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1 Introduction

In this paper we will analyze the influence of boundary conditions on the Glauber dynamics for
discrete spin models on a regular rooted tree. Although in what follows we will focus for sim-
plicity on the well known Ising model, our techniques also apply to other models, not necessarily
ferromagnetic and with hard-core constraints.

In the Ising model on a finite graph G = (V, E), a configuration σ = (σx) consists of an assign-
ment of ±1-values, or “spins”, to each vertex (or “site”) of V . The probability of finding the system
in configuration σ ∈ {±1}V ≡ ΩG is given by the Gibbs distribution

µG(σ) ∝ exp
(
β

∑
xy∈E

σxσy + βh
∑

x∈V
σx

)
, (1)

where β ≥ 0 is the inverse temperature and h the external field. Boundary conditions can also be
taken into account by fixing the spin values at some specified “boundary” vertices of G; the term
free boundary is used to indicate that no boundary condition is specified.

In the classical Ising model, G = Gn is a cube of side n1/d in the d-dimensional Cartesian
lattice Zd, and in this case the phase diagram in the thermodynamic limit Gn ↑ Zd is quite well
understood (see, e.g., [16, 39] for more background).

While the classical theory focused on static properties of the Gibbs measure, in the last decade
the emphasis has shifted towards dynamical questions with a computational flavor. The key object
here is the Glauber dynamics, a (discrete– or continuous–time) Markov chain on the set of spin
configurations ΩG in which each spin σx flips its value with a rate that depends on the current
configuration of the neighboring spins of x, and which satisfies the detailed balance condition w.r.t
to the Gibbs measure µG (see Section 2 for more details).

The Glauber dynamics is much studied for two reasons: firstly, it is the basis of Markov chain
Monte Carlo algorithms, widely used in computational physics for sampling from the Gibbs dis-
tribution; and secondly, it is a plausible model for the actual evolution of the underlying physical
system towards equilibrium. In both contexts, one of the central questions is to determine the
mixing time, i.e., the time until the dynamics is close to its stationary distribution.

As is well known (see, e.g., [37]), the approach to stationarity of a reversible Markov chain
with Markov generator L and reversible measure π can be successfully studied by analyzing two
key quantities: the spectral gap and the logarithmic Sobolev constant of the pair (L, π)†. The first
of these measures the rate of exponential decay as t → ∞ of the variance Varπ(etLf) computed
with respect to the invariant measure π, while the second measures instead the rate of decay of
the relative entropy of etLf w.r.t π (see, e.g., [1]). Advances in statistical physics over the past
decade have led to remarkable connections between these two quantities and the occurrence of a
phase transition (see, e.g., [41, 31, 30, 9, 29, 27]). As an example, on finite n-vertex squares with
free boundary in the 2-dimensional lattice Z2, when h = 0 and β is smaller than the critical value
βc, the spectral gap and the logarithmic Sobolev constant are Ω(1) (i.e. bounded away from zero
uniformly in n), while for β > βc they are both exponentially small in

√
n.

One of the most interesting and difficult questions left open by the above and related results
is the influence of boundary conditions on the spectral gap and the log-Sobolev constant when
h = 0 and β > βc. It has been conjectured that, in the presence of an all-(+) boundary, the
relaxation process is driven by the mean–curvature motion of interfaces separating droplets of the
(−)-phase inside the (+)-phase, and therefore the mixing time should be polynomial in n (most
likely n2/d log n) [7, 15]. In particular it has been argued that the spectral gap for the pure phases
in high enough dimension should be Ω(1). Proving results of this kind has proved very elusive,

†Unfortunately the definition of the logarithmic Sobolev constant is not constant in the literature. The ambiguity
arises because there are two definitions, one the inverse of the other. The definition used in this paper is the one that
puts the logarithmic Sobolev constant and the spectral gap on the same footing; see Eqn. (7) in Section 2.2.
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and the only (presumably sharp) available bounds are upper bounds on the spectral gap and the
logarithmic Sobolev constant [7].

In this paper we prove a strong version of the above conjecture in what is known in statistical
physics as the Bethe approximation, namely when the lattice Zd is replaced by a regular tree. Among
other results, we show that the spectral gap of the Glauber dynamics for the Ising model on a tree
with a (+)-boundary condition on its leaves is Ω(1) at all temperatures and all values of the external
field, and further that the same holds for the logarithmic Sobolev constant. Notice that, with a free
boundary, β large and h = 0, both quantities tend to zero as 1/na and the exponent a grows
arbitrarily large as β →∞ [3].

Ours is apparently the first result that quantifies the effect of boundary conditions on the
Glauber dynamics in an interesting scenario. We stress that, while the tree is simpler in many
respects than Zd due to the lack of cycles, in other respects it is more complex due to the large
boundary: e.g., it exhibits a “double phase transition,” and the critical field at low temperature is
non–zero (see below). In the next subsection, we briefly describe the Ising model on trees before
stating our results in more detail.

1.1 The Ising model on trees

Fix b ≥ 2 and let Tb denote the infinite b-ary tree. The Ising model on Tb is known [16, 25] to have
a phase diagram in the (h, β) plane quite different from that on the cubic lattice Zd (see Fig. 1),
and has recently received a lot of attention as the canonical example of a statistical physics model
on a “non-amenable” graph (i.e., one whose boundary is of comparable size to its volume) — see,
e.g., [6, 20, 14, 38, 23, 3, 5].

T = 

1/β0

1/β1

1/β

h
b−1−(b−1)

Figure 1: The critical field hc(β). The Gibbs measure is unique above the curve.

Let us first discuss the behavior on the line h = 0. There is a first critical value β0 = 1
2 log

(
b+1
b−1

)
,

marking the dividing line between uniqueness and non-uniqueness of the Gibbs measure. Then,
in sharp contrast to the model on Zd, there is a second critical point β1 = 1

2 log
(√

b+1√
b−1

)
which is

often referred to as the “spin-glass critical point” [10]. This second critical point is such that, in
the “intermediate temperature” region β0 < β ≤ β1, the (+)- and (−)-boundary conditions exert
arbitrarily long-range influence on the spin at the root of the tree and hence give rise to different
Gibbs measures, but “typical” boundary conditions (i.e., chosen from the infinite-volume Gibbs
measure with free boundary) do not. Another way to phrase this peculiar behavior is that the
Gibbs measure constructed via a free boundary is extremal for all β ≤ β1, and non-extremal for
β > β1 (see [6, 20, 21, 3] and also [14, 34, 35] for an analysis in the context of “bit reconstruction
problems” for noisy data transmission).

Let us now examine what happens when an external field h is added to the system. It turns out
that for all β > β0, there is a critical value h = hc(β) > 0 of the field such that the Gibbs measure
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is not unique when |h| ≤ hc, and is unique when |h| > hc. (When β ≤ β0 the Gibbs measure is
unique for all h, and hc is defined to be zero.) In the presence of a (+)-boundary, the Ising model
on the tree with external field h = −hc is rather analogous to the classical case of Zd with zero
field. Both models share the following two properties: firstly, the Gibbs measure is sensitive to the
choice of boundary condition, and secondly, adding an arbitrarily small negative field causes the
Gibbs measure to become insensitive to the boundary condition (i.e., unique in the thermodynamic
limit).

Finally we remark that the concentration properties of the Gibbs measure for β > β0, h ≥ −hc

and (+)-boundary are very different from those on Zd. In the latter case, along the line of first
order phase transition, the (negative) large deviations for the bulk magnetization are related to the
appearance of a Wulff droplet of the opposite phase and are depressed by a negative exponential
in the surface area of the droplet (see, e.g., [11]). In the tree, on the other hand, for any value
of (β, h) they are always depressed by a negative exponential in the volume of the excess negative
spins (the phenomenon of “rigidity of the critical phases” [5]).

The Glauber dynamics for the Ising model on trees has also been studied. In a recent paper [3],
it is shown that the associated spectral gap with zero external field and free boundary on a complete
b-ary tree T with n vertices is Ω(1) at high and intermediate temperatures (i.e., when β < β1)‡.
Moreover, at the critical point β = β1 the same spectral gap is bounded above by c/ log n, and as
soon as β > β1 it becomes smaller than c/na(β), with a(β) ↑ ∞ as β → ∞. Thus the critical point
β = β1 is reflected in the dynamics by an abrupt jump in the behavior of the spectral gap as a
function of the size of the tree T . Finally, also in [3], it is proved that the spectral gap for arbitrary
fixed β, h and boundary condition can never shrink to zero faster than an inverse polynomial in n.
Again such a result should be compared to the lattice case where it is known that the spectral gap
for a cube with n sites can be exponentially small in the surface area n(d−1)/d.

1.2 Main results and techniques

Our first main result is a detailed analysis of the spectral gap of the Glauber dynamics in different
regions of the phase diagram. The main novelty here is that we are able for the first time to prove
a sharp result in the region where the spectral gap is highly sensitive to the boundary condition.

Theorem 1.1 In both of the following situations, the spectral gap of the Glauber dynamics on a com-
plete b-ary tree T with n vertices is Ω(1):

(i) the boundary condition is arbitrary, and either β < β1 (with h arbitrary), or |h| > hc(β) (with
β arbitrary);

(ii) the boundary condition is (+) and β, h are arbitrary.

Remark: On Zd not much is known about the spectral gap when β > βc, h = 0 and the boundary condition
is (+), the notable exception being that of Z2 where it has recently been proved [7] that the spectral gap in
a square with n sites shrinks to zero at least as fast as 1/

√
n. The best known lower bounds are significantly

weaker [29]. In high enough dimensions (d ≥ 3) it has been conjectured (see [15] and [7]) that the spectral
gap should stay bounded away from zero uniformly in n. The above theorem can be looked upon as evidence
in favor of this conjecture.

In our second main result we extend our analysis to the more delicate and difficult logarithmic
Sobolev constant.

‡Actually the arguments in [3] prove that the gap is Ω(1) for any β < β1, arbitrary boundary condition and any
external field. Their argument, together with some monotonicity properties specific to the Ising model [36], implies a
mixing time of O(log n). Thus, although for β0 < β < β1 there exist several Gibbs measures, the mixing time of the
Glauber dynamics is insensitive to the boundary condition.
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Theorem 1.2 In the same situations as in Theorem 1.1, the logarithmic Sobolev constant of the
Glauber dynamics on a complete b-ary tree T with n vertices is Ω(1).

As a corollary we obtain that, in the situations of Theorems 1.1 and 1.2, the Glauber dynamics
mixes (in a very strong sense) in time O(log n).

Remarks:

(i) In Zd with (+)-boundary condition, β large and zero external field the logarithmic Sobolev
constant in a cube with n sites is always smaller than n−2/d, apart from logarithmic corrections
[7], in agreement with heuristic predictions based on the mean–curvature motion of phase
interfaces.

(ii) We also prove an additional result (see Theorem 5.7) which shows that, for an arbitrary
nearest-neighbor spin system on a tree, as soon as the spectral gap is Ω(1) then the logarithmic
Sobolev constant cannot shrink faster than (c log n)−1. This means that, even when a constant
lower bound is known for the gap but not for log-Sobolev, one can deduce a mixing time of
O((log n)2). While we do not require this fact to derive the results of this paper, we believe it
may be of interest for other models on trees.

In order to better appreciate Theorem 1.2, one should keep in mind that for general finite-range,
translation-invariant, compact spin models on Zd, if there exists an infinite-volume Gibbs measure µ
with a positive logarithmic Sobolev constant, then the system is necessarily in the uniqueness region
and µ has exponentially decaying correlations [42]§. We also recall (see, e.g., [26]) that when
the log-Sobolev constant is bounded away from zero one can derive very strong (Gaussian–like)
concentration properties of the corresponding Gibbs measure, such as those proved in [5].

We now proceed to sketch some of our techniques and point out the main technical innovations.
Our analysis of both the log-Sobolev constant and the spectral gap rests on certain spatial mixing

conditions that can be stated as follows. Let f be a function of the spin configuration that does
not depend on the spins in the first ` levels of the tree starting from the root r, and let µ(f |σr)
be the projection of f onto the spin σr at the root. If the variance (respectively, the entropy)
under the Gibbs measure µ of µ(f |σr) decays fast enough with the depth `, then we show by a
unified argument how to deduce a bound of Ω(1) on the spectral gap (respectively, the log-Sobolev
constant). Crucially, in contrast to previous approaches we do not require the above decay to hold
in arbitrary environments, but only for the Gibbs measure µ under consideration. This opens up
the possibility that the condition holds for some boundary conditions and not for others (with the
same values of temperature and external field). We also prove the converse, thus showing that our
mixing conditions are in fact equivalent to the required bounds on the spectral gap and log–Sobolev
constants. This analysis has several advantages over previous ones [3, 36]: it is more direct, applies
also when there is an external field, and applies to general nearest-neighbor spin systems on trees.

The second main ingredient of the paper is establishing the above spatial mixing conditions in
the scenarios of interest described in the above two theorems. This is done via a rather simple
and novel coupling technique for the case of the variance. Such a technique provides, along the
way, a new and really elementary proof of the extremality of the Gibbs measure with free boundary
below β1. Surprisingly, we are also able to exploit the same coupling technique (via strong concen-
tration properties of the Gibbs measure) to establish the entropy mixing condition. Thus in terms
of the coupling analysis our conditions for variance and entropy mixing are essentially the same.

Finally, we mention that our results actually hold (with suitable modifications) for a much wider
class of spin systems on trees than just the Ising model, including the Potts model and models with
hard constraints such as the zero-temperature antiferromagnetic Potts model (proper colorings)

§A close look at the proof in [42] reveals that the same is true for any infinite, locally-finite, bounded-degree graph
such that the volume of any ball of radius ` grows sub–exponentially in `.
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and the hard-core lattice gas model (independent sets). We briefly outline some of these extensions
at the end of the paper; full details can be found in a companion paper [32].

The remainder of the paper is organized as follows. In Section 2 we give some basic definitions
and notation. Then in Section 3 we define the spatial mixing conditions and relate them to the
spectral gap and log-Sobolev constant. The mixing conditions in the scenarios of interest for the
spectral gap and the log-Sobolev constant are verified in Sections 4 and 5 respectively. Finally, in
Section 6 we mention some extensions of our results to other models of interest. The proofs of
some technical lemmas omitted from the main text are collected in a supplement, Section 7.
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2 Preliminaries

2.1 Gibbs distributions on trees

For b ≥ 2, let Tb denote the infinite, rooted b-ary tree (in which every vertex has b children).
We will be concerned with (complete) finite subtrees T of Tb; if T has depth m then it has n =
(bm+1 − 1)/(b − 1) vertices, and its boundary ∂T consists of the children (in Tb) of its leaves, i.e.,
|∂T | = bm+1. We identify subgraphs of T with their vertex sets, and write E(A) for the edges within
a subset A, and ∂A for the boundary of A (i.e., the neighbors of A in (T ∪ ∂T ) \A).

Fix an Ising spin configuration τ on the infinite tree Tb. We denote by Ωτ
T the set of (finite) spin

configurations σ ∈ {±1}T∪∂T that agree with τ on ∂T ; thus τ specifies a boundary condition on T .
Usually we abbreviate Ωτ

T to Ω. For any η ∈ Ω and any subset A ⊆ T , we denote by µη
A the Gibbs

distribution over Ω conditioned on the configuration outside A being η: i.e., if σ ∈ Ω agrees with η
outside A then

µη
A(σ) ∝ exp

[
β
(∑

xy∈E(A∪∂A)
σxσy + h

∑
x∈A

σx

)]
,

where β is the inverse temperature and h the external field. We define µη
A(σ) = 0 otherwise. In

particular, when A = T , µτ
T is simply the Gibbs distribution on the whole of T with boundary

condition τ ; we abbreviate µτ
T to µ.

For a function f : Ω → R we denote by µη
A(f) =

∑
σ∈Ω µη

A(σ)f(σ) the expectation of f w.r.t. the
distribution µη

A. It will be convenient to view µη
A(f) as a function of η, defined by µA(f)(η) = µη

A(f),
the conditional expectation of f . Note that µA(f) is a function from Ω to R but depends only on
the configuration outside A. We write Varη

A(f) = µη
A(f2) − µη

A(f)2 and (for f ≥ 0) Entη
A(f) =

µη
A(f log f) − µη

A(f) log µη
A(f) for the variance and entropy of f respectively w.r.t. µη

A. Note that
Varη

A(f) = 0 iff, conditioned on the configuration outside A being η, f does not depend on the
configuration inside A. The same holds for Entη

A(f). In case A = T we use the abbreviations
µ(f),Var(f) and Ent(f).

We record here some basic properties of variance and entropy that we use throughout the paper:
(i) For B ⊆ A ⊆ T ,

Varη
A(f) = µη

A[VarB(f)] + Varη
A[µB(f)]. (2)

This equation expresses a decomposition of the variance into the local conditional variance in B
and the variance of the projection outside B.

5



(ii) If A =
⋃

i Ai for disjoint Ai, and the Gibbs distribution µη
A is the product of its marginals over

the Ai, then for any function f ,

Varη
A(f) ≤

∑

i

µη
A[VarAi(f)]. (3)

(iii) For any two subsets A,B ⊆ T such that (∂A) ∩B = ∅, and for any function f ,

µ[VarA(µB(f))] ≤ µ[VarA(µA∩B(f))]. (4)

Properties (ii) and (iii) are consequences of the fact that variance w.r.t. a fixed measure is a convex
functional.

All three properties (i), (ii) and (iii) also hold with Var replaced by Ent.

2.2 The Glauber dynamics

The Glauber dynamics on T with boundary condition τ is the continuous time Markov chain on Ω =
Ωτ

T with Markov generator L ≡ Lτ
T given by

(Lf)(σ) =
∑

x∈T

cx(σ)[f(σx)− f(σ)], (5)

where σx denotes the configuration obtained from σ by flipping the spin at the site x, and cx(σ)
denotes the flip rate at x. Although all our results apply to any choice of finite–range, uniformly
positive and bounded flip rates satisfying the detailed balance condition w.r.t. the Gibbs measure,
for simplicity in the sequel we will work with a specific choice known as the heat-bath dynamics:

cx(σ) = µσ
{x}(σ

x) =
1

1 + wx(σ)
, where wx(σ) = exp

[
2βσx(

∑

xy∈E

σy + h)
]
.

It is a well-known fact (and easily checked) that the Glauber dynamics is ergodic and reversible
w.r.t. the Gibbs distribution µ = µτ

T , and so converges to the stationary distribution µ. The rate of
convergence is often measured using two concepts from functional analysis: the spectral gap and
the logarithmic Sobolev constant. For a function f : Ω → R, define the Dirichlet form of f associated
with the generator L by

D(f) = 1
2

∑
x

µ
(
cx

[
f(σx)− f(σ)

]2) =
∑

x

µ(Var{x}(f)). (6)

(The l.h.s. here is the general definition for any choice of the flip rates cx; the last equality holds
when specializing to the case of the heat-bath dynamics.) The spectral gap cgap(µ) and the logarith-
mic Sobolev constant csob(µ) of the chain are then defined by

cgap(µ) = inf
f

D(f)
Var(f)

; csob(µ) = inf
f≥0

D(
√

f )
Ent(f)

, (7)

where the infimum in each case is over non-constant functions f .
As is well known, these two quantities measure the rate of exponential decay as t → ∞ of the

variance and relative entropy respectively (see, e.g., [37]). The quantity cgap also has a natural
interpretation as the smallest positive eigenvalue of −L.

We make the following important note. When discussing the asymptotics of csob (or cgap) for a
fixed boundary condition τ , we think of the infinite sequence of Gibbs distributions {µτ

T }, where T
ranges over all finite complete subtrees of Tb. In particular, when we say that csob(µ) = csob(µτ

T ) =
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Ω(1) we mean that there exists a finite constant C > 0 such that for every T (or equivalently, for
every µ ∈ {µτ

T }), csob(µ) ≥ 1/C.
We close this section by recalling some well-known relationships between the above constants

and certain notions of mixing time of the Glauber dynamics. Define hσ
t (η) = Pt(σ,η)

µ(η) , where
Pt(σ, η) = etL(σ, η) is the transition kernel at time t. Then, for 1 ≤ p ≤ ∞, define

Tp = min
{

t > 0 : sup
σ
‖hσ

t − 1‖p ≤ 1
e

}
(8)

where ‖f‖p denotes the Lp(Ω, µ) norm of f . The time T1 is usually called simply the mixing time of
the chain. Standard results relating Tp to the spectral gap and log-Sobolev constant (see, e.g., [37]),
when specialized to the Glauber dynamics, yield the following:

Theorem 2.1 On an n-vertex b-ary tree T with boundary condition τ ,

(i) cgap(µ)−1 ≤ T1 ≤ cgap(µ)−1 × C1n;

(ii) cgap(µ)−1 ≤ T2 ≤ csob(µ)−1 × C2 log n,

where µ = µτ
T and C1, C2 are constants depending only on b, β and h.

Finally, we note that our choice of the heat-bath dynamics is not essential. Since changing to
any other reversible local update rule (e.g., the Metropolis rule) affects csob and cgap by at most a
constant factor, our analysis applies to any choice of Glauber dynamics.

3 Spatial mixing conditions for the spectral gap and log-Sobolev con-
stant

In this section we define a certain spatial mixing condition (i.e., a form of weak dependence between
the spin at a site and the configuration far from that site) for a Gibbs distribution µ, and prove
that this condition implies that cgap(µ) = Ω(1). An analogous condition implies that csob(µ) =
Ω(1). Our spatial mixing conditions have two main advantages over those used previously: first,
the conditions for the spectral gap and the log-Sobolev constant are identical in form, allowing a
uniform treatment; second, and more importantly, they are measure-specific, i.e., they may hold
for the Gibbs distribution induced by some specific boundary configuration while not holding for
other boundary configurations. Hence, the conditions are sensitive enough to show rapid mixing
for specific boundaries even though the mixing time with other boundaries is slow for the same
choice of temperature and external field. We also note that the results of this section hold not just
for the Ising model but for any nearest-neighbor interaction model on a tree.

3.1 Reduction to block analysis

Before presenting the main result of this section, we need some more definitions and background.
For each site x ∈ T , let Bx,` ⊆ T denote the subtree (or “block”) of height ` − 1 rooted at x, i.e.,
Bx,` consists of ` levels. (If x is k < ` levels from the bottom of T then Bx,` has only k levels.)
In what follows we will think of ` as a suitably large constant. By analogy with expression (6)
for the Dirichlet form, let D`(f) ≡ ∑

x∈T µ[VarBx,`
(f)] denote the local variation of f w.r.t. the

blocks {Bx,`}. A straightforward manipulation (see, e.g., [29], keeping in mind that each site
belongs to at most ` blocks) shows that cgap can be bounded as follows:

cgap(µ) ≥ 1
`
· inf

f

D`(f)
Var(f)

·min
η,x

cgap(µ
η
Bx,`

). (9)
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As before, the infimum is taken over non-constant functions (and henceforth we omit explicit men-
tion of this). The importance of (9) is that minη,x cgap(µ

η
Bx,`

) depends only on the size of Bx,` and β,

but not on the size of T ; in fact, it is at least Ω(e−c(b,β)·`) [3]. Therefore, in order to show that cgap

is bounded by a constant independent of the size of T , it is enough to show that, for some finite `,
Var(f) ≤ const × D`(f) for all functions f . This is what we will show below, under the relevant
spatial mixing condition. As a side remark, notice that inff

D`(f)
Var(f) is exactly the spectral gap of the

Glauber dynamics based on flipping blocks Bx,`, rather than single sites x.
An identical manipulation yields an analogous bound for the log-Sobolev constant. For a non-

negative function f , let E`(f) ≡ ∑
x∈T µ[EntBx,`

(f)]. Then

csob(µ) ≥ 1
`
· inf

f≥0

E`(f)
Ent(f)

·min
η,x

csob(µ
η
Bx,`

). (10)

Hence to bound csob(µ) it suffices to show that, for some constant `, Ent(f) ≤ const × E`(f) for
all f ≥ 0.

3.2 Spatial mixing

We are now ready to state our spatial mixing conditions, first for the variance and then for the
entropy. For x ∈ T , write Tx for the subtree rooted at x, and T̃x for Tx \ {x}, the subtree Tx

excluding its root.

Definition 3.1 [Variance Mixing] We say that µ = µτ
T satisfies VM(`, ε) if for every x ∈ T , any η ∈

Ωτ
T and any function f that does not depend on Bx,` , the following holds:

Varη
Tx

[µfTx
(f)] ≤ ε ·Varη

Tx
(f).

Let us briefly discuss the above condition. Essentially, ε = ε(`) gives the rate of decay with
distance ` of point-to-set correlations. To see this, note that the l.h.s. Varη

Tx
[µfTx

(f)] is the variance
of the projection of f onto the root x of Tx, which is at distance ` from the sites on which f depends.
It is also worth noting that the required uniformity in η in VM is not very restrictive: since the
distribution µη

Tx
depends only on the restriction of η to the boundary of Tx, and since η ∈ Ωτ

T

(i.e., η agrees with τ on ∂T and therefore on the bottom boundary of Tx), the only freedom left
in choosing η is in choosing the spin of the parent of x. Thus, VM is essentially a property of
the distribution induced by the boundary condition τ . It is this lack of uniformity (i.e., the fact
that we need not verify VM for other boundary conditions) that makes it flexible enough for our
applications.

As the following theorem states, if VM(`, ε) holds with ε ≈ 1
2` , then we get a lower bound

on cgap:

Theorem 3.2 For any ` and δ > 0, if µ satisfies VM(`, (1− δ)/2(` + 1− δ)) then Var(f) ≤ 3
δ · D`(f)

for all f . In particular, if VM with the above parameters holds for some fixed ` and δ > 0, for all
µ = µτ

T with T a full subtree, then cgap(µ) = Ω(1). Conversely, if cgap(µ) = Ω(1) then for all T , µτ
T

satisfies VM(`, ce−ϑ`) for some constants c, ϑ > 0 and all `.

Remark: The second part of the theorem was already proved in [3], where it was shown that for general
nearest-neighbor spin systems on any bounded degree graph, if cgap(µ) is bounded independently of n
then µ exhibits an exponential decay of point-to-set correlations (i.e., VM(`, c exp(−ϑ`)) holds for all `). The
authors of [3] posed the question of whether the converse is also true. Theorem 3.2 (which holds for general
nearest-neighbor spin systems on a tree) answers this question affirmatively when the graph is a tree. In fact,
as is apparent from the above theorem, the decay of point-to-set correlations on a tree is either slower than
linear or exponentially fast.
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The analogous mixing condition for entropy and the log-Sobolev constant is the following:

Definition 3.3 [Entropy Mixing] We say that µ = µτ
T satisfies EM(`, ε) if for every x ∈ T , any η ∈

Ωτ
T and any non-negative function f that does not depend on Bx,` , the following holds:

Entη
Tx

[µfTx
(f)] ≤ ε · Entη

Tx
(f).

Before stating the analog of Theorem 3.2 relating csob to EM, we need to define one more
constant. Let pmin = minx,s,η∈Ωτ

T
µη

Tx
(σx = s), where s ranges over {+,−}; i.e., pmin is the minimum

probability of any spin value at any site with any boundary condition. It is easy to see that pmin ≥
1
2e−2β(b+|h|), a constant depending only on b, β, h.

Theorem 3.4 For any ` and δ > 0, if µ satisfies EM(`, [(1−δ)pmin/(`+1−δ)]2) then Ent(f) ≤ 2
δ ·E`(f)

for all f ≥ 0. In particular, if EM with the above parameters holds for some fixed ` and δ > 0, for all
µ = µτ

T with τ fixed and T an arbitrary full subtree, then csob(µ) = Ω(1). Conversely, if csob(µ) = Ω(1)
then for all T , µτ

T satisfies EM(`, ce−ϑ`) for some constants c, ϑ > 0 and all `.

In order to prove Theorems 3.2 and 3.4 it is convenient to work with spatial mixing conditions that
are somewhat more involved than VM and EM. The main difference is that we want to allow for
functions that may depend on Bx,` (the first ` levels of Tx) and thus need to introduce a term for
this dependency. The modified conditions express the property that the variance (entropy) of the
projection of any function f onto the root x of Tx can be bounded up to a constant factor by the
local variance (entropy) of f in Bx,`, plus a negligible factor times the local variance (entropy) of f

in T̃x. As the following lemma states, the modified conditions (with appropriate parameters) can
be deduced from VM and EM.

Lemma 3.5 (i) For any ε < 1
2 , if µ = µτ

T satisfies VM(`, ε) then for every x ∈ T , any η ∈ Ωτ
T

and any function f we have Varη
Tx

[µfTx
(f)] ≤ 2−ε′

1−ε′ · µη
Tx

[VarBx,`
(f)] + ε′

1−ε′ · µη
Tx

[VarfTx
(f)],

with ε′ = 2ε.

(ii) For any ε < p2
min, if µ = µτ

T satisfies EM(`, ε) then for every x ∈ T , any η ∈ Ωτ
T and any

function f ≥ 0 we have Entη
Tx

[µfTx
(f)] ≤ 1

1−ε′ ·µη
Tx

[EntBx,`
(f)] + ε′

1−ε′ ·µη
Tx

[EntfTx
(f)], with ε′ =

√
ε

pmin
.

Remark: We note that with extra work, part (ii) of Lemma 3.5 can be improved to hold with ε′ = c(pmin)ε.
We give the weaker bound because it is simpler to prove while still enough for our applications.

Similar statements to those in Lemma 3.5 appeared in [4]. We defer our proof to Section 7.
We can now prove Theorems 3.2 and 3.4 by working with the modified spatial mixing conditions

of Lemma 3.5.

Proof of Theorems 3.2 and 3.4: Here we only prove the forward direction of both theorems. The
reverse direction of Theorem 3.2 was proved in [3], as already mentioned above. The proof of the
reverse direction of Theorem 3.4 is deferred to Section 7 because it uses machinery developed later
in the paper.

The main step in the proof of the forward direction is to show the following claim:

Claim 3.6 If for every x ∈ T , any η ∈ Ωτ
T and any function f ,

Varη
Tx

[µfTx
(f)] ≤ c · µη

Tx
[VarBx,`

(f)] +
(

1− δ

`

)
· µη

Tx
[VarfTx

(f)],

then Var(f) ≤ c
δ · D`(f) for all f . The same implication holds when Var is replaced by Ent, D` is

replaced by E` and the function f is restricted to be non-negative.
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Observe that the hypothesis of Theorem 3.2 together with part (i) of Lemma 3.5 establishes
the hypothesis of Claim 3.6 with c ≤ 3, and similarly, the hypothesis of Theorem 3.4 together with
part (ii) of Lemma 3.5 establishes the hypothesis of Claim 3.6 (after the necessary replacement of
symbols) with c ≤ 2.

It therefore suffices to prove Claim 3.6. We prove only the formulation with Var and D` since
the proof for the formulation with Ent and E` is identical once we make the same replacements in
the text of the proof. As will be clear below, the proof uses only properties which are common to
both Var and Ent.

Consider an arbitrary function f : Ω → R. Our first goal is to relate Var(f) to the projections
Varη

Tx
[µfTx

(f)] for x ∈ T , so that we can apply the spatial mixing condition of the hypothesis. Recall
that T has m + 1 levels, and define the increasing sequence ∅ = F0 ⊂ F1 ⊂ . . . ⊂ Fm+1 = T , where
Fi consists of all sites in the lowest i levels of T . Thus Fi is a forest of height i − 1. Using (2)
recursively, and the facts that µFi+1(µFi(f)) = µFi+1(f) and µF0(f) = f , we obtain

Var(f) = µ[VarF1(f)] + Var[µF1(f)]
= µ[VarF1(f)] + µ[VarF2(µF1(f))] + Var[µF2(µF1(f))]
...

=
m+1∑

i=1

µ[VarFi(µFi−1(f))].

Now a fundamental property of nearest-neighbor interaction models on a tree is that, given the
configuration on T \ Fi, the Gibbs distribution on Fi becomes a product of the marginals on the
subtrees rooted at the sites x ∈ Fi\Fi−1. Using inequality (3) for the variance of a product measure,
we therefore have that

Var(f) ≤
m+1∑

i=1

∑

x∈Fi\Fi−1

µ[VarTx(µFi−1(f))] ≤
∑

x∈T

µ[VarTx(µfTx
(f))], (11)

where in the second inequality we used the convexity of the variance as in (4).
Notice that so far we have not used the spatial mixing condition in the hypothesis of Claim 3.6,

but only a natural martingale structure induced by the tree. Let us denote the final sum in (11)
by Pvar(f). In order to bound cgap, we need to compare the projection terms VarTx(µfTx

(f))
in Pvar(f) with the local conditional variance terms in D`(f). For example, notice that if µ were
the product of its single-site marginals then VarTx(µfTx

(f)) ≤ µTx [Varx(f)] and cgap = 1. However,
in general the variance of the projection on x may also involve terms which depend on other sites,
and may lead to a factor that grows with the size of Tx. We will use the spatial mixing condition
in order to preclude the latter possibility. Specifically, we show that if for every x ∈ T , any η ∈ Ωτ

T

and any function g, Varη
Tx

[µfTx
(g)] ≤ c · µη

Tx
[VarBx,`

(g)] + ε · µη
Tx

[VarfTx
(g)] then for every x ∈ T

and η ∈ Ω,

Varη
Tx

[µfTx
(f)] ≤ c · µη

Tx
[VarBx(f)] + ε ·

∑

y∈Bx∪e∂Bx,y 6=x

µη
Tx

[VarTy(µfTy
(f))], (12)

where we have abbreviated Bx,` to Bx and ∂̃Bx stands for the boundary of Bx excluding the parent
of x, i.e., the bottom boundary of Bx. Notice that the last term in (12) is relevant only when x
is at distance at least ` from the bottom of T . When x belongs to one of the ` lowest levels of T
then Tx = Bx, and thus trivially Varη

Tx
[µfTx

(f)] ≤ µη
Tx

[VarBx(f)].
Let us assume (12) for now and conclude the proof of the theorem. Applying (12) for every x

and η, and using the hypothesis that ε = 1−δ
` and the fact that each site appears in at most ` blocks,
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we get

Pvar(f) ≤ c · D`(f) + ε ·
∑

x∈T

∑

y∈Bx∪e∂Bx,y 6=x

µ[VarTy(µfTy
(f))]

≤ c · D`(f) + ε` ·
∑

y∈T

µ[VarTy(µfTy
(f))]

= c · D`(f) + (1− δ)Pvar(f),

and hence
Var(f) ≤ Pvar(f) ≤ c

δ
· D`(f),

proving Claim 3.6. We now return to proving (12).
Let g = µ

Tx\(Bx∪e∂Bx)
(f). Once we notice that µfTx

(f) = µfTx
(g), we can use the spatial mixing

assumption that precedes (12) to deduce

Varη
Tx

[µfTx
(f)] ≤ c · µη

Tx
[VarBx(g)] + ε · µη

Tx
[VarfTx

(g)]

≤ c · µη
Tx

[VarBx(f)] + ε · µη
Tx

[VarfTx
(g)],

where we used (4) for the second inequality. We will be done once we show that

µη
Tx

[VarfTx
(g)] ≤

∑

y∈Bx∪e∂Bx,y 6=x

µη
Tx

[VarTy(µfTy
(f))]. (13)

But (13) follows from a similar argument to that used earlier to show Var(f) ≤ Pvar(f), starting
from the fact that g = µF ′k

(f), where the forests F ′
i are defined analogously to the Fi earlier but

restricted to the subtree Tx, and k = height(x)− `. We omit the details.
This concludes the proof of Claim 3.6, and thus of Theorems 3.2 and 3.4.

4 Verifying spatial mixing for the spectral gap

In this section, we will prove that the spectral gap of the Glauber dynamics is bounded in all of the
situations covered by Theorem 1.1 in the Introduction.

In light of Theorem 3.2, to bound the spectral gap it suffices to verify the Variance Mixing
condition VM(`, ε) with ε = (1 − δ)/2(` + 1 − δ), for some constants `, δ > 0 independent of the
size of T . In fact, we will show it with the asymptotically tighter value ε = c exp(−ϑ`):

Theorem 4.1 In both of the following situations, there exists a positive constant ϑ (depending only on
b, β and h) such that, for all T , the Gibbs distribution µ = µτ

T satisfies VM(`, e−ϑ`) for all `:

(i) τ is arbitrary, and either β < β1 (with h arbitrary), or |h| > hc(β) (with β arbitrary);

(ii) τ is the (+)-boundary condition, and β, h are arbitrary.

As a corollary, in both situations cgap(µ) = Ω(1).

Remark: The validity of VM, i.e, the decay of point-to-set correlations, is of interest independently of its
implication for the spectral gap (an implication which is new to this paper): e.g., it is closely related to the
purity of the infinite volume Gibbs measure and to bit reconstruction problems on trees [14]. In the special
case of a free boundary and h = 0, part (i) of Theorem 4.1 was first proved in [6] via a lengthy calculation,
which was considerably simplified in [20]. It was later reproved in [3] (for arbitrary boundary conditions)
as a consequence of the fact that the spectral gap is bounded in this situation. An extension to general
trees can be found in [14] and [21]. Our motivation for presenting another proof of part (i) (in addition to
handling general fields h) is the simplicity of our argument compared with previous ones. As far as part (ii)
is concerned, we are unaware of any previous results for the case of the (+)-boundary other than the fact
that VM(`, ε(`)) must hold with lim`→∞ ε(`) = 0 because the (+)-phase is pure (see, e.g., [16]).

11



The rest of this section is divided into two parts. First, we develop a general framework based
on coupling in order to establish the exponential decay of point-to-set correlations. This framework
identifies two key quantities, κ and γ, and states that when their product is small enough then VM
holds. Then, in the second part, we go back to proving Theorem 4.1 by calculating κ and γ for each
of the above two regimes separately.

4.1 A coupling argument for decay of point-to-set correlations

In this section we develop a coupling framework that enables us to verify the exponential decay of
point-to-set correlations from a simple calculation involving single-spin distributions.

First we need some additional notation. When x is not the root of T , let µ+
Tx

(respectively, µ−Tx
)

denote the Gibbs distribution in which the parent of x has its spin fixed to (+) (respectively, (−))
and the configuration on the bottom boundary of Tx is specified by τ (the global boundary condition
on T ) ¶. For two distributions µ1 and µ2, we denote by ‖µ1 − µ2‖x the variation distance between
the projections of µ1 and µ2 onto the spin at x. (Since the Ising model has only two spin values,
‖µ1 − µ2‖x = |µ1(σx = +)− µ2(σx = +)|.) Recall also that ηy denotes the configuration η with the
spin at site y flipped.

We now identify two constants that are crucial for our coupling argument:

Definition 4.2 For a sequence of Gibbs distributions {µτ
T } corresponding to a fixed boundary condi-

tion τ , define κ ≡ κ({µτ
T }) and γ ≡ γ({µτ

T }) by

(i) κ = supT maxz ‖µ+
Tz
− µ−Tz

‖z;

(ii) γ = supT max ‖µη
A − µηy

A ‖z, where the maximum is taken over all subsets A ⊆ T , all boundary
configurations η, all sites y on the boundary of A and all neighbors z ∈ A of y.

Note that κ is the same as γ, except that the maximization is restricted to A = Tz and the boundary
vertex y being the parent of z; hence always κ ≤ γ. Since κ involves Gibbs distributions only
on maximal subtrees Tz, it may depend on the boundary condition τ at the bottom of the tree.
By contrast, γ bounds the worst-case probability of disagreement for an arbitrary subset A and
arbitrary boundary configuration around A, and hence depends only on (β, h) and not on τ . It is
the dependence of κ on τ that opens up the possibility of an analysis that is specific to the boundary
condition. For example, at very low temperature and with no external field, κ is close to 1 in the
free boundary case, while it is close to zero in the (+)-boundary case.

In our arguments κ will be used to bound the probability of a disagreement percolating one level
down the tree, namely, when we fix a disagreement at x and couple the two resulting marginals on
a child z of x. On the other hand, γ will be used in order to bound the probability of a disagree-
ment percolating one level up the tree, namely, when we fix a single disagreement on the bottom
boundary of a block, say at y (with the rest of the boundary configuration being arbitrary), and
couple the marginals on the parent of y.

The novelty of our argument for establishing VM comes from the fact that we identify two
separate constants κ and γ, and consider their product, rather than working with κ alone:

Theorem 4.3 Any Gibbs distribution µ = µτ
T satisfies VM(`, (γκb)`) for all `, where κ and γ are the

constants associated with the sequence {µτ
T } as specified in Definition 4.2. In particular, if γκb < 1

then there exists a constant ϑ > 0 such that, for every T , the measure µ = µτ
T satisfies VM(`, e−ϑ`) for

all `, and hence cgap(µ) = Ω(1).

¶Notice that we do not specify the rest of the configuration outside Tx since it has no influence on the distribution
inside Tx once the spin at the parent of x is fixed. However, since our distributions are defined over the whole con-
figuration space, in the discussion below when the configuration outside Tx is relevant it will be understood from the
context.
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Proof: Fix arbitrary T , x ∈ T , η ∈ Ωτ
T . We need to show that for every function f that does

not depend on Bx,`, Varη
Tx

[µfTx
(f)] ≤ ε · Varη

Tx
(f) with ε = (κγb)`, i.e., projecting f onto the root

(of Tx) causes the variance to shrink by a factor ε. As is well known, it is enough to establish a dual
contraction, i.e., to consider an arbitrary function that depends only on the spin at the root and
show that, when projecting onto levels ` and below, the variance shrinks by a factor ε. Formally, it
is enough to show that for every function g that does not depend on T̃x

†† we have

Varη
Tx

[µBx,`
(g)] ≤ ε ·Varη

Tx
(g). (14)

This is because for a function f that does not depend on Bx,`, the variance of the projection can be
written as

Varη
Tx

[µfTx
(f)] = Covη

Tx
(f, µfTx

(f)) = Covη
Tx

(f, µBx,`
(µfTx

(f))) ≤
√

Varη
Tx

(f) ·Varη
Tx

[µBx,`
(µfTx

(f))] ,

where Covη
A(f, f ′) denotes the covariance µη

A(ff ′) − µη
A(f)µη

A(f ′) and the last inequality is an
application of Cauchy-Schwartz. We then have

Varη
Tx

[µfTx
(f)] ≤ Varη

Tx
(f) ·

Varη
Tx

[µBx,`
(µfTx

(f))]

Varη
Tx

[µfTx
(f)]

.

If we assume (14) then the expression on the r.h.s. is bounded by ε · Varη
Tx

(f) since g = µfTx
(f)

does not depend on T̃x.
We therefore proceed with the proof of (14), which goes via a coupling argument. A cou-

pling of two distributions µ1, µ2 on Ω is any joint distribution ν on Ω2 whose marginals are µ1

and µ2 respectively. For two configurations σ, σ′ ∈ Ω, let |σ − σ′|x,` denote the Hamming distance
between the restrictions of σ and σ′ to ∂̃Bx,`, i.e., the number of sites at distance ` below x at
which σ and σ′ differ. Notice that |σ − σ′|x,` can be at most b`, the number of sites on the `th
level below x. Let µ+

fTx
(respectively, µ−fTx

) stand for the Gibbs distribution where the spin at x is

set to (+) (respectively, (−)) and, as usual, the configuration on the bottom boundary of T̃x is
specified by τ . Our goal will be to construct a coupling ν of µ+

fTx
and µ−fTx

for which the expectation

Eν |σ − σ′|x,` ≡
∑

σ,σ′ ν(σ, σ′)|σ − σ′|x,` is only (κb)`.

Claim 4.4 For every x ∈ T and all ` the following hold:

(i) There is a coupling ν of µ+
fTx

and µ−fTx
for which Eν |σ − σ′|x,` ≤ (κb)`.

(ii) For any η, η′ ∈ Ω that have the same spin value at the parent of x, ‖µη
Bx,`

−µη′
Bx,`

‖x ≤ γ`·|η−η′|x,`.

Let us assume Claim 4.4 for the moment and complete the proof of (14). Consider an arbitrary g
that does not depend on T̃x. Let p = µη

Tx
(σx = +) and q = 1− p = µη

Tx
(σx = −). We also write g+

for g(σ), where σ is any configuration that agrees with η outside Tx and such that σx = +. (This
is well defined since g does not depend on T̃x). We define g− similarly. Without loss of generality
we may assume that in the coupling ν from Claim 4.4 both the coupled configurations agree with η

††Effectively this means that, conditioned on the configuration outside Tx being η, g depends only on the spin at the
root x.
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outside Tx with probability 1. We then have

Varη
Tx

[µBx,`
(g)] = Covη

Tx
[g, µBx,`

(g)]
= Covη

Tx
[g, µfTx

(µBx,`
(g))]

= pq(g+ − g−)[µ+
fTx

(µBx,`
(g))− µ−fTx

(µBx,`
(g))]

= pq(g+ − g−)
∑

σ,σ′
ν(σ, σ′)[µσ

Bx,`
(g)− µσ′

Bx,`
(g)]

≤ pq|g+ − g−|
∑

σ,σ′
ν(σ, σ′)‖µσ

Bx,`
− µσ′

Bx,`
‖x · |g+ − g−| (15)

≤ pq(g+ − g−)2
∑

σ,σ′
ν(σ, σ′)|σ − σ′|x,` · γ`

= γ` ·Varη
Tx

(g) · Eν |σ − σ′|x,`

≤ (γκb)` ·Varη
Tx

(g).

In the sixth line here we have used part (ii) of Claim 4.4, and in the last line we have used part (i).
This completes the proof of (14), and hence of Theorem 4.3. We thus go back and prove Claim 4.4.

The proof of Claim 4.4 makes use of a standard recursive coupling along paths in the tree (as
in, e.g., [3]). We start with part (i), i.e., constructing a coupling ν of µ+

fTx
and µ−fTx

with the required

properties. Since the underlying graph is a tree, we can couple µ+
fTx

and µ−fTx
recursively. This goes

as follows. First, given the spin at x the measures on Tz (where z ranges over the children of x) are
all independent of each other, so we can couple the projections on the Tz ’s independently. Then,
we couple the two projections on Tz by first coupling the spin at z using the optimal coupling (the
one that achieves the variation distance) of the marginal measures on the spin at z. Thus, the spins
at z disagree with probability at most κ. Once a coupled pair of spins at z is chosen, we continue as
follows: if the spins at z agree then we can make the configurations in T̃z equal with probability 1
(because the two boundary conditions are the same); if the spins at z differ (i.e., one is (+) and the
other (−)) then we recursively couple µ+

fTz
and µ−fTz

. We let ν be the resulting coupling of µ+
fTx

and

µ−fTx
, and notice that Eν |σ− σ′|x,l ≤ (κb)` since for every site y at distance ` below x the probability

that the two coupled spins at y disagree is at most κ`.
We go on to prove part (ii) of Claim 4.4. First, by writing a telescopic sum and applying the

triangle inequality we get that

‖µη
Bx,`

− µη′
Bx,`

‖x ≤
k∑

i=1

‖µη(i−1)

Bx,`
− µη(i)

Bx,`
‖x ,

where k = |η − η′|x,` and the sequence of configurations η(i) is a site-by-site interpolation of the
differences between η and η′ in ∂̃Bx,`. (It suffices to interpolate only over the differences in ∂̃Bx,`

since the measure µη
Bx,`

depends only on the configuration in ∂Bx,` and since η and η′ agree on the

parent of x.) It is now enough to show that ‖µη
Bx,`

− µηw

Bx,`
‖x ≤ γ` for all η and w ∈ ∂̃Bx,`. This,

however, follows by a coupling argument as before, where this time we couple recursively along
the path from w to x (i.e., up the tree). Specifically, suppose by induction that in our coupling there
is already a path of disagreement going from w to y, where y is some site on the path from w to x.
Let z denote the parent of y. At the next step we choose a coupled pair of spins at z from the two
distributions µη

A and µηy

A (using an optimal coupling for the projections onto the spin at z), where
the subset A is Bx,` excluding the path from w to y. The probability of disagreement at z given the
disagreement at y is then bounded by γ, by definition. If the resulting spins at z agree then the
spins on the rest of the path are coupled to agree with certainty, while if there is a disagreement
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at z we continue recursively starting from the disagreement at z. We therefore conclude that the
probability of disagreement at x in the resulting coupling is γ`, as required.

Remark: We emphasize that Theorem 4.3 is not specific to the Ising model and generalizes to arbitrary
nearest-neighbor models on a tree. Although we used the fact that the Ising model has only two possible spin
values, the proof can easily be generalized to more than two spin values at the cost of a factor 1

pmin
in front

of (γκb)` in VM, where pmin is the minimum probability of any spin value as defined just before Theorem 3.4.
Thus, since Theorem 3.2 also applies to general nearest-neighbor spin systems on a tree, we conclude that
the implication from γκb < 1 to a bounded cgap(µ) holds for any such system (with the definitions of κ and γ
extended in the obvious way to systems with more than two spin values). The details can be found in the
companion paper [32].

4.2 Proof of Theorem 4.1

In this section we go back to proving Theorem 4.1. Using Theorem 4.3, all we need to do for
the given choices of the Ising model parameters is to bound κ and γ as in Definition 4.2 such
that γκb < 1. In contrast to Sections 3 and 4.1, which apply to general nearest-neighbor spin
systems on trees, here the calculations are specific to the Ising model.

For both κ and γ, we need to bound a quantity of the form ‖µη
A − µηy

A ‖z, where y ∈ ∂A and
z ∈ A is a neighbor of y. The key observation is that this quantity can be expressed very cleanly in
terms of the “magnetization” at z, i.e., the ratio of probabilities of a (−)-spin and a (+)-spin at z. It
will actually be convenient to work with the magnetization without the influence of the neighbor y:
thus we let µη,y=∗

A denote the Gibbs distribution with boundary condition η, except that the spin
at y is free (or equivalently, the edge connecting z to y is erased). We then have:

Proposition 4.5 For any subset A ⊆ T , any boundary configuration η, any site y ∈ ∂A and any
neighbor z ∈ A of y, we have

‖µη
A − µηy

A ‖z = Kβ(R),

where R = µη,y=∗
A (σz=−)

µη,y=∗
A (σz=+)

and the function Kβ is defined by

Kβ(a) =
1

e−2βa + 1
− 1

e2βa + 1
.

Proof: First, w.l.o.g. we may assume that the edge between y and z is the only one connecting y
to A; this is because a tree has no cycles, so once the spin at y is fixed A decomposes into disjoint
components that are independent. We also assume w.l.o.g. that the spin at y is (+) in η, and we
abbreviate µη

A and µηy

A to µ+
A and µ−A respectively, and also µη,y=∗

A to µ∗A. Thus ‖µη
A − µηy

A ‖z =

|µ+
A(σz = +) − µ−A(σz = +)|, and R = µ∗A(σz=−)

µ∗A(σz=+) . We write R+ for µ+
A(σz=−)

µ+
A(σz=+)

and R− for µ−A(σz=−)

µ−A(σz=+)
.

Since the only influence of y on A is through z, we have R+ = e−2βR and R− = e2βR. The
proposition now follows once we notice that, by definition of R+ and R−, µ+

A(σz = +) = 1
R++1

and
µ−A(σz = +) = 1

R−+1
.

Now it is easy to check that Kβ(a) is an increasing function in the interval [0, 1], decreasing in
the interval [1,∞], and is maximized at a = 1. Therefore, we can always bound κ and γ from above
by Kβ(1) = eβ−e−β

eβ+e−β . Indeed, for γ we must make do with this crude bound because it has to hold
for any boundary configuration η and we cannot hope to gain by controlling the magnetization R.
However, as we shall see, for κ we can do better in some cases by computing the magnetization at
the root; when this differs from 1 we get a better bound than Kβ(1).

We are now ready to proceed to the proof of Theorem 4.1:
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(i) Arbitrary boundary conditions

Here, the boundary condition τ is arbitrary and we first consider the (easy) case when β < β0

or |h| > hc(β) (i.e., h is super-critical). In this case we do not need to resort to the calculation
of κ and γ. As discussed in the Introduction, in this regime there is a unique infinite volume Gibbs
measure, so certainly the variation distance at the root maxη,η′ ‖µη

Bx,`
− µη′

Bx,`
‖x goes to zero as `

increases. In fact, it is not too difficult to see that in the above regime this variation distance goes to
zero exponentially fast, which directly implies the desired exponential decay of correlations (VM)
by plugging the bound on the variation distance into expression (15) in the proof of Theorem 4.3.

We go on to consider the more interesting regime when β0 ≤ β < β1 (i.e., intermediate tem-
peratures) and the external field h is arbitrary. Here we use the fact that κ ≤ γ ≤ Kβ(1). We then

certainly have γκb < 1 whenever Kβ(1) = eβ−e−β

eβ+e−β <
√

1
b , i.e., whenever e−2β >

√
b−1√
b+1

. From the
definition of β1 (see Section 1.1), this corresponds precisely to β < β1. (Observe how this non-
trivial result drops out immediately from our machinery, as expressed in the condition γ2 < 1

b .)
This completes the verification of Theorem 4.1 part (i).

(ii) (+)-boundary condition

We now assume that τ is the all-(+) configuration and consider arbitrary β and h. For convenience,
we assume h ≥ −hc(β) since the case |h| > hc(β) was covered in part (i) for all boundary condi-
tions τ . The important property of the regime h ≥ −hc(β) is that, for the (+)-boundary, the spin at
the root is at least as likely to be (+) as it is to be (−). We will show that γκb < 1 throughout this
regime. Recall that we already showed that γ ≤ Kβ(1) < 1 for all finite β. It is therefore enough to
show that κ ≤ 1

b .
To calculate κ, we need to bound the variation distance ‖µ+

Tz
− µ−Tz

‖z, which by Proposition 4.5

is equal to Kβ(Rz), where Rz =
µ∗Tz

(σz=−)

µ∗Tz
(σz=+) and µ∗Tz

is the Gibbs distribution over the subtree Tz

when it is disconnected from the rest of T and the spins on its bottom boundary agree with τ . We
thus have κ = supT maxz∈T Kβ(Rz).

The final ingredient we need is a recursive computation of the magnetization Rz, the details of
which (up to change of variables) can be found in [2] or [5]. Let y ≺ z denote that y is a child of z.
A simple direct calculation gives that Rz = e−2βh

∏
y≺z F (Ry), where F (a) ≡ Fβ(a) = a+e−2β

e−2βa+1
. In

particular, if z is any site on the bottom-most level of T , then since the spins of the children of z are
all set deterministically to (+), we get that Rz = e−2βh[F (0)]b. We thus define

J(a) ≡ Jβ,h(a) = e−2βh[F (a)]b (16)

and observe that, for any z ∈ T , Rz = J (`)(0), where J (`) stands for the `-fold composition of J ,
and ` is the distance of z from the bottom boundary of T .

We now describe some properties of J that we use (refer to Fig. 2): J is continuous and increas-
ing on [0,∞), with J(0) = e−2β(h+b) > 0 and supa J(a) = e−2β(h−b) < ∞. This immediately implies
that J has at least one fixed point in [0,∞); we denote by a0 the least fixed point. Since a0 is the
least fixed point and J(0) > 0 then clearly J ′(a0) ≤ 1, where J ′(a) ≡ ∂J(a)

∂a is the derivative of J .
We also note that a0 ≤ 1 when h ≥ −hc(β), which corresponds to the fact that for the (+)-boundary
and the above regime of h, the spin at the root is at least as likely to be (+) as (−).

Now, since J is monotonically increasing and a0 is the least fixed point of J , clearly J (`)(0)
converges to a0 from below, i.e., Rz ≤ a0 for every z ∈ T . Thus, since a0 ≤ 1 for h ≥ −hc(β), and
the function Kβ(a) is monotonically increasing in the interval [0, 1], Kβ(Rz) ≤ Kβ(a0) for every
z ∈ T .

What remains to be shown is that Kβ(a0) ≤ 1
b . This follows from the fact that J ′(a0) ≤ 1,

together with the following lemma:

Lemma 4.6 Let a0 be any fixed point of J . Then Kβ(a0) = 1
b · J ′(a0).
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Figure 2: Curve of the function J(a), used in the proof of Theorem 4.1, for β > β0 and various
values of the external field h. (i) h = −hc(β); (ii) hc(β) > h > −hc(β); (iii) h > hc(β). The point a0

is the smallest fixed point of J .

Proof: From the definitions of J and F we have:

J ′(a0) = e−2βh · b · [F (a0)]b−1F ′(a0)

= b · J(a0) · F ′(a0)
F (a0)

= b · a0 · F ′(a0)
F (a0)

= b · a0 ·
[ 1− e−4β

(a0 + e−2β)(e−2βa0 + 1)

]

= b ·Kβ(a0).

This completes the verification of Theorem 4.1 part (ii).

5 Verifying spatial mixing for log-Sobolev

In this section we will prove a uniform lower bound (independent of n) on the logarithmic Sobolev
constant csob(µ) in all the situations covered by Theorem 1.2 in the Introduction.

In light of Theorem 3.4, to show csob = Ω(1) we need only prove the validity of the Entropy
Mixing condition EM(`, [(1−δ)pmin/2(`+1−δ)]2) for some constants ` and δ independent of the size
of T . In order to establish EM in the situations covered by Theorem 1.2, we extend the coupling
framework developed in Section 4.1 so that it can be used to establish EM. As before, we will use
a condition on the constants κ and γ, which were defined in Section 4.1. In fact, the condition on κ
and γ for establishing EM is practically the same as the one that was used to establish VM, which
immediately transfers our Ω(1) bound on cgap for the relevant parameters to an Ω(1) bound on csob

for the same choice of parameters. The main result of this section is the following relationship
between (κ, γ) and EM.

Theorem 5.1 Any Gibbs distribution µ = µτ
T satisfies EM(`, c(γα)`/5) for all `, where α = max {κb, 1},

κ and γ are the constants associated with the sequence {µτ
T } as specified in Definition 4.2, and c is a

constant that depends only on (b, β, h). In particular, if max {γκb, γ} < 1 then there exists a constant ϑ
such that, for every T , the measure µ = µτ

T satisfies EM(`, ce−ϑ`) for all `, and hence csob(µ) = Ω(1).

Remark: We should note that the above theorem, like its counterpart for the spectral gap, holds for any spin
system on a tree (with the definitions of κ and γ generalized appropriately). See the companion paper [32]
for details.
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Since in Section 4.2 we have already calculated κ and γ for the regimes of interest and shown
that in both cases max {γκb, γ} < 1, we have:

Corollary 5.2 In both of the following situations, csob(µ) = Ω(1):

(i) τ is arbitrary, and either β < β1 (with h arbitrary), or |h| > hc(β) (with β arbitrary);

(ii) τ is the (+)-boundary condition and β, h are arbitrary.

This completes the proof of our second main result, Theorem 1.2 stated in the Introduction.
The first step in proving Theorem 5.1 is a reduction of EM to a certain strong concentration

property of µ, the Gibbs measure under consideration. We believe that this concentration property,
as well as its connection to EM, may be of independent interest. The statement of this property
and the reduction of EM to it is the content of Section 5.1. Then, in Section 5.2, we complete the
proof of Theorem 5.1 by relating the strong concentration property to κ and γ.

It is worth mentioning that we are also able to establish a general (but cruder) bound on csob

as a function of cgap. Specifically, we can show that csob = Ω(1/ log n) × cgap. Although we do not
need this bound in this paper, we present it in Section 5.3 for future reference since its proof is
simple and short.

5.1 Establishing EM via a strong concentration property.

In this subsection we reduce EM to a certain strong concentration property of µ. In the next
subsection, we will then establish this strong concentration property as a function of κ and γ in
order to prove Theorem 5.1. For simplicity and without loss of generality, we will analyze the
entropy mixing condition only for Tx = T (the whole tree), with root r.

Let µ+
eT and µ−eT denote the Gibbs distributions on T̃ with the spin at the root r set to (+) and (−)

respectively (the boundary condition on the leaves of T being specified by τ). Define

g+(σ) =
µ+

eT (σ)

µ(σ)
=

{
1/p if σr = (+),
0 otherwise,

where p = µ(σr = +). The key quantity we will work with in the sequel is the following:

g
(`)
+ = µBr,`

(g+).

Note that g
(`)
+ (σ) depends only on the spins in ∂Br,`. Indeed, let σr,` stand for the restriction of σ

to ∂Br,`, i.e., to the sites at distance ` below r. It is easy to verify that g
(`)
+ (σ) is equal to

µ+
eT (σr,`)

µ(σr,`)
.

Thus, for a given configuration σ, g
(`)
+ (σ) is the ratio of the probabilities of seeing the spins of σ at

level ` below the root r when the spin at r is (+) and when there is no condition on the spin at r,
respectively. We define g− and g

(`)
− in an analogous way.

The role played by the functions g
(`)
+ and g

(`)
− is embodied in the following theorem, which says

that if these functions are sufficiently tightly concentrated around their common mean value of 1
then the entropy mixing condition EM holds.

Theorem 5.3 There exists a constant c (depending only on b, β and h) such that, for any δ ≥ 0, if

µ
[|g(`)

s − 1| > δ
] ≤ e−2/δ (17)

for s ∈ {+,−}, then we have Ent
[
µ eT (f)

] ≤ cδ Ent(f) for any non-negative function f that does not
depend on Br,` ; in particular, EM(`, cδ) holds.
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Proof: Fix ` < m and a non-negative function f that does not depend on the spins inside the
block Br,`. Since Ent(f ′) ≤ Var(f ′)/µ(f ′) for every non-negative function f ′ (see, e.g., [37]) then

Ent
[
µeT (f)

] ≤ Var
[
µeT (f)

]

µ
[
µ eT (f)

] =
1

µ(f)
·
[
p
[
µ+

eT (f)− µ(f)
]2 + (1− p)

[
µ−eT (f)− µ(f)

]2
]

=
1

µ(f)
·
[
pCov

(
g+, f

)2 + (1− p)Cov
(
g−, f

)2
]
≤ max

s∈{+,−}
Cov

(
gs, f

)2

µ(f)
, (18)

where Cov denotes covariance w.r.t µ. Now observe that, since f does not depend on Br,`, when
computing the covariance term in (18) the function gs can be replaced by g

(`)
s , which depends only

on the spins in ∂Br,`. Thus, if we can show that (17) implies

Cov
(
g(`)
s , f

)2 ≤ cδµ(f) Ent(f) (19)

for some constant c, then by plugging (19) into (18) we will get that Ent
[
µ eT (f)

] ≤ cδ Ent(f), as
required.

To establish (19) we make use of the following technical lemma, whose proof can be found in
Section 7.

Lemma 5.4 Let {Ω,F , ν} be a probability space and let f1 be a mean-zero random variable such that
‖f1‖∞ ≤ 1 and ν[ |f1| > δ ] ≤ e−2/δ for some δ ∈ (0, 1). Let f2 be a probability density w.r.t. ν,
i.e. f2 ≥ 0 and ν(f2) = 1. Then there exists a numerical constant c′ > 0 independent of ν, f1, f2 and
δ, such that ν(f1f2)2 ≤ c′ δ Entν(f2).

We apply this lemma with ν = µ and

f1 =

(
g
(`)
s − 1

)

‖g(`)
s ‖∞

; f2 =
f

µ(f)
,

to deduce Cov
(
g
(`)
s , f

)2 ≤ c′δ‖g(`)
s ‖2∞µ(f) Ent(f). Noting also that ‖g(`)

s ‖∞ ≤ ‖gs‖∞ ≤ 1/pmin,
where pmin was defined just before Theorem 3.4, this establishes (19) with c = c′/p2

min and thus
completes the proof of the theorem.

5.2 Proof of Theorem 5.1

In light of Theorem 5.3, to prove Theorem 5.1 it is sufficient to verify the strong concentration
property (17) of the functions g

(`)
s with δ = (γα)`/5.

In order to do this we appeal to a strong concentration of the Hamming distance under the
coupling ν of µ+

eT and µ−eT , as defined in the proof of Claim 4.4. Recall the notation used in that
claim, and notice that the Hamming distance is dominated by the size of the population in the `th
generation of a specific branching process. The following tail bound can be obtained using standard
techniques from the analysis of branching processes, and we defer the proof to the end of this
section.

Lemma 5.5 Let α = max {κb, 1}. Then for every C > 0,

Pr
ν

[
|σ − σ′|r,` > Cα`

]
≤ e

1
`+1

(
1− C

2e

)
.

Corollary 5.6 For every C > 0 and s ∈ {+,−},

Pr
ν

[∣∣∣g(`)
s (σ)− g(`)

s (σ′)
∣∣∣ > C(γα)`

]
≤ e

1
`+1

(
1− pminC

2e

)
.
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Proof: It is enough to show that

|g(`)
s (σ)− g(`)

s (σ′)| ≤ γ`

pmin
· |σ − σ′|r,` (20)

since we can then apply Lemma 5.5 with C replaced by pminC. On the other hand, (20) follows
from part (ii) of Claim 4.4 once we recall that g

(`)
s (σ) = µσ

Br,`
(gs) and that gs depends only on the

spin at the root, implying that |g(`)
s (σ) − g

(`)
s (σ′)| ≤ ‖µσ

Br,`
− µσ′

Br,`
‖r · ‖gs‖∞ ≤ γ` |σ − σ′|r,` /pmin.

Before we go on with the proof of Theorem 5.1, let us compare the way we used the constants κ
and γ in the proof of Corollary 5.6 to the way we used them in the proof of Theorem 4.3. In both
cases we used κ and γ to get bounds for coupling “down” and “up” the tree respectively. Specifically,
we used κ to deduce that the Hamming distance between the coupled configurations at the `th level
is about (κb)`, and we then used γ to bound the effect of each discrepancy at the `th level on the
spin at the root (or equivalently, on g

(`)
s ) by roughly γ`. While in Theorem 4.3 it was enough that

the average Hamming distance when coupling down the tree was bounded by (κb)`, here we need
that this distance is not much larger than (κb)` with high probability.

We now return to the proof of Theorem 5.1. W.l.o.g. we may assume that γα ≤ 1 since EM(`, 1)
always holds, and also that γα > 0 since if γ = 0 then EM(`, 0) holds because then the spin at the
root r is independent of the rest of the configuration. Let a = (γα)−1 ≥ 1. Recall that we wish to
establish (17) with δ = a−`/5 for all large enough `. We will show only that

µ
[
g(`)
s − 1 > δ

] ≤ 1
2
e−2/δ (21)

since the same bound on the negative tail can be achieved by an analogous argument.
We start by applying Corollary 5.6 with C = a`/4 to get that, for every ε > 0,

µs
eT
[
g(`)
s − 1 > ε

] ≤ µ
[
g(`)
s − 1 > ε− a−3`/4

]
+ A, (22)

where A = e
1

`+1

(
1− pmina`/4

2e

)
and we have used the fact that µ is a convex combination of µ+

eT and µ−eT .

Next, we notice that by definition of g
(`)
s ,

µs
eT
[
g(`)
s − 1 > ε

] ≥ (1 + ε)µ
[
g(`)
s − 1 > ε

]
. (23)

Combining (22) and (23) we get that, for every ε > 0,

µ
[
g(`)
s − 1 > ε

] ≤
(

1
1 + ε

)(
µ
[
g(`)
s − 1 > ε− a−3`/4

]
+ A

)
. (24)

This immediately yields that, for every non-negative integer k and ε > 0,

µ
[
g(`)
s − 1 > ε + ka−3`/4

] ≤ (1 + ε)−(k+1) + A

(
1 + ε

ε

)
, (25)

where we applied (24) k + 1 times, each time increasing ε by a−3`/4.
Inequality (21) then follows (assuming ` is large enough) by applying (25) with ε = a−`/4 and

k = da`/2e. This concludes the proof of Theorem 5.1.

Finally, we supply the missing proof of Lemma 5.5.
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Proof of Lemma 5.5: First notice that, by an exponential Markov inequality, it is enough to
show that Eν

[
et|σ−σ′|r,`

]
≤ e2etα`

for all t ≤ (2e(` + 1)α`)−1 ≤ 1. We thus fix t as above and

let Dx,i = Eν

[
et|σ−σ′|x,i

]
, where ν is the coupling of µ+

fTx
and µ−fTx

. Note that Dx,i can be calculated
recursively as follows. The main observation is that, given a disagreement at x, the random variable
|σ − σ′|x,i is the sum of the b independent random variables |σ − σ′|z,i−1 where z ranges over the
children of x. In turn, the random variable et|σ−σ′|z,i−1 takes the value Dz,i−1 with probability at
most κ (the probability of a disagreement at z given a disagreement at x) and the value 1 with
the remaining probability (since |σ − σ′|z,i−1 = 0 if there is no disagreement at z). Thus, if we let
δi = maxx Dx,i − 1, then δi+1 ≤ [1 + κδi]b − 1 ≤ eκbδi − 1 ≤ eαδi − 1. We wish to show that, for t

in the above range, δ` ≤ 2etα`, which implies Eν

[
et|σ−σ′|r,`

]
≤ δ` + 1 ≤ e2etα`

, as required. In fact,

we show by induction that δi ≤ 2t[ `+1
` · α]i for every 0 ≤ i ≤ `. For the base case i = 0, notice that

|σ − σ′|x,0 = 1 when starting from a fixed disagreement at x, so δ0 = et − 1 ≤ 2t for t in the given
range. For i + 1 > 0, we use the fact that δi+1 ≤ eαδi − 1 ≤ αδi

1−αδi
≤ `+1

` ·αδi, since by the induction
hypothesis δi ≤ 1

α(`+1) for all 0 ≤ i ≤ `− 1 and t in the given range.

5.3 A crude bound on log-Sobolev via the spectral gap

In this section we state and prove a general bound on csob using a bound on cgap. Although we do
not require this bound for the results in this paper, we believe that it may find applications in the
future. We state the bound for the Ising model, but it can be easily verified that it generalizes to
any nearest-neighbor spin system on a tree.

Theorem 5.7 For the Ising model on the b–ary tree, csob(µ) = cgap(µ)× Ω(1/ log n). In particular, if
cgap(µ) = Ω(1) then csob(µ) = Ω(1/ log n).

It is useful to compare this bound with the well-known bound csob(µ) = cgap(µ) × Ω(1/n) (see,
e.g.,[37]), which though much weaker is also more general (for example, it applies to spin systems
on any graph).

Theorem 5.7 is a consequence of the following lemma.

Lemma 5.8 For any β and h, there exists a constant c = c(b, β, h) such that, for any x ∈ T and all `,

csob(µτ
Tx

)−1 ≤ max
y≺x,η∈Ωτ

T

{csob(µ
η
Ty

)−1}+ c · cgap(µτ
Tx

)−1 . (26)

This lemma immediately implies Theorem 5.7, once we notice that cgap(µ
η
Tx

) ≥ c′ · cgap(µτ
T ) for a

constant c′ = c′(b, β, h) and every x ∈ T and η ∈ Ωτ
T , as can easily be checked.

Proof of Lemma 5.8: For simplicity and w.l.o.g. we will prove the recursive inequality (26) only
for Tx = T (the whole tree), with root r. Let f be a non–negative function. We then write (using
the entropy version of (2))

Ent(f) = µ
[
EnteT (f)

]
+ Ent

[
µ eT (f)

]
. (27)

Using the definition of csob we have

µ
[
EnteT (f)

] ≤ max
y≺r,η∈Ωτ

T

{csob(µ
η
Ty

)−1}
∑

x∈eT
µ
[
Var{x}(

√
f)

]

≤ max
y≺r,η∈Ωτ

T

{csob(µ
η
Ty

)−1}D(
√

f
)
. (28)
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The second term on the r.h.s. of (27), being the entropy of a Bernoulli random variable, is bounded
above by

Ent
[
µ eT (f)

] ≤ αVar
(√

µ eT (f)
)

(29)

≤ αVar(
√

f)
≤ α cgap(µ)−1D(√

f
)
, (30)

where α ≡ α(p) is a constant that depends on p = µ(σr = +); specifically α(p) = log(p/1−p)
2p−1 for

p 6= 1/2, and α(1/2) = 1/2 (see [37]).
Putting together (28) and (30), the expression in (27) is bounded above by

[
max

y≺r,η∈Ωτ
T

{csob(µ
η
Ty

)−1} + α cgap(µ)−1
]
D(√

f
)
,

so that from the definition of csob we have

csob(µ)−1 ≤ max
y≺r,η∈Ωτ

T

{csob(µ
η
Ty

)−1}+ α cgap(µ)−1.

6 Extensions to other models

As we have already indicated, our techniques extend beyond the Ising model to general nearest-
neighbor interaction models on trees, including those with hard constraints. In this final section
we mention some of these extensions. For a fuller treatment of this material, the reader is referred
to the companion paper [32] and the PhD thesis of the last author [45].

A (nearest neighbor) spin system on a finite graph G = (V, E) is specified by a finite set S of spin
values, a symmetric pair potential U : S × S → R ∪ {∞}, and a singleton potential W : S → R. A
configuration σ ∈ SV of the system assigns to each vertex (site) v ∈ V a spin value σv ∈ S. The
Gibbs distribution is given by

µ(σ) ∝ exp
[
−(∑

xy∈E
U(σx, σy) +

∑
x∈V

W (σx)
)]

.

Thus the Ising model corresponds to the case S = {±1}, and U(s1, s2) = −βs1s2, W (s) = −βhs,
where β is the inverse temperature and h is the external field. Note that setting U(s1, s2) = ∞
corresponds to a hard constraint, i.e., spin values s1, s2 are forbidden to be adjacent. We denote
by Ω the set of all valid spin configurations, i.e., those for which µ(σ) > 0.

As for the Ising model, we allow boundary conditions which fix the spin values of certain sites.
We carry over our notation from the Ising model: thus, e.g., µτ

A denotes the Gibbs distribution on a
subset A ⊆ V with boundary condition τ on ∂A.

The (heat-bath) Glauber dynamics extends in the obvious way to general spin systems. We first
note that, as the reader may easily check, neither the spatial mixing conditions in Section 3 nor
their proofs made any reference to the details of the Ising model. All of this material therefore
carries over without modification to general spin systems on trees.

Theorem 6.1 The statements of theorems 3.2 and 3.4 hold for general nearest-neighbor spin systems
on trees.

Likewise, the machinery developed in Sections 4 and 5 for verifying the conditions VM and
EM also extends to general models, though the details of the calculations are model-specific. In
particular, Theorems 4.3 and 5.1 relating VM and EM to the coupling quantities κ and γ of Def-
inition 4.2 still hold (with very minor modifications). Thus all we need to do is to carry out the
detailed calculations of κ and γ for the model under consideration. We now state without proof
the results of these calculations for several models of interest. For the proofs, together with further
discussion and extensions, the reader is referred to the companion paper [32] and the thesis [45].
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6.1 The hard-core model (independent sets)

In this model S = {0, 1}, and we refer to a site as occupied if it has spin value 1, and unoccupied
otherwise. The potentials are

U(1, 1) = ∞; U(1, 0) = U(0, 0) = 1; W (1) = L; W (0) = 0,

where L ∈ R. The hard constraint here means that no two adjacent sites may be occupied, so Ω
can be identified with the set of all independent sets in G. Also, the aggregated potential of a valid
configuration is proportional to the number of occupied sites. Hence the Gibbs distribution takes
the simple form

µ(σ) ∝ λN(σ),

where N(σ) is the number of occupied sites and the parameter λ = exp(−L) > 0, which controls
the density of occupation, is referred to as the “activity.”

The hard-core model on a b-ary tree undergoes a phase transition at a critical activity λ = λ0 =
bb

(b−1)b+1 (see, e.g., [40, 24]). For λ ≤ λ0 there is a unique Gibbs measure regardless of the boundary
condition on the leaves, while for λ > λ0 there are (at least) two distinct phases, corresponding to
the “odd” and “even” boundary conditions respectively. The even boundary condition is obtained
by making the leaves of the tree all occupied if the depth is even, and all unoccupied otherwise.
The odd boundary condition is the complement of this. (These boundary conditions are derived
from the two maximum-density configurations on the infinite tree Tb in which alternate levels —
either odd or even — are completely occupied.) For λ > λ0, the probability of occupation of the
root in the infinite-volume Gibbs measure differs for odd and even boundary conditions. Relatively
little is known about the Glauber dynamics for the hard-core model on trees, beyond the general
result of Luby and Vigoda [28, 44] which ensures a mixing time of O(log n) (after translation to
our continuous time setting) when λ < 2

b−1 . This result actually holds for any graph G of maximum
degree b + 1.

Our results for the Glauber dynamics in the hard-core model mirror those given earlier for the
Ising model. First, for sufficiently small activity λ we show that both cgap and csob are uniformly
bounded away from zero for arbitrary boundary conditions. Second, for even (or, symmetrically,
odd) boundary conditions, we get the same result for all activities λ.

Theorem 6.2 For the hard-core model on the n-vertex b-ary tree with boundary condition τ , cgap(µ)
and csob(µ) are Ω(1) in both of the following situations :

(i) τ is arbitrary, and λ ≤ max
{

1√
b−1

, λ0

}
;

(ii) τ is even (or odd), and λ ≥ 0 is arbitrary.

Part (ii) of this theorem is analogous to our earlier result for the Ising model with (+)-boundary
and zero external field at all temperatures. This is in line with the intuition that the even boundary
eliminates the only bottleneck in the dynamics. Part (i) identifies a region in which the mixing time
is insensitive to the boundary condition. We would expect this to hold throughout the low-activity
region λ ≤ λ0, and indeed, by analogy with the Ising model, also in some intermediate region
beyond this. Our bound in part (i) confirms this behavior: note that the quantity 1√

b−1
exceeds λ0

for all b ≥ 5, and indeed for large b it grows as 1√
b

compared to the 1
b growth of λ0. Thus for b ≥ 5

we establish rapid mixing in a region above the critical value λ0. To the best of our knowledge this
is the first such result. (Note that the result of [28, 44] mentioned earlier establishes rapid mixing
for λ < 2

b−1 , which is less than λ0 for all b and so does not even cover the whole uniqueness region.)
We should also mention that our coupling analysis of cgap in this region has consequences for the
infinite volume Gibbs measure itself, implying that when λ ≤ 1√

b−1
any µ = limT→∞ µτ

T that is the
limit of finite Gibbs distributions for some boundary configuration τ is extremal, again a new result.
We elaborate on these points in the companion paper [32].
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6.2 The antiferromagnetic Potts model (colorings)

In this model S = {1, 2, . . . , q}, and the potentials are U(s1, s2) = βδs1,s2 , W (s) = 0. This is the
analog of the Ising model except that the interactions are antiferromagnetic, i.e., neighbors with
unequal spins are favored. The most interesting case of this model is when β = ∞ (i.e., zero
temperature), which introduces hard constraints. Thus if we think of the q spin values as colors,
Ω is the set of proper colorings of G, i.e., assignments of colors to vertices so that no two adjacent
vertices receive the same color. The Gibbs distribution is uniform over proper colorings. In this
model it is q that provides the parameterization. For background on the model, see [8].

For colorings on the b-ary tree it is well known that, when q ≤ b + 1, there are multiple Gibbs
measures; this follows immediately from the existence of “frozen configurations,” i.e., colorings in
which the color of every internal vertex is forced by the colors of the leaves (see, e.g., [8]). Recently
Jonasson [22] proved that, as soon as q ≥ b+2, the Gibbs measure is unique. Moreover, it is known
that there is again an “intermediate” region that includes the value q = b + 1, in which the Gibbs
measure, while not unique, is insensitive to “typical” boundary conditions (chosen from the free
measure); see [8].

The sharpest result known for the Glauber dynamics on colorings is due to Vigoda [43], who
shows that for arbitrary boundary conditions the mixing time is O(log n) provided q > 11

6 (b +
1). Actually this result holds for any n-vertex graph G of maximum degree b + 1. For graphs
of large maximum degree and girth at least 6, this range was recently improved [13] to q >
max {1.489(b + 1), q0}, where q0 is an absolute constant.‡‡

Before we state our results for the Glauber dynamics on colorings, we wish to discuss a few
issues regarding the connectedness of the dynamics in this model. It is well known and not too
difficult to see that the dynamics is connected for q ≥ b + 3 (on any graph of maximum degree
b+1). For q ≤ b+1, there is at least one boundary condition η for which the dynamics for µη

T is not
connected. For the critical value q = b+2, the situation is somewhat delicate: while the dynamics is
connected for all boundary conditions when run on T , it is not connected for at least one boundary
condition if we add a boundary site above T (i.e., if the dynamics is run on Tx for x not the root
of Tb). Since our arguments apply equally well to these settings, the smallest q for which we can
hope to establish that the log-Sobolev constant is bounded below by a constant independent of n
uniformly in the boundary condition is q = b + 3. Indeed, we establish this for the entire regime
in which the Glauber dynamics is guaranteed to be connected, i.e., for q ≥ b + 3. We note that
this is the first result that establishes this fact for a non-trivial graph. (It has been conjectured that
the dynamics mixes in O(log n) time for q ≥ b + 3 on any graph of maximum degree b + 1.) We
also notice that, if the Glauber dynamics is replaced by the heat-bath dynamics based on flipping
edges, then the dynamics remains connected for q = b+2 and all subtrees and boundary conditions.
Our detailed results in fact imply that the log-Sobolev constant of the edge dynamics is bounded
below by a constant independent of n uniformly in the boundary condition even at the critical value
q = b + 2; notice that for this value of q there are boundary conditions for which the log-Sobolev
constant of the (single-site) Glauber dynamics tends to zero as n → ∞ even though this dynamics
remains connected. (Again, we refer to [45] for details on the edge dynamics and the bound on
the associated log-Sobolev constant.) Thus, we essentially establish rapid mixing uniformly in the
boundary condition throughout the uniqueness regime.

Theorem 6.3 For the colorings model on the n-vertex b-ary tree with q ≥ b + 3 and arbitrary
boundary conditions, both cgap(µ) and csob(µ) are Ω(1). Moreover, the entropy mixing condition
EM(`, c exp(−ϑ`)) holds for arbitrary boundary conditions for q ≥ b + 2.

‡‡A recent sequence of papers [12, 33, 18] have reduced the required number of colors further for general graphs,
under the assumption that the maximum degree is Ω(log n); the current state of the art requires q ≥ (1 + ε)(b + 1) for
arbitrarily small ε > 0 [19]. However, these results do not apply in our setting where the degree b + 1 is fixed.
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6.3 The ferromagnetic Potts model

Here we have S = {1, 2, . . . , q} and potentials U(s1, s2) = −βδs1,s2 , W (s) = 0. This is a straightfor-
ward generalization of the (ferromagnetic) Ising model studied earlier in the paper, in which the
spin at each site can take one of q possible values, and the aggregated potential of any configuration
depends on the number of adjacent pairs of equal spins. There are no hard constraints.

Qualitatively the behavior of this model is similar to that of the Ising model, though less is
known in precise quantitative terms. Again there is a phase transition at a critical β = β0, which
depends on b and q, so that for β > β0 (and indeed for β ≥ β0 when q > 2) there are multiple
phases. This value β0 does not in general have a closed form, but it is known [17] that β0 <
1
2 ln( b+q−1

b−1 ) for all q > 2. (For q = 2, this value is exactly β0 for the Ising model as quoted earlier.)
Using our techniques, we are able to prove the following:

Theorem 6.4 For the Potts model on the n-vertex b-ary tree, cgap(µ) and csob(µ) are Ω(1) in all of the
following situations:

(i) the boundary condition is arbitrary and β < max
{

β0,
1
2 ln(

√
b+1√
b−1

)
}

;

(ii) the boundary condition is constant (e.g., all sites on the boundary have spin 1) and β is arbitrary;

(iii) the boundary is free (i.e., the boundary spins are unconstrained) and β < β1, where β1 is the
solution to the equation e2β1−1

e2β1+q−1
· e2β1−1

e2β1+1
= 1

b .

Part (i) of this theorem shows that cgap and csob are Ω(1) for arbitrary boundaries throughout
the uniqueness region; also, since 1

2 ln(
√

b+1√
b−1

) ≥ 1
2 ln( b+q−1

b−1 ) > β0 when q ≤ 2(
√

b + 1), this result
extends into the multiple phase region for many combinations of b and q. Part (ii) of the theorem
is an analog of our earlier results for the Ising model with (+)-boundaries at all temperatures.
Part (iii) is of interest for two reasons. First, since β1 > β0 always, it exhibits a natural boundary
condition under which cgap and csob are Ω(1) beyond the uniqueness region (but not for arbitrary β)
for all combinations of b and q. Second, because of an intimate connection between the free
boundary case and so-called “reconstruction problems” on trees [34] (in which the edges are noisy
channels and the goal is to reconstruct a value transmitted from the root), we obtain an alternative
proof of the best known value of the noise parameter under which reconstruction is impossible [35].
Indeed, a slight strengthening of part (iii) allows us to marginally improve on this threshold. Again,
we spell out the details in [32].

7 Proofs omitted from the main text

In this final section, we supply the proofs of some technical lemmas that were omitted from the
main text.

7.1 Proof of Lemma 3.5

The lemma in fact holds in a more general setting, where in place of T̃x and Bx,` we think of two
arbitrary subsets A,B such that A ∪B = Tx. Also, in this proof we write ν = µη

Tx
and Var and Ent

for variance and entropy with respect to ν. For part (i) we will show that if for any function g that
does not depend on B we have Var[νA(g)] ≤ ε ·Var(g), then for any function f ,

Var[νA(f)] ≤ 2(1− ε)
1− 2ε

· ν[VarB(f)] +
2ε

1− 2ε
· ν[VarA(f)].
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Notice that by the convexity of variance we have Var(g1 + g2) ≤ 2[Var(g1) + Var(g2)] for any
two functions g1, g2. We therefore write

Var[νA(f)] = Var[νA(f)− νA(νB(f)) + νA(νB(f)]
≤ 2Var[νA(f − νB(f))] + 2Var[νA(νB(f))]
≤ 2Var[f − νB(f)] + 2εVar[νB(f)]
= 2ν[VarB(f)] + 2ε(Var[νA(f)] + ν[VarA(f)]− ν[VarB(f)]),

where we used the facts that Var[f − νB(f)] = ν[VarB(f)] and that Var[νA(f)] + ν[VarA(f)] =
Var[νB(f)] + ν[VarB(f)] = Var(f) as in (2). We therefore conclude that Var[νA(f)] ≤ 2(1−ε)

1−2ε ·
ν[VarB(f)] + 2ε

1−2ε · ν[VarA(f)], as required.
We proceed to part (ii). Here we have to show that if for any non-negative function g that does

not depend B we have Ent[νA(g)] ≤ ε · Ent(g), then for any non-negative function f ,

Ent[νA(f)] ≤ 1
1− ε′

· ν[EntB(f)] +
ε′

1− ε′
· ν[EntA(f)], (31)

where ε′ =
√

ε/p and p stands for the minimum non-zero probability of any configuration in Tx \A.
We will in fact show that

Ent(f) ≤ 1
1− ε′

(ν[EntA(f)] + ν[EntB(f)]), (32)

which implies (31) since Ent[νA(f)] = Ent(f)− ν[EntA(f)].
Before we go on with the proof, let us review some properties of entropy. First, by definition,

Ent(f) = ν(f log f
ν(f)) and ν[EntA(f)] = ν(f log f

νA(f)). Also, by the variational characterization of
entropy we have νA(f log g

νA(g)) ≤ EntA(f) for all non-negative functions f and g.
We can now proceed with the proof of (32) by writing

Ent(f) = ν

[
f log

f

νB(f)

]
+ ν

[
f log

νB(f)
νA(νB(f))

]
+ ν

[
f log

νA(νB(f))
ν(f)

]

≤ ν

[
f log

f

νB(f)

]
+ ν

[
f log

f

νA(f)

]
+ ν

[
f log

νA(νB(f))
ν(f)

]

= ν[EntB(f)] + ν[EntA(f)] + ν

[
νA(f) log

νA(νB(f))
ν(f)

]
.

Therefore, (32) will follow once we show that ν
[
νA(f) log νA(νB(f))

ν(f)

]
≤ ε′ Ent(f). We use the

following claim in order to get this bound.

Claim 7.1 Let µ be a probability measure over a space Ω where the probability of any σ ∈ Ω is either
zero or at least p. Then for any two non-negative functions f and g over Ω we have

µ

[
f log

g

µg

]
≤ 1

p

√
µ(f)
µ(g)

· Ent(f) · Ent(g),

where Ent is taken w.r.t. to µ.

Assuming Claim 7.1, we conclude that

ν

[
νA(f) log

νA(νB(f))
ν(f)

]
≤ 1

p

√
Ent[νA(f)] · Ent[νA(νB(f))] ≤

1
p

√
ε · Ent[νA(f)] · Ent[νB(f)] ≤ 1

p

√
ε Ent(f),
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completing the proof of Lemma 3.5. We note that, since neither νA(f) nor νA(νB(f)) depends on A,
the effective probability space in the above derivation is the marginal over Tx \ A, so indeed p can
be taken as the minimum marginal probability of configurations restricted to Tx \A.

It remains to prove claim 7.1. Consider two arbitrary non-negative functions f and g. Let χ be
the indicator function of the event that g ≥ µ(g). Clearly, χ log g

µ(g) ≥ 0 while (1 − χ) log g
µ(g) ≤ 0.

Also, since µ
[
log g

µ(g)

]
≤ log µ

[
g

µ(g)

]
= 0 then µ

[
(1− χ) log g

µ(g)

]
≤ −µ

[
χ log g

µ(g)

]
. Letting fmax

and fmin be the maximum and minimum values of f respectively over configurations with non-zero
probability, we get:

µ

[
f log

g

µ(g)

]
= µ

[
χf log

g

µ(g)

]
+ µ

[
(1− χ)f log

g

ν(g)

]

≤ fmax · µ
[
χ log

g

µ(g)

]
+ fmin · µ

[
(1− χ) log

g

µ(g)

]

≤ (fmax − fmin) · µ
[
χ log

g

µ(g)

]

≤ 1
p
· ‖f − µ(f)‖1 · µ

[
χ

(
g

µ(g)
− 1

)]

=
1

2p · µ(g)
· ‖f − µ(f)‖1 · ‖g − µ(g)‖1

≤ 1
p

√
µ(f)
µ(g)

· Ent(f) · Ent(g),

where we wrote ‖ · ‖1 for the `1 norm with respect to µ and used the fact that ‖f − µ(f)‖2
1 ≤

2µ(f) Ent(f) for any non-negative function f (see, e.g., [37]). The proof of Claim 7.1 is now
complete.

7.2 Proof of reverse direction of Theorem 3.4

In the main text we proved the forward direction of Theorem 3.4. Here we prove the reverse
direction, i.e., that minx,η csob(µ

η
eTx

) = Ω(1) implies EM(`, ce−ϑ`) for all `, where c = c(b, β, h)
and ϑ = ϑ(b, β, h) are constants independent of `. To do this, we follow the same line of reasoning
as in the proof of Theorem 5.2: namely, we establish the strong concentration property of the
functions g

(`)
s as in Section 5.1 and then appeal to Theorem 5.3. The proof of concentration is

accomplished via hypercontractivity bounds, assuming the above condition on csob.
For a function f , let Λf ⊆ T denote the subset of sites on whose spins f depends. A claim

similar to the following lemma was proved in [42]:

Lemma 7.2 Let ν be any Gibbs measure on T , f any function, and B any subset that includes all sites
within distance ` from Λf . Then there exists a constant ϑ′, depending only on the degree b, such that

‖νB(f)− ν(f)‖q ≤ 3e−csob(ν)ϑ′`|Λf |‖f − ν(f)‖∞ ,

where q = 1 + ecsob(ν)ϑ′` and norms are taken w.r.t. ν.

We use Lemma 7.2 to complete the proof of the reverse direction of Theorem 3.4. For simplicity,
we verify EM only for the case Tx = T (the whole tree), with root r. Recall the functions g

(`)
s from

Section 5.1, the fact that g
(`)
s = µBr,`

(gs) by definition, and that gs depends only on the spin at r.
Applying Lemma 7.2 with ν = µ, f = gs, and B = Br,`, together with the fact that csob(µ) = Ω(1)
by hypothesis, we conclude that there exists a constant ϑ′′ such that

‖g(`)
s − 1‖q ≤ 3e−ϑ′′`‖gs − 1‖∞ ≤ 3e−ϑ′′`/pmin,
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where q = 1 + eϑ′′` and norms are taken w.r.t. µ. Therefore, using a Markov inequality, there exist
constants `0 and ϑ such that, for all ` ≥ `0,

µ+
eT
[|g(`)

s − 1| > e−ϑ`
] ≤ e−2eϑ`

.

This establishes the strong concentration property of g
(`)
s as in (17), from which EM follows by

Theorem 5.3.

Remark: In [42], a claim equivalent to Lemma 7.2 was proved in the context of Zd; however, it is easy to
see that it in fact applies to general, finite-range models on any graph of bounded degree. As a result, the
fact that Ω(1) logarithmic Sobolev constant implies EM(`, ce−ϑ`) holds in this generality as well.

7.3 Proof of Lemma 5.4

We split our analysis of ν(f1f2)2 into three cases:

(a) Entν(f2) ≥ 1
δ ;

(b) δ < Entν(f2) < 1
δ ;

(c) Entν(f2) ≤ δ.

Case (a). We simply bound

ν(f1f2)2 ≤ ‖f1‖2
∞ν(f2)2 ≤ 1 ≤ δ Entν(f2) .

Case (b). We use the entropy inequality (see, e.g., [1]), which states that for any t > 0,

ν(f1f2) ≤ 1
t

log ν(etf1) +
1
t

Entν(f2) . (33)

We choose the free parameter t in (33) equal to
√

Entν(f2)/δ. Notice that, by construction, 1 <
t < δ−1. Using the assumption ν(|f1| > δ) ≤ e−2/δ together with ‖f1‖∞ ≤ 1, we get

ν(f1f2)2 ≤
[1
t

log
(
etδ + et−2/δ

)
+

√
δ Entν(f2)

]2

≤
[
c1 δ +

√
δ Entν(f2)

]2
≤ c2 δ Entν(f2)

for suitable numerical constants c1, c2.

Case (c). Again we use the entropy inequality with t =
√

Entν(f2)/δ ≤ 1, but we now simply bound
the Laplace transform ν(etf1) by a Taylor expansion (in t) up to second order:

1
t

log ν(etf1) ≤ 1
t

log
(
1 + e

t2

2
ν(f2

1 )
)
≤ e

t

2
[
δ2 + e−2/δ

]

=
1
2
e
[
δ2 + e−2/δ

]√
Entν(f2)/δ,

which by (33) implies

ν(f1f2)2 ≤
[ e

2
√

δ

(
δ2 + e−2/δ

)
+
√

δ
]2

Entν(f2) ≤ c3 δ Entν(f2)

for another numerical constant c3.

28



References
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