PARAMETER SPACES FOR ALGEBRAIC EQUIVALENCE

JEFFREY D. ACHTER, SEBASTIAN CASALAINA-MARTIN, AND CHARLES VIAL

ABSTRACT. A cycle is algebraically trivial if it can be exhibited as the difference of two fibers in a
family of cycles parameterized by a smooth integral scheme. Over an algebraically closed field, it is
a result of Weil that it suffices to consider families of cycles parameterized by curves, or by abelian
varieties. In this paper, we extend these results to arbitrary base fields. The strengthening of these
results turns out to be a key step in our work elsewhere extending Murre’s results on algebraic
representatives for varieties over algebraically closed fields to arbitrary perfect fields.

1. INTRODUCTION

Consider a scheme X of finite type over a field K. Given a non-negative integer ¢, the group
of dimension-i cycles, denoted Z;(X), is the free abelian group generated by closed integral sub-
schemes of X of dimension ¢. The Chow group CH;(X) is the quotient of Z;(X) by rational
equivalence. A dimension-i cycle class a € CH;(X) on X is called algebraically trivial if there
exist a twice- K-pointed smooth integral scheme (T, tg,t1) of finite type over K, and a cycle class
Z € CHitdimg (T X X), such that a = Z;;, — Z;, in CH;(X). Here Z;;, j = 0,1, is the refined
Guysin fiber of the cycle class Z [Ful98, §6.2]. Algebraic equivalence defines an equivalence relation
on Z;(X); in fact algebraic equivalence is an adequate equivalence relation (e.g., [Sam60], [Ful98,
§10.3, Prop. 10.3], [Mur85, §1.1]).

Over an algebraically closed field K = K, Weil showed ([Wei54, Lem. 9] ; see also [Lan59, §II1.1],
[Sam60], [Ful98, Exa. 10.3.2]) that if one insists further in the definition of algebraic equivalence
that the parameter space T be a smooth projective curve, or an abelian variety, one arrives at the
same equivalence relation on CH;(X). The first goal of the present paper is to secure these results
in the case where the base field is not assumed to be algebraically closed.

Theorem 1 (Proposition 3.14). Let X be a scheme of finite type over a perfect field K, and let
a € CH;(X) be an algebraically trivial cycle class. Then there exist a smooth projective integral

curve (resp. abelian variety) T over K, a cycle class Z € CHjrqimr(T Xx X), and a pair of
K -points to,t1 € T(K), such that a = Zy, — Zy, in CH;(Xg).

We also consider a notion of algebraic triviality for cycles defined via flat families (see §3.6) and
we show that algebraic triviality in this sense is the same as algebraic triviality as defined in [Ful98,
Def. 10.3]. If in Theorem 1 the field K is taken to be imperfect of characteristic p, we obtain the
same result taking cycles with Z[1/p]-coefficients ; see Proposition 4.10 and Theorem 4.11, as well
as Proposition 3.14 for a related result.

In this paper we are also interested in a slightly more general question. Let L/K be a separable
algebraic extension of fields and assume that a € CH;(Xy) is an algebraically trivial class on
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X1 := X xg L. Theorem 1 shows that there exist a smooth integral scheme T of finite type over L,
a cycle class Z € CH; qim7 (T X1 X1), and a pair of L-points tg,t; € T(L), such that a = Z;, — Z,
in CH;(X1), where T may be taken to be a smooth projective curve, or an abelian variety. We show
that in this situation, one may in fact take T and Z to be defined over K, with T" geometrically
integral. This technical strengthening of Theorem 1 turns out to be a key step in extending Murre’s
work [Mur85] on algebraic representatives for varieties over algebraically closed fields to arbitrary
perfect fields; see [ACMV17] for details, and specifically Lemma 4.9 and Corollary 4.10 therein.

Theorem 2 (Theorem 4.11, Proposition 4.10). Let X be a scheme of finite type over K, let L/ K be
a separable algebraic extension of fields, and let a € CH;(X1) be an algebraically trivial cycle class.
Then there exist a smooth geometrically integral quasi-projective curve of finite type T over K, a
cycle class Z € CHrqimr(T XK X), and a pair of L-points to,t1 € T(L), such that a = Zy, — Zy,
in CH;(X1). Moreover, if K is perfect then T may be taken to be a smooth geometrically integral
projective curve, or an abelian variety.

Clearly Theorem 1 follows from Theorem 2, as the special case where L = K. If in the last
assertion of Theorem 2 the field K is taken to be imperfect of characteristic p, we obtain the same
result using cycles with Z[1/p|-coefficients ; see Proposition 4.10 and Theorem 4.11. Aspects of
the proof of the theorem are inspired by the arguments of Weil. Consequently, in the process of
proving the result, we also provide a modern treatment of some of those arguments. However, there
are several places where our treatment diverges significantly from Weil. In short, using the refined
Gysin homomorphism on cycle classes from [Ful98], we are able to develop arguments without
the need for a base change of field. The first place this is apparent is when we allow for taking
fibers of cycle classes over O-cycles in the parameter space (see §3.4). This makes it relatively easy
to show that one may use curves as the parameter spaces for algebraic triviality, without a base
change of fields. The second place is in showing that one may move from curves as parameter
spaces to abelian varieties as parameter spaces. Here, the refined Gysin homomorphism allows
us to use less Brill-Noether theory, and in particular, to work without the base change of field
in Weil’s arguments. For comparison, we include a modern treatment of Weil’s argument in the
appendix, to emphasize where this crucial part of our argument differs from Weil. Finally, to prove
Theorem 2, there are several new ingredients concerning moving from algebraic triviality over L,
to questions about cycles over K (see especially Lemma 4.14). Our results in fact give something
stronger than Theorem 2 ; in particular, we investigate some related notions of algebraic triviality
that are motivated by the notion of T-algebraic equivalence of [Kle68]. We direct the reader to
Theorem 4.11 for precise statements.

Acknowledgments. We thank the referee for helpful suggestions.

Notation and conventions. We follow the conventions of [Ful98] for the set-up of algebraic cycles
on schemes over fields, the formalism of intersection theory, and the definitions of various notions
of equivalence of cycles. In particular, following [Ful98], we define a variety over a field K to be an
integral scheme of finite type over K. A curve over K is a quasi-projective variety of dimension 1
over K. The dimension of an irreducible scheme of finite type T over K will be denoted dp. Given
a commutative ring with unit R, by CH;(—)g we mean CH;(—) ®z R. The symbol K denotes an
algebraic closure of the field K.

We also fix some notation for closed points of schemes. Let X be a scheme of finite type over
a field K. A closed point of X is an element P of the topological space |X| such that {P} is
closed. Associated to a closed point P of X is a 0-dimensional closed subscheme Spec x(P) — X,
where k(P) is the residue field at P. We will denote this closed subscheme of X by using square
brackets; e.g., [P]. We will denote the 0-cycle (and cycle class) associated to P also by [P]. A point
P € |X]| is closed if and only if the residue field x(P) is a finite extension of K. If L is a field, and
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p: Spec L — X is an L-point of X, we will typically denote the image of p with the corresponding
upper case letter; e.g., P € |X|. The image point P is closed if L/K is algebraic.

2. SYMMETRIC PRODUCTS OF SCHEMES

This section contains some preliminaries on symmetric products of schemes, which will be used
in Section 3.4. We expect the content of this section is well known to the experts, and our primary
aim is to fix notation that will be used later.

For a scheme T, let IIp(7T") denote its set of irreducible components. For a positive integer N, let
SN(T) be the N-th symmetric power of T'.

Lemma 2.1. Let T be an integral scheme of finite type over a field K, and let e = #Ily(T%). For
each positive integer d, let

ST =[] SUD)cs™Tg).
EEHo(Tf)

(1) Then S24(T%) descends to a geometrically irreducible component S24(T) of S4(T).
(2) The natural map S (T) x ST¢(T) — S @HDe(T) restricts to S24(T) x S84 (T) — SPa+s(T).

Proof. Fix a component D € IIy(T%), and let H C Gal(K) be its stabilizer. Since T is irreducible,

we have
== || D"

[0]eGal(K)/H
Let e = #11y(T%). Inside the de-th symmetric power S%(T) = S9%(T%) we identify the irreducible
component

AT = [  sUD%).

[oleGal(K)/H

Since this element of ITy(S9(T%)) is fixed by Gal(K) (and since all geometrically irreducible com-

ponents of a scheme over K are defined over a separable closure of K), it descends to K as a
geometrically irreducible scheme. Part (2) is obvious. O

Lemma 2.2. Let T/K be a normal integral scheme of finite type over a field K, and let e =
#11o(T5). An effective zero-cycle of degree d determines a K-point of SAaze(T).

Proof. By Lemma 2.1(2), it is enough to consider the case of closed points on T'. It is clear that
a closed point P — T of degree d determines a K-point of S%(T)); the content of the assertion is
that this point lies in S%4/<(T'). If the field of definition of the components of T4 is Galois over K,
then the statement is easy. In general, we need to work a little harder.

Let K. be the separable algebraic closure of K inside K (7). Then T is a geometrically irreducible
scheme of finite type over K.. Now let P be a closed point of T" with residue field L = k(P), and
let Spec A be an open affine subscheme of T" which contains P; let p C A be the corresponding
ideal. The natural maps K <— A — L yield an inclusion K. < L; then K, is contained in L, the
separable closure of K inside L.

The canonical surjection 7 : A — A/p yields, after base change, a surjection 7 : A ® K —
A/p®k K. On one hand, irreducible components of Spec(A®x K), and thus of T, are in bijection
with minimal ideals of A @y K. Similarly, the irreducible components of Pz = Spec(A/p ®x K) —
that is, the points of P lying over P — are in bijection with minimal ideals of (A/p) ®x K. Ifqis
a minimal prime of (A/p) ®x K, then the component of T% containing the corresponding point is
indexed by the minimal prime ideal of ﬂ%l(q).



On the other hand, irreducible components of Spec(A ®x K) are also indexed by Homg (K, K),
insofar as

A®k K= @UEHomK(KC,?)A Ko K;

the irreducible component indexed by o corresponds to the minimal prime ideal containing ker(A®k
K—A® Ke,o K )
Similarly, irreducible components of Pz are indexed by Homg (L, K). Moreover, we have

(A/p) 9k K = DyeHomp (K. ) (L OKeo K)
= @g ®T€HOmKC(L,?)ZT|KCZU L ®’T7Kc70' K

Comparison of minimal primes of A ® K and (A/p) ®x K then shows that if Q € Io(Pg)
corresponds to 7 € Homy (L, K), then the irreducible component of Spec(A ® K) supporting it
corresponds to 7|, .

Since, for a given o € Homg (K., K),

# {T € Homg (L, K) : 7|k, = a} =# {7‘ € Homg (Ls,K) : 7|g, = a} = [Ls: K

is independent of o, points of P are uniformly distributed among the components of T%. O

3. ALGEBRAIC EQUIVALENCE : THE CLASSICAL STORY

In this section, we recall various definitions of algebraic equivalence for cycles classes. These
depend on constraints imposed on the smooth parameter spaces. A classical result of Weil [Wei54]
says that these definitions all agree when working over an algebraically closed ground field. We
show in Proposition 3.14 that this holds over an arbitrary perfect ground field. We also recall a
definition of flat algebraic equivalence for cycles (as opposed to cycle classes), show it is equivalent
to the definition of algebraic equivalence of cycles in [Ful98, Def. 10.3], and recall how it can be
used to reformulate rational triviality. We close this section by showing that, in a suitable sense,
algebraic triviality of cycles on X is independent of the choice of base field.

In this section, we fix a field K and work in the category of schemes of finite type over K.

3.1. Definition of algebraically trivial cycle classes. Let X be a scheme of finite type over
some field K. Recall from [Ful98, §1.3] that a cycle o € Z;(X) is said to be rationally equivalent
to zero if there are a finite number of (i + 1)-dimensional closed integral sub-schemes W, of X,
and non-zero rational functions f, in the function field of W,., such that « is the sum of the cycles
associated to div(f,). In particular, rational equivalence does not depend on the choice of a base
field over which X is of finite type. The collection of i-dimensional cycles that are rationally
equivalent to zero form a subgroup of the group of i-dimensional cycles Z;(X), and the Chow group
of i-dimensional cycle classes is the quotient of Z;(X) by this subgroup. The cycle class associated
to a cycle is the image of that cycle in the Chow group.

Definition 3.1 (Algebraically trivial cycle class [Ful98, Def. 10.3]). Let X be a scheme of finite
type over a field K. A dimension-i cycle class a € CH;(X) on X is called algebraically trivial if
there exist a smooth integral scheme T' of finite type over K, an (i + dr)-dimensional cycle class
Z € CHyya, (T xk X), and K-points t1,tg € T'(K) such that Z;, — Z;, = a in CH;(X). Here Z,,,
j = 0,1, is the refined Gysin fiber of the cycle class Z [Ful98, §6.2].

The subset of CH;(X) consisting of algebraically trivial cycle classes forms a group; it thus
makes sense to define a dimension-i cycle class with R-coefficients a € CH;(X)g to be algebraically
trivial if it is an R-linear combination of algebraically trivial cycles in the sense of Definition 3.1.
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For schemes of finite type over K, this group is stable under the usual operations of proper push-
forward, flat pull-back, refined Gysin homomorphisms, and Chern class operations; see [Ful98,
Prop. 10.3] and Proposition 3.4 below.

Remark 3.2. Several authors require the parameter space T' in Definition 3.1 to be separated, or
even quasi-projective. For instance, Kleiman [Kle68] and Jannsen [Jan(00] require the parameter
space to be quasi-projective (in fact the parameter spaces are taken to be projective in [Jan00],
but over a perfect field, by Bertini’s theorem and Lemma 3.8, below, this is equivalent to quasi-
projective), and Hartshorne [Har73] seems to require the parameter space to be separated but works
over an algebraically closed field. Note that Fulton [Ful98] defines a variety as an integral scheme
of finite type over a field, and thus does not require the parameter space to be separated (cf. [Ful98,
B.2.3]) ; we have followed this more general convention. As we will recall in Proposition 3.14, these
conventions all lead to the same notion of triviality over a perfect field.

Remark 3.3. In Definition 3.1 the parameter scheme T is always geometrically integral. This is
because a smooth integral scheme of finite type over a field K that admits a K-point is geometrically
integral.

3.2. Related notions of triviality for cycle classes. There are other notions of triviality used
in the literature that are obtained by imposing constraints on the parameter space. They are all
equivalent over an algebraically closed field by Weil [Wei54, Lem. 9] ; our main result, Theorem 1
(Proposition 3.14), extends Weil’s result by showing that they are all equivalent over a perfect field.

Definition 3.4 (Parameter space algebraically trivial cycle classes). Let X be a scheme of finite
type over a field K. Let a be a cycle class in CH;(X). Suppose there exist a smooth integral
scheme T of finite type over K, a cycle class Z € CH;yq4, (T xx X), and K-points t1,ty € T(K)
such that Z;, — Zy, = a in CH;(X). If T can be taken to be a curve (resp. abelian variety,
resp. projective curve, resp. quasi-projective scheme, resp. separated scheme), then we say that a
is curve (resp. abelian variety, resp. projective curve, resp. quasi-projective scheme, resp. separated
scheme) trivial.

Proposition 3.5 ([Ful98, Prop. 10.3]). For any of the notions of triviality in Definition 3.4 above,
the trivial cycles classes form a subgroup of the group of all cycle classes. This subgroup is preserved
by the basic operations :

(1) proper push-forward ;

(2) flat pull-back;

(3) refined Gysin homomorphisms ;

(4) Chern class operations.

Proof. The proof is the same as [Ful98, Prop. 10.3]. The classes of abelian varieties, quasi-projective
schemes, and projective schemes are each stable under products; in the case of (projective) curves,
we in addition use Bertini’s theorem (Theorem A.1) to cut the product of (projective) curves back
down to a (projective) curve. That the four operations (1)-(4) are preserved follows from the
corresponding parts (a)-(d) of [Ful98, Prop. 10.1]. O

Remark 3.6. By virtue of the previous proposition, given a commutative ring R, we can extend
the notions of triviality in Definitions 3.1 and 3.4 to Chow groups with R-coefficients by extending
R-linearly. For instance, a € CH!(X)g is said to be curve trivial if it is an R-linear combination
of curve trivial classes in CH;(X) (as in Definition 3.4). All of the results in Section 3 hold in this
more general setting.

Remark 3.7. We have the following elementary implications among the notions of triviality :

ab. var. triv. => proj. curve triv. => curve triv. <= q.p. sch. triv. => sep. sch. triv. = alg. triv.
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Indeed, all the implications are immediate from the definitions, except for the implications “Abelian
variety trivial = Projective curve trivial” and “Quasi-projective scheme trivial = Curve
trivial”. These follow from applying Bertini’s theorem (Theorem A.1).

3.3. Projective curve triviality. Since every smooth integral curve over a field has a regular
projective model (the normalization of any projective completion), over a perfect field we have
“Projective curve trivial” <= “Curve trivial”. However, over an imperfect field, there exist
projective curves that are regular but not smooth. Such a curve admits no surjective morphism
from a smooth projective scheme (this follows from Bertini’s theorem and [Stal7, Tag 0CCW]);
in particular, it admits no smooth projective model. Thus the reverse implication over imperfect
fields is less clear. The following lemma addresses this:

Lemma 3.8. Let X/K be a scheme of finite type, and let a € CH;(X) be a curve trivial cycle class.
(1) If K is perfect, then a is projective curve trivial.
(2) If K is imperfect of characteristic p, then there exists some n such that p™a is projective
curve trivial.

Proof. Suppose T' is a smooth curve and Z, ¢; and ¢y are as in Definition 3.4. Let T be the regular
projective model of T, and let Z’ be a pre-image of the cycle class Z under the surjective [Ful98,
Prop. 1.8] restriction map CH;yq, (T xx X) = CHyiq, (T Xx X). Then Zy, — Zi, = Zyy — Zy,.
First, suppose K is perfect. Then T is smooth, and we are done.
Second, suppose K is imperfect of characteristic p. Let T®") denote the pullback of T by the
iterated Frobenius map X — A" of K. The iterated relative Frobenius map FT’:‘ K T — T®" ig

finite and flat of degree p", and for sufficiently large n the normalization W, of T®") is smooth
[Sch09, Lem. 1.2]. Fix one such n, and let v : W,, — T®") be the normalization map. Since

T is smooth at each K-point t;, there are unique K-points w; of W,, above each F%L /K(ti)' Let

Y =v'Fg (Z). Then Yuy = Yuy = 9" (Zu, — Zuy). 0

3.4. Algebraically trivial cycles using 0-cycles of degree 0. Algebraic equivalence of cycle
classes is defined by using the difference of two Gysin fibers over two K-points of the parameter
scheme. Working more generally with O-cycles of degree 0 on the parameter scheme provides more
flexibility. Lemma 3.9 and Proposition 3.10 below say that by doing so we in fact obtain the same
equivalence relation on cycles. In addition, Proposition 3.10 establishes that algebraic triviality
coincides with quasi-projective scheme triviality.

Let Pi,..., P, be closed points of a scheme X of finite type over a field K, with residue fields
k(P;), respectively. By definition, the degree of the zero-cycle 5 =Y, n;[P;] € Zo(X) is the integer
deg 8 :=) . ni[k(F;) : K|. If X is proper over K, this agrees with the definition via proper push-
forward to Spec K [Ful98, Def. 1.4]. Given a smooth scheme T of finite type over K, a cycle class
Z € CHj14, (T xi X), and a zero-cycle B = >, n;[P;] € Zo(T), we define

(3.1) Zg = Znizm € CH;(X),

where Z|p,) denotes the image of the refined Gysin fiber of Z over the closed subscheme [F;] of T
(which is regularly embedded since T is smooth) pushed forward along the projection Spec k(P;) X
(T' xk X) =: X|pj — X; this is also the finite morphism obtained by pulling back X along the
finite morphism Spec k(P;) — Spec K.

Lemma 3.9. Let X be a scheme of finite type over a field K. Let T be a smooth integral quasi-
projective scheme over K and let 5 € Zo(T') with deg 8 = 0. Let Z € CH;44,(T xx X) be a cycle
class on T' x ¢ X. Then the cycle class Zg € CH;(X) is quasi-projective scheme trivial.
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Proof. Applying Bertini’s theorem (Theorem A.1) gives a smooth integral quasi-projective curve
g : C = T over K, passing through the support of the zero-cycle 8. Denote the corresponding
zero-cycle of C by v. For the cycle Z' := ¢'V € CH;41(C xx X), we have 7!, = Zg in CH;(X)
([Ful98, Thm. 6.5]). Thus we may and do assume that 7' is a smooth integral quasi-projective
curve.

Recall that for any positive integer N, we let SNT denote the N-th symmetric power of 7. Since
T is a smooth integral quasi-projective curve, SNT is a smooth integral quasi-projective scheme.
Let SN Z be the induced cycle on SVT x i X. More precisely, view SNT as a component of the
Hilbert scheme of T (see e.g., [Kle05, Thm. 9.3.7, Rem. 9.3.9]), and let D C SNT xx T be the
universal divisor; D := {(z,z) : © € Suppz}. Let p: SNT xx T — SNT and q: SNT xx T — T
be the natural projections. Then we can define

SNZ .= (plp x idx)«(q|p x idx)*Z € CHyy n(SNT xx X),

where (g|p x idx)* is the flat pull-back (D is smooth and integral, so that the dominant morphism
qlp : D — T is flat) and (p|p x idx). is the proper push-forward (p|p : D — SNT is finite, in
particular proper). The fiber of SNZ over ri +---+ry € SVT is then > Zy,.

Note that an effective zero-cycle of degree N on T determines a rational K-point of SVT. The
key point now is that, even though the smooth integral curve T" over K may not have a K-point
and may be geometrically reducible, there is an irreducible component of a symmetric product of
T that has a K-point and is geometrically irreducible.

If T} has exactly e irreducible components, then for each positive integer d we have a geometri-
cally irreducible component (Lemma 2.1)

S24(T) ¢ §9(T)

of the symmetric product, parameterizing those de-tuples with equal weight in each geometric
component of T%. The degree of any zero-cycle on 7' is a multiple of e, and an effective zero-cycle
of degree de on T determines then a rational K-point P — S24T (Lemma 2.2).

Let us then write 8 = > i_; ;[Qs] — >=%_; m;[R;], where n; > 0 and m; > 0 for all 4, j. Let N :=
Yoz nilk(Qi) + K] = 375 my[k(R;) : K], and consider to := > n;Q; and 1 := Y% m;R;
viewed as K -points of SAN/<T. Then we find that Zg = (§AN/e 7). — (SANIe Z),,, where SAN/eZ
denotes the component of SNZ over S2¥/T x X. In other words, Z3 is quasi-projective scheme
trivial. 0

A corollary is the following further implication that can be added to the diagram of Remark 3.7 :

Proposition 3.10. Let X be a scheme of finite type over a field K, and let a € CH;(X) be an
algebraically trivial cycle class. Then a is quasi-projective scheme trivial. Thus, given Remark 3.7,
we have the following implications among the notions of triviality :

ab. var. triv. => proj. curve triv. => curve triv. <= q.p. sch. triv. <= sep. sch. triv. < alg. triv.

Proof. This is motivated by [Ful98, Exa. 10.3.2]. Let X be a scheme of finite type over K, and
let @ € CH;(X) be an algebraically trivial cycle class. From the definition, there exist a smooth
integral scheme T of finite type over K, a pair of K-points t1,tg € T(K), and a cycle class Z' €
CHiya, (T xx X), such that a = Zj, — Zj . As mentioned in Remark 3.3, T is geometrically integral,
since it admits K-points.

By Bertini’s theorem (Corollary A.3), there are smooth geometrically integral quasi-projective
curves C1,...,C, C T over K for some r, and closed points T}, , T}, in C; for j = 1,...,r, such that
T, =Tjy1), for j=1,...,7—1, and T}, is the closed point associated to tg, and T, is the closed
point associated to t1. Then if we let Z ) CH;41(Cj xk X) be the refined Gysin restriction of
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Z'to Cj, j=1,...,r, we have

T

a= (2, — 7)) => (29,1 = (Z9) 1) € CHi(X).
j=1
Here, as defined above in (3.1), the notation (ZU ))[sz] indicates the push forward under the finite

morphism X T, = X of the refined Gysin fiber of Z() in CH; (X [Ta‘e])'
With this set-up, we now fix:

3.2 S=C1 Xg-XgCp, pr;:S5— C; the j-th projection,
7 J
Sy = [Tle] XK XK [Trg] S CHO(Cl XK - XKCT), 6:0,1,
(3.4) Vi =pr; 29 € CH; (S xx X), j=1,....m,
(3.5) V =) V; € CHy,(S xg X).
j=1

The scheme S is a smooth geometrically integral quasi-projective variety over K, and s; and sq are
closed 0-dimensional subschemes of S'; we have that Vs, =V, = Z;, —Z;, = a. Since deg 5o = deg s1,
we can apply Lemma 3.9 to conclude that a is quasi-projective scheme trivial. g

A zero-cycle 3 is said to be numerically trivial if deg 8 = 0. The following proposition, which is
a corollary of Lemma 3.9, is certainly well-known (e.g., [Ful98, 19.3.5, p.386] in the case K = C):

Proposition 3.11. Numerical and algebraic triviality agree for 0-cycles on smooth integral projec-
tive schemes over K.

Proof. If X is a smooth geometrically integral quasi-projective scheme over K, we apply Lemma 3.9
toT = X and Z = Ay, the diagonal sitting in X X g X, and we find that any zero-cycle of degree 0
is algebraically trivial. Conversely, assuming furthermore that X is proper, an algebraically trivial
zero-cycle is numerically trivial by the principle of conservation of number [Ful98, §10.2]. U

Remark 3.12. The proposition is not true without the smoothness hypothesis (see Example 3.13)
or the hypothesis that X be proper (e.g., X = A}(, where all 0-cycles are algebraically trivial).

Example 3.13. Consider the rational nodal curve X = {zy? + z2? — 2® = 0} C IP’?@ defined
over Q. Let N = [0 : 0 : 1] be the node, and let P = [1 : 0 : 1]. One can check that
Zo(X)/(algebraic equivalence) = Z[P] & (Z/2Z)([N] — [P]). In particular [N] — [P] is not alge-
braically trivial. The idea is that, for a closed point O of ]P’(b with residue field of degree d over Q,
we have ZO(I%\O) /(algebraic equivalence) = CHO(]P’(%)\O) = 7/dZ (this is proved using the lo-
calization exact sequence for Chow groups). Now, under the normalization morphism ]P’(l@ — X,
the pre-image of the node N (which is a closed point with residue field Q) is a closed point in
IP’%2 with residue field Q(7), and one can yet again use the localization exact sequence to conclude.
Alternately, one could apply directly [Ful98, Exa. 1.8.1, Exa. 10.3.4] by considering the node sitting
inside X.

Note in contrast that over Q(¢) the same computation shows that the cycle [N] — [P] is alge-
braically trivial, since the pre-image of the node in the normalization consists of two Q(4)-points.
As an aside, also note that [IN] and [P] belong to the same component of the Chow scheme of X/Q.
Indeed, one can check that X is semi-normal, so that by [Kol96, Exe. 1.3.22] the Chow scheme
Chowyg 1 (X) of O-dimensional subschemes of degree-1 in X coincides with X.
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3.5. Abelian variety triviality. We now complete the proof of Theorem 1 by showing that curve
triviality coincides with abelian variety triviality.

Proposition 3.14. Let X be a scheme of finite type over a field K, and let a € CH;(X) be a
projective curve trivial cycle class. Then a is abelian variety trivial. Thus, given Proposition 3.10,
we have the following equivalences among the notions of triviality :

ab. var. triv. < proj. curve triv. => curve triv. < q.p. sch. triv. <= sep. sch. triv. <> alg. triv.

In particular, given Lemma 3.8, if K is perfect, then all the notions of triviality above are equivalent.

Proof. By assumption there exist a smooth projective curve C'/ K, a cycle class Z € CH;11(C'x g X),
and K-points p1,pg € C(K) such that Z, — Z,) = a € CH;(X). Since C has a K-point, C is
geometrically integral.

Let g be the genus of C. Take N > 2g—1. Consider as in the proof of Lemma 3.9 the symmetrized
cycle SVZ on SNC xx X ; its fiber over 71 + --- +ry € SNC is > Z,. Let ¢1 be the K-point
of SNC' corresponding to the divisor Np;, and let gy be the K-point of SVC corresponding to
po + (N — 1)p1. Then we have that (SN 2),, — (SN 2)y = Zp, — Zp, = a.

Since N > 2g — 1, the Abel-Jacobi map

Ady : SNC = Pic i

is a Zariski locally trivial fibration in projective spaces IP’%_Q ; i.e., there is a vector bundle F of rank
N+1—gon Picg /K SO that the Abel-Jacobi map coincides with the structure map PF — Picg /K
(see e.g., [AK80, Thm. 8.5(v)] and [Kle05, Exe. 9.4.7]). Consequently, the map

AJy x1d: SNC xg X = Picg i xx X

is the projectivization of the pull-back E’ of E to Picg/K X g X. Denote by O(1) (resp. O'(1)) the
relatively very ample line bundle on Sév /K (resp. S]CV /i XK X). Thanks to the projective bundle
formula [Ful98, Thm. 3.3(b)] we can write

N+1—g
(3.6) SNZ= " a(0'1)Y n(Aly x 1d)*W;
j=0

for uniquely determined W; € CH; i _(y_g)+; (Picg /KX xX). Now, we observe that the terms

with j positive in the above sum do not contribute to Gysin fibers over points of SN¥C. More
precisely, if ¢ : Spec K — SN C is a K-point, we claim that

¢ SNZ = ¢ (AJn x 1d)*Wy.

Indeed, since O’(1) is obtained from O(1) by pull-back, then taking a cycle D representing the cycle
class ¢1(O(1)) N [Sg/K], the associated intersections in the sum (3.6) can be taken to be supported
on Supp(D) x g X, and so the Gysin fibers must be zero. More precisely, with the notation in the
cartesian diagram below :

X% .x x5 SNC

v | |or

Spec K — 1 SNC,
9



where pr is the second projection, we have
¢ (c1(O' (1)) N (Adx x 1d)*W;) = c1(¢* O’ (1)Y N ¢ (Adx x 1d)*W; ([Ful98, Prop. 6.3])
= c1(¢"pr*O(1)) Ng'(An x Id)*W;
= c1(pr*¢*O(1)Y N ¢'(Ady x Id)*W;
=0Nq'(AJy x 1d)*W;

where the last equality holds since ¢*O(1) = Ospec i, and ¢;(Ox) = 0.
Having established the claim, then setting t = AJyoq : Spec K — Picg/K to be the composition,

we have ¢'SNZ = ¢'(AJy x1d)* Wy = t'Wy ([Ful98, Prop. 6.5(b)]). Therefore, setting t; = AJyog; :
Spec K — Picg/K, for j = 1,0, we have

Zpl - Zpo = (SNZ>Q1 - (SNZ)QO = (Wo)tl - (WU)tO'

Since C' has a K-point, Picg /K is an abelian variety, and we are done. ]

Remark 3.15. For comparison, in Appendix B we include Weil’s argument in the case where K = K
(see Lemma B.1). The key point is that by using the refined Gysin homomorphism, we are able
to get by with less Brill-Noether theory ; in particular, we do not need to assume the existence of
Brill-Noether-general divisors of a given degree defined over the base field.

3.6. Algebraically trivial cycles and flat families. In the definition of algebraic equivalence
for cycle classes (Definition 3.1), one uses refined Gysin homomorphisms. Those are only defined
up to rational equivalence. This leads to the following definition of algebraic equivalence for cycles :

Definition 3.16 (Algebraically trivial cycle [Ful98, Def. 10.3]). Let X be a scheme of finite type
over a field K. A dimension-i cycle o € Z;(X) on X is called algebraically trivial if its associated
cycle class a = [a] € CH;(X) is algebraically trivial.

We can also define a notion of algebraic equivalence for cycles using flat families. Given schemes
of finite type X and T over K, integers mj, and integral (i + dr)-dimensional subschemes Z; of
T'xgX,acycle Z =3 ,m;Z;j € Ziyqp (T x x X) is said to be flat over T'if each natural projection
morphism Z; — T is flat. If T is smooth over K, and t € T(K), we define the flat fiber Z; of
Z over t to be > ,m;(Z;);, where (Z;), is the scheme theoretic fiber over t. Note that in this
situation, the flat fiber and the refined Gysin fiber agree. Indeed, in the case where T is a smooth
curve, this is asserted on the bottom of [Ful98, p.176]. More generally, one uses the formula for the
Gysin fiber in terms of a Segre class given in [Ful98, p.176] (and [Ful98, Prop. 6.1(a)]), together
with the flatness hypothesis and [Ful98, Exa. 10.1.2, Exa. A.5.5], so that one can use the fact that
for a regular embedding, the Segre class can be given in terms of the Chern class of a normal bundle
[Ful9g, p.74].

Definition 3.17 (Flatly curve trivial cycle). Let X be a scheme of finite type over a field K. A
dimension-i cycle o € Z;(X) on X is called flatly curve trivial if