)
1—¢©t Sil H Si( :

In particular, applying pc to the coefficients of both sides yields

- M(q,n)
1- qt 1;[

We want to point out that Gauss already used the cyclotomic identity for the
enumeration of the number of irreducible polynomials of degree n and leading coef-
ficient 1 over the finite field Fy with ¢ elements (cf.[Ga]). A combinatorial interpre-
tation of his reasoning may be given in terms of cyclic sets: Consider the algebraic
closure F, of the field F,. It becomes an almost finite cyclic set via the Frobenius

automorphism F, z + 29, of F,. The C"-invariant elements of F, are just the
elements of the unique(!) extension field Fgn of Fy, which has degree n over F;
hence their number equals ¢"—in other words, Fq and ¢(©) are isomorphic as cyclic
sets. Moreover two elements in Fy lie in the same cycle of length n if and only if
their minimal polynomials coincide and have degree n. Hence the number M (g, n)
of cycles of length n in ¢(©) = F, coincides indeed with the number of irreducible
polynomials of degree n.

This leads to consider more generally for an arbitrary algebraic variety V' over
the finite field F the set V(F,) of points over the algebraic closure F, As observed
above in case V is the affine line, this set is an almost finite cychc set via the
Frobenius automorphism z +— z9 of Fq and it follows from the above considerations
that the infinite power series s;(V (Fy)) coincides with André Weil’s zeta function
Zy (t) of the variety V (cf. [We] and [DS 1]).

We also want to point out that the symmetric powers of almost finite cyclic
sets are closely related to partitions. Recall that—as defined above—an element
A € 8"(X) is a mapping A : X — Ny with finite support and with )~ _ A(z) = n.
Such a map is C—invariant if and only if it is constant on the cycles contained in X,
so in particular it has to be zero on cycles of length greater than n. Consequently
if X = X (b) for some sequence b = (b1, bo, ...) of non negative integers then a C—
invariant element A\ € S"(X) defines a partition A = (1*12*2 ... n*n) of the integer
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1
n, given by A\, := z Z A(z), where X}, C X denotes the union of all k—cycles
ZEXk
of X—say by x C(n) =2 X, with trivial C-action on by—together with n functions
fr:bp — Ny (k=1,...,n) satisfying

by
(1-42) ka(j):)\kv

(welll)—defined by fi(j) := A(z) if x € X is in the j—th k—cycle of X. If we call such
an object (X ; fi1,..., fn ) satisfying (1-42) a b—partition of n, then pc(S™(X(b)))
equals the number py,(n) of b-partitions of n i.e. we have

pc(5"(X(b))) = pu(n)

(1-43) _ 3 ),f[l ()\k +)\b: - 1>’

A=(1 1272 ..n*n

where the summation is taken over all partitions A of n. Obviously the above
considerations imply for the generating function for b-partitions:

(1-44) L+ po(n)t" = H(l_ltn)bn

In particular in case b = (1,1,...) the b—partitions are just ordinary partitions, so
one gets once again Euler’s formula (cf.[E])

(1-45) 1+> pt"=]] !

1—tn’

Our paper is organized as follows. In section 2 we collect and prove some gener-
alities on cyclic sets, where the concept of a group acting on a set is the organizing
principle. This leads to the definition of the Burnside ring Q(C) of almost finite
cyclic sets and to a proof of Theorem 1. Next we prove Theorem 5 in section 3,
Theorem 2, Theorem 3 and Theorem 6 in section 4 and Theorem 4 in section 5. In
the final section 6 we prove Theorem 7 and discuss some related material.

2 Some generalities concerning cyclic sets.

(2-1) As explained already above, a cyclic set X is understood to be just a
set X together with a group action of the (multiplicatively written) infinite cyclic
group C from the left on this set. In this section we want to collect some basic
facts concerning cyclic sets. Our discussion will be very short since we are treating
here (in a way) a very special case of the more general situation considered already
in [DS 2].

(2—2) For any r € N let

o.:C—C
(2-2-1) z—= 2"
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denote the r—th power map which maps every element of C onto its r—th power.
This map is an injective homomorphism and its image is the unique subgroup C” of
C which has index r in C. Note that every subgroup of C, exept the trivial subgroup
{1}—which we may interpret as the unique subgroup C* of infinite index in C—
is of this type so that we may parametrize these subgroups by the set N of positive
integers—and hence the set of all subgroups by the set N, := N U {co}.

Since the stabilizer group C, := {z € C | z& = z} of an element z in a cyclic
set X is uniquely determined by its index in C—it may be finite or infinite—the
isomorphism class of its orbit C -z := {zx | z € C} is uniquely determined by its
cardinality. In other words the orbit of an element of a cyclic set is either infinite—
and hence isomorphic to the infinite cycle C(c0) := C/{1} = C/C>—or finite
and isomorphic to one of the finite coset spaces C(n) := C/C"; such an orbit will
be called a cycle of length n.

(2—3) Recall that disjoint unions and cartesian products of cyclic sets again are
cyclic sets in a natural way and that the set Y of all maps from the cyclic set
X into the cyclic set Y becomes a cyclic set if—as usual—one defines for a map
f:X — Y and an element 2z € C the map 2 - f by (z- f)(z) := zf(z71z) for all
x € X. Note that the set (YX)€ of C—invariant elements in Y coincides with the
set Homc(X,Y) of C—mappings from X to Y, i.e. those maps f : X — Y with
f(zx) = zf(x) for all z € C and x € X. Note also that for any cyclic sets X, X7,
X5, Y., Yq, Y5 one has canonical C—isomorphisms

(2-3-1) (Y1 x o)X 2v¥ x Yo ¥
(2-3-2) yXatXe o0 yXa oy Xe
and

(2-3-3) (YX1) X2 2 yXaxXa

(2—4) Since the orbits of two elements of a cyclic set are either disjoint or
coincide, a cyclic set decomposes uniquely into a disjoint union of cycles.

(2-4-1) Definition. Let X be a cyclic set. X will be called almost finite if the
following two conditions are satisfied:

(1) Ewvery cycle in X has finite length.
(2) For every n € N there are only finitely many cycles contained in X which
have length n.

If X is an almost finite cyclic set and if b,(X) denotes the number of cycles
contained in X which have length n, then X is isomorphic—as a cyclic set—to the
disjoint union |_| bn(X) - C(n), where b,(X) - C(n) denotes the disjoint union of

neN
b, (X) copies of the n—cycle C(n). Note that two almost finite cyclic sets X and YV
are isomorphic if and only if b,(X) = b,(Y) for all n € N. Since disjoint unions
and cartesian products of almost finite cyclic sets are almost finite again, these
operations induce an addition and a multiplication on the set of isomorphism classes
of almost finite cyclic sets, providing this set with the structure of a commutative



THE BURNSIDE RING OF THE INFINITE CYCLIC GROUP AND ITS RELATIONS TO THE NECKLACE /

half ring. The associated Grothendieck ring is called the (completed) Burnside
ring of the infinite cyclic group and will be denoted by Q(C) It is well known and
goes back at least to Burnside (cf. (2-6-2) below) that the set of isomorphism classes
of almost finite cyclic sets is mapped injectively into Q(C) Usually we shall not
distinguish between an almost finite cyclic set and its image in Q(C), so that C(n)
denotes at the same time the cycle C/C™ of length n, its isomorphism class and
its image in Q(C). Obviously every element in Q(C) can be represented uniquely
as an infinite linear combination Z b, - C(n) with integer coefficients b,,. More
neN
generally, if for every n € N and every b € Z an element x(, ;) € (AZ(C) of the form

Tnp) =b-C(n)+b0-Cn+1)+b"-Cn+2)+...

(i.e. with by, (2(np)) = 0 for m < n and b, (2(,p)) = b and with arbitrarily given

b, b",...) is specified, then the family = = (x(n,b)) of elements in (AZ(C)

(n,b)eNXZ
defines a canonical bijection

B. : ZN — Q(C)
(2—4—2) (bn)nEN = Z T(n,b,)»

nelN

an observation which will be useful for us in various instances.

(2-5) In order to determine the multiplicative structure of Q(C) one has to
calculate the product of any two cycles. Since every element in C(r) x C(s) has
the stabilizer group C” N C* and since C" N C* = C"*!, where [r, s] denotes the
least common multiple of » and s, we have necessarily

(2-5-1) C(r) x C(s) Zn, s - C([r,s])
for some integer n, s = by, 5)(C(r) x C(s)). Moreover, counting cardinalities and

using the identity r - s = (r, s)[r, s|—where, as usual, (r,s) denotes the greatest
common divisor of » and s—one immediately gets

(2-5-2) Nys = (7,5)
(2-5-3) C(r) x C(s) = (r,s) - C(|r, s])

This observation leads quickly to

(2-5—4) Theorem 1. Let Nr(Z) = {(b;)ren | b, € Z} denote the necklace
algebra, as defined in [MR 1], i.e. put

(br)reN + (b;")reN = (br + b;ﬂ)TGN
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and

(b)ren - (B )ren = (1Y (5,8) - bab}) g

[s,t]=r

for (by)ren, (b.)ren in Nr(Z). Then the interpretation map

itp = interpretation : Nr(Z) — Q(C)

(br)TGN = Z br : C(T)

reN

defines a canonical isomorphism between Nr(Z) and Q(C).

(2—6) There is another way to characterize almost finite cyclic sets up to iso-
morphism. Consider for a cyclic set X and a positive integer n the set XC" of
elements of X which are invariant under the action of the subgroup C” of C and
let pcn (X) := #(XC") denote its cardinality. Note that

(C(S))Cn ={2.C°CC|C"CzC°zs ! =C*%}
{C(S) if s divides n

0 otherwise.

Therefore for a cycle of length s one has

S if s divides n

(2:6-1) pen (C(s)) = {0

otherwise.

Note also that a cyclic set X is almost finite if and only if every cycle in X has
finite length and ¢ (X) is finite for all n € N.
Since

wcn (X UY) = pcn(X) + ¢cn (V)
and

pcn (X xXY) = pcn(X) - pcn(Y),

the map X +— pcn(X) can be extended uniquely to a ring homomorphism ¢cn :
Q(C) — Z. Using an appropriate recursion argument one shows easily

(2-6—2) Proposition (Burnside). Two almost finite cyclic sets X and Y are
isomorphic if and only if pcn(X) = ocn(Y) for all n € N.

This result implies immediately that the family ¢cn of ring homomorphisms
provides us with an injective ring homomorphism

p:= H ocn : Q(C) = gh(C) :=ZN
neN

(2-6-3) with ((2))(n) := ¢ (z)
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of the Burnside ring into the ghost ring (cf. introduction, (1-4)).
If x = Z bs - C(s) one has by (2-6-1)

(2-6-4) P(@)(n) = pon(x) =D b - j.

jln

Comparing this with the ghost ring embedding
gh: Nr(Z) — H Z
N

(bn)nen — (Z S bs)neN’

sln

as defined in [MR 1] one has

(2—6—4) Proposition. The diagram

N?"(Z) interpretation Q(C)

ghl P
H 7 identi fication gh(C)
N

18 commutative.

(2—7) Remark: As has already been mentioned in the introduction (cf.(1-5),(1-6))
the injection @ : Q(C) — g¢gh(C) of the Burnside ring into the ghost ring is not
surjective. However the image of @ can be characterized by canonically arising

congruences. If X = Z by - C(k) then
keN

(2-7-1) pon (X) = j- b

jln

If o : N — Z denotes the Mobius function—as usual— then MGobius inversion
(cf.[HW]) implies

(2-7-2) Zu e (X)

jln

and hence

(2-7-3) Z u ~ci(X) =0 (mod n) for every n € N.

jln
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Dold shows in [Do] that an element d € gh(C) is in the image of @ if and only if
(2-7-4) ZM(E)C](_?) =0 (mod n) for every n € N.

, J

jln

These congruences are equivalent to the following congruences

> dlged(jm) = 3 (5)d(7) =0 (mod n)
Jj=1 jln
(2-7-5) for every n € N,

which arise in a natural way in the theory of Burnside rings of arbitrary groups
(cf.[D 3]). The well known identity

> e(j) =mn
il

for the Euler function and its M&bius inverse provide a means to go from one system
of congruences to the other equivalent system.

(2-8) Remark: For an almost finite cyclic set X it is in general not useful to
consider its cardinality, since

#X = #(XT) = po=(X) = o1y (X)

may be infinite. But for finite cyclic sets the map X — #X provides a ring
homomorphism pge : Q(C) — Z of the Burnside—Grothendieck ring Q(C) C Q(C)
of finite cyclic sets. It obviously does not extend naturally to Q(C).

3 Restriction and induction.

(3-1) The r—th power homomorphisms o, : C — C 2z — 2", r € N induce
restriction and induction functors from the category of almost finite cyclic sets into
itself. Restriction res, with respect to o, is defined by assigning to a cyclic set X
the cyclic set res,. X which has X as underlying set and where the C—operation is
defined via r—th powers, i.e.

(3-1-1) (z,x) — 2" x.
Note that

res, (X1 L Xo) = res,(X1) Ures,(X2)
and

res,. (X1 x Xo) 2 res,(X1) x res,.(Xs).

Hence res, is uniquely determined by its values on cycles:

r,8)C([r, s/7)
rC(00).

112

res,C(s)

res,C(o0)

IR
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The first isomorphism is verified by noting that z € C acts trivially on res, C(s),
if and only if 2" € C® if and only if 2" € C* N C" = C"l ie. if and only if
z € Clsl/7 Hence res,C(s) = kC([r, s]/r) for some integer k and so, comparing
cardinalities one gets k - [r, s|/r = s and therefore k = rs/[r,s] = (r,s). To show
the second isomorphism note that the cosets of C modulo C" are the C-orbits of
res,C(oo). If one agrees that (r,00) = r and [r,00] = oo one may collect both
formulas in one:

(3-1-2) res,C(s) = (r,s)C([r, s]/r)

If X is an almost finite cyclic set, then obviously res, X is almost finite, too.

Hence res, defines a ring homomorphism Q(C) — Q(C) also denoted by res,, and
by (3-1-2) we have

po=(res, X)=#{x € X | z"x =z for all z € C*}
=#{z e X | 2Pz =2z forall z€ C}
(3-1-3) — o (X),

and this fully determines the restriction homomorphism. Note also that (3-1-3)
implies the useful formula

(3-1-4) por (X) = ec(resy X).

(3—2) Now recall the definition of the Frobenius operators f,., » € N, as defined
in [MR 1] for the necklace algebra by

fr: Nr(Z) — Nr(Z)
(3_2_1) (bs)seN = ( Z (T’ s)bt)tEN

[r,t]=rs
and for the ghost ring (as usual in the context of Witt vectors, cf. [L],[B])
fr: gh(C) — gh(C)
(3_2_2) (ds)seN — (drs)seN-
Comparing (3-1-2) with (3-2-1) and (3-1-3) with (3-2-2) one gets
(3—2-3) Proposition. For every r € N one has commutative diagrams

itp

Nr(Z) - §(C) Nr(Z) —2 gh(C)  Q(C) —2— gh(C)

| rese| 1| |+ | res- |+

itp

Nr(Z) 2 Q(C) Nr(Z) - gh(C)  OQ(C) —Z— gh(C)

(3—-3) In order to define the induction functor with respect to the r—th power
map o,—which will be the left adjoint of the restriction functor res,—one considers
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for an almost finite cyclic set X the cartesian product C x X. This becomes a cyclic
set by the mapping

Cx(CxX)—-CxX
(3-3-1) (u, (z,2)) — (2u™", ux).
Let ind,. X denote the set of C—orbits of C x X with respect to this operation. C

acts again on this set by left multiplication, i.e. if ||z, z|| denotes the image of (z, x)
in ind,X under the canonical projection onto the orbit space, then one defines

(3_3_2) Z/”Z»QUH = ||Z/Z7 .’EH
Obviously, this operation is well defined: if |21, z1|| = ||z, || then one has z; = zu™"
and x; = ux for an appropriate u € C and therefore |2z, z1]| = ||2'2, x|

Clearly, ind,X is an almost finite cyclic set and one has
(3—3—3) anr(Xl L XQ) = anr(Xl) L anT(XQ)

Therefore ind, induces an additive homomorphism Q(C) — Q(C), also denoted by
ind,. Again ind, is completely determined by its values on the finite cycles. One

has
(3-3-4) ind, C(j) = C(rj)

Proof. Note first that C operates transitively on ind,C(j), since for ||z, wC’| and
|21, w1 C?|| in ind,.C(j) one has

((zrz™ D (wwr ) ")z, wC || = 21, wi C7.

Furthermore if 2’ ||z, wC’|| = ||z, wC’||, then for some v € C one has (2'zu~", uwC?) =
(z,wC?) which implies u € C’ and therefore 2/ = u" € C™7. O

By (3-3-4) we have

¢cs(ind,C(j)) = ¢cs(C(rj))

rj if jr divides s
- { 0 otherwise
r- s (C(] if r divides s
(3.3.5) _ e (C(7)) |
0 otherwise.

Therefore, by linearity, we have

o T s/ () if r divides s
po(indrz) = {0 otherwise.
(3-3-6) = e+ (C(r)) - oo/ ().

Note that the first factor of the last expression is zero if s/r ¢ N.
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(3—4) Now recall the definition of the Verschiebung operators, defined in [MR
1] for the necklace algebra by

vy : Nr(Z) — Nr(Z)

(bs)seN = (bs/r>seN
(3-4-1) with bs/. :=0 if s/r ¢ N

and for the ghost ring by

vy : gh(C) — gh(C)
(ds)SEN = (7’ : ds/r)sGN
(3-4-2) with d,,, =0 if s/r ¢ N.

Comparing (3-3-4) with (3-4-1) and (3-3-6) with (3-4-2) one gets

(3-4-3) Proposition. For every r € N one has commutative diagrams

(3-5) Hence we are now in a position to use the large variety of canonical
isomorphisms describing the interplay between restriction and induction functors—
which result from functoriality, adjointness, Frobenius reciprocity and Mackey’s
subgroup theorem (cf.[DS 2])—to derive the well known identities for the Frobenius
and Verschiebung operators and to provide combinatorial interpretations for them.
More precisely one has

(3-5-1) Proposition.

(1) res, oress = ress
and therefore
fr © fs = frs;

(2) ind, o inds = ind,
and therefore
Ur © Vs = VUrs,

(3) ind,(resyz -y) =ind,x -y
and therefore
or(fr(@) - y) = vr(z) -y
(Frobenius reciprocity),

(4) res, oinds = (7, 8)ind[, 5 /r - T€S[r /5
and therefore
fr O Vs = (T‘, S)U[r,s}/r : f[r,s]/s
(Mackey’s subgroup formula).
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Note that by the above considerations we have proved Theorem 5 exept for the
statements (3) and (4). To prove these note that by (3-2-3) (resp. (3-4-3)) one
has @ ores, = fn o @ (resp. ¢ oind, = v, o p). Since @ is injective, an element
z € Q(C) lies in Ker(res,) (resp. in Im(ind,)) if and only if @(x) is in Ker(f,)
(resp.Im(v,)).The definition of Frobenius and Verschiebung in the ghost ring yields
(3) and (4).

4 Symmetric powers of cyclic sets.

(4-1) We now want to study symmetric powers of almost finite cyclic sets on
the level of Burnside rings (cf. also [DS 1]. For a cyclic set X its symmetric
algebra—or, rather, its symmetric monoid—S(X) is defined to be the set of all
maps from X to Ny := N U {0} vanishing almost everywhere, i.e. of those maps
f X — Ny, for which supp(f) :={x € X | f(z) # 0} is finite, or, in other words,
the free commutative monoid generated by X. C acts on S(X) in the usual way
by

CXS( —>S( )
f

(2, f) = z-
(4-1-1) where (z- f)(z) := f(z 'z).
Note that evidently
(4—1—2) S(Xl LJ XZ) = S(Xl) X S(Xg)

for any two cyclic sets X; and Xs.
(4-2) It is easy to see that for an almost finite cyclic set X the cyclic set S(X)
contains only cycles of finite length. Moreover, for every n € Ny the C—subset

(4-2-1) SUX)={feSX)| ) flx)

zeX

of S(X), the n—th symmetric power of X is an almost finite cyclic set. Obviously,
the stabilizer group C; contains ﬂ C, for every f € §(X), so every cycle in
z€supp(f)
S(X) has finite length. So, by using restriction (cf. (3-1-4)), it is enough to show
that (S™(X))€ is finite. But f € S(X) is C-invariant if and only if it is constant on
the cycles of X. Hence f € (S™"(X))€ can be non-zero only on the finite number of
those cycles of X which have length n at most . Since in addition one has f(z) < n
for all f € S?(X), the set (S"(X))€ must be finite.
The same argument shows in particular that for X = C(k) one has (cf.[5)]):

1 if k divides n
(1-22) ce(s"(CIN) = {

otherwise.

It follows from (4-1-2), that for the disjoint union X; U Xs of any two almost
finite cyclic sets X; and X5 one has

(4-2-3) Sn(X1UXo) = | | S(X0) x §7(Xa).

i+i=n



THE BURNSIDE RING OF THE INFINITE CYCLIC GROUP AND ITS RELATIONS TO THE NECKLACE /

(4-3) Note that there is another way of describing symmetric powers of cyclic
sets. To see this consider the canonical projection

p: X" — S™(X)

of the n—th cartesian power X” = X x --- x X of the cyclic set X onto its n—th
symmetric power. It is defined by mapping an element = = (z1,...,x,) of X" to
the map p(x) : X — Ny which maps an element y in X onto the number of those
indices ¢ € n = {1,...,n} for which z; = y, ie. p(z)(y) = #{i € n | z; = y}.
Obviously p is a surjective C-map which is compatible with the canonical action
of the symmetric group ¥, on X™. It factors over the set 3, \ X" of 3,—orbits of
X™ and therefore induces a C-map

(4-3-1) TN\ X" — S™(X),

which is well known to be a C—isomorphism.
(4-4) Let us now consider the formal power series

(4-4-1) Sp(X) =1+ i S™X) - t"
n=1
as an element in the ring Q(C)[[t]] of formal power series with coefficients in Q(C).
Since by (4-2-3) one has
(4-4-2) Se(X7 U X)) = Si(Xq) - Se(X2)
it follows that the map X +— S;(X) induces a homomorphism
(4-4-3) S, : Q(C) — A(Q(C))
of the additive group of the Burnside ring into the multiplicative group of formal

power series with constant term 1 and coefficients in Q(C).
Combining S; with the multiplicative map

Ape) : A((C)) — A(Z)

(4-4-4) L4+ aat" =1+ )o@t
n=1 n=1

resulting—by functoriality—from the homomorphism pc : Q(C) — Z we get a
map

(4-4-5) st .= A(pc) 0 Sy : Q(C) — A(Z).

We claim:
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(4-4-6) Theorem 3. The homomorphism s, : Q(C) — A(Z) is an isomorphism
of abelian groups. It becomes an isomorphism of rings if A(Z) is supplied—up to a
sign—with the ring structure defined by A.Grothendieck in [Gr|. Moreover

se(X(b)) =1+ ian-t"

for some sequence b = (by,ba,...) of integers if and only if

H(l—t") nzl—l—Zan.tn.
n=1 n=1

Proof. By (4-2-2) we see that
st(C(k)) = Alpc) 0 Se(C(k))

=1+) ¢c(S"(Ck)-t"

n=1

=1+ it”’“
n=1

1
1=tk

1
Since the family {ﬁ | k € N} is a topological Z-basis of A(Z) it follows im-

mediately that s; is an isomorphism from the additive group of Q(C) onto the
multiplicative group A(Z) and that

su(x (b)) = [T s = T] (=)™

In order to show the remaining part of the theorem we have to consider the loga-
rithmic derivative

La:A(A) — tA[[t]

d a'(t

a(t) — t% loga(t)=t- a((t))
which is defined for any commutative ring A with unit element 1 and which pro-
vides a natural homomorphism from the multiplicative group A(A) of formal power
series with constant term 1 and coefficients in A into the additive group tA[[t]] of
formal power series with constant term 0. Defining—with Hadamard— the product
of two power series in tA[[t]] coefficientwise, i.e. identifying tA[[t]] with the prod-

[o @]

uct ring HA = AN via the obvious identification (dy,ds,...) Zdnt", then
N n=1

Grothendieck’s ring structure can be characterized as the unique ring structure on
A(A) for which the logarithmic derivative becomes a natural ring homomorphism
Ly : A(A) — tA[[t]] (cf.[AT]). Specializing this to the ring Z of integers and using
the the obvious identification of gh(C) with tZ[[t]] as above, the second half of the
above theorem will evidently be implied by the following proposition:
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(4—4-7) Proposition. The diagram

~

(C) — A2

d |
gh(C) — 2", 47[1]

identification

18 commutative.

Proof. One has

1 —tk
= kt* + kt?F 4+ kt3F 4

On the other hand, by (2-6-1) one has

Hence modulo the obvious identification the maps Lz o s; and { agree on a topo-
logical basis of Q(C) and therefore “coincide”. [

Note that proposition(4-4-7) together with the results of section 2 provide as
well a proof of Theorem 2.
(4-5) Remark: Dold already established in [Do] an isomorphism

L, :Q(C) = A(Z),

of abelian groups by associating to an almost finite cyclic set X its Lefschetz power
series L£4(X), which is formally defined in such a way that

d

—t- %logﬁt(X) = nz::lgpcn(X)-t".

Obviously this implies that £4(X) = Note that originally Grothendieck’s

1
St (X) ’
ring structure on A(Z) had been defined in such a way that £,—which is related to
exterior powers—rather than s; becomes a ring homomorphism. Since in the con-
text of group actions on sets—rather than on vector spaces—there is no completely

satisfying definition of exterior powers (cf.[S]), we prefered to change Grothendieck’s
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ring structure on A(Z) slightly, hereby avoiding lots of unnecessary minus signs in
our formulas (compare [C] and [B]).
(4—6) Now recall that combining

S, : Q(C) — A(Q(C))
with

Ly : AQ(C)) — tQ(C)[[1]

d(t)
a(t)

d
— . — 1 =
a(t) —t 7 108 a(t) =t

one gets the associated Adams operations ¢" : Q(C) — Q(C), defined implicitly
by

(4-5-1) Ly © Silw) = ) 4" (z) - #".

We claim

(4-6—2) Theorem 2. The maps " : Q(C) — Q(C) coincide with the maps
res, : Q(C) — Q(C), i.e. for every x € Q(C) one has

o0

Z resyx - " = Lg ) 0 Se(x).

r=1
Therefore the ¥" are ring homomorphisms satisfying " o ¢® =™ = o )" and
hence, according to [AT], Q(C) is special A-ring with respect to the \—structure,

~ ~

defined by Sy : Q(C) — A(Q(C)).

Proof. It is enough to show that

(4-6-3) Y pci(res,C(s)) - t" = Lz(1+ Y ¢ (S7(C(s))) - t7)

r=1
for all j, s € N. But

s if s divides jr
(4-6-4) s (res, C(s)) = o (C(s)) = {

0 otherwise

and therefore

(4-6-5) S o (res,C(s) 7 =3 s 7/09),
r=1 r=1
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while

143 ¢ei(S7(Cs) 7 =1+ walres;S"(Cls))) -

r=1

= Alpc)(L+)_ 5" (res;C(s)) - ")

r=1

= si(res; <>>
St( S/ J, S )))
(s:(C (s/(j,s»)“’”
( 1 )(J}S)

1 — ts/(9)

(4-6-6)

I

and therefore

B, d 1 )
1+ZSOCJ s)))-t")=t- alog((m)] )

. d 1
= (j,s)-t- pr log(il — ts/(j,s))
. G- )
% )
s - 15/(:s)
1 — ¢ts/(3,s)

(4-6-7) =) st/ ),
r=1

(4-7) Finally observe that, since ind,C(n) = C(rn) one has

1
nd,C = .
selind, C(m) =
This implies for an arbitrary z in Q(C):
(4-7-1) s¢(ind,x) = spr(x).

Moreover, since res,C(n) = (n,r)C([n,r]/r), one has

_ 1 (ryn)
(4-7-2) si(res;C(n)) = (T—mayrr) -

If one defines maps

vp : A(Z) - A(Z) and f, : AM(Z) — A(Z)
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by vy-(a(t)) = a(t™) and f,(a(t)) as usual (cf. [C]), one has the following commutative
diagrams

Q(C) —— A(Z) Q(C) —— A(Z)

(4-7-3) lmdr l l frl

Q(C) —— AZ) Q(C) —— AZ).
Note that the formula for f.(a(t)) is simple only for series of the form a(t) =

1
—— here one has
1— agts

L\ 1 (r.5)
(4—6—4) fT‘(l _ asts) - (1 _ as[r,s]/s . t[T‘,S]/T> .

For the general case see [C] and [B| or do the calculations in the ghost ring and
then go back to A(Z) by integration and exponentiation.

5 Witt vectors.

(5-1) Recall from (2-3) that for two cyclic sets X and Y the set YX of maps
from X to Y is again a cyclic set in a canonical way. But note also that for two
almost finite cyclic sets X and Y the cyclic set YX is in general not an almost finite
cyclic set. However there is an interesting situation where new almost finite cyclic
sets arise by exponentiation. We claim:

(5—1-1) Definition and Lemma. If X and Y are cyclic sets and ifu: X — Y
s a map, then u will be called a congruence map if there is a C—map p : X — F
into a finite cyclic set F' and a map u : F' —'Y such that u=uop, i.e. if u can be
factored via a C—map over a finite cyclic set. Denote by Y (%) the cyclic subset of
Y X which consists of all congruence maps from X to Y. If Y is finite and if the
cyclic set X contains only finitely many cycles—of finite or infinite length—then
YX) s an almost finite cyclic set.

Proof. Note first that YX) = YX if both X and Y are finite and that Y(X) =
Y (X1) x V(X2) if X = X; U X5. Hence the lemma will follow if we can show that
Y (C(>)) ig an almost finite cyclic set for any finite cyclic set Y. To this end note
that if u : C(c0) — Y is a congruence map and u = u o p a factorization of u, then
for z € C and z € C(c0) one has

A~

(z-u)(z) = 2u(z"'2) = 2(To p)(z~"w) = zu(z""p(x))

(5-1-2) = ((z-u) o p)(z)
and hence
(5-1-3) z-u=(z-u)op.

Since u is a map between finite cyclic sets, its C—orbit is finite, so the C—orbit of u
is finite, too.
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Furthermore one has

Ycn (y(c(oo))) = vc (resn (Y(C(oo))))

= oc ((resnY)(reS"C(oo)))

= #Homg(res,C(o0), res,Y)
= #Homg(n - C(c0), res,Y)
= (#Homc(C(o0),resp,Y))"
= @{1}(7"63%}/)"

(5-1-4) = (#Y)"

Hence pcn (Y(C(OO))) is finite for every n € N and this implies that Y (€(>)) is an
almost finite cyclic set. [

(5-2) Remark. If X = | | 23 C(k) and Y = | |y - C(I), where for both

k€N lEN
cyclic sets only finitely many of the coefficients are nonzero positive integers then

we claim

pen (VN = T (3w omm(C(1)) ™"

k€N, IEN
k€N IEN
U[n,k]
where—with the conventions of (3-1-2)—[n, k| := co and (n,k) :=n if k = co. In

particular ¢cn (Y(X)) is a polynomial with integer coefficients in the coordinates
y; of the finite cyclic set Y.
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Proof. One has

pcn (Y(X)) = pc (Tesn (Y(X)))
= pC (resnY(’"eS"X))
= #Homc(res, X, res,Y)

= #Homc(res,( |_| zC(k)),res,Y)

k€N
= [ #Homc(res,C(k),res,Y)
k€N
— H #Home(zy, - (n, k)C([n, k]/n),res,Y)
KEN .
- H (@aini/n (res,Y)) k) 2k
KEN .
= H (@C[n,k](Y))(”’k)'x’f
KEN .
n,k)-x
- H (Zyl@c[n,k](C(l)))( )
keN, leN
= T (> ty )b 0
k€N, IeN

l[n,k]

(5-3) The construction ¥ +— Y(X) extends to a map between Grothendieck
rings, i.e. we have

(5—3—1) Theorem. Let X be a cyclic set with only finitely many C-orbits. Then

there exists a well defined map 7% : Q(C) — Q(C) from the Burnside ring (C)
of finite cyclic sets into the Burnside ring of almost finite cyclic sets such that if

X = I_l xp - C(k) and y = |_| yr - C(1) € Q(C), one has

k€N leN
(’DCn (@) TX(y) = H ( Z l. yl )(n7k)'mk.
keN, [eN
U[r,k]

Proof. Consider for y = |_| y - C(l) in Q(C) and X = |_| 21, - C(k) the element
lEN kENw
N = (M )nen € gh(C) with

(5-3-2) o= [ (S 1oy )b,

k€N, IeN
U[n,k]

We will show that n is the image of an element of Q(C) under @. This will be done
by showing that n satisfies the congruences (2-7-4). If Y is an actual and not only
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a virtual finite cyclic set then the element 7 = (7,,)nen is by (5-2-1) contained in

the image of Q(C) in the ghost ring and hence the congruences (2-7-4) are satisfied
for the components 7,, of n, i.e. one has

(5-3-3) Zu(g) -n; =0 (mod n)
jln

for all n € N. But since n,, = n,,(y;) is an integral polynomial in the coordinates y;
of y, (5-3-3) must hold for all y; € Z. It follows that n is contained in the image of
Q(C) in gh(C), whether y is an actual or a virtual finite cyclic set. O

(5—3—4) Theorem. With the notations of Theorem (5-3-1) one has
™y ) =7 ()

fory, v € Q(C). Similarily if X = X; U X2 one has

for all y € Q(C). Moreover, if X is finite, then 7% (y) is already contained in
Q(C) C Q(C), so for any other cyclic set X' with only finitely many C-orbits one
may consider X (7X(y)) and one has

T (X () =X ()

Proof. If Y is an actual finite cyclic set the proof is obvious and it can be carried
over to virtual cyclic sets in a routine manner. [

(5-3-5) Remark: Note the particularily simple form of the components of the
image of the element 7€() (g, - C(1)) =: ¢:(®) in the ghost ring. By (5-3-2) we
have

(5-3-6) vcn (@1'9) = a™

Hence one has

-3- ©yy = Dt
(5-3-7) La(si(@ @) = T2
and

1

3 (©)y _

(5-3-8) se(q1'™) -

On the other hand (5-3-6) implies that

bl(Ql(C)) = QOC(Ql(C)) ={q1-

Hence by, (ind,¢‘©)) = 0 for m < n and b, (ind,q'®)) = ¢, so (2-4-2) implies
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(5—3—9) Theorem. Foranyz € Q(C) there exists a unique sequence q = (qn)neN €
ZN such that

o0

€T = T(q) = Z inann(C)

n=1

i.e. the Teichmiuller map
r:ZN = Q(C)
q+—7(q)
1s bijective.
Note that (5-3-8) together with (4-7-1) allows to determine the series s:(7(q)).
Indeed one has

I
,’:]8

s:(7(q)) st(indngn' @) = ] s (a2)

n=1
~
In other words, X = X (b) € Q(C) is the image of q = (gn)nen With respect to 7
according to Theorem (5-3-9) if and only if
N 1
(5-3-10) nl;[l(l—t”) :gm'

(5—4) Moreover we have for the components of the image of 7(q) in the ghost
ring

pcr(1(Q) = per (D indngn')

n=1

Y ¢cr(C(n) - pern(3.'Y)

=Y ¢cr(Cn)-a.""
n=1
and since pcr(C(n)) = 0 unless n divides r we have
(5-4-1) cor(r(@) =Y n-g."/
n|r

Hence if one considers according to E.Witt and P.Cartier (cf. [L] and [C]) the
well(!) defined ring structure on the set W(Z) := ZN of Witt vectors for which all
the maps

o,.: W(Z)— Z
(Qn)nGN = Z n: an/n
n|r

are ring homomorphisms, we get
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(5—4—2) Theorem. The Teichmiiller map

7: W(Z) — Q(C)
q+— 7(q)

is an isomorphism of rings.

Note that by the above considerations we have proved Therorem 4. Note also that
in addition our approach provides a new proof for the fact that the ring structure
on W(Z) is well defined, i.e. that for q = (¢n)nen in W(Z) and q = (G,,)nen the
sequences s = (Sp)neN, d = (dn)nen and p = (Pn)nenN, defined recursively by

(5—4—3) S, 1= %(Z nan/n + Znanr/n . Z nsnr/n)’

n|r n|r

n#r

(5-4-4) d, — %(Z IRV SR S R)
n|r n|r n|r
n#r

and

(5-4-5) D = %((Z nan/") ) (Z nﬁnr/n) _ Z nmnr/n)a
n|r

n#£r

are integer valued. As mentioned already in the introduction, it is shown in [DS 2]
in a much more general context that one can use our interpretation of Witt vectors
in the context of Burnside rings to prove the important and much deeper fact—
due to E.Witt—that (5-4-3), (5-4-4) and (5-4-5) define s,., d, and p, as integral
polynomials in ¢1,...,¢- and qy,...,q,.

(5—5) Theorem (5-4-2) has many interesting applications. To mention just one,
note that the Teichmiiller map 7 : W(Z) — Q(C) transports Frobenius and Ver-
schiebung operators, which are defined for Witt vectors in the usual way, into
restriction and induction maps on the Burnside ring. More precisely, one has com-
mutative diagrams

for all n € N.
Note also that Cartier’s formally defined map E : W(Z) — A(Z) coincides with
the composition s; o 7: W(Z) — A(Z).
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6 The cyclotomic identity.

In this section we want to study in some more detail the (virtual) almost finite
cyclic sets ¢(©), ¢ € Z.

(6—1) We first determine the coefficients of the canonical decomposition

(6-1-1) ¢© = iM(q, k) C(k)

of ¢(©) into cycles. Applying ¢cn to (6-1-1) provides

(6-1-2) ¢"=> k-M(qk)
k|n

and hence, by Mébius inversion, (cf. [HW])

(6-1-3) n-M(gn) =Y n(7) - d"
k|n

Therefore the coefficients M (g, n) are integer valued polynomials in ¢ with rational
coefficients, the so—called necklace polynomials (cf. [MR 1].

(6—2) Remark: N.Metropolis and G.—C.Rota established a number of identities
for these necklace polynomials. These identities are almost immediate consequences
of the exponential construction (cf.(5-3-4)), which provides

(6-2-1) (q- q/)(C) — ¢© _q/(C)’
the identity
(6-2-2) res,q© = (qr)(C)’

and the interplay of restriction and induction. Evaluating both sides of (6-2-1)
leads to

(6-2-3) M(qg-q',n)= Y (i.j)- M(q,i)- M(q, )
[i.j]=n
while evaluation of both sides of (6-2-2) leads to
(6-2-4) M(q",n)= Y (j,r)M(q,j).
IE

r =n

A twofold application of Frobenius reciprocity yields

(6-2-5) ind,x - indsy = (7, 5)ind},. 5)(TeS[y 5] /rT - T€S[r 5)/5Y),
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a formula which is also well known in the context of Witt vectors (cf. [B]). Special-
izing to z = ¢(©) and y = q/(c) leads to

(6-2-6) indpq'© - indeq ' = (r, 5) - indjy oy (¢ g1 (@

and evaluation of both sides provides

(6-2-7) (ns)M(g = ¢ n)= ) (irjs)M(q,)M(d,j)
i.jEN
lirjs] _
rs] —
1
(6-3) We already know that s;(¢(®)) = T ot Hence the decomposition of
—4q

¢‘© into cycles provides

(631) LTI

1—1tn

the so called cyclotomic identity, which has been useful for several different
enumeration problems (cf. [Ga], [Mo], [Wi 2], [Hi] and [MR 1]).

Note that up to now we have given only a formal proof for this identity, using
the logarithmic derivative. But, to complement the work of N.Metropolis and G.—
C.Rota, who succeeded to give a set theoretic derivation of the cyclotomic identity
without using ghosts (cf. [MR 2]) we want to show directly that

(6-3-2) pc(S™(q'9) = q"

thereby establishing another combinatorial proof of the cyclotomic identity.

If we make use of the canonical representation (4-3-1) of the symmetric powers
as quotients of cartesian powers modulo the operation of the symmetric group and
the fact that

SM(¢'9) =2\ (@) = 2\ ()@

then equation (6-3-2) is an immediate consequence of the following lemma, applied
with respect to 3 := 3, and its canonical action on 7" := ¢".

(6—3-3) Lemma. IfT is a finite X—set (for an arbitrary group %), then the num-
ber of C—invariant elements of the orbit space S\T(®) is equal to the number of
elements of T.

Proof. 1t is remarkable that it does not seem to be possible to construct a canon-
ical bijection between T and the set (X\7(©))€ of C-invariant Y-orbits in 7(©),
Instead (cf. also [MR 2]) we construct a canonical bijection between ¥ x 7' and
¥ x (S\T©)C,

Since 7' is finite, we may assume ¥ to be finite too. One verifies easily that the
Y-orbit ¥ - h of an element A in 7(©) is C-invariant if and only if C-h C X - h.
Hence, if g denotes a generator of C, then ¥ - h is a C—invariant orbit in 7(©) if
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and only if there exists an element ¢ € ¥ such that g~'h = oh. This is equivalent
with

(6-3-4) g 'h(g") = h(g"™') =oh(g")  forall i€ Z
and consequently with
(6-3-5) h(g") = o'h(1)  forall i€ Z,

where of course 1 denotes the neutral element of the group C. So we see that h
is completely determined by the pair (o,h(1)) € ¥ x T. Hence, if we define the

mapping

H: 2 xT —T©
(O', t) = H(g’t)
(6-3-6) with H, 4 (g") := o't

then the composition of H with the quotient map 7(¢) — Z\T(C) provide us with
a surjection of ¥ x T" onto the subset of C-invariant elements in X\7(®). We claim
that the fibres of this map all have cardinality #X, which will prove the lemma.

If (0,t) and (7,t') are elements of the fibre of H over the element h € T(®) i.e.
if H(a,t) =h= H(T,t’) then

(6-3-7) o't =1 for all i € Z.

In particular one has t = t/, and in view of the following lemma, (6-3-7) is equivalent
to

(6-3-8) o7 € () Sheg) = S

1€EZ

(6—3-9) Lemma. Let T be a X-set, let o and T be elements of ¥ and let t be an
element of T'. Then the following conditions are equivalent:

(1) o't =1 forallieZ
(2) o = ﬂ Eh(gi).

1€EZ

Before proving Lemma (6-3-9) we note that indeed, since there are #(X/%})
elements in the Y—orbit of h, there are #%, - #(X/X)) = #X elements in 3 x T
which are mapped onto the element 3 - b in (X\T(©))€. Hence

N xT — % x (S\T©)C
(0,t) = (0,5 H(g,1))

is the canonical bijection mentioned in the beginning. [
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To prove Lemma (6-3-9) assume first that o't = 7%t for all i € Z. Then oo't =
77t = 70 and therefore o' € ¥, i = Yp(giy for all i € Z. Vice versa if

o7t € ﬂ Y ,i¢, then using induction with respect to |i| we may assume that
ic€Z

o't = 7't for some i € Z to conclude that also
(6-3-10) (rEY)  t = rE () = 7 (o't) = (o™t - ¢,

Equation (6-3-2) allows to generalize the cyclotomic identity from an identity in

~

A(Z) to an identity in A(©(C)): Since

por (8™(d'D) = po(res,S™(4d'D) = pc (" (resiqd' )
(6-3-11) = c(5"((¢") ) = ¢

we have the following cosequence of (6-3-2):

(6—3-12) Corollary. An element x € Q(C) is of the form z = ¢(© for some
q € Z if and only if its n—th symmetric power S™(x) coincides with its n—th power
x™ for allm € N.

Proof. The above formula (6-3-11) implies that for z = ¢(¢) one has @(S™(x)) =
p(z™) and therefore S™(x) = 2™ for all n € N. Vice versa, if S™(z) = 2™ for all
n € N then

si(@) =14 pc(S™@) " =1+ pc(a") - t"

0201 n 4n 1
=1 +nz::1(<Pc($)) 0= 1= ool(z) -t

= s:((pc () D).

Therefore by the injectivity of s, we have z = (pc(z))(©). O
The result (6-3-12) implies in turn

1

3 ©y_ '
(6-3-13) Sld™) =@

and therefore one has as another consequence:

(6-3-14) Corollary. The cyclotomic identity

% = [ (S:(C(n)))M@m

~

holds as an identity in A(Q(C)).

Note that by the above discussion we have proved Theorem 7.
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