COHOMOLOGY AND CENTRAL S| MPLE ALGEBRAS
Wl liam Craw ey- Boevey

These are the notes for an MSc course given in Leeds in Spring 1996. My
idea was to give an introduction to lots of different kinds of cohonol ogy

theories, and their applications to central sinple al gebras.
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81. Chai n conpl exes

1.1. SETTING Let Rbe aring. W’ ll consider |eft R-nodules.
Recall that if R=Z then we’'re dealing with additive groups

If R=field, we're dealing with vector spaces.

Maps M—N wi I | be R-nodul e hononor phi sns.
Wite Hom{(M N) or Honh(l\/ll\l).
Recall that this is an additive group

It is an Rnmodule if Ris conmutative.



1.2. DEFINITION. A chain conplex C  consists of R-npdules CI (i €Z) and naps

satisfying an_lan =0 for all n.

The el enents of Cn are called chains of degree n or n-chains.

Convention is that the map an STARTS at the nodul e Cn'

The maps an are the differential.

Sl oppy notation: the chain conplex is C
Each of the maps is denoted 4.

Thus the condition is that 62 = 0.

If Cis a chain conplex, then it’s honology is defined by

B Ker(an: Cn—>Cn_ 1) B Zn(C)
H(O = =
I 6n+1: Cn+1—>Cn) Bn( (@]

It is an R-nodul e.

Since 8°=0 it follows that B (O <Z(0.
The el enents of Bn(C) are n-boundari es.
The el enents of Zn(C) are n-cycles.

If x is an n-cycle we wite [x] for its image in Hn(C).

A chain conplex Cis
o acyclic if Hn(C) =0 for all n.

o non- negative if Cn = 0 for n<O0.

o bounded if only finitely many nonzero Cn'

1.3. EXAMPLES. (1) If Mis an R-nodul e and neZ you get a chain conpl ex

with Min degree n. Then

M (i=n)
H (O =
! 0 (i=n)



I"lIl sonmetimes call this conplex Min deg n).

(2) Have chain conpl ex of Z-nodul es

t hen HO(C) = 7/ aZ, Hl(C) = 0.

More generally if NLL»N i s a hononorphi smof R-nodul es you get a conpl ex

say with Min degree 1, N in degree 0. Then

Hy(©)
H, (O

N In(f) = Coker (f)
Ker (f).

(3) Recall that an exact sequence is a sequence of nodul es and naps

L—-M-— ... — X —5Y

in which the image of each map is the sane as the kernel of next map. You

get a chain conpl ex

once you decide which degree to put any of the ternms in.
Then Hi(CD = 0 except possibly at L and Y.

A short exact sequence is an exact sequence

It gives an acyclic conpl ex.

1.4. DEFINITION. A cochain conpl ex C’ consists of Rnodules C (i €z) and

maps



1

satisfying 6n+ 8"=0. The elements of C" are called cochains of degree n or

n- cochai ns.

Its cohonol ogy is defined by

ker (a:'—c™h 20
H'(Q = ¢ =
Im(a: ¢ T —ch B"(0)

The el enents of Bn(CD are n-coboundari es.

The el enents of Zn(CD are n-cocycl es.

REMARK. There is no difference between chain and cochai n conpl exes, apart
fromnunbering. If you' ve got a chain conplex C you get a cochain conpl ex
by defining ' = C—n' W say that one is obtained fromthe other by

r enunberi ng.

Most conpl exes are zero on the left or the right, so do as a non-negative

chain or cochain conpl ex.

1.5. DEFINITION. Let C be a chain conplex of left Rnodules. If Nis a left
R-nmodul e then there is a cochain conplex Hom{(C,N) with

Hom(C, N " = Hom(C_, N

6:HorT(C,N)n———>Hor‘r(C,N)n+1 i nduced by the map 6:Ch+1——9ch,

It is a conplex of Z-nbdules (or of Rnodules if Ris comutative).

The cohonol ogy of this conplex is denoted Hn(C,N). It is the "cohonol ogy

of Cwith coefficients in N'

1.6. EXAMPLE. Even if a chain conplex Cis acyclic, it’s cohonol ogy ni ght

not be zero. Let C be the acyclic conplex of Z-nodules:



0 z z zl 2 0
deg 1 0 -1

Have Hom(Z/2,Z) = 0 and Hon(Z, 7)

IR

Z so Hon(C, Z) is cochain conplex

0 0 z z 0

deg -1 0 1
o) Hl(C,Z) ~ 7/ 2 and the rest vanish.
1.7. EXAMPLE. Sinplicial honol ogy.
| f Vgr -V, are n+l points in RN which don't lie in an n-plane then the
n-sinplex with vertices Vorooo VY, is

_ _ n _
[vo,...,vn] = {convex span of the Vi} = {Zi:O Aivi | Aizo, Zhi—l}

A sinmplex s is a closed subset of RN. Its vertices are uniquely determ ned

as the extremal points of s.
{Vi} = {xes | cannot wite x = 1/2(u+v) with u,ves, u=zv}
O-sinplex is a point
1-sinplex is a |ine segnent
2-sinplex is a triangle

3-sinplex is a tetrahedron

A face of a sinplex is a sinplex given by a subset of its vertices.

A sinplicial conplex in RN is afinite collection K of sinplices satisfying

(1) If seK then so is every face of K

(2) If s,teKthen their intersection is enpty or is a face of s and t.

An oriented sinplicial conplex is a sinplicial conplex together with an

ordering on its vertices. Can do this by labelling its vertices 1,2,3,..

If Kis an oriented sinplicial conplex, its chain conplex C = C(K) is

defined as foll ows.



{ free Z-nodule on the n-sinplices in K (n=0)
C =
n

0 (n<0)

The map a:Ch——»Ch_ is defined by giving 8(s) for s an n-sinplex.

1

If s =]v , V] wth v.<...<v_ in the chosen order
n i 0 AN
[vo,...,vi

o

Then 4(s) :Zizo (-1) v

Note that the signs depend on the ordering.

This is a chain conplex, that is 62:0. For exanpl e

2 _
a [Vl’VZ’V3’V4] = 6[v2,v3,v4] - a[vl,v3,v4] + a[vl,vz,v4] - a[vl’VZ’V3]

([vgvyl - [V vl + [V, val)
([vgvyl - [V vl + [V, val)
+ ([V vl - [V vl + [V, v,l)
(Vg Vgl - [Vg Vgl + [V, V,])

The sinplicial honology of Kis Hn(C(K)).
The sinplicial cohonology of Kwith coefficients in Nis Hn(C(K),N)

REMARK. The nami ng of cycles and boundari es can be expl ained as foll ows.
Let K be a sinplicial conplex. For sinplicity in RZ.

A path along the edges gives an el enent of Cﬁ.
The path is a cycle if it returns to its starting point.

The path is a boundary if you can fill inits interior with 2-sinplices.

EXAMPLE. Kis 1—32

3

Then Cb free on [1],[2],[3],[4]
Cﬁ free on [12],[13],[14],][24],][34]
Cé free on [124]



8([124]) =1[24] - [14] + [12]

a([12])
a([13])
a([14])
a([24])
a([34])

(2] - [1]
(3] - [1]
(4] - [1]
(4] - [2]
(4] - [3]

ZO(CD is all of Cb.
BO(CD is linear conbinations of these differences
= {af 1] +B[ 2] +2[ 3] +8[ 4] | a+B+y+5=0}

Thus H,(O) = Z.

Zl(CD = is set of «[12] + B[13] + ¥[14] + 8[24] + €[34] with «, ..., €€Z such
that (-a-B-2)[1] + (a-8)[2] + (B-¢)[3] + (y+o+e)[4] = 0.

Bl(CD is set of ¢([24] - [14] + [12]) with & nezZ

Fi nd t hat Zl(CD = Bl(CD ® Z([34] - [14] + [13]). Thus Hl(CD =4

Z,(Q =0 so Hy(O = 0.

1. 8. EXAMPLE. de Rham cohonol ogy.

Let U be an open subset of RZ. Have chai n conpl ex

0 Q Q Q 0
deg 0 1 2
QO = set of smpoth functions on U, that is functions U—R such that al

partial derivatives of all orders exist and are conti nuous.

Q" = set of differential 1-forns on U synbols w = p dx + q dy where p,q
are snmooth functions on U

Q" = set of differential 2-forns on U synbols h dx dy with h a snpoth
function on U

af of

X dx + 3y dy.

If w=pdx +qdyisadfferential 1-formthen dw = (g—j i 2—5) dx dy

If f e QO so f is a function on U then df =

o 8%

This is a cochain conpl ex since X3y _ Oyox




Its differential d really is to do with differentiation
de Rham cohonology of Uis HBR(U) = Hn(Q.).

Zl(U) = {w e Ql | dw = 0} is set of closed 1-forns.
Bl(U) = {df | f smooth function} is set of exact 1-forns.

HER(U) = {closed 1-forns} / {exact ones}

1, 2 _ . .
HDR(R ) = 0 by Poincaré | enma.

Y 5 dx + ——f—i-dy cl osed, but not exact.

2
XT+y XT+y

HER(RZ\O) # 0: can show w =

Note that w doesn’'t nmake sense as a 1-form on RZ.

As a 1-formon RZ\{y-axis} it does nake sense and is exact.
Consider function f on RA\{y-axis}, f(x,y) = tan *(y/x)
(between -m/ 2 and m/ 2).

Then df = w.

de Rham cohonol ogy generalizes to snooth nanifol ds. See
Ful t on, Al gebraic topol ogy

Bott & Tu, Differential forns in al gebraic topol ogy

1.9. EXAMPLE. Singul ar honol ogy.
Let X be a topol ogi cal space. Let Ch be the free Z-nodule with basis the

set of continuous maps froman n-sinplex to X

The image of the map might ook |ike a deformed sinplex, but it mght be

si ngul ar, hence the nane.

Can nake the Ch into a chain conpl ex.

Get singul ar honol ogy and cohonol ogy.

(1) Suppose Kis a sinplicial conplex and |K| is union of its sinplices.

Then sinplicial honol ogy of K and singul ar honol ogy of |K]| coincide.

(2) Suppose Uis openin RZ, t hen singul ar cohonol ogy with coefficients in

R and de Rham cohonol ogy coi ncide (de Rhanmis theoren).



Now a little theory about chain and cochai n conpl exes.

1.10. DEFINITION. If C and D are chain conpl exes, then a hononorphism (or a

chain map) f: C—D is given by a hononor phi smfn : Cn — Dn for each n,
such that each square in the diagramis comutative
a a a

a
—>C+1—>Cn—>Cn_1—>...

n
f n+1l f nl f n- 1l
a a

a a
—>Cn+1—>Cn—>Cn_1—>...

If Cand D are chain conplexes then Hom(C, D) is an additive group.

The set of chain conpl exes together with their honmonorphisns is a category.

(I'f you are worried about what a category is, look it up).

There is also the notion of a cochain map of cochain conpl exes.
Note that if C—Dis a chain map and Nis an R nodul e you get a cochain
map Hom( D, N —Honm(C, N).

1.11. PROPCSITION. If f:C—>Dis a chain map then for each n it induces a
hormonor phi sm on honol ogy Hn(f) : Hn(C) — Hn(D). (Thus Hn is a functor

fromcategory of chain conplexes to category of nodul es.)

PROOF. An arbitrary el enent of Hn(C) is of the form[x] with x € Zn(C).
Send it to [fn(x)] in Hn(D).

1.12. THEOREM Let O c 5D 95E 50 be a short exact sequence of chain

conpl exes, neaning that f and g are chain nmaps and for each n the maps

are a short exact sequence. Then there are connecting naps

C: Hn(E)—>Hn_ 1(C) giving a |l ong exact sequence



Cc C

.—H (B

- H (C)—H (D) —H_(E)

PROOF. Have di agram

0 — Cn+1 — Dn+

l l
0— C — D 9,
l f 8]

0 —C —>Dn

—>E+ —> 0

1 1

— 0
n

— _m >

—>En_ — 0

-1 1

Defi ne connecting map Hn(E) — Hn- 1(C) as follows.
Typi cal el enent of Hn(E) is [x] with ern(E).
Choose yEDn with g(y)=x.

Then g(a(y)) = a(g(y)) = a(x) = 0.

Thus there is unique zeCn_ with f(z)=8(y).

Define c([x]) = [z].

1

This doesn’t depend on the choice of x or vy.

Say y,y’EDn have i mages x,x’eZn(E) with [x]=[x"].

Thus g(y’)-9(y) < B (B).

Thus g(y-y’) = a8g(u) for sone ueb_,
= ga(u)

Thus y-y’-8(u) = f(v) for sone veCn.

Now i f f(z)=8(y) and f(z’)=8(y’) then

f(z-z") = a(y-y’) = a(y-y’-a(u)) = of(v) = fa(v).

Thus z-z’ = 4v.

Thus [z] =[z’] inH

1

n- 1(C)'

C

Now H () —H (D) —H (E)—>H (O —H._ (D)

1(
Exact at Hn(D):

Say X € Zn(D) and g(x) € Bn(E).

Then there is yEDn+1 with g(x) = ag(y) = gay.
Thus x - 8y = f(z) for sonme z € Cn'

Now faz = 8f(z) = 8x - 62y = 0.

Thus z € Zn(C).

Then [x] = [f(2)].

etc.

10

Hn- 1( (@] —>Hn_ 1( D —o. ..



1.13. COROLLARY (Snake lemm). If you have a conmmutative diagram w th exact

r ows

0 L M—s N —> 0
ol ol ¥l
0 X —5Y—>2Z—>0

you get an exact sequence

0 — Ker 8 — Ker ¢ — Ker ¢y — Coker 8 — Coker ¢ — Coker y — O

Consi der L—X, M—Y and N——Z as chai n conpl exes.

1.14. REFORMULATI ON. A short exact sequence of cochain conpl exes

0 C—D—sE——0 gives a | ong exact sequence

—sH e —H (0 —H" (D) —sH"(B) —sH" (0 —H" Y (D) —.

1.15. COROLLARY. If Cis a chain conplex of PRQIECTI VE R-nodul es and

0 L M—N—0 is a short exact sequence of R-npdul es then you get a

| ong exact sequence in cohonol ogy.
—sH e Ny —H (¢ b —H (e M —H (e, N —H e Ny —
PROOF. Since Ch is projective you get an exact sequence
0 — Hor‘r(Cn, L) — Hor‘r(Cn,M — Hor‘r(Cn,N) — 0.

(Recall this is one of the defining properties of projective nodules. Mre

| ater).

1.16. DEFINITION. If f,f’:C——D are chain maps, then f and f’ are honotopic

if for each n there are maps h :C —D such t hat
n n n+1

7
n n n-1 "n n+l n’

Here all maps go Ch——eDn. The conposites are

11



6n hn—1 h
cC —C —" D and cC —D —" D
n n-1 n n n+1 n

The anal ogous notion for cochain maps f,f’:C—D is hn:Cn——»Ep_l such t hat

n f,n n+l _n n-1 n

f = h a + 4 h

1.17. PROPCSITION. If f,f’:C——D are honotopic then for each n they induce

exactly the sane map Hn(C)—)Hn(D).

PROOF. Say [x]eHn(CD, o) ern(CD. Then

H (D) ([x1) - H(F)(Ix]) = [f (01 - [f/(X)]
[h  ,8(x) + 8h (x)]
[ahn(x)] as x is a cycle.

0 as ahn(x) i s a boundary.

1.18. PROPCSITION. If f,f’:C——D are honotopic and Nis an R-nodule, then
t he i nduced cochain maps Honm( D, N —Hon(C, N) are honot opi c.

PROCF. A honotopy is given by nmaps hn:Ch——aEh+1 such t hat

n n = hn—1 6n * an+1 hn

1

Let h" : Hom(D,N" — Hom(C, N " be Hon(h ., N).

(D N Hom(C N

1.19. DEFINITION. A chain map f:C—D is a quasi-isonorphismif for each n

the map Hn(CD——eHn(D) is an isonorphi sm

A chain map f:C—D is a honotopy equivalence if there is a chain map

g: D—C such that gf is honptopic to IdD and fg is honotopic to IdC

If there is a honotopy equival ence we say that C and D are honot opy

equi val ent .

A chain conplex Cis contractible if it is honotopy equivalent to the zero

conpl ex.

12



Equi val ent condition: | dC is honotopic to OC'

Equi val ent condition: there are maps h :C —C with
n n n+1

C n-1 'n n+1 hn

for all n. This is called a contracting honot opy.

WARNI NG Don’t confuse:
- Two norphisms f,f’: C—D can be honot opi c.

- Two conpl exes C, D can be honotopy equival ent.

1.20. PROPCSITION. If f:C—D is a honotopy equivalence then it is a

quasi - i sonor phi sm

PROCF. d ear.

1.21. PROPCSITION. A honotopy equival ence f: C—D of chain conpl exes

i nduces a honot opy equi val ence of cochain conpl exes Hom( D, N —Hon(C N).
In particul ar Hn(D, N) = Hn(C, N) .

PROOF. Cl ear.

1.22. REMARK. The honotopy category K(R) has objects the chain conpl exes of

R- nodul es, and
Honk( R)(C, D) = honot opy equi val ence cl asses of honmonor phi sns C—D.
(Often peopl e use cochain conpl exes).

This defines a category since if f,f’:C—D are honotopic and g, g’: D—E

are honotopic then so are gf and g’f”.
In this category the isonorphisns are the honotopy equival ences.

1.23. DEFINITION. Recall that a short exact sequence

13



is split if the follow ng equivalent conditions hold
(1) f has a retraction, a map r: M—L with rf = IdL
(2) g has a section, a map s:N—Mwith gs = 1d
(3) Im(f) is a direct summand of M

N

Considered as a chain conplex, it is split if and only if it is

contractible. Mre generally:

1.24. THEOREM A chain conplex Cis contractible if and only if it is
acyclic and all of the short exact sequences
i

0—2(0 —2c -8B (0 —0
n n n-1

are split. (Here in is the inclusion).

PROOF. If Cis contractible then it is quasi-isonorphic to the zero
conpl ex, so acyclic. Let h be the contracting honotopy. Let s:Bn_l(C)———>Ch

C .—C. If xeB_ .(C then
n n-1

be the restriction of h :
n-1" n-1

X
1

Idch_l(X) = (hn_2 an—l + an hn-l)(x)

1
o5}
>

I
)
<
N—r'

an s (x)
Thus s is a section for the short exact sequence.

Now suppose that Cis acyclic and all the short exact sequences are split.

Then for all n there are sections

s, B (0 —C.

| f xeCh then x - s i

dxisinZzZ(C =B(C so we can define a function
n-1-n n n

hn:Ch——eCn+1 by

14



h (x) =

Then
(hn—l an * an+1 hn)(x) = Sn—1
= Sn—1

so h is a contracting honot opy.

(8_x

ax + 9
n n

15

n" - Sn—Zan—lanX)

s X + (X -

+1°n

S

+ 3

n

+1Sn(X i

4 X)

n-1n

S

n_

4 X)

1™ n



§2. Extensions

Still we're dealing with Ieft R-nodul es.

2.1. DEFINITION. Two short exact sequences O L M—sN—0 and

0 L M N—0 are equivalent if there is a mp M—M giving a

conmut ati ve di agram

By the snake | emma the map M—M nust be an isonorphism It follows that

equi val ence is an equival ence rel ation.

2.2. PROPCSITION. Gven a short exact sequence € : O L M—N—0 and a

map 6:L——L’ there is a short exact sequence & : O L’ M N—0, the
pushout of & along 6, unique up to equivalence, fitting into a conmutative

di agram

£€:0 L m-9 N 0
le o 1
£ 0 L'—s M—> N 0
fI gl

PROCOF. Existence. Set M = (L’eM/{(6(h,-f(fh) | L} and let the maps be
the natural ones. Explicitly, /() =[(,0], g’([(£/,mM]) = g(m,
¢(m =[(0,mM]. It is easy to check that the diagramis comutative and has

exact rows.

Uni queness. The sequence

HEGE

O—L —LoM—b M — 0
is exact by diagramchasing. It follows that M is isonorphic to

(L’eM/{(e(h,-f(h) | kL}. This gives an equival ence between &’ and the

exact sequence we constructed above.

16



M—N 0 and a

map ¥: N“—N there is a short exact sequence &” : O L M’ N” 0, the

ha

2.3. PROPCSITION. G ven a short exact sequence &€ : 0

pul | back of & along 6, unique up to equivalence, fitting into a comutative

di agram

€70 L M'—s N—> 0
"
£€:0 L m-9s N 0

PROOF. For existence set M’ = {(mn”) € MeN” | g(m) = y(n”)}, and for

uni queness show that 0 M’ MeN” N—0 i s exact.

2.4. PROPCSITION. The followi ng properties of a nodule P are equival ent
(1) If M—N then any map P—N lifts to a map P—M
(2) 0——Hom(P, L) —Hom P, M —Hon( P, N)—0 i s exact for any short
exact sequence O L M—>N 0.

(3) Any short exact sequence 0O L M—P—0 splits.

(4) P is isonorphic to a direct sunmand of a free nodul e.
If these conditions hold then Pis said to be projective. Mreover, every

nodul e is a quotient of a projective nodul e.

PROCF. (1)=(2) For any P the sequence O——Hon(P, L) —Hom( P, M —Hom(P,N) is

exact by di agram chasi ng.

(2)=(3) Can lift IdP € Hom(P,P) to a map in Hom(P,M. This is a section for
the map M—P.

(3)=(4) Choosing a generating set of P gives a surjection froma free

nodul e onto P. This splits.

(4)=(1) It suffices to showthat a free nodule F has this lifting property.

Look at the inmages in N of a basis of F, and Iift these to M

2.5. PROPCSI TION. The followi ng properties of a nodule | are equival ent
(1) If L~~Mthen any map L—l| extends to a map M—l.
(2) 0——Hom(N, I ) —Hom M | ) —Hon(L,1)——=0 is exact for any short
exact sequence O L M—>N 0.

17



(3) Any short exact sequence O I M—sN—0 splits.
If these conditions hold then | is said to be injective. Mreover, every
nodul e enbeds in an injective nodul e.

PROOF. (1)=(2)=(3) dual to projectives.

(3)=(1). We have 0—sL—M—M L——0. Construct pushout

0 L M ML —s 0
I
0 LY’ ML —s 0
%

Now h has a retraction r. Then rgf = rhe = 8 so rg extends 6.

Last part omtted.

2.6. DEFINITION. If Mis an R-nbdule, then a projective resolution of Mis

an exact sequence

with the Pi projective nodules. It is equivalent to give a non-negative
chain conplex P_ of projective nodules and a quasi-i sonor phi sm
P, — Min deg 0)

P, P, P 0
J J J
0 0 M 0

Note that every nodul e has nmany different projective resol utions.
Choose any surjection P0—>M
Ker(P0 M .

1
P
5 Ker ( P1 f

Then any surjection P

Then any surjection P etc.

0);

If one fixes a projective resolution of Mthen the syzygies of Mare the

modul es Q"M = I m( &: Pn—)Pn_ 1) (and QOM = M. Thus there are exact sequences

18



0o o"tw_ P —> Q"M — o.

An injective resolution of Mis an exact sequence

with 1" injective.

2.7. THEOREM (Conparison Theoren). Any map of nodules f: M—M can be

lifted to a map of projective resol utions.

P, P, P M 0
N P
P P, P M 0

Moreover, any two such lifts are honotopic as chain maps P—P’.

PROOF. Consi der di agram

0 o'm Py M 0
1 i
Hou S L
0 otm Py M 0

Now P(’)—»I\/I’ is onto and P0 is projective so there is a map fo maki ng the
right hand square commute. Then by diagram chasing there is a map Qlf

maki ng the |left hand square comute.

Now t he sane argunent gets fl and sz

0 s o°M P, oM s 0
2 1
3 U, ot

0 s M P; oM 0

etc.
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To show that any two lifts are honotopic it is equivalent to show that any

lift of the zero map M—M is honotopic to zero. Now

o o €
2 1
P, P Py M 0
U5 I o 10
P - P; - A M 0
2 1 €

Then efo =0 so fo has i nage contained in Qll\/l’.

Now P!—>»Q"M is onto and P, is projective so fo lifts to a map h,: P.—P!.

1 0 00 1
Thus fo = alho.
Now suppose we’ve constructed ho, hl’ ce, hn—l
with f. = 4. h. + h. 8. for 0 <i < n.
i i+1 i -1 i
Then an(fn_hn—lan) = fn-lan i anhn—lan = (fn— 1 anhn— 1) %n
If n=1 thisis 0, and if n>1 it is h a 8., so also zero.
n-2 n-1n
. . . n+1
Thus f_ - h 8 has inage contained in Q M .
n n-1 'n
Thus it lifts to a map hn: Pn—)Pn+1.

2.8. CORCLLARY. If P and P’ are projective resolutions of Mthen there is a

honot opy equi val ence f: P—P’ such that the triangle

P
SN
P'— Min deg 0)

comrutes. Moreover f is unique up to honotopy.
PROCF. The identity map M—Mlifts to a chain map f: P—P’ and g: P"—P.
Now gf: P—P is a lift of the identity map M—M so is honotopic to IdP.

Simlarly fg:P"——P’ is honotopic to IdP,.

The uni queness of f up to honotopy is part of the Conpari son Theorem
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2.9. DEFINITION. If Mand N are R-nodul es then Extn(l\/ll\l) (or nore precisely
Extg(l\/l N)) is defined as foll ows. Choose a projective resolution P of M and
set Extn(l\/ll\l) = Hn(P,N). Thus if P2 P1 PO M—0 is the projective
resol ution, then Extn(l\/l N) is the cohonology in degree n of the cochain
conpl ex O——Hon{( PO’ N) —Hom( Pl’ N) —Hom( P2, N)—. ..

Extn(l\/ll\l) is an additive group. If Ris comutative it is an R-nodul e.

This doesn’t depend on the choice of projective resolution. If P’ is

anot her projective resolution then there is a honotopy equival ence

f: P—P’. This gives a honotopy equival ence of cochai n conpl exes

Hom(P’, N —Hom(P,N). This is a quasi-isonorphi smso induces isonorphisnms
on cohonol ogy Hn(P’, I\I)HH”(P, N). Mreover the honotopy equivalence f is
uni que up to honotopy, so the cochain map Hom(P’, N——Hon(P, N) is unique up
to honotopy. Thus the map Hn(P’, I\I)HH”(P, N) is uniquely determ ned.

2.10. PROPCSITION. If N—N’ is a map there is a natural map
Extn(l\/l I\I)—>Extn(|\/l N). If M—Mis a map there is a natural map
Ext (M N) —Ext " (M, N) .

PROCF. The first because if P is a projective resolution of Mthen N—N’
i nduces a chain map Hom( P, N —Hon( P, N).

The second because the map M'—M Il ifts to a chain map P”——P of projective
resol utions, unique up to honotopy, so gives a cochain map

Hom( P, N —Hon( P”, N), uni que up to honotopy, So gives unique nmaps on Ext "

2.11. PROPOSI TION. Ext(M NeN’) = Ext"(M N) eExt"(M N’) and
Ext"(MeM, N) = Ext (M N)oExt"(M,N).

IR

PROOF. If Pis a projective resolution of Mthen Hon(P, NeN’)
Hom( P, N eHom(P, N’). If P’ is a projective resolution of M then PeP’ is a
projective resolution of MM and Hom(PeP’, N) = Hon(P, N) eHon(P’, N).

IR

2.12. LEMVA. W& have
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0 (n<0)

Ext (MN =1 Hom(MN) B (n=0)
|
Coker (Hor(P_ . N) 5 Hom(c"M N)) (n>0)
i
where 0 — @M -5 P — Q"M 0.

PROOF. If n<O the claimis clear since Hom(P,N) is a non-negative cochain
conplex. W deal with the other cases together, witing P_1 = 0 and

* *
iO:NL—»O. By definition Extn(M N = Ker(6n+1)lln(6n) wher e

* *
6n an+1

Hom(P. N =5 Hom(P,N) —57 Hom(P ... N

n+1’

*
n n-1’ n+1
——ePn——eQ M—0 so an exact sequence

Thus Ext"(MN) = Coker (Hon(P

sequence P
n+

N — Ker(8_,.)). Now there is an exact

1

0—sHor( "M N) —sHorr( P N —Hon(P_ . N

n+1’

*

n+1

IR

so Ker(4d Hon(QnMIW.

)

2.13. PROPCSITION. If X is a nodule then for any short exact sequence

0 L M—>N 0 you get a |long exact sequence
0 — Hom(X,L) — Hom(X,M — Hom(X,N —>
Bt N X L) — Bt XM — Ext (XN —
— Ext2(X,L) — .

We call it the long exact sequence for Hom(X -).

PROOF. This is the | ong exact sequence in cohonol ogy for the chain

conpl ex P.

2.14. PROPCSI TI ON. Extn(NlN) =0 for n>0 if either Mis projective or Nis

i njective.

PROOF. If Mis projective you can use the projective resolution with
P0 =M Pn = 0 for n>0.
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If Nis injective then the exact sequence 0—>QnML>P —>Qn_1M—>0 gi ves

n-1
an exact sequence O——Hom( Q™ 1I\/l N) —Hom( Pn- 1 N) —Hom( in\/l N) —0, so
*
Coker (i n) = 0.
2.15. PROPCSITION. If O N !0 !1 ... is an injective resolution of N

then you can conpute Extn(l\/l N) as the cohonol ogy of the cochai n conpl ex

Hom(M 1 *)
0 1 2
0 — HomMI") — HMMI™) — Hom(MI™) — ...
PROOF. Break the injective resolution into short exact sequences
N

0—)@9N I0 @}N 0
0—)@}N I @gN 0

I

etc. @= cosyzygies = upside down Q. You get |ong exact sequences

0—>Hon(M@N) —>Hon(|\/lli) —>HOTT(M@+1N) —
1 i 1 | +1
S Et(M@N) — 0 — Bt (M@ N —
—>Ext2(|\/l@l\l) — 0 — ...

Thus Ext"(MN) =z Bt "I M@N = ... = ext (M@ IN) (Dinension shifting)
sCoker(Hon(lVlln_l) — Hom(M @'N))

Now O @N !n !n+1 is exact, so
n n+1
0—Hom M @9|\|)—>|‘|OFT(M| ) —sHom( M | ) exact.

The clai mfollows.

2.16. PROPCSITION. If Y is a nodule then for any short exact sequence

0 L M—>N 0 you get a |long exact sequence

0 — Hom(N,Y) — Hom(MY) — Hom(L,Y) —
— Extl(N,Y) — Extl(l\/lY) — Extl(L,Y) —
—>Ext2(N,Y) — ...
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We call it the long exact sequence for Hon(-,Y)

PROCF. Use an injective resolution | © of Y. The maps L—sM—N induce naps
of cochai n conpl exes Hon(N,I.)——»Hon(M I.)——»Hon(L,I.). This is an exact

. . n - .
sequence of cochain conplexes since the |  are injective. Now use the |ong

exact sequence in cohonol ogy.

2.17. DEFINITION. For any short exact sequence &:0 L M—>N 0 we
N
define an elenent € ¢ Extl(N,L) as follows. The |ong exact sequence for
N
Hom(N, -) gives a map Hon(N,N)——»Extl(N,L) and € is the inage of IdN under

this map.
2.18. LEMVA. Fix a projective resolution of N, giving exact sequences
1 i €

0 — @'N PO N 0

and

*

mmayu—Lamm¢NL)—aEm%ML)—aQ

by Lemma. If £&:0 L M—N—0 is a short exact sequence then you can

find maps « B giving a conmutative di agram

0 — o'N Py N 0
e le ]
0— L M N 0

Moreover, for any such commutative diagramthe inmage of « in Extl(N,L) is

N
equal to &.

PROCF. Since P0 is projective and M—N is onto there is a map B. Then «

exi sts by di agram chasi ng.

Now t he map Hon(N,N)——eExtl(N,L) is the connecting map in cohonol ogy for

t he exact sequence of cochain conpl exes

0——Hom( P, L) —Hom( P, M —Hon( P, N —0.
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This starts
0 0 0

l l l

0 — Hor‘r(Po,L) — HorT(PO,M — HorT(PO,N) — 0

l l l

0 — Hor‘r(Pl,L) — HorT(Pl,M — HorT(Pl,N) — 0

IR

Hom(N, N)
Now B is a lifting of € in Hon(PO,I\/p. Let y be the correspondi ng el enent of
Hom( Pl’ L). Then the di agram

HO(P,I\I) with IdN corresponding to the elenent [g] of Hon(PO,N).

61 €
P1 P0 N 0
lele |
00— L M N 0.
conmut es. Now the conposition
P2 — P1
L— M

is equal to

so is zero. Now since L—sMis 1-1 the conposition P2—>P1—>L is zero.
Thus ¥ induces a nmap Pllln(az)—>L, ie o QlN—>L.

N
2.19. THECREM The assignment & +—— € induces a bijection between
equi val ence cl asses of short exact sequences O L M—N—0 and el enents
of ExtI(NL).

PROOF. Two equi val ent short exact sequences fit as the bottomtwo rows of a

conmut ati ve di agram
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0 QN Py N 0
e L

£€:0 L M N 0
D

£€: 0 L M N 0

AN

N
so that € and &’ give rise to the same map P,——L, and by the lemma & = &’.

1

N
Any el enent of Extl(N,L) arises as € by lifting the el enent to sone

aeHon(QlN,L) and then using the pushout construction to get &.

If two short exact sequences &, &’ give the sanme el enent of Extl(N,L) t hen

you have di agrans

£

0 QlN P0 N 0

e e
£€:0 L M N 0

and

0 QlN P0 - N 0

ler e |
£: 0 L M N 0

with a’-o in the image of the map Hom(Py, L) —— Hom( @ N, L) .

Say a’-a = ¢oi with ¢: P,——L. Then you get a commutative di agram

0

0 olN - P - N 0
lor lpere |

£€:0 L M N 0

so by the uniqueness of pushouts, & and &’ are equivalent.

2.20. EXAMPLE. The split exact sequences form one equi val ence cl ass,

corresponding to the zero el ement of Extl(N,L). Exer ci se.
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2.21. EXAMPLE. If €:0 L f NLQ»N 0 is exact and nultiplication by nez

N
i nduces an autonorphismof L then n€ is represented by the exact sequence

fn?

0 L M-95 N 0.
PROOF. There are « and B with
1 £
0 QN PO N 0
e ls |
£€:0 L M N 0
then there is a diagram
1 £
0 — @'N PO N 0
e g |
00— L M N 0
-1
fn g

2.22. REMARK. The natural maps Extl(N,L)——»Extl(N,L’) and
Extl(N,L)——»Extl(N”,L) gi ven by hononor phisnms L—L’ and N“——N correspond

to pushouts and pul | backs of short exact sequences.

Pushouts is easy exercise. Pullbacks are conplicated. G ven a short exact

sequence £:0 L M—N—0 and a map ¥: N——N l et &€” be the pul |l back. Fix

projective resolutions of N and N”. You get a diagram
Q NII PII NII 0
(X, ” II] B ” l lpo lw
—— Q N 0
0

|| /«x o / lw//

The rows € and &” are a pul | back di agram

There are maps 0, ¢ as in the Conparison Theorem

There are maps «, 8 by Lenmma.
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Recal | that by construction M” = {(mn”)eMsN” | g(m=y¢(n”)}.
Define g” by B”(p) = (B(¥y(P)),e(p)) for pePy.
Then there is a unique « nmaki ng the di agram conmut e.

N
Now « i nduces the elenent € in Extl(N,L) by Lenma.

N
By definition the natural map Extl(N,L)——»Extl(N”,L) i nduced by 6 sends &
to the el ement of ExtT(N”,L) induced by aoQly e Hom QN L).

N
But alew = «”, and the el enent of Extl(N”,L) that this induces is &”.

2.23. EXAMPLE. If n#0 then the Z-nodul e Z/ nZ has projective resolution

0 /A /A ZInZ — 0.

Then Hom(P, N) is the cochain conpl ex

deg O . deg 1
—30 —> HOM(Z, N - HoM(Z,N) —s 0 —> . ..

~ ~

N — N

Thus Hom(Z/ nZ, N) = {xeN | nx = 0},
Ext 1(Z/nZ, N) = N nN
Ext' (z/nz,N) = 0 for i=2.

For exanpl e Extl(Z/3Z,Z) ~ 7/ 3Z. The three equival ence classes of short

exact sequences are represented by

0 z 3, z7M 7137 .o

0 z 3, z7M 2137 o

0 —7-—7we 2/3Z — 7/3Z — 0.
2.24. REMARK. Quote two facts about Z-nodul es.

FACT 1. Any subnodule of a free Z-nodule is free

Consequences:
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(a) any projective Z-nodule is free

(b) any nodule M has a projective resolution 0O P1 PO M—s0
Thus Ext"(M N)=0 for all nz2.

FACT 2. A Z-nodule Nis injective if and only if it is divisible, that is,

for all nonzero neZ and all xeN there is x’eNwith nx’ = x.

Clearly Ninjective inplies divisible, for Extl(Z/nZ,N) = 0 so nN = N,
which inplies divisible.

Conversely, if Nis divisible and Mis f.g. Z-nodule then Mis a direct sum

of copies of Z and Z/nZ. Then cal cul ati on shows that Ext 1(I\/l N) = 0.

The claimis that this holds for all M so all exact sequences
0—N—E—M—0 split, so Nis injective.

2.25. EXAMPLE. Let R = Z/ pZZ with p prine. Thus an R-nodule is an additive
group Mwith p2M = 0. The R-nodul e Z/ pZ has projective resol ution

S wp’z P wpls P wp’r — ez — 0.
To conpute Ext g( Zl pZ, M have cochai n conpl ex

0 —> Hom(Z/ p°Z, M) —> Hom(Z/ p°Z, M) —> Hom(Z/ p°Z, M) —> . ..

M P, M P, M P,

Thus for n>0 have Ext"(Z/pZ M = {xeM | px=0} / pM
For exanpl e Extn(Z/ pPZ, Z/ pZ) Zl pZ.

IR

2.26. PROPCSITION. Let M be a nobdule and nz0. The follow ng are equival ent

(1) There is a projective resolution 0 Pn PO M—0.
(2) ext"Y(MN) = 0 for all nodules N.

The projective dinmension of Mis the smallest integer n with this property

(or o if there is none).
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The gl obal dinension of the ring Ris the maxi num of the projective

di nensi ons of its nodul es.

PROOF. (1)=(2) is trivial.

(2)=(1). If Pis a projective resolution then you have an exact sequence

0——a"M—P P P M0
n-1 n-2 0
and it suffices to prove that Q"Mis projective, for then this exact
sequence is a projective resolution as required. For this it suffices to
prove that Extl(QanN) = 0 for all N Now use di nension shifting.

0—e"M—p  —0" M0 gives
—Ett(P N s Extti@MN s et (@MY s et (PN
=0 =0

so Ext (@™ N = ext 2@V IMN). Sinilarly get
Ext 22" MmN 2 Bt 3@ MN = . o2 et "N = o

2.27. EXAMPLES. (1) R has global dinension O if and only if Ris senisinple

artini an.

- If semsinple artinian then all nodules are sem sinple, so all short

exact sequences are split, so gl dimO

- If global dinension zero then every left ideal is a direct sutmmand of R

which inplies that Ris senisinple artinian.
(2) Z has gl obal dinension 1.
(3) Z/pZZ has gl obal di nension .

2.28. EXAMPLE. If Ris aring then gl.dimRx] =gl.dimR + 1. Thus if Kis
a field then gl.din1K[x1,...,xn] = n.

PROOF THAT gl.dimR[x] = gl.dimR + 1.
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(1) If proj.dir‘rh N = n then proj dinh[x] R[x]@RN = n. There is projective

resol uti on

0—)Pn—)... P N 0
and tensoring with R x] get

0 — R[x]e® Pn—>... —>R[x]®RP — Rx]e_,.N — O

R 0 R

Now RJ X] ®RPi is projective R[x]-nodule.
(2) If Mis an R x]-nodule then there is an exact sequence of R[ x]-nodul es

M- R[x]caRMﬁ M—> 0
I I

hy o

0 — R[X]®R

where a(pem) = pxem - pexm and B(penm) = pmfor peR[ x] and meM

Cearly Ba = 0. To prove it is exact, consider it as a chain conpl ex of
R-nmodul es with Min degree 0. Define naps ho, h1 Vi a
_ i _ &1 i-j-1
ho(n') = lem hl(rx om = Zj _g "X ex m

A straightforward cal cul ati on shows that h is a contracting honotopy, so

the chain conplex is acyclic.
(3) Thus any R[x]-nmodule Mfits in an exact sequence 0—sL—L—M—0 with
L having proj.dim=n. Thus if Nis any R x]-nodul e the | ong exact sequence
for Hon(-,N) gives

et ML N —ext "M N —Ext ML, N —

The outside terns vanish, so the mddle termdoes, so proj.dimM = n+l.

2.29. ASIDE. Anal ogous to Ext" there are Tor gr oups TorrIT( X, Y) defined for X

aright Rnodule and Y a | eft R-nodul e.
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You can define it by taking a projective resolution P, of X and taking the

honol ogy of the chain conpl ex
— P2®Y — P1®Y — P0®Y —> 0

or by taking a projective resolution Q of Y and taking the honol ogy of

— X®Q2 — X®Q1 — X®Q0 —> 0

If 0 L M—N—0 is a short exact sequence of right R-nodules you get a

| ong exact sequence

—>Tor2( N, Y) —Tor 1( L,Y)—Tor 1( M Y) —Tor 1( N, Y) LoY—oMeY——NeY—0
and simlarly for the second vari abl e.

2.30. ASIDE. If Ris aring, the derived category D(R) has objects the

cochai n conpl exes of R-nobdul es and norphisns as in the honotopy category
K(R), except that one adjoins an inverse to any quasi-isonmorphism (This is

anal ogous to Ore localization of rings RS 1). The effect is that

(1) Anodule M identified with the conplex Min deg 0), is isonorphic to

its projective resolutions.

(2) Horrb(R)(l\/(in deg n),N(in deg 0)) = Extn(l\/ll\l).

Thus el ements of Ext" becone nor phisns in D(R).
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83. G oup cohonol ogy

Ref erences
K. S. Brown, Cohonol ogy of groups
Cassel s and Frdlich, Al gebraic nunber theory

J.-P. Serre, Local fields

3.1. DEFINITION. Let G be a group. The group algebra ZGis the free

Z-nodule with basis the elenments of G Thus a typical elenent is

dee a, 9
with ag € Z, all but finitely many zero. Then ZGis aring with
mul tiplication defined by

(Ygec g 9 (Theg Ph M = Ly, heg 3gPh 97

g
The identity elenent is given by the identity elenent of G

A ZG nodul e is exactly the sane thing as a Z-nodule Mand a group

honDnDrphisn1G>—eAutZUW (group of invertible Z-nodule maps M—M.

Any Z-nodul e M becones a trivial ZG nodule by using the honmonorphi sm
sending any elenent of Gto the identity map M—M | n particular Z becones
the trivial ZG nodul e

3.2. DEFINITION. If Mis a ZG nodule then its cohonology is

H(GM = Bxt_JZ,M.

(I'ts honology is defined using Tor. No nore conplicated, but | won't

di scuss).

Thus if O L M—N—0 you get a |ong exact sequence sequence
0 — H(G L) —H(G M —H(G N —H(G L) —. . .
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*** W shall conpute this using a standard projective resolution of the

trivial nodul e.

3.3. DEFINITION. The bar resolution for Gis the system

a a
2 1 €

P2 P1 P0 z 0
wher e
o Pn is the free Z-nodule with basis the elenments [golgll... Ign], made

into a ZG nodul e by defining g [gol... Ign] = [ggol... Iggn],
o € is the map sendi ng each basis el enent [go] to 1
) . . _ n o, i n

° Bn.Pn—>Pn_1IS gi ven by an[gol...lgn] _Zi:O( 1) [gol...lgil...lgn].

3.4. PROPCSI TION. The bar resolution is a projective resolution of Z as a
ZG nodul e.

PROCF. Pn is a free ZGnodule with basis the el enents [1|gll... lg].

n

an and £ are clearly ZG nodul e naps.

Cearly eal = 0. To see that 62 = 0 follow the proof for sinplicial

conpl exes.

To show that the sequence

is exact, we showthat it is contractible as a chain conplex of Z-nodul es.

Defi ne maps

h_1 : Z—)Po the map sending 1 to [1]
hn : Pn—>Pn+1 the map sendi ng [gol... Ign] to [1|gol... Ign].
Then 5 .h ([g9gl. .- 1g9.1) =8, ,,([1Iggl. .. 1g.])
N
=[ggl--- 19,1 - [Llgylg 1. lg T + ...
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= Tggl-- 9,0 - 5oo(-D"ggl - 1g; 1. Ig,]

= [9gl. - 19) - h 49.(Lggl- - lg0).

so 8 h +h 8 is the identity on Pn. Also eh | is the identity on Z.

n+l n n-1-n
Thus h is a contracting honot opy.

1

3.5. PROPCSITION. If P is the bar resolution and Mis a ZG nodul e then you
can identify the cochain conplex Hom(P,M w th the non-negative cochain

conpl ex A = {functions a — M and &: Cn—)Cn+1 defined by

(68) (91 9449) =99 F(9p -0, 4)
n [
tliog G (881G g Onyy)
+ (D" gy g

PROOF. This fornula | ooks nothing |ike the one in the bar resol ution. How

can they be rel ated?

First mmamnzrm%dﬁﬂm

Now Pn is the free ZG nodule with basis the el enents [1|gll... Ign].
Thus Pn is the free ZG nodule with basis [1|h1|h1h2|... Ihl...hn] (hi €@ .
Thus we can identify HomZG(Pn,I\/p with the set of functions Gn—)l\/l with a

hormonor phi sm 6: Pn—>M corresponding to the function

f:G'—sM f(hy ... h) = e([1lh Ihhyl... [hy. . h 1)

Now the differential in the cochain conplex Hom(P, M sends 6eHon( Pn, M to

€ Hom( P ,
+1 n+1
function fZGn—)M correspondi ng to honmonmor phisme to the function 8f with

the conposite ean N). After the identification, it sends a

(af)(hl,...,hn+1) = 96n+1([1|h1|h1h2|... |h1"'hn|h1"'hn+1])
= o( [h1|h1h2|... |h1"'hn|h1"'hn+1]
n i
+ Zi -1 (-1) [1|h1|... |h1"'hi [... |h1"'hn+1]
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n+1l
+ 0™ 1 thy b))
1st termis o(h [1lh,l... Ih,...h 1) =h, f(hy ...h )
. n i
2nd termis Zizl (-1 1‘(h1,...,hi hi+1""’hn+1)
ard termis (-1)™1t f(h.....h).

3.6. CORCLLARY. You can identify

_ n-cocycl es
n- coboundari es

H'(G M

where an n-cocycle is a function f:Gn—>Msatisfyi ng f = 0 with 8 as in
the | ast proposition, and an n-coboundary is a function of the formaf with
-1

f: —M

3. 7. CORCLLARY.

(1) HO(GM IVPthe set of fixed points of M so IVP: {xeM | gx = x V geG

1
(2) H(GM
function f: G—Mis a crossed hononorphismif f(glgz) = glf(gz) + f(gl),

{crossed hononorphisnms f: G—M / {principal ones} where a
and it is principal if thereis xeMwith f(g) = gx - x for all g.

(3) HZ(GM = {factor sets f:GxG—M [/ {2-coboundaries} where a function
f:GxG—Mis a factor set if

9, f(95.95) - (979595 + f(97,9,95) - f(g5.9,) =0

3.8. REMARK. Suppose that Mand G are groups. Recall that a group extension

¢

1—)Mi)E—)G—)1 is given by an injective group hononorphisme and a
surjective one ¢ with Ime) = Ker(¢).

Now if Mis an additive group then it becones a ZG nodul e as foll ows.
Identify Mwith a subgroup of E, then it is a normal subgroup. Now |l et geG
act on meMvia g.m= eme_1 for any e with ¢(e) = g. This is well-defined

since Mis abelian.
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Now if Mis a ZG nodul e then one can show t hat HZ(G M classifies
equi val ence cl asses of extensions for which the induced action of Gon Mis
the given nodule action. [Gven an extension, for each geG choose egeE with

¢(eg) =g. Then the function f(gl, 92) is a factor set.]

e e e
99 9 919,

If Mis a trivial ZG nodule then HZ(GM cl assifies equival ence cl asses of

central extensions, those with M < Z(E).

WARNI NG, Hl(G M classifies extensions of ZG nodules 0O M—E——7Z——0.

Don’t confuse these.

3.9. EXAMPLE. If Mis a trivial ZG nodul e then Hl(GM = Ho
Thus, for exanple if Gis finite then Hl(GZ) = 0.

(GM.

m
group

3.10. EXAMPLE. Say Gis the cyclic group of order mwi th generator ¢. Let
m 1

N=1+coc+co2+... +o™L Thus (c-1)N=¢"1 = 0. Then the trivial
ZG nodul e has projective resolution

N, 72693 26 N 26 73 726 & 7 0

where g(g)=1 for all geG and the other maps are nultiplication by o-1 or N

To check this is exact, say & € ZG gzzim:é aio' with aieZ.

If N = 0 then ZaiN:O since No =N.

Thus Ta =0, so & = zl'“:i a(c-1) (o) 76
_ i+1 _ i o _
If (o-1)& = 0 then Zaic —Zaio so a,=a,=...=a

1 01 m1
Thus € = a0(1+0“+...+0“ ) € N ZG

Thus Hn(G M is the cohonol ogy of the cochain conpl ex

0 M M M M
{xeM | ox = x} (n=0)

so H(GM = { {xeM| Nx =0} / (~1)M  (n odd)
{xeM | ox = x} /| NM (n=2 even).
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z (n=0)
eg H(Gz) = {0 (n odd)
Zl iz (n=2 even).

***  Next we do sone nonabel i an cohonol ogy.

3.11. DEFINITION. A nultiplicative Gnodule (nmy nane) is a group M together

wi th a hononor phism p: G—Aut (M. |If geG and xeMwe wite gx for p(g)(x).
-1 -1
Thus g(xy) = (gx)(gy) and g(x =) = (gx) .

bserve that an abelian nultiplicative Gnodule is exactly the sane as a

ZG nodul e, it just depends whether you wite the operation as x or +.
Now suppose that Mis a nultiplicative G nodul e.

Define M = {xeM | gx

x}. This is a subgroup of M

A function f:G—Mis a crossed hononor phismif f(glgz) = f(gl) (glf(gz)).

Two crossed hononorphisns f,f’ are equivalent if there is xeMwith f’(g) =

x L f(g) (gx) for all geG

A crossed hononorphismis principal if there is xeMwith f(g) = x_1 (gx)
for all geG Thus the principal crossed hononorphi sns form one equival ence

cl ass.

Let Hl(G M be the set of equival ence classes of crossed honononor phi sns
G—M This generalizes the notion for ZG nodules. It is a set with a
di stingui shed el enent, the equival ence class of principal crossed

hononor phi sns.

***  The | ong exact sequence in cohonol ogy extends to G groups:

3.12. THEOREM Let 1 L 6 MLN 1 be a central extension of

nmultiplicative Gnodules (so L is abelian, and can be considered as a
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ZG nodul €). Then there is a natural sequence of maps of sets

1 1S W 5N H(G L) — H(GM — H(GN — H(G L)

which is exact in the sense that at each stage X BNV i> Z one has

Ima) = B_l(e) where e is the identity element of Zif it is a group, or is

t he equi val ence cl ass of principal crossed hononorphisns in H1.
PROOF. |1l define the maps. The exactness is straightforward.
G IVP G . . o
The maps L ——M ——N~ are group hononor phi sns obtai ned by restricting o, ¢.

The maps Hl(G L)—)Hl(G, M—)Hl(G, N) are given by conposing a crossed

hononorphismwith 8 or ¢.

The connecting map NG—)Hl(G, L) is given as follows. Identify L with a
subgroup of M If x € NG, choose m e ¢ 1(x) and send x to the equival ence

class of the crossed hononorphi sm

_ -1
f i G—L, grom™. (gm)

Not e that the el enent m;(l.(gmx) belongs to L since its inmage in Nis

x_l.(gx) = x 1x = 1.

[fx is well-defined up to equival ence since an alternative choice of m

woul d be of the form mx[ and the crossed hononorphismthis defines is
, -1 1 -1 -1
fr(g) = (mh “(g(mh) =1 "m>(gm)(g) =1~ f(9) (g)

so it is equivalent to f.]

The connecting map Hl(G |\|)—)H2(G, L) is given as follows.
Suppose f: G—N is a crossed hononor phi sm

For each geG choose mg € ¢ 1(1‘(g)).

. -1
For 9 gzeG define oc(gl, 92) = mgl (g1 mgz)

m .
g1g2
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Now check:

1 Identifying L as a subgroup of Myou have oc(gl, 92) e L.

2 The function a: GxG—L is a factor set.

3. Up to a 2-coboundary, o« doesn’t depend on the choice of the mg.
4 A crossed hononorphi sm equivalent to f gives a factor set which

differs by a 2-coboundary.

Now t he connecting map sends the equival ence class of f to the class
of o« in H(GL).

3.13. EXAMPLE. Representations and projective representations.

Let Kbe a field (usually C).

A representation (or ordinary representation) of G over K is a honmonorphi sm
p: G—)GLn( K) .

Two representations p, p’:G—)GLn(K) are equivalent if there is a matrix
AGL (K) with p’(g) = A'p(g)A for all geG

(One can show that equival ence cl asses of representations correspond 1-1 to
i sonor phi sm cl asses of KG nodul es which are finite dinmensional vector

spaces / K.)
Consi der C—:Ln(K) as a trivial nmultiplicative G nodul e.

Then Hl(G GLn(K)) = representations / equival ence.

Recal | that Z(GLn(K)) = {diag(a,a,...,a) | aeK, az0} = K~

Def i ne PGLn(K) = C—:Ln(K) / Z(GLn(K)). The projective general |inear group.

(To those who know about projective varieties:
- If Kis alg. closed then PGLn(K) is affine variety, NOT projective.
N n-1
- PR ='A‘Utvariety([P )

A projective representation of Gis a hononorphi sme: G—)PGLn( K) .

DO NOT CONFUSE. Projective nodule with projective representation.
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Two projective representations o,0’: G—>PGLn(K) are equivalent if there is
APGL (K) with o’(g) = Alo(g)A for all geG

Thus Hl(G PGLn(K)) = projective representations / equival ence.

Have a central extension 1—>KX—>GLn(K)—>PG_n(K)—>1.
Consider all as trivial multiplicative G nodul es.
Get sequence ... ——H'(G a,( K)-2H (G PG ( K) ) —S5HP( G K.

The map b sends a representation GL>GLn(K) to the projective

representation G—>C-2Ln( K)@)Pc-ln( K) .

Thus a projective resolution ¢ lifts to an ordinary representation p if and
only if c(e) =0 in HZ(G KX). One says that c(o) is the obstruction to

lifting ¢ to an ordinary representation.

In particular one can always lift if HZ(G KX) = 0.
The Schur multiplier of Gis HA(GCY).

41



84. Hochschild cohonol ogy

Ref erences
Jacobson, Basic algebra Il
Cohn, Al gebra 2nd ed, vol 3

Pi erce, Associative al gebras.
4.1. DEFINITION. Let R be a conmutative ring.

An R-algebra Ais aring which is at the same tinme an R-nodule in a

conpati ble way, that is, if a,beA and reR then r(ab) = (ra)b = a(rb).

To give an R-algebra is the same as giving a ring A and a ring honmonor phi sm

R—A with inmage contained in the centre of A

- If Ais an Ralgebra, you get a hononorphi sm R—A, r|—>r.1A

- Gven a hononorphismae, nake A into an R-nodule by defining ra = 6(r)a.
(bserve that a Z-algebra is just a ring.

4.2. CONSTRUCTI ONS.
(1) Mn(R) is an R-algebra. Mdre generally if Ais an R-algebra then so
is Mn(A).

(2) If Ais an R algebra then so is AP This has the same R nodul e
structure, but nmultiplication a* b =b xa (* the nultiplication in AOp,

x the multiplication in A).

(3) If Aand B are Ralgebras, then so is A®RBV\:ith the nmultiplication
(a®b) (a” ® b’) = aa’” ® bb’.

EXERCI SES. M(R) © A = M (A).

M(R @ M(R =M (R).
Z(M(A) ={al | aeZ(A} = Z(A).

Mn(A) op Mn(AOp) under the nap sending a natrix to its transpose.
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4.3. DEFINITION. If Ais an Ralgebra then any left or right A-nodule M
becones an R-nodul e by defining rm= (rlA)mfor reR and meM for a left

nodul e, and rm = n(rlA) for a right nodule.

Recal|l that an A-B-binbdul e consists of an additive group Mtogether with
nodul e acti ons AxM—M and MB——M whi ch are conpatible in the sense that
a(nmb) = (amb for all aeA, meM beB. It will also be understood that the
two R-nobdule structures on Magree, ie that (rlA)m: n(rlB) for all reR

meM

If Aand B are R-al gebras you can naturally identify A-B-binmodules with
A ®r B°P_ nodul es by the identification

(a®b) m = anb.

Under this identification, binodule maps correspond to AoB°P- nmodul e maps,

etc.

Note that AeB°P coincides as a set with A®B, and it is only when we want to

consider it as an algebra that we need to wite the "op".

In particular the free AoB°P-nodul e of rank one is AeB. Considered as an

A-B-binbdul e the actions of A and B are given by a(a’eb’)b” = aa’” ® b’b”.

If Ais an Ralgebra then its enveloping algebra is A° = A °r AP Thus

A°- nodul es correspond to A-A-bi nodul es.
The al gebra A can naturally be considered as an A- A-bi nodul e.

4.4, DEFINITION. If Ais an Ralgebra then the bar resol ution of the

A-A-binpbdule A is the exact sequence

wher e Sn the the tensor product of n+2 copies of A considered as an

A- A- bi nodul e vi a
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a(a.®...®a_,,)a’ = aa,.®a,®...ea _®a !
n+1

0 0%%1 n®n+12

€ is the multiplication map, and an is given by

_ n oy
an(a0®. .. ®an+1) = Zi -0 (-1 a e .. ea a, 40 .. ea

i n+1’

It is easily checked that an, e are bi nodul e naps, 62 = 0 and eal = 0.

EXERCI SE. Show that the bar resolution is exact by showing that it is
contracti bl e when considered as a chain conplex of Rnodules with Ain

degree -1.

4.5, DEFINITION. The Hochschild cohonol ogy Hn(A, M of Awth coefficients

in an A-A-binodule Mis the cohonol ogy in degree n of the cochain conpl ex

Hom(S_, M
0—>Hor‘r(So,M —>Horr(Sl,M —>Horr(82,M —
where Homrefers to A-A-binodul e maps, or equivalently A°- nodul e maps.

4.6. PROPCSITION. If Ais projective as an R nodule, for exanple if Ris a
field, then the bar resolution is a projective resolution of A as an
A° nodule, so H(AM = Ext/rle(A,lvp.

PROOF. First note that SO = A®A is the free Ae— nodul e of rank 1. For the
others, if as an R nodule, Ais a summand of a free R-nodule F, then
Sn = A®...®A is a sunmand of AsFeFe...®F®A. Now if F has basis 1‘i as an

R- nodul e t hen AeFeF®. .. ®F®A has basis 1®1‘i 1@. .. ®fi n@l as an Ae— nodul e.

4.7. PROPOCSITION. If S is the bar resolution of A and Mis an A-A-binodul e
then you can identify the cochain conplex Hom(S,M with the non-negative

cochai n conpl ex

A = {functions A" —— Mwhich are R-linear in each variabl e},
(C0 = M since A0 = pt, and no variables in which to be Rlinear), and with

: "—c™? defined by
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(af)(al,...,an+1) =a, f(az,...,an+1)
fr " ! f(a a. a a_ )
i =1 e A A "n+l
n+1
+ (-1) 1‘(a1,...,an)an+1

T— Here it differs.

PROOF. For any R-nodule N we have a 1-1 correspondence between A-A-bi nodul e
maps 0: AeNeA—M and R-nodul e maps ¢: N—M gi ven by 6(aeneb) = a¢(n)b. Thus

o o . . n
HomMy A bimod(Sy M = FbrTh(Al@_..ﬂA,M = {mul tilinear functions A" —M.
n

No need to ness about with differentials this tine.

IR

H'(ZG M, Hochschild

cohonol ogy of the Z-algebra ZGwith coefficients in M considered as a

4.8. COROLLARY. If Mis a ZG nodul e then Hn(GM

bi nodule Mwith the given action of Gon the left and the trivial action of

G on the right.

4.9. COROLLARY.
0 IV‘A) _ _
(0) H(AM = {xeM | ax = xa for all aeA}. The centre of M

(1) Hl(A,M = {R-linear derivations 8 A—M / {inner ones} where a
function 8:A——Mis a derivation if §(ab) = as(b) + 8(a)b, and it is inner

if there is xeMwith 8(a) = ax - xa for all aeA

(2) H2(A, M = {2-cocycles} / {2-coboundaries} where an R-bilinear function
f: AxA—Mis a 2-cocycle if

af (b,c) - f(ab,c) + f(a,bc) - f(a,b)c = 0.

4.10. DEFINITION. An al gebra extension is an exact sequence of R-nodul es

0—sME a0

where E and A are R-al gebras
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¢ is a ring hononorphi sm
Mis an A-A-binodule with ea(x) = e(¢(e)x), B(x)e = o(x¢(e)) for eeE, xeM

Then 6(M is an ideal in E of square zero.

Two al gebra extensions are equivalent if they have the sane end terns and

there is an al gebra hononor phi sm E——E’ giving a conmutati ve di agram

An al gebra extension is split if there is a subalgebra SCE with E = See(M .

The split extensions formone equival ence cl ass.

4.11. THEOREM |If A is projective over Rand Mis an A-A-binodul e then

H2(A,N® classifies the equival ence classes of al gebra extensions.

(For conpari son, Hl(A,NQ classifies the extensions 0—M—E—A—0 of
A- A- bi nodul es.)

CONSTRUCTI ON. G ven such a sequence, identify Mwith its image in E. The
sequence splits as R-nodules, so there is an R-nodule nmap s which is a
section for ¢.

Now s need not be an algebra nmap. Its failure is given by the nmap.

f(a,b) = s(ab) - s(a)s(b)

Then f: AxA—M is a 2-cocycl e since

s(a.bc) = f(a,bc) + s(a)s(bc)
= f(a,bc) + s(a)(f(b,c) + s(b)s(c))
= f(a,bc) + af(b,c) + s(a)s(b)s(c)
s(ab.c) = f(ab,c) + f(a,b)c + s(a)s(b)s(c)

Conversely given a 2-cocycle you can turn AeMinto an algebra with the
nmul tiplication (a,x)(b,y) = (ab,ay + xb + f(a,b)), and if f was constructed

as above then this algebra is isonorphic to E

4,.12. DEFINITION. The Hochschild di nension of Ais
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HdimA=sup { n | Hn(A,M # 0 for sone A-A-binodule M}.

If Ais projective over Rthis is the sanme as proj.dimAe A

4.13. THEOREM (Wedderburn’s princi pal theorem. Suppose B is an al gebra
over a field Kand J € Bis a nilpotent ideal. If HdimB/J = 1 then B has
a subal gebra A with B = AeJ.

PROOF. Say Jn:O, nzl. Proof by induction on n. Trivial for n=1.
Wite B for B/ L By induction B has a subalgebra Cwith B = CalJ.
Lifting to B we have B=C+J and CnJ = 1

Then C/ CAJ

IR

B/J and (CnJ)2 = 0 so the al gebra extension

0 CnJ C—C/ Cn—0

splits. Thus C has a subalgebra A with C=Ae(CnJ).
Then B=AeJ.

4.14. PROPCSITION. If Ais projective over R and Mis an A-nodul e then

M= proj.dim_ M+ HdimA |In particular gl.dimA =gl.dimR +

proj.dim R

H di mA.

A

PROOF. First suppose that Mis projective as an R-nodule. Let n = HdimA

and take a projective resolution of A as an A°- modul e

Since Ais projective as an R-nodul e, A@RA is projective as a left

A-nodul e, and hence so is any projective A nodul e. Now by induction all
t he syzygy sequences 0—)Qn+1A—)Pn—)QnA—)0 are split and all Q"A are
projective left A-nobdules. Thus these sequences stay exact on tensoring

with M Reassenbling you get an exact sequence

0 — Pn®AM—> L. = P0®AM—> M — 0.

Now (A@RA) ®AM = A@R

proj ective A-nodules, so proj.dimM = n.

Mis projective as an A-nodule, so all Pi ®AM are
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Now suppose that m= proj.dim _ Mis general. Take a projective resolution

R
P1 PO M—0 of M It is also a projective resolution as an R nodul e,
so @™Mis projective as an R-nodule, as in the proof of 2.26. By the above

there is an A-nodul e projective resol ution

0 Q

n

SO you get a projective resolution

0 Q

A QO P P M—0.

m 1 "0
4.15. DEFINITION. An R-algebra A is separable if Ais projective as an
AS- modul e.

Thus if Ais projective over R separable is the sanme as H dimO.

4.16. THEOREM Let A be an R-al gebra. Tfae
(1) A is separable.

(2) The sequence of A-A-binodules 0 J A®A—A—0 splits where ¢ is

mul tiplication.

(3) There is ecAsA with e(e)=1 and ae=ea for all aeA
PROOF. (1) ¢(2) clear.
(2)=>(3) If s:A—>AA is an A-A-binodul e section for € let e:s(lA).

(3)=(2) Define a section s by s(a) = ae.

REMARK. The elenent e in (3) is called a separability idenpotent for A

4.17. EXAVPLE. Mn(R) is a separabl e R-al gebra.

. . _«n
PROOF. Let uij be the matrix units and let e = Zi _1 Yjq®Uq; € Mn(R)®Mn(R).

Clearly g(e) = 1. A so U & = U eu, . =eu ..

4.18. EXAMPLE. If A and B are R-algebras then AeB is separable if and only

if A and B are separable.
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PROOF. The envel opi ng al gebra of AeB is A° o B® @ AeB°P o BeA’P.
Separability idenpotents of A and B conbine to give one for AeB.

One for AeB projects down to one for A or B.

4.19. PROPCSITION. If Ais a separable K-algebra, Ka field, then Ais

sem si npl e.

PROOF. gl.dimA = 0.

49



85. Descent Theory.
| wanted to do faithfully flat descent, cf Waterhouse, Introduction to
affine group schenes, 817. Through lack of time I'lIl only do it for field
ext ensi ons.

Let K< L be a field extension.

5.1. DEFINITION. A K-vector space X with additional structure is one of the

foll owi ng
a K-vector space,
a K-al gebra,
an A-nodul e, for sone fixed K-al gebra A,
an A- B- bi nodul e,

etc.

If Xis a K-vector space with additional structure, then XL = X@KL is an

L-vector space, and the structure extends.

- If Alis a K-algebra then AL is an L-algebra. The nultiplication is given
by (aef(a’el’) = aa’ ® [I’, and the L-algebra structure is given by the

hononor phi sm L—>AL, [—lel
. I\/I' . L
- If Mis an A-nodul e then is an A -nodul e.

- If Mis an A-B-bi nodul e then I\/l' is an AL-BL—bierduIe, etc.

Gbserve that (A5)€ = (Ao L)e (Ao L) = As A% L = (a8

Properties of X often carry over to XL. This is ascent.

Soneti nes properties of XL carry to X. This is descent.

5.2. PROPCSITION. A K-algebra Ais separable if and only if AL is a

separabl e L-al gebra
PROCE. Identify (AN e, (AD) with (As A)e L
: y L K oL

If Ais separable and ecA®A is a separability idenpotent for Athen e®l is
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a separability idenpotent for AL.

Now suppose t hat AL i s separable. Choose a basis {4} for L over K, such
t hat % = 1, and wite the separability idenpotent for AL in the form
% zi®€ wth z. e As A

Then g(e)=1, so Zi e(zi)®€ =1in AsL, so e(zo) = 1.
Also if aeA then (a®l)e = (a®l)e so Zi azi®€ =Y zia®€, and hence
az =z ,e.

Thus Z, is a separability idenpotent for A
5.3. PROPCSITION If L/Kis a finite field extension then L is a separable

K-algebra if and only if the field extension is separable.

PROOF. If the field extension is separable then by the theorem of the
primtive element it can be generated by one elenent, so L = K[x]/(f(x))
for sone irreducible polynonmial in K[x] with distinct roots in a splitting
field K over K

Thus LK = K'[x]/(f(x)) = K’[x]/((x-Al)...(x-An)) with the Ai di stinct

el enents of K’.

Then LK = K’e...®K’ by the Chinese renmai nder Theorem

Thus LK i s separable over K’.

Thus L is separable as a K-al gebra.

Conversely if L/Kis not separable there is xeL whose m ni mal pol ynom al
f(x) has a repeated root in sone extension K'/K

It follows that LK has nonzero nil potent el enents.

Since it is commutative, it is not semsinple artinian

Thus it is not separable over K’.

Thus L is not separable over K

5.4. LEMVA. If Kis an algebraically closed field then, apart fromK

itself, there are no division algebras which are finite dinmensional over K
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PROOF. |If deD then the map D—D, x+—dx has an eigenval ue xeK, so dx = Ax

for all xeD, so (d-A)x = 0 for all x, so d=aeK

5.5. THEOREM f.d. K-algebra A is separable if and only if AL is senisinple

for any field extension L/K

PROOF. If Ais separable then so is AL, so it is semsinple.

If all AL are semsinple then so is AK where K is the al gebraic closure of
K. Thus by the Lenma

AK

IR

Mnl(R) ® MnZ(R) ® ...

This is separable over K, so A is separable over K.

5.6. DEFINITION. If Zis an L-vector space with additional structure then a
K-formof Zis a K-vector space X with the sane type of additional

structure such that XL Z.

IR

5.7. THEOREM Suppose L/Kis a finite Galois field extension with group G

and Z is an L-vector space. Then there is a 1-1 correspondence between
(1) K-subspaces X of Z such that the natural map m XeL—Z is an

i sonor phi sm

(so that Xis a K-formof 2).

(2) Families of K-linear maps ocg: Z——Z satisfying

ocg([z) =g(fHz for zez, [eL

- o
PROOF. G ven X € Z and geG define o by o = n(1®g)m_1.
These naps clearly have the right property.

G ven maps ocg, define X = {zeZ | ocg(z) =z for all geG.
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This is a K-subspace of Z.

Consider the multiplication map m XeL—Z.

Let Vl,""vn be a basis of L over K
Then G has n el enents 91:1, c Oy
The g, are contained in Honk(L, L).
By Dedekind s Lenma they are linearly independent over L.

Thus the matrix (gi(vj)) is invertible.

A typical element of XeL is of the form} X; @v, .
If in the kernel of mthenZvixi = 0.

Thus also for any j,

0=« (Zvix) =L (v) x

si nce ocgj(xi) =X Thus al | X; =0, so mis injective.

If zeZ then it is easy to see that Zocgi(z) e X

Applying this to vjz for all j, we obtain el enents xjerw'th

i =% ey (VD) =T g (v) @ (2)

By invertibility there are bijeL with
« (z) =Y. b.. x.
g2 =1,
Thus z = ocgl(z) :Zi bljxj is in the inmage of m
Now it is trivial that the constructions are inverse.

5.8. DEFINITION. If X, Y are a pair of K-vector spaces with the sanme

additional structure we say that X and Y are twisted forns of each other,

split by L, if X ayh

5.9. THEOREM If X is a K-vector space with additional structure and L/Kis
afinite Galois field extension with group G then Aut(XL) is naturally a

nmultiplicative Gnodule and there is a 1-1 correspondence
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El ement s of Hl(G Aut(XL)) <— | sonor phi sm cl asses of tw sted

forns of X split by L.

PROCF. Aut(XL) becones a nultiplicative Gnodule as follows. If 6 is an
aut onor phi sm of XL and geG |et g6 be the conposite

leg 1 0 leg

XL — XeL — XeL —— XelL.
By definition it is a K-linear map, but in fact it is L-linear since
(xol) +—s g 2(h(xeg 1) s g (ho(xeg 1) s [(ge)(xel).
Mor eover g6 preserves the additional structure so ge e Aut(XL).

Atwisted formY of X gives a crossed hononorphismas follows.
Choose an i sonor phi sm y: YeL—XeL of L-vector spaces with additional
structure. Now if geG | et pw(g) be the conposite map

leg ! " leg v

XL —— XeoL — YoL — YeL —— XoL.

Agai n pw(g) is L-linear and belongs to Aut(XL). Al so

v (legg’) v T (1eg’ g%

v (leg) (leg’) v T (leg’™ ) (leg t)

v (leg) ¢ ' (leg’™) (leg) v (leg’) v * (leg’™ 1) (1eg %)
p 9 (199) py(g") (1og™ D)

pw(g) (9 pw(g ),

pw(gg’)

o) pw is a crossed hononor phi sm G—>Aut(XL). Now i f y’:YeL—XeL is a
di fferent isonorphi smthen O:w(w’)_l € Aut(XL), and

-1
pw,(g) =6 pw(g) (ge)

so p, and p,, are equivalent, so deterni ne one el enment of Hl(GAut(XL).

W [/
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Conversely a crossed honDnDrphisn1p:G%—eAut(XL) gives a twi sted formXp as
foll ows. The naps “g = p(9)(leg) : XL——»XL satisfy the conditions of the

previ ous theorem Thus
= {zext | p(g)((1eg)z) = z for all geG

is a K-form of XL as a vector space. Mreover the additional structure on
XL restricts to an additional structure on Xp. For exanple if Xis a
K-al gebra and u,v € XeL then the multiplication in X extends to a

mul tiplication for XeL, and

p(9) ((1eg) (u.v)) = p(9)((leg)u . (leg)v)

p(9) ((1eg)u) p(9) ((1leg)v)

since p(g) € Aut(XL) preserves the al gebra structure. Thus if u,veXp t hen

u.v € X..
[o}

Now it is easy to check that if p, p’ are equival ent crossed hononor phi sns
then X
p

IR

Xp, and that the constructions Xp and p, are inverse.

U

5.10. COROLLARY. If L/Kis afinite Galois extension with group G then
GLn(L) is naturally a nultiplicative G nodul e and H (G,GL (L)) is trivial

(has only one elenent). In particular taking n=1 we have H (Gl_) = 1.

(Don’t confuse this with the setup of the Schur multiplier FF(GQ@X). There

Gis any group and the action is trivial).

PROOF Cearly the action of geGon a matrix (a ) is (g(a ))
Fi((iCl (L)) classifies twisted fornms of the K—vector space K" split by L,

but all are isonorphic to K"

5.11. COROLLARY. (Hilbert’'s Theorem 90). Suppose L/Kis a Galois field
ext ensi on whose group Gis cyclic of order n, say generated by o. Let N be

the norm so

N(X) = X, o(X). 02(X). ...o0" 2(x)
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for xeL. Then xeL™ is of the l‘ormy_1 o(y) for some yeL if and only if
N( x) =1.

PROOF. (Cbserve that N(xx’) = N(xX)N(x’) and N(o(x)) = N(x). It follows that
if x has the indicated formthat N(x)=1.

Now suppose that N(x)=1. Define a map p: G—>LX, p(o') = X.0X. ... & “(x).

This is well-defined. It is a crossed hononorphi sm since
Ty oo o T = p(a') .o (o)
Thus it is principal, so of the form
o) =yt o (y)
for some yelL™. Taking i=1 gives x = y_1 a(y).
5.12. PROPCSITION. If Kis a field then all al gebra autonorphi sns of Mn(K)
are inner, so of the forma +— s_las for some s € GLn(K).

Thus Aut (M (K) = G (K) / K< = PGL_(K) .

PROOF. K" is natural ly an Mn(K)—erduIe by matrix nultiplication.

Now every Mn(K)—erduIe is isonorphic to a direct sum of copies of this.

If 6: Mn(K)—>Mn(K) is an al gebra hononor phi sm you can nake K'into a

di fferent nodul e by naking aeMn(K) act on vek" as e(a)(v).

This nmust be isonorphic to the first nodule, so there is an isonorphism

s: K"—K" such that s(e(a)v) = a(sv) for all veK" aeM (K) .
-1
Thus 6(a) = s "as.

5.13. COROLLARY. If L/Kis afinite Galois field extension with group G
then The tw sted forns of Mn(K) split by L are classified by Hl(G PGLn(K)).
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86. Central sinple al gebras

6.1. DEFINITION. K be a field. A central sinple K-algebra is a f.d.

K-al gebra which is sinple and has centre Z(A) = K

For exanpl e, Mn(K).

His a central sinple R-al gebra.

6.2. LEMVA. An algebra is central sinple if and only if it is of the form

Mn(D) where Dis a division ring which has centre Kand is f.d. over K

PROOF. A f.d. sinple algebra is sinple artinian, so by Artin-Wedderburn it
is of the formA = Mn(D). Now Z(Mn(D)) = Z(D).

6.3. EXAMPLE. Suppose char K # 2 and «, BeK are nonzero. The generali zed
quaternion algebra («,B/K) is the K-algebra with basis 1,i,j,k and
multiplication i =a j2 =8 ij =-ji =k Then k® = -oB, ik = -ki = o,

jk = -kj =-Bi. Thus H = (-1,-1/R).

It is central sinple. Say x = A+ai +bj +ck. Now

[i,x] =ix - xi = 2acj + 2bk
[j,X] = -2Bci - 2ak
[ k, x] = 2Bbi - 2«aj

so if x is central then a=b=c=0, so xeK

Suppose | is an ideal containing x#0. Then | al so contains
i[j,[1,x]] = -4Bab
ik [ix]] = 4ep%c
K[i,[k x]] = 4o°Ba

If b,c or a0 then | = («, B/ K).

If a=b=c=0 then | contains A#0, so again | = («, B/K).

One can show that it is a division algebra if and only if the equation
ocu2+Bv2 = w2 has no non-trivial solutions (u,v,w) in K If it is not a

division algebra, then by dinensions it is IVE(K).
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(I'f x = A+ai +bj +ck is an elenent of («, B/ K), define x = A-ai - bj - ck.

One can check that (xy)* = y*x* and xx = x x = AZ- ocaz— Bb2+oq3c2 e K If
there is non-trivial solution of the equation, then xx = 0 where

X = w+ui +vj, so not a division algebra. Conversely, suppose no non-trivial
solution, but not a division algebra. Then xy = 0 with x,y#0. Then

0 = (xy)*xy = y*x*xy = (x*x)(y*y) since x x € K. Thus there is an el enent

X 20 wth x*x = 0. Wite x = A+ai +bj +ck. Then AZ- ocaz- Bb2+oq3c2 = 0. Hence
oc(az— Bc2)2 + B( Ac+ab)2 = (Aa+Bbc)2. This is a trivial solution, so

a2— Bc2 = 0. This has only the trivial solution, so a=c=0, so AZ- Bb2:0. Thi s

has only the trivial solution, so A=b=0. Thus x=0. Contradiction.)

6.4. EXAMPLE. Suppose L/Kis a finite Galois field extension with group G
and | et f:GxG—)L* be a factor set, so

-1 -1

The crossed product L*,Gis the following K-algebra. As a set it is the

f
group algebra LG but it has new nultiplication

(gec Xg 9 Theg Yn M = Ly he (9 M x4 9lyy) gh.

(Xg’yh € L). The factor set condition ensures this is associative.

| onmit the proof that it is central sinple.

If « €« Kis not a square then («,f/K) is a crossed product: let L = K(Va),
so G={e, o} where e is the identity and o(va) = -va. Let f:GxG—sL be the

factor set
f(e,e)=1, f(e,0)=1, f(0o,e)=1, f(o,0)=R.

Then (o, B/ K) = L*vaw'th 1,i,j,k corresponding to e, Va e, o, Va o.

6.5. THEOREM If Ais a central sinple K-algebra of dinmension d then

eN
A = M (K).

PROOF. A special case of Jacobson’s Density Theorem says that if Bis a

K-algebra and Sis a finite dinensional sinple B-nodule wth endonorphi sm

58



al gebra K, then the al gebra hononor phi sm

B — EndK(S), b — (s > bs)
is surjective.
Apply this to B = A°. To say that A has no non-trivial ideals neans it is a
sinpl e A nodul e. Al 'so EndAe(A) = Z(A) = K, under the map identifying
eeEndAe(K) with 6(1) €A Thus the map Ae—»EndK(A) is surjective. Now it is

an i sonorphi sm by di nensi ons. Now EndK(A) = Md(K) where d = dimA

6.6. LEMMA. If Ais a central sinple K-algebra and Bis a sinple K-al gebra
then AeB is sinple.

PROOF. If | is a non-trivial ideal in A®B then A0p®l is a non-trivial ideal
in A°PoAeB = M.(K) oB

IR

Mn(B), but this is sinple.

6.7. LEMMA. If A and B are K-al gebras and Z(A) =K then Z(A®B) = Z(B).

PROOF. Say Z(A) =K. Let bi be a basis of B. Say z =) a, ®bi €Z(A=B). Then if
aeh, Z(aai -8, a)®bi = 0 so each aa, -a,a = 0, so a, eZ(A), so a, :Ai 1 with

Ai eK. Then z = Zhi 1®bi = 1®(2Ai bi) € B.

6.8. PROPCSITION. If A and B are central sinple K-al gebras then AsB is

central sinple.
6.9. DEFINITION. Two central sinple algebras are sinlar, witten A~ B, if
their division algebras are isonorphic. Thus Mn(D) ~ Mm(D). Wite [A] for

the sinmlarity class of A

The Brauer group Br(K) consists of central sinple K-al gebras nodul o

simlarity. The multiplication is defined by [A][B] = [ A®B].

This is well-defined. By the proposition AeB is central sinple.
Also if A= Mn(D), B Mr(E)’ and DeE MS(F) t hen
AeB EMn(D) ®Mr(E)
EMn(K) ®D®Mr(K) ® E

IR
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=M (K o DeE
= Man(K) ® F

=M _ (F
nrs
so A®B ~ DwE.

Clearly the nultiplication is associative.
Identity elenent [K].

. op, _. op .
Inverse of [A] is [A™"] since AeA™" = Mn(K) ~ K

EXAMPLES.
(1) If Kis algebraically closed, Br(K) = 1.
(2) Br(R) = 7z/2Z, with the two elenents [R], [H].

6.10. THEOREM If K< L is a field extension then a K-algebra Ais central

sinmple if and only if AL is central sinple.

PROOF. If Ais central sinple, we're done by putting B=L in the | enmas

above.

| f AL is central sinple then A nust be sinple, for if | is a non-trivial
ideal then IeL is a non-trivial ideal in AL. Al so A nust have centre K, for

if acAis central then a®l is central in AL.

6.11. COROLLARY. Ais a central sinple K-algebra AK = Mn(R), some n.

PROOF. No division al gebras over K
6.12. COROLLARY. The di nmension of any central sinple algebra is a square.
6.13. COROLLARY. Any central sinple algebra is separable.

One can show that the separable K-al gebras are the sem sinple ones

M (D,)eM (D)) e... where all Z(D.)/K are separable field extensions.
n1 1 n1 2 i

6.14. DEFINITION. The separable closure of Kis

Ky = {xeK | x is separable over K}.
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It is a subfield of K. (Recall that x is separable over Kif its mnimal

pol ynom al f(x)eK[x] has distinct roots in a splitting field. Equivalently

if (f(x),f’(x)) = 1.)

If char K= 0 then KS = K

r

If char K P

p > 0 and xeK one can show that x € KS (sone r).
6.15. THEOREM Apart from KS itself, there are no f.d. division al gebras

with centre Ks'

PROOF. Know this for algebraically closed fields, so ok for char O.
Suppose K has characteristic p>0.

Let Dbe a f.d. division algebra with centre Ks'

If xeD then the subal gebra of D generated by x is commutative, finite

dinensional, and a field, so it is a finite field extension of Ks' Thus it
r

can be identified with a subfield of K, so xp € Ks’ sone r.

If xeD let ax: KS—>D be the correspondi ng i nner derivation, Sx(a) = ax-xa.
By i nduction SQ(a) = Zizo (-1 (?) x'ax™

r
p — ayP P, p -
Thus Sx(a) = ax x"a = Sxp(a), o) ax (a) = Sxpr(a).

Suppose D = Ks' Fix x € D\KS. Then x ¢ Z(D), so ax # 0.

r
Now SE = 0 for sonme r, so there is beDwith Sx(b) # 0, 8)2((b)

- 0.
Thus x and Sx(b) conmut e.
B -1
Let y = bx Sx(b) .
Then yx - xy = bx ax(b)'1 X - xbx ax(b)'1 = (bx-xb) ax(b)'1 X = X

r r r
Thus & (x) = -x. Thus 55 (x) = (-1)P x. But 55 (x) =3 r(x) =0forr

y
| arge enough. Contradiction.

6.16. COROLLARY. Ais central sinple if and only if AKs = Mn(KS), sonme n.
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6.17. COROLLARY. If Ais a central sinple K-algebra then there is a finite

Gl ois field extension L/K such that AL Nh(L).

IR

PROOF. Fix a basis a of A and a basis bi of Nh(K), eg the matrix units.
Choose i sonor phi sns
M. (K,) é AKS

¢
Wite each e(bi) in terns of the aj and each ¢(aj) in terns of the bi
Finitely many el enents of KS occur
Thus there is a finite extension L of K inside KS such that all

o(b, ) c AL, #a)) € M(L).
Then L/K is separable, so can enlarge to be Gl ois.

Now 6 and ¢ give inverse isonorphisnms N%(L) — AL

6.18. DEFINITION. If L/Kis a field extension then there is a hononorphi sm
Br (K)—Br (L), [A] — [AeL]. The kernel is denoted by Br(L/K). It consists

of the simlarity classes [A] in Br(K) with AL a matrix al gebra over L.

6.19. COROLLARY. Br(K) = U Br(L/K).

L/ K Gal oi s
6.20. THEOREM If L/Kis Galois with group Gthen Br(L/K) = FF((&L*).
PROOF. Let S(n) be the set of isonorphismclasses of central sinple
K- al gebras of di nension n2 split by L. These al gebras are twi sted forns of
Nh(K) split by L, so S(n) is in 1-1 correspondence with Hl(G,PGLn(L)).
There is a central extension of nultiplicative G groups

1—>L*—>GLn( L) —PGL (L) —1.
This gives an exact sequence

. —HY(G a,( L)) —H(G PG ( L)) —H(G L.

This gives a nmap 8n : S(n) — FF((&L*).
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Al so Hl(GGLn(L)) is trivial, so Sn(A) =0e A= Mn(K).
One can show that if A e S(n) and A’ € S(n’) then
8., (AOAT) = 8 (A + 8 ,(A)

(proof omtted).
It A=M(D) wthdimD = nt then A = M (K) © D, so

Srm(A) = Sr(Mr(K)) + Bm(D) = Sm(D).
It follows that if A e S(n) and B € S(m are similar then Sn(A) = Sm(B).
Thus the 8n i nduce a map &8:Br(L/K) — HZ(G L*).

Moreover this is a group hononorphism and the kernel is trivial.

One can show that if f:GxG—)L* is a factor set then the crossed product

L*fGis a twi sted form of Mn(K) split by L, and that its inmage under S8 is

the class [f] in HZ(G L*) (proof omtted).
It follows that &8 is surjective.

REMARK. Class field theory shows that Br((Dp) =~ @/ Z and that there is an

exact sequence 0 — Br(Q) — Br(R) o @p Br((Dp) — Q/Z — 0.

An old problemwas: is every central division algebra a crossed product?

The answer i s no.
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