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A’'quiver’ is a directed graph, and a representation is defined by a vector
space for each vertex and a linear map for each arrow. The theory of
representations of quivers touches linear algebra, invariant theory, finite
di mensi onal al gebras, free ideal rings, Kac-Mdody Lie algebras, and nany

ot her fields.

These are the notes for a course of eight lectures given in Oxford in
spring 1992. My aimwas the classification of the representations for the

Eucl i dean di agrans An’ Dn’ E., E,, E,. It seemed anbitious for ei ght

6' 7 8
| ectures, but turned out to be easier than | expected.

The Dynkin case is anal ysed using an argunent of J.Tits, P.Gbriel and

C. M Ri ngel, which involves actions of algebraic groups, a study of root
systens, and sone cl ever honol ogi cal al gebra. The Euclidean case is treated
using the sane tools, and in addition the Auslander-Reiten transl ations
7,7 , and the notion of a 'regular uniserial nodule’ . | have avoided the
use of reflection functors, Auslander-Reiten sequences, and case-by-case

anal yses.

The prerequisites for this course are quite nodest, consisting of the basic
noti ons about rings and nodules; a little honol ogical algebra, up to Ext1
and | ong exact sequences; the Zariski topology on m”; and naybe sone ideas

from category theory.

In the last section | have listed sone topics which are the object of
current research. | hope these |l ectures are a useful preparation for

readi ng the papers listed there.

Wl liam Craw ey- Boevey,
Mat hematical Institute, Oxford University
24-29 St. Gles, Oxford OX1 3LB, England



81. Path al gebras

Once and for all, we fix an algebraically closed field k
DEFI NI TI ONS
(1) A quiver Q= (Cb,Cﬁ,s,t:Cﬁ——ecb) is given by

a set C% of vertices, which for us will be {1,2,...,n}, and

a set Cﬁ of arrows, which for us will be finite.
An arrow p starts at the vertex s(p) and ternmnates at t(p). W sonetines

indicate this as s(p) —P— t(p).

(2) Anon-trivial path in Qis a sequence pl...pn1(n21) of arrows which

satisfies t(pi+1):S(pi) for 1<i<m Pictorially

This path starts at S(pn? and terninates at t(pl). For each vertex i we

denot e by e the trivial path which starts and termnates at i. W use the
notation s(x) and t(x) to denote the starting and termnating vertex of a
path x. Note that the arrows in a path are ordered in the sane way as one

orders a conposition of functions.

(3) The path algebra kQis the k-algebra with basis the paths

in Q and with the product of two paths x,y given by
obvi ous conposition (if t(y)=s(x))
Xy = {

0 (el se)

This is an associative nmultiplication.

For exanple if Qis the quiver 1-P52 %23 then kQ has basis the paths
€, €5 €5, P, 0 and op. The product op of the paths ¢ and p is the path cp. On
the other hand the product po is zero. Sone other products are pp=0, elp:O,

e2p:p, pelzp, es(op)zop, elelzel, e1e2:0, etc.



EXAMPLES.
(1) If Qconsists of one vertex and one loop, then kQ  kK[T]. If Q has one

vertex and r loops, then kQis the free associative algebra onr letters.

(2) If there is at nost one path between any two points, then kQ can be

identified with the subal gebra

{C e Mn(k) | C|j:0 if no path fromj to i}

of Mn(k). If Qis 1 2 nthisis the lower triangular matrices.

| DEMPOTENTS. Set A=kQ

(1) The e, are orthogonal idenpotents, ie e ej =0 (i#), ei2 =e.

(2) A has an identity given by 1 = Zi 21 €

(3) The spaces Aei, ej A, and ej Aei have as bases the paths starting at i

and/or termnating at j.

(4) A=o "

P21 Aei, so each Aei is a projective left A-nodule.

IR

e. X

(5) If Xis aleft A-nodule, then HomA(Aei,X) i

(6) If O=f EAei and OigeeiA t hen fg=0.
PROOF. Look at the | ongest paths x,y involved in f,g. In the product fg the

coefficient of xy cannot be zero.

(7) The e, are primtive idenpotents, ie Aei is a indeconposabl e nodul e.
PROOF. |f EndA( Aei)eei Aei contains idenpotent f, then f2:f =f &, so
f(ei-f):o. Now use (6).

(8) If e eAejA then i=j.
PROCF. AejA has as basis the paths passing through the vertex j.

(9) The e, are i nequi valent, ie Aei ,%Aej for i=z.
PROOF. Thanks to (5), inverse isonorphisns give elenents l‘eei Aej , geej Aei

with l‘g:ei and gf:ej. This contradicts (8).



PROPERTI ES OF PATH ALGEBRAS.

These are exercises, but sone are rather testing.

(1) Ais finite dinensional ¢ Q has no oriented cycles.

(2) Ais prime (ie IJ#0 for two-sided ideals |,J#0) & Vi,j 3 pathi toj.
(3) Ais left (right) noetherian « if there is an oriented cycle through i,
then only one arrow starts (termnates) at i.

(4) rad A has basis {paths i toj | there is no path fromj to i}.

(5) The centre of Ais kxkx...xk[T]xk[T]x..., with one factor for each
connected conponent C of Q and that factor is k|[T] ¢ Cis an oriented

cycle.

REPRESENTATI ONS.

We define a category Rep(Q of representations of Q as foll ows.

A representation X of Qis given by a vector space Xi for each iEQ0 and a

i near map Xp: X —X for each pte.

s(p) t(p)

A norphi sm 8: X—X’ is given by l|inear naps ei : Xi —)Xi' for each i eQO

satisfying X’e X for each peQ,.
yi ng 5 5 peQ;

s(p) ~ °t(p)

The conposition of 8 with ¢: X’——X” is given by (¢°9)i = ¢i oei.

EXAMPLE. Let S(i) be the representation with

(i) {k v (i) (all )
S(i)., = S(i) =0 (all peqQ,).
J 0 (else) p 1

EXERCISE. It is very easy to conpute with representations. For exanple |et

Q be the quiver e«—o_— 8 and |let X and Y be the representations
ket kLo ket k—s0.

Show that Hon(X, Y) is one-di nensional, and that Hon(Y, X)=0.



LEMVA. The category Rep(Q is equivalent to kQ Md.

PROOF. W only give the construction. If Xis a kQnodule, define a
representation X with

Xi :eix

X(X) =px = e X € X for xeX .

pX) = P = e ()P € X () s(p)

If Xis a representation, define a nodule X via
€. T

X:@i lei' Let Xi I—>)C'—>Xi be the canoni cal maps.

Pr...pX = € X .. X =« (x)
1 m t(p)) pyq Pm (e

eix

g (x),

It is straightforward, but tedious, to check that these are inverses and
t hat nor phi sns behave, etc. W can now use the sane letter for a nodul e and

the correspondi ng representation, ignoring the distinction.

EXAMPLE. Under this correspondence, the representations S(i) are sinple
nodul es. Moreover, if Q has no oriented cycles, it is easy to see that the

S(i) are the only sinple nodul es.

DEFI NI TI ONS.

(1) The dinension vector of a finite dinensional kQ nodule X is the vector

dimxeN, with

(MX)i :dimXi :dimeiX:dimHon(Aei,X).

Thus dimX:Zigl (dimX)..

n

n
P21 ociBi - Zpte “S(p)Bt(p) for a,B € Z .

(2) The Euler formis <a, B> =Y,

This is a bilinear formon 7"
(3) The Tits formis g(a) = <a, > This is a quadratic formon 7"

(4) The Symmetric bilinear formis («, B) = <, B> + <B, o>.




THE STANDARD RESOLUTI ON

Let A=kQ If X is aleft A-nodule, there is an exact sequence

n
0 — o Ao ee X oA aeX Iy x—o0
peQt p p i=1
wher e g(aex) = ax for aeAei, xeeiX, and
f (a®x) = apex - a®px for aehe and xee X
(aex) = ap P t(p) s(p)

in s(p) t (p) conponent.

PROOF. Clearly gof=0 and g is onto. If € is an elenent of the mddle term

of the sequence, we can wite it uniquely in the form

n

=Y Y a®Xx (x_ee X alnost all zero)

i=1 paths a with s(a)=i 2 a~"s(a)

and define degree(&) = length of the longest path a with xa¢0.
If ais a non-trivial path with s(a)=i, then we can express it as a product
a=a’p with p an arrowwith s(p)=i, and a’ another path. View ng a’®xa as an
element in the p' th conponent of left hand term we have

f(a ®xa) = aex, - a’'epx,.

W claimthat € + In(f) always contains an el enment of degree 0. Nanely, if

& has degree d>0, then

n
£-1(1 ) a’ex.)
i=1 paths a with s(a)=i and length d

has degree < d, so the claimfollows by induction

Imf)=Ker(g): If &eKer(g), let &£ e&+In(f) have degree zero. Thus

0 =9(8 =9(&) =9( eex,) =L x;
| |

Now this belongs to @if Xi’ so each termin the final sum nust be zero

1
Thus &€’=0, and the assertion foll ows.

Ker(f)=0: we can wite an el enent €eKer(f) in the form
£ = ZPGQﬁ Zpaths awith s(a)=t(p) *p a (xp,aees(p)x al most all 0).

Let a be a path of maximal |ength such that xp a¢0 (sonme p). Now

F8) = XX, arex o - LY, aepx, o

so the coefficient of apin f(&€) is xp a A contradiction



CONSEQUENCES.

(1) If Xis aleft A-nodule, then proj.dimX =1, ie Exti(X,Y):O VY, i =2,
PROOF. f and g are A-nodul e maps and Aei ®V is isonorphic to the direct sum
of dimV copies of Aei, so is a projective left A-nodule. Thus the standard

resolution is a projective resolution for X

(2) Ais hereditary, ie if X<P with P projective, then X is projective.
PROOF. Ext 3(X.Y) = Ext2(PIX.Y) = 0 VY.

(3) If X,Yare f.d., then dimHom X, Y) - dimExtl(X,Y) = <dim X, di mY>,
PROOF. Apply Hom(-,Y) to the standard resol ution:

0—HoM( X, Y) —Hon( o, Ae; & e; X, Y) —>Hon( o e X, Y) —Ext S( X, Y) —0.

k t(p) *ks(p)
Now dimHon(Aei ®ej XY = (dimer)(dimHon(Aei,Y)) = (dim X)j(di—my)i'

(4) If Xis f.d., then dimEnd(X) - dimExtl(X,X) = q(dimX).
PROOF. Put X=Y in (3).

REMARK.

Let i be a vertex in Q and suppose that either no arrows start at i, or no
arrows ternmnate at i. Let Q be the quiver obtained by reversing the
direction of every arrow connected to i. W say that Q is obtained fromQ
be reflecting at the vertex i. The two categories Rep(Q and Rep(Q’') are
closely related, by neans of so-called reflection functors. See

I.N. Bernstein, |.MGelfand and V. A Pononmarev, Coxeter functors and
Gabriel’s Theorem Uspekhi Mat. Nauk. 28 (1973), 19-33, English Transl ation
Russ. Math. Surveys, 28 (1973), 17-32.



§2. Bricks

In this section we consider finite dinmensional left A-npbdules with A an

hereditary k-algebra. In particular the results hold when Ais a path

al gebra. W recall the Happel -Ringel Lenma and another | enmma due to Ringel.

| NDECOVPCSABLE MODULES.

Recall Fitting s Lemma, that X is indeconposable ¢« End(X) is a local ring,

ie End(X) = k1X+rad End(X), since the field k is algebraically closed.

Any nodul e can be witten as a direct sum of indeconposabl e nodul es, and by

the Krull-Schm dt Theorem the isonorphi smtypes of the sumands and their

multiplicities are uniquely determ ned.
We say that X is a brick if End(X)=k. Thus a brick is indeconposable.

LEMVA 1. Suppose X, Y are indeconposable. |f Ext 1(Y, X)=0 then any non-zero

map 6: X—Y i s nono or epi.

PROOF. W have exact sequences

&€: 0—l n( 8) —>Y——Cok( 8) —0 and n: 0——Ker ( 8) X—l m( 8) 0.
Fr om Ext 1(Cok((%)) ,n) we get
s Ext H(Cok(8),X) —— Ext X(Cok(8),Im(6)) —> O.

so &€ = f(& for sone & Thus there is comutative di agram

0 — X %7 5 cok(e) — 0
S

£0 —> Ime) -2 Y —s Cok(8) —> 0

Now t he sequence

o
[B] (v -9)
0 X Zel m( 0) Y 0

is exact, so splits since Extl(Y,X):O.



If Ime)=#0 then X or Y is sumand of Im(@) by Krull-Schnidt. But if 6 is

not nono or epi, then dimlme) <dimX dimY, a contradiction.

SPECI AL CASE. If X is indeconposable with no self-extensions (ie
Ext (X, X)=0), then X is a brick.

LEMMA 2. If X is indeconposable, not a brick, then X has a subnodul e and a

quotient which are bricks with self-extensions.

PROOF. It suffices to prove that if X is indeconposable and not a brick
then there is a proper subnodul e UcX which is indeconposable and with
sel f-extensions, for if Uis not a brick one can iterate, and a dual

argunent deals with the case of a quotient.

Pick 6eEnd(X) with I=Im(8) of mniml dinension # 0. W have | <Ker(8), for
X i s indeconposable and not a brick so @ is nilpotent. Now 92:0 by
mnimality. Let Ker(8) = ®, rlei with Ki i ndeconposabl e, and pick j such
that the conposition o : | <—>Ker(9)—e>Kj is non-zero. Now « is nmono, for

t he map X—»Ii)Kj X has inage Im«)#0 so « nono by nmnimality.

W have Ext 1(I , Kj)¢0, for otherw se the pushout

r

0 — o LK X —> | 0
! L
0— K Y 0

splits, and it follows that Kj is summand of X, a contradiction. Now Kj has
sel f-extensions since « induces an epi Ext 1( Kj , Kj ) —>»Ext 1(I , Kj ). Finally
t ake U:Kj.

10



83. The variety of representations

In this section Qis a quiver and A=kkQ W define the variety of
representations of Q of di nension vector ocean, and describe sonme el enentary
properties. W use el enmentary dinension argunents from al gebraic geonetry.

The properties we need are |isted bel ow

ALGEBRAI C GEQVETRY.

A" is affine r-space with the Zariski topol ogy. W consider locally closed

subsets U in mr, ie subsets U which are open in their closure U

A non-enpty locally closed subset Uis irreducible if any non-enpty subset

of Uwhichis openin U is dense in U The space A" is irreducible.

The di nension of a non-enpty locally closed subset Uis

sup{n | 3 zoczlc. .. Czn i rreduci bl e subsets closed in U}.

W have dimU=dimU if WUuW then dimW= nax{dimU,dimV}; the space N

has di nension r.

If an al gebraic group G acts on mr, then the orbits O are locally closed;
O\Ois a union of orbits of dinension strictly smaller than dim O, and if
xeO then dim O=di m G di mStabG(x).

DEFI NI TIONS. Let Q be a quiver and aeN'. Ve define

Rep(a) = npeQ HOn'l((kS(p),kt(p))-
1

This is isonorphic to A" where r

= Loeq % (p) %s(p)°

ai

1
=

An el enent xeRep(a) gives a representation R(x) of Qwth R(x)i for

1=i =n, and R(Xx = x for peqQ,.
()p o peQ

We define G(«w) :ﬂi21 G_(oci,k). This is open in A° where s :zif o

11



THE ACTI ON
GL(«) acts on Rep(«) by conjugation. Explicitly

(o) =g, xg., \ *
P t(p) ps(p)

for ge@(a) and xeRep(w).

If x,yeRep(«), then the set of A-nodul e isonorphisnms R(x)—R(y) can be
identified with {geCG.(«) |gx=y}. It follows that

(1) Stab = Aut (R(X)).

aL(a) (x)
(2) There is a 1-1 correspondence between isocl asses of representations X
wi th di mension vector « and orbits, given by OX = {xeRep(a) | R(x)=xX}. To
see this we only need to realize that every representation of dinension

vector « is isonorphic to sone R(x), which follow on choosing a basis.

RENMARKS.

(1) Invariant Theory is about polynonial and rational maps ¢: Rep(«) —k

which are constant on G.(«)-orbits. For exanple, if a = pl...pn1is an

oriented cycle, we have a polynom al invariant

f (x) = Trace(x x_ ...x_ ),
a Py Py Py

and nore generally if xe(T) is the characteristic polynom al of 8, we have

_ - i
fai(x) = Coefficient of T in X« x (T).

oy pz... o
(2) I'f char k=0, then any pol ynonial invariant can be expressed as a

pol ynomi al in the fa' Thi s has been proved by Sibirski and Procesi in case
Q has only one vertex, and in general can be found in L.Le Bruyn &

C. Procesi, Senisinple representations of quivers, Trans. Amer. Math. Soc.
317 (1990), 585-598.

(3) If char k=0 and Q has only one vertex, any polynom al invariant can be

expressed as a polynomal in the fai' This is recent work of S. Donkin.

Presumably the restriction on Qis unnecessary.

12



LEMVA 1. di mRep(«&) - dimOX: dimEndA(X) - (o) = dimExtl(X,X).

PROOF. Say X=R(x). W& have
dimOy, = dimG(e) - dimStab(x) = dimG(«) - dimAut,(X)

Now GL(«) is non-enpty and open in ms, so dense, so dim G (a) = s.
Simlarly Aut A()() is non-enpty and open in EndA(X), so dense, so

dimAut (x) = dimEnd(X). The assertion follows.

CONSEQUENCES.
(1) I'f a0 and q(«) =0, then there are infinitely many orbits in Rep(w).
PROCF. EndA(X);tO so dim OX < di m Rep(a).

(2) OX is open ¢ X has no sel f-extensions.

PROOF. By the | enmmm, Ext 1(X, X)=0 ¢ dim OX:di m Rep(«) & dim T)X:di m Rep(«) .
If dim OX:di m Rep(«) then OX:Rep(oc), since a proper closed subset of an

i rreduci bl e subset has strictly smaller dinension. Now OX is open in Rep(w)
since it is locally closed. Conversely, if OX is open in Rep(w«) then
OX:Rep(oc) since Rep(a) is irreducible. Thus their dinensions are certainly

equal .

(3) There is at nobst one nodul e without self-extensions of dinension « (up
to i sonorphisnm.
PROOF. |f OX:#OY are open, then OXQRep(oc)\OY, and so OXQRep(oc)\OY, whi ch

contradicts the irreducibility of Rep(w).

LEMVA 2. If &0 U—X—V——0 is a non-split exact sequence, then

OU@V < OX\ OX.

PROOF. For each vertex i, identify Ui as a subspace of Xi' Choose bases of

t he Ui and extend to bases of Xi' Then X=R(Xx) with

[up Wp]
X =

0 \Y;

P P

with UzR(u) and V=R(v). For 0O#xek define gAeGL(oc) Vi a (gA)p = [

up Awp
(ghx)p - [0 v ]

A0

0 1]. Then

p
so the cl osure of OX contains the point with matrices

13



whi ch corresponds to UsV.

Finally Hom( &, U gives an exact sequence

0—sHom( V, U) —sHom( X, U) —Hom( U, U) ——Ext 1(V, U,
SO
dimHomV,U) - dimHon(X U + dimHom(U, U - dimlin(f) =0,

but f(lU) =£#0, so dimHom X, U =# di mHon(UaV, U, and hence X & UsV.

CONSEQUENCES.
(1) If OX is an orbit in Rep(«) of maxinmal dinension, and X=UsV, then
Exti\(v, U =0.

PROOF. If there is non-split extension O U—E——V——0 t hen OXQOE\ OE, o)

dimOX<dimOE.
(2) If OXis closed then X is semsinple.

REMARKS.

(1) Suppose Q has no oriented cycles. Let zeRep(«) be the elenent with all
matrices zp:O. We can easily showthat z is in the closure of every orbit,
and it follows that there are no non-constant pol ynonial invariants.

Mor eover, an orbit OX is closed « Xis senmisinple, for the only senisinple

nodul e of dinension « is R(z), and {z} is clearly a closed orbit.

(2) If Qis allowed to have oriented cycles, x,x’eRep(«) and R(x) and R(x’)
are non-i sonorphic sem sinple nodules, then there is a polynom al invariant
¢ (of the formfai) with ¢(x)=¢(y). In case Q has only one vertex and

char k=0 this is proved in 812.6 of MArtin, On Azumaya al gebras and finite
di mensi onal representations of rings, J.Algebra 11 (1969), 532-563, but it

seens to be true in general. It follows that OX is closed ©« Xis

sem si npl e.

14



84. Dynkin and Euclidean di agrans

In this section we give the classification of graphs into Dynkin,
Euclidean, and 'wild graphs, and in the first two cases we study the

correspondi ng root system

DEFI NI TI ONS
Let T be finite graph with vertices {1,..,n}. W allows |oops and nultiple
edges, so that T is given by any set of natural nunbers

nij = nji = the nunber of edges between i and j.

Let g(«®) Zi PR Zi =i n, j o ocj

Let (-,-) be the symmetric bilinear formon 7" with

-n. . (i#)
(e.,e.):{ '
2-2nii (i=)

wher e g is the ith coordi nat e vector

Not e that know edge of any one of T, q or (-,-) deternines the others,

since q(a) = %(oc,oc) and (a, B) = q(a+B)-q(a)-q(R).

If Qis aquiver and T is its underlying graph, then (-,-) and q are the
sanme as before. The bilinear form<-,-> however, depends on the

orientation of Q

We say g is positive definite if gq(a)>0 for all 0#aez"

W say g is positive sem-definite if g(a)=0 for all aez"”
The radical of g is rad(q) = {ann | (a,-) = 0}.

We have a partial ordering on 7" given by a=p if B-a € N

W say that «acZ" is sincere if each conponent i s non-zero.
LEMVA. If T is connected and =0 is a non-zero radical vector, then B is

sincere and q is positive sem -definite. For «cZ" we have

q(a) =0 & el o aerad(q).

15



PROCF. By assunption 0 = (ei,B) = (2-2nii)Bi - Zjii nij %.

| f Bi:0 t hen Zjii nij Bj = 0, and since each termin =0 we have Bj:O
whenever there is an edge i—j. Since I' is connected it follows that B=0, a

contradiction. Thus B is sincere. Now

B. B o, o N2
T e A
1<} 1] 2 B Bj
_ N N caa) s B2
“Liq "ij 28 Lig Moy L 28
B. 2

_ J
= Ziij n. . T(Xi + Zi<j n..ocioc.

1 2 _
Zi (2-2nii)Bi K(Xi + Zi<j nijociocj = (.

It follows that q is positive sem -definite. If g(«a)=0 then “i/Bi:“j/%
whenever there is an edge i——j, and since I' is connected it follows that
acB. |If ae@B then werad(q) since Berad(q) by assunption. Finally if
aerad(q) then certainly q(«)=0.

CLASSI FI CATI ON. Suppose T is connected.
(1) If T is Dynkin then g is positive definite. By definition the Dynkin

di agrans are:

A o_eo_o  _ o D N_e ... _o

n N o

SR SV I, DUV

(2) If T is Euclidean, then q is positive seni-definite and rad(q)=Zs. By
definition the Euclidean diagrans are as bel ow. W have narked each vertex

i with the val ue of ai. Note that 8 is sincere and &=0.

1— —1 1 1

M (me0) D 222 o 27
v N

A 17
N

m (me4) (n=m+1l vertices)

m ./

1— —1 1

E

1
E7 1—2—3~i—3—2—1 E8 2—4—2—5—4—3—2—1

6 1——2——%——2——1

Not e t hat KO has one vertex and one | oop, and Al has two vertices joined by
two edges.

(3) OGherwise, there is a vector a=0 with g(«a) <0 and (a,ei)so for all i.

16



PROCF.
(2) By inspection the given vector 8 is radical, eg if there are no | oops

or multiple edges, we need to check that

28, = Ineighbours j of i 9
Now g is positive sem -definite by the lemma. Finally, since sone aizl

rad(q) = @8 n 7" = Zs.

(1) Enbed the Dynkin diagramin the correspondi ng Euclidean diagran1f, and
note that the quadratic formfor Tis strictly positive on non-zero,

non-si ncere vectors.

(3) It is not hard to show that T has a Euclidean subgraph T'’, say with
radi cal vector 8. If all vertices of T" are in T’ take «=8. If i is a vertex

not in I'’, connected to '’ by an edge, take a=28+¢

EXTENDI NG VERTI CES.
If T is Euclidean, a vertex e is called an extending vertex if Sezl. Not e
(1) There always is an extendi ng vertex.

(2) The graph obtained by deleting e is the correspondi ng Dynkin di agram

NOW SUPPCSE that T is Dynkin or Euclidean, so q is positive sem -definite

ROOTS.
We define A = {ann | «#0, q(«) =1}, the set of roots.

Aroot ais real if g(a)=1 and imaginary if q(«)=0

REMARK.

One can define roots for any graph I, and nore generally for val ued

graphs (in which situation the Dynkin di agrans Bn’ch’F4’G§ also arise). In
case the graph has no | oops, this can be found in Kac’'s book on infinite
di mensional Lie algebras. In case there are | oops, the definition can be
found in V.G Kac, Sone remarks on representations of quivers and infinite

root systens, in Springer Lec. Notes 832.
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PROPERTI ES.

(1) Each g is a root.

(2) If aeAf0}, so are -« and o+ Wi th Berad(q).
PROOF. q(B*a) = q(B)+a(e) £(B, @) = q(a).

@ (Dynki n)
(3) {imaginary roots} = {

{r8 | 0=#rez} (Eucl i dean)
PROCF. Use the | enma.

(4) Every root « is positive or negative.
+ - =+ - - - -
PROOF. Let o« = « -« where a ,« =0 are non-zero and have di sjoint support.

Oearly we have (', o )=0, so that
12q(a) = q(a) +q(a) - (o, &) =q(a’) + qa).

+ - ., . . . . .
Thus one of o ,a 1is an imaginary root, and hence is sincere. This neans

that the other is zero, a contradiction.

(5) If T is Euclidean then (AU{0})/Zs is finite.
PROOF. Let e be an extending vertex. If ais aroot with oce:O, then 8-« and
S+a are roots which are positive at the vertex e, and hence are positive

roots. Thus
{aebf 0} | =0} < {aeZ" |- 5=a=3}

which is finite. Nowif BeAu{0} then B-Beé belongs to the finite set
{aeAu{O}IanO}.

(6) If Tis Dynkin then Ais finite.
PROOF. Enbed T in the correspondi ng Euclidean graph T with extendi ng vertex
e. W can now view a root « for " as a root for T with oce:O, so the result

follows from(5).
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85. Finite representation type

In this section we conbine al nost everything that we have done so far in
order to prove Gabriel’s Theorem The proof given here is due to J.Tits,
P. Gabriel, and the key step to C. M Ri ngel, Four papers on problens in
linear algebra, in|.MGelfand, 'Representation Theory’, London Math. Soc.

Lec. Note Series 69 (1982).

THEOREM 1. Suppose Qis a quiver with underlying graph T Dynkin. The
assi gnnent X+——dim X i nduces a bijection between the isocl asses of

i ndeconposabl e nodul es and the positive roots of q.

PROCF.
If X is indeconposable, then X is a brick, for otherwi se by 82 Lemm 2
there is YeX a brick with sel f-extensions, and then

0<qg(dimY) = dimEnd(Y) - dimExt(Y,v) = o.

If X is indeconposable then it has no self-extensions and dimXis a
positive root, for 0 < q(dimX) =1 - din1Ext1(X,X)

If X, X’ are two i ndeconposables with the sane di mension vector, then XxX’
by 83 Lemmua 1.

If wis a positive root, then there is an indeconposable X with dimX = «.

To see this, pick an orbit OX of maximal dinension in Rep(w). If X

deconposes, X=UaV t hen Extl(U,V):Extl(V,U)ZO by 83 Lenma 2. Thus

1 =09(«) =q(dimU) + q(dimV) + <dimUdimV>+ <dimV,dimU
=q(dimVy + gq(dimV) + dimHom(U V) + dimHon(V,U = 2,

a contradiction.

THEOREM 2. If Qis a connected quiver with graph I, then there are only

finitely many indeconposable representations « I' i s Dynkin.
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PROOF. If T is Dynkin then the indeconposabl es correspond to the positive

roots, and there are only a finite nunber of roots.

Conversely, suppose there are only a finite nunber of indeconposabl es. Any
nodul e is a direct sum of indeconposables, so it follows that there are
only finitely many isoclasses of nodul es of dinension « for all aeN". Thus
there are only finitely many orbits in Rep(a). By 83 Lemma 1 we have g(«) >0

for O#xeN'. Now the classification of graphs shows that T is Dynkin.
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86. More honol ogi cal al gebra

FROM NOW ON we suppose that Qis a quiver w thout oriented cycles, so the
path algebra A=kQ is finite dinensional. W still consider f.d. A-nodules.
We study the properties of projective, injective, non-projective, and

non-injective nodules. We give a little bit of Auslander-Reiten theory.

DUALI TI ES.
(1) If Xis aleft or right A-nodule, then DX = Hon]<(X,k), Hom( X, A) and
Ext 1(X, A) are all A-nodul es on the other side.

(2) Dis duality between left and right A-nodul es.
PROOF. Hon( X, Y) =Hon( DY, DX) and DDXzX.

(3) Dgives a duality between injective |left nodul es and projective right
nodul es.
PROOF. Ext 1(DX, DY) & Ext 1(Y,X). This is zero for all Y if and only if DX is

projective, if and only if X is injective.

(4) Hom(-,A) gives a duality between projective |eft nodul es and projective
ri ght nodul es.

PROOF. I1f Pis a summand of A" then Hom(P,A) is a sunmand of Hon(An,A) EAn,
so is projective. Now the map P——Hom( Hom( P, A),A) is an iso for all P,

since it is for P=A

(5) The Nakayama functor wv(-) = DHom(-,A) gives an equival ence from

projective left nodules to injective |left nodul es. The inverse functor is

v (-) = Hom(D(-),A) = Hom(DA, -).

(6) Hom( X, vP) = DHom(P, X) for X P left A-nodules, P projective.
PROOF. The conposition
Hom(P, A) @ X = Hon(P, A) e ,Hon( A, X) — Hom(P, X)
is an isonorphism since it is for P=A. Thus
DHom( P, X) = Hom, (Hon(P, A)e,X, k) = Hon(X, Hom (Hon(P, A), k)) = Hom(X, vP).
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DEFI NI TION. The Ausl ander-Reiten translate of a left A-nodule X is
TX = DExt 1(X A). W also define T X = Ext J(DX, A) = Ext (DA X).

If 0 L M—N—0 is an exact sequence then since Ais hereditary there
are | ong exact sequences
0 TL ™ TN vL vM vN 0

0—sv L—sv M—sv N—>1 L—>31 M—>3T N—0.

IR

LEMVA 1. Hom(Y, tX) DExtl(X,Y) Hom(T VY, X).

(Thus T is left adjoint to T)

PROOF. Let O P—sQ——X——0 be a projective resolution. The sequence

TQ—TX vP. vQ
is exact, and TQ=0, so we have a comutative diagramw th exact rows

0——Hom( Y, tX) ——Hom( Y, vP) —sHom( Y, vQ

0—DExt 1(X, Y) —DHom( P, Y) —sDHon{( Q V)

and hence Hon(Y, tX) = DExt 1(X, Y). The other isonorphismis dual.

LEMVA 2. Let X be indeconposable.
(1) If X is non-projective then Hon(X, P)=0 for P projective, and T TX&X.
(2) If Xis non-injective then Hon(l,X)=0 for | injective, and Tt XX

PROCF OF (1). If 8:X——P is non-zero, then Im®) is projective since Ais
hereditary. Now X—»Im(8) is epi, so Inm(8) is sutmmand of X But X is

i ndeconposabl e so XzInm(8), a contradiction.

Let O P—sQ——X——0 be a projective resolution. Now

0 TX vP. rQ—vX

is exact, and vX=0 since Hom( X, A)=0. Thus we have a conmutative di agram

v VP v vQ—T TX T VP

| I
P Q X 0

with exact rows. Since vP is injective, T vP=0, and hence T X = X
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LEMVA 3. T and T give inverse bijections
non- proj ective i ndeconposabl es non-inj ective i ndeconposabl es

PROOF. Let X be a non-projective indeconposable, and wite X as a direct
sum of i ndeconposabl es, say X = ®i;1Yi' Each Yi is non-injective, since
ot herw se an(Yi,rX):O by Lenma 1. By part (2) of Lemma 2 it follows that
each T_(Yi)io. By part (1) of Lemma 2 we have X = T tX @iilr_(Yi), and

since X is indeconposable we nmust have r=1. Thus TX is a non-injective

i ndeconposable. Dually for T .

REMARKS.

(1) For any f.d. algebra there are nore conplicated constructions T, T
giving the bijection above, which involve D and a transpose operator Tr. In
general, however, T and T are not functors, Lenma 1 needs to be nodifi ed,

and Lemma 2 i s nonsense.

(2) If X is indeconposabl e and non-projective, then Extl(X,rX) = DEnd( X)
and this space contains a special elenent, the map fekbnk(End(X),k) with
f(1X):1 and f(rad End(X))=1. The correspondi ng short exact sequence

0 TX—>E——X——>0 i s an Ausl ander-Reiten sequence, which has very specia

properties.

Ausl ander - Rei ten sequences exist for any f.d. algebra, and (under the name
"al nost split sequences’ and together with the transpose) have been defined
and studied by M Auslander & |.Reiten, Representation theory of artin
algebras 111,1V,V,VI, Conm in A gebra, 3(1975) 239-294, 5(1977) 443-518,
5(1977) 519-554, 6(1978) 257-300.

(3) The translate T can also be defined as a product of reflection
functors, see the remark in 81 and the paper by Bernstein, Gelfand and
Pononar ev. The equi val ence of the two definition was proved by S. Benner and
M C. R Butler, The equival ence of certain functors occuring in the
representation theory of artin algebras and species, J. London Math. Soc.
14 (1976), 183-187.
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| NDECOVPOSABLE PRQJECTI VES AND | NJECTI VES.
(1) The nodules P(i) = Aei are a conpl ete set of non-isonorphic
i ndeconposabl e projective |eft A-nodul es.

n

PROOF. The e, are i nequi valent printive idenpotents and A = ®, :1Aei . Now

use Krul |l -Schni dt.

(2) The nmodules 1(i) = v(P(i)) = D(ei A) are a conplete set of
non-i sonor phi ¢ i ndeconposabl e injective |left A nodul es.
PROOF. Use Hon(-,A) and D.

(3) <dimP(i), o> = @ = <o, diml(i)> for any a.
PROCF. |If X has dinmension «, then
<dimP(i), o> = dimHon(P(i),X) - dimExtl(P(i),X) :dimeiX:oci.
<o, diml(i)>=dimHom(X I(i)) = dimHom(P(i), X) = o
(4) The vectors dimP(i) are a basis of 7", The dimlI(i) are a basis of 7"

PROOF. The nodule S(i) with dinension vector g has a projective resolution

o o . - . . . | |
0 P Po S(i) 0 and an injective resolution 0 S(i) o Iy 0.

COXETER TRANSFORMATI ON.

(1) There is an autonorphism CZZn—)Zn with dimvP = - c(dimP) for P
proj ecti ve.

PROOF. Define ¢ via c(dimP(i)) = - diml(i).

(2) If X is indeconposable and non-projective then dimtX = c¢c(dimX).

PROOF. Let O P—sQ——X——0 be a projective resolution. W have an exact

sequence 0 TX—>VP—1rQ—0 and so
dimtX = dimvP - dimvQ=-c(dimP- dimQ = -c(dimX.

(3) <a, B> = -<B, ca> = <ca, CB>.

PROCF. <dim P(i), B> <B, dimli(i)>=-<B,c(dimP(i))>.

(4) ca=a & aerad(q).
PROOF. <R, a- Ca>=<B, a>- <f3, co>=( 3, ) .

REMARK. When T is witten as a product of reflections, one sees that the

Coxeter transformation is a Coxeter elenent in the sense of Coxeter groups.
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87. Euclidean case. Preprojectives and preinjectives

FROM NOW ON we set A=kQ where Qis a quiver without oriented cycles and
wi th underlying graph ' Euclidean. We denote by & the mininal positive
imaginary root for I'. In this section we describe the three classes of

preprojective, regular and preinjective nodul es.

DEFINITIONS. If X is indeconposable, then
(1) X is preprojective & T X=0 for i>>0 e X:r_nb(j) sone ne0, j.

(2) Xis preinjective e 7' X=0 for i>>0 o X:rn](j) sone ne0, j.

(3) Xis regular o T X20 for all iez
We say a deconposable nodule X is preprojective, preinjective or regular if

each i ndeconposabl e summand is.
The defect of a module X is <8,dimX> = -<dim X, &>
LEMVA 1. There is N>0 such that chhin1x = dimX for regular X

PROOF. Recall that coa=a if and only if « is radical, and that q(ca)=q(«).
Thus ¢ induces a pernutation of the finite set AY0}/Zs. Thus there is sone
N>O with ¢ the identity on AW0}/Zs. Since e eh it follows that Nis the
identity on 7" zs.

Let cthng - dimX =ré&. An induction shows that CithEjX =dimX+irs
for all i€z |If r<0 this is not positive for i>>0, so X nust be
preprojective. If r>0 this is not positive for i<<0, so X is preinjective.
Thus r=0.
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LEMVA 2. If X is indeconposable, then X is preprojective, regular or

prei njective according as the defect of X is -ve, zero or +ve.

PROOF. If X is preprojective then defect < 0, since
<dimt "R(j), 8>=<c” "\dim P(j)), 8>=<di m P(j), ¢"8>=<di m P(j ), 5>=5, >0.

Simlarly preinjectives have defect > 0. If X is regular with dinension

vector «, then cNa:a. Let B:a+..+cN'1a. Cearly cB=B, so that B=rs. Now

ZP;é <c' o, 8> = N<a, 8>,

0 = <B, 5>

so <a, 8>=0, ie X has defect zero.

LEMVA 3. Let X Y be indeconposable.
(1) If Yis preprojective and X is not, then Hom X, Y)=0 and Extl(Y,X):O.
(2) If Yis preinjective and X is not, then Hom(Y, X)=0 and Extl(X,Y):O.

PROOF. (1) As X is not preprojective, xet '7' X for i=0. Thus

Hom(t ' X, Y) = Hom(T X, T Y) = 0 for i>>0.

IR

Hom( X, Y)

Al'so Ext 1(Y, X)

IR

DHom(T X,Y) = 0. (2) is dual.

REMARK. W& draw a picture

preprojectives regul ars preinjectives

by drawi ng a dot for each indeconposabl e nodule. W draw t he projectives at
the extrene left, then the nodules T P(j), then the I_ZP(j), etc. W draw
the injectives at the extrene right, then the nodules Tl (j), then rzl(j),

etc. Finally we draw all the regul ar indeconposables in the mddle.

The | enma above, and 86 Lemma 2, say that non-zero nmaps tend to go fromthe

left to the right in the picture.
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LEMVA 4. If o« is a positive real root, and either <, >20 or «a=<8, then

there is a unique indeconposable of dinension « It is a brick

PROOF. If Yis a brick with self-extensions then q(dimY)=0 so Y is regular

and of di nension =8.

If X is indeconposable of dinmension «, then it is a brick, for otherwise it
has subnodul e and quotient which are regular of dinmension =8. This is

i npossible for either X has dinension =8, or X is preprojective (so there
is no such subnodule), or it is preinjective (so there is no such
quotient). By assunption g(«)=1, so X has no self-extensions, and the

uni queness follows by the open orbit argunent.

For the existence of an indeconposable of dinension vector «, pick an orbit

OX in Rep(w«) of maximal dinension. |f X deconposes, X=UsV, then

1=09(a) =q(dimy + gq(dimV) + dimHon(U V) + dimHom(V,U).

Thus, g(dimU) =0, say, so dimUeZs. Now di m VgZs for otherw se di m XeZs and
then q(«)=0. Thus q(dimV)=1 and therefore the Hom spaces nust be zero.
Thus <dimV,dim U>=0, so <dimV, 8>=0. Since also <dimU, 8>=0 we have

<, 8>=0. Now di m UeZs, so S8=«, which contradicts the assunption on «
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88. Euclidean case. Regul ar nodul es

In this section we study the category of regular nodules. W show that its

behavi our is conpletely determ ned by certain 'regular sinple nodules.

PROPERTI ES OF REGULAR MODULES
(1) If &:X—Y with X, Y regular, then Inm(8) is regular
PROOF. In(B8)<Y, so it has no preinjective summand. Al so X—>»Inm(8), so it

has no preprojective sunmand.

(2) In the situation above Ker(8) and Coker(®8) are also regul ar

PROCF. 0——Ker (8) X—| m( 8) 0 is exact, so Ker(8) has defect zero. Now
Ker (8) €X, so Ker (@) =preprojectiveseregulars. If there were any

preproj ective sunmand, then the defect would have to be negative. Simlarly
for Coker(8).

(3) If 0 X—Y—>Z——0 is exact and X, Z are regular, then so is Y.
PROOF. The | ong exact sequence shows Hon(Z, Preproj) = 0 = Hon(Preinj, 2).

(4) The regul ar nodul es form an extension-cl osed abelian subcategory of the

category of all nodul es.

(5) T and T are inverse equival ences on this category.

DEFI NI TI ON

A nodule X is regular sinple if it is regular, and has no proper non-zero

regul ar subnodul e. Equivalently if defect(X)=0, and defect(Y)<0 V 0<Y<X
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PROPERTI ES. Let X be regular sinple, dimX = «.

(1) Xis a brick, so ais a root.
(2) T Xis regular sinple for all i€z

(3) T™=X & « i s an inmaginary root.
PROOF. |f tX=X then ca=« so « is radical. Conversely, if q(«)=0, then
Honm( X, TX) 2DExt 1(X, X) 20, so XztX since X and =X regul ar sinple.

(4) T Xax
PROOF. W may assune « is a real root. Now <oc,CNoc>=<oc, o>=1, so

Hon( X, ’L'NX) #0, so XE'L'NX.

DEFI NI TI ON

Xis regular uniserial if there are regul ar subnodul es

0:X0cX1c... ch:X

and these are the ONLY regul ar subnodul es of X. W say X has regul ar

conposition factors Xl’ X2/X1,..,Xr/Xr_1 (which are clearly regul ar

sinmples), regular length r, regular socle X

1 and regul ar top X/Xr—l'

LEMVA 1. If X is regular uniserial, Sis regular sinple, and

&0 S Ef X——0 is non-split, then E is regular uniserial.

PROOF. It suffices to prove that if USE is regular and U is not contained
inS, then ScU. Thus f(U)#0, so T<f(U) where T is the regular socle of X,
and so £ 3(T) = S + Unf (T).

Since T Sis regular sinple the inclusion T&sX gives an isonorphism
Hom(t S, T)——Hon(t S, X). Thus it gives an isonorphism

Extl(X,S) « DHom(T S, X) = DHon{T S, T) = Extl(T,S),
so the pul |l back sequence

0—>S—>f_1(T)—>T—>0
I l

0O —S— E — X — 0

is non-split. Now we have f_l(T) =S+ Unf_l(T), and this cannot be a
direct sum so S n Unf_l(T) #0. It follows that S < U.
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LEMVA 2. For each regular sinple T and r=1 there is a unique regul ar
uniserial nodule with regular top T and regular length r. Its regular
conposition factors are (fromthe top) T, =T, ..., rr_lT.

PROOF. | nduction on r. Suppose X is regular uniserial of regular length r

with regular top T and regul ar socle rr_lT. Let S be regular sinple. Now

L ] o k (ST’ T)
Ext “(X S) 2 Hon(t S, X) & Hom(t S, 7 ) e{

0 (else)

so there is a non-split sequence &:0 Y—E—>X—0 if and only if SErrT,
and in this case, since the space of extensions is 1-dinensional, any
non-zero geExtl(X,S) gives rise to the sane nodule E. It is regular

uni serial by the previous | enma.
THEOREM Every i ndeconposabl e regular nodule X is regular uniserial

PROOF. Induction on dim X Let S<X be a regular sinple subnodule of X By
i nduction X/'S = @irzlYi is a direct sumof regular uniserials. Now
1 1
Ext (XS, S) = e Ext (Yi,S), 0——S—X—X/ S—0 (gi)
i =1

Since X is indeconposable, all giio. Now

IR

1 k (if Y; has regular socle T 9)
Ext (Y., S) {

0 (el se)

so all Yi have regul ar socle T S.

If r=1 then X is regular uniserial, so suppose r=2, for contradiction. W

may assunme that dimY,=dimY,, and then (by Lemma 2, or nore sinply, by the

1 2

dual of Lemma 2), there is a map f:ch—eYz. This map induces an i sonorphi sm
Extl(Yz,S)——eExtl(Yl,S) so we can use f to adjust the deconposition of X/'S
to nake one conponent gi zero, a contradiction. Explicitly we wite
X/S:Y1®Y2@...®Yr with Y1:{y1+Af(y1)|yleY1} for sone Aek. W | eave the
details as an exerci se.
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DEFI NI TI ON
Gven a t-orbit of regular sinples, the correspondi ng tube consists of the
i ndeconposabl e regul ar nodul es whose regul ar conposition factors belong to

this orbit.

PROPERTI ES.

(1) Every regul ar indeconposabl e belongs to a uni que tube.

(2) Every indeconposable in a tube has the sane period p under =.
PROOF. If X is regular uniserial with regular top T and regular length r
then © X is regul ar uniserial with regular top 7 T and regular length r. If

IITET we nust have IIXEX.

(3) If the regular sinples in a tube of period p are Si:riS, then the
nodul es in the tube can be displayed as bel ow. The synbol obtained by
stacki ng various Si’s is the correspondi ng regular uniserial. W indicate
the inclusion of the maxi mal proper regular subnodule Y of X by Y<—=X, and
the map of X onto the quotient Z of X by its regular socle as X—»Z. The
translation T acts as a shift to the left, and the two vertical dotted

l i nes nust be identified.
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89. Euclidean case. Regul ar sinples and roots

In this section we show that the tubes are indexed by the projective line,
and that the dinension vectors of indeconposable representations are

precisely the positive roots for T.

CONSTRUCTI ON.
Let e be an extending vertex, P=P(e), p=dimP. dearly <p, p>=1=<p, &>.

By 87 Lemma 4 there is a unique indeconposable L of dinension s+p.

P and L are preprojective, are bricks, and have no self-extensions.
Hom(L,P)=0 for if @:L—P then Ime is a sumand of L, a contradiction.
Ext 1( L, P)=0 since <di mL,di mP>=<p+8, p>=<p, p>-<p, §>=0.

di m Hom( P, L) =2 since <p, p+&> = 2.

LEMVA 1. |If O#06eHon(P,L) then 6 is nono, Coker @ is a regul ar

i ndeconposabl e of di nension 8, and reg.top(Coker 8) e¢0.

PROOF. Suppose 6 is not nono. Now Ker 6 and Im e are preprojective (since
they enbed in P and L), and so they have defect =-1. Now the sequence

0 Ker 6 P. Imeé 0 is exact, so

-1 = defect(P) = defect(Ker 8) + defect(Ime) = -2,

a contradiction.

Let X=Coker @, and consider &:0 P 6 L X—0. Apply Hom(-,P) to get
Extl(X, P)=k. Apply Hom(-,L) to get Hom(X, L)=0. Apply Hom(X,-) to get X a
bri ck.

If X has regular top T, then
dimTe = dimHom(P, T) = <p,dimT> = <p+8,dimT> = dimHon(L, T) # O.
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L).

LEMMVA 2. If X is regular, Xe¢0 t hen Hon( Coker @, X)#0 for sone 0O#6eHon(P,
1 _
PROOF. Ext (L, X)=0, so
dimHom(L, X) = <p+8,dim X> = <p,dim X> = dimHom(P, X) = 0.
Let «, B8 be a basis of Honm(P,L). These give maps a, b: Honm(L, X) —Hom( P, X)
If ais an iso, let A be an eigenval ue of a_lb and set 6=B- A«.
If a is non-iso, set 6=a.
Either way, there is O#geHon(L,X) with ¢o6=0. Thus ¢: Coker 6——X.
LEMVA 3. If X is regular sinple of period p, then
dimX+dimeX+... +dime® Ix=s.
PROOF. Let di m X=a.
| f aeio there is a map Coker 6——X which nust be onto.
| f ae:O then 8-« is a root, and (S—a)ezl, SO 8-« is a positive root.
Ei t her way «a=3.
I f a=8 then XztX, so we are done. Thus we nay suppose « is a real root.
S-ais areal root, and <8, 8-«>=0, so by 87 Lemma 4 there is a regular
brick Y of dinmension 8-« Now
<a, 8-> = -1, so 0 = Extl(X,Y) = DHon(Y, tX), so reg.top(Y) = X
<S-a, 0> = -1, so 0 # Extl(Y,X) = DHon(T X, Y), so reg.socle(Y) = t X
It follows that Y nust at |east involve rX,rZX,...,rp_lx, o)

dimX+dimeX + ... +dimt X = s.

Also the sumis invariant under c, so is a nultiple of &.

CONSEQUENCES.
(1) Al but finitely many regul ar sinples have dinension 8, so all but
finitely many tubes have period one. This follows from 87 Lemm 4.

(2) Each tube contains a unique nodule in the set

Q = {isoclasses of indeconposable X with dim X=8 and reg.top(X)eio}.

(3) If Xis indeconposable regular, then
di m

XeZ8 o the period of X divides regular length of X, and
dimX=8 e regular length X = period of X ¢ X is a brick.
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THEOREM 1. The assi gnnent 6+——Coker 6 gives a bijection PHom( P, L)—Q, so

the set of tubes is indexed by the projective line.

PROOF. If U is indeconposable regular of dinension & and reg.top(LDeio,
then there is a map Coker 6——U for some 6. This nap nust be epi, since any

proper regular subnodule of Uis zero at e. Thus the map is an i sonorphi sm

If 0#6, 6’ eHom( P, L) and Coker 6z=Coker 6’, then
Honm( L, P) —Hon( L, L) —sHon{ L, Coker 9)——»Ext1(L,P):0

so the conposition L—Coker 6’ = Coker 6 |lifts to map g: L——L. Thus one

obtains a conmutative di agram

0— P2 coker 6’—0
L lo |

0—P-2 — scoker 6 —0

Now f,g are non-zero nultiples of identity, so 6=a8" w th 0#xek

THEOREM 2
(1) If X is indeconposable then dimX is a root.
(2) If wis positive imaginary root there are ol y many i ndecs with di m X=qa.

(3) If wis positive real root there is a unique indec with di m X=a.

PROCF.
(1) If Xis abrick, thisis clear. If Xis not a brick, it is regular. Let
X have period p and regular length rp+tq with 1<g=p. The subnbdule Y with

regular length qis a brick, and sodimX=dimY +r8is a root.

(2) o=rs8. If Tis a tube of period p, then the indeconposables in T of

regular length rp have dinension r8. There are infinitely nmany tubes.

(3) W know there is a unique indeconposabl e of dinmension « if <« 8>20 or
«=38, SO suppose <«, 8>=0 and wite a=r8+g with 0=3=8 a real root. There is a
uni que regul ar indeconposable Y of dinension B, say of period p, and
regular length q. Let X be the regular uniserial containing Y and with
regular length rp+q. Cearly dimX=r8 +dimY =a It is easy to see that

this is the only indeconposabl e of dinension «.
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RENMARKS.

(1) For the Kronecker quiver A1
the regular sinples all have period one. They are

k A:uePl.

(2) For the 4-subspace quiver, D, with the follow ng orientation

aenin

the real regular sinples have period 2, and have di nensi on vectors

1 1 1 1 1 1
1100 0011 1001 0110 1010 0101

The regul ar sinples of dinension vector & are

‘ (ékgw ‘ wi th nmaps L 0 L L where Aek, A#0,1
k k k o] 1) 1) (A ' T

(3) One can find lists of regular sinples in the tables in the back of
V.Dlab & C. M Ringel, Indeconposable representations of graphs and al gebras,

Mem Amer. Math. Soc., 173 (1976). For the different graphs T the tubes

with period # 1 have period as foll ows

b=

P, q if p>0 arrows go clockwi se and g>0 go anticl ockw se.

(S]]

m2,2,2

At

3,3,2

Ft

7 4,3,2

l

8 5,3,2

One al ways has 2% (period-1) = n-2, which can be proved with a little

ubes
nore anal ysi s.
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810. Further topics

In this section | want to list sone of the topics which have attracted
interest in the past, and which are areas of present research. The l|ists of
papers are only neant to be pointers: you should consult the references in
the listed papers for nore infornation

(1) Kac’'s Theorem for any quiver the dinmension vectors of the
i ndeconposabl es are the positive roots of the graph

V.Kac, Infinite root systens, representations of graphs and invariant
theory I,1l, Invent. Math 56 (1980), 57-92, J. Algebra 77 (1982),
141-162.

V. Kac, Root systens, representations of quivers and invariant theory, in
Springer Lec. Notes 996 (1983), 74-108.

H Kraft & Ch. Ri edtmann, Geonetry of representations of quivers, in
Representations of al gebras (ed. P.Wbb) London Math. Soc. Lec. Note
Series 116 (1986), 109-145.

(2) Invariant theory and geonetry for the action of the group G.(«) on the
variety Rep(«).

C. Procesi, The invariant theory of nxn nmatrices, Adv. Math. 19(1976),
306- 381.

C. M Ringel, The rational invariants of the tame quivers, lnvent. Math.
58(1980), 217-239.

L.Le Bruyn & C Procesi, Sem sinple representations of quivers, Trans. Aner.
Mat h. Soc. 317 (1990), 585-598.

Ch. Ri edt mann & A. Schofield, On open orbits and their conpl enents, J.Al gebra
130 (1990), 388-411.

A. Schofield, Sem -invariants of quivers, J. London Math. Soc. 43 (1991),
385- 395.

A. Schofield, Generic representations of quivers, preprint.

(3) Construction of the Lie al gebra and quantum group of type T fromthe
representations of a quiver with graph T.

C. M Ringel, Hall polynomals for the representation-finite hereditary
al gebras, Adv. Math. 84 (1990), 137-178.

C. M Ringel, Hall al gebras and quantum groups, Invent. Math. 101 (1990),
583-592.

G Lusztig, Quivers, perverse sheaves, and quantized envel opi ng al gebras, J.
Amer. Math. Soc. 4 (1991), 365-421

A. Schofield, Quivers and Kac-Mbody Lie al gebras, preprint.
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(4) Auslander-Reiten theory for wild quivers. In particular, the behavi our
of the functions dimHon(X, T Y) for fixed X V.

C. M Ringel, Finite dinensional hereditary al gebras of wild representation
type, Math.Z., 161 (1978), 235-255.

V.D ab and C. M Ri ngel, Eigenvalues of Coxeter transformations and the
CGel fand-Kirillov dinension of the preprojective al gebras, Proc. Aner.
Mat h. Soc. 83 (1981), 228-232.

D.Baer, WIld hereditary artin al gebras and |inear nethods, Mnuscripta
Math. 55 (1986), 68-82.

O Kerner, Tilting wild al gebras, J.London Math. Soc, 39(1989), 29-47

J. A . de | a Pefia & M Takane, Spectral properties of Coxeter transformations
and applications, Arch. Math. 55 (1990), 120-134.

O Kerner & F.Lukas, Regular nodules over wild hereditary al gebras
preprint.

(5) Tane al gebras of global dinmension 2, but with properties anal ogous to
those of path algebras: the tame conceal ed and tubul ar al gebras.

C. M Ringel, Tane al gebras and integral quadratic forns, Springer Lec. Notes
1099 (1984).

C. M Ringel, Representation theory of finite-dinmensional algebras, in
Representations of al gebras (ed. P.Wbb) London Math. Soc. Lec. Note
Series 116 (1986), 7-79.

| . Assem & A. Skowr onski, Algebras with cycle finite derived categories,

Mat h. Ann., 280 (1988), 441-463.

(6) Interpretation of the representation theory of quivers as
non- commut ati ve al gebraic geonetry.

H. Lenzing, Curve singularities arising fromthe representation theory of
tane hereditary artin algebras, in Springer Lec.Notes 1177 (1986),
199- 231.

WCeigle & H Lenzing, A class of weighted projective curves arising in
representation theory of finite dinensional algebras, in Springer Lec.
Notes 1273 (1987), 265-297.

(7) Tane hereditary al gebras when the field is not al gebraically closed,
and the nore ring-theoretic aspects of hereditary al gebras.

V.Dlab & C. M Ringel, Indeconposable representations of graphs and al gebras,
Mem Aner. Math. Soc., 173 (1976).

C. M Ringel, Representations of K-species and binodules, J. Algebra, 41
(1976), 269-302.

V.Dlab & C. M Ringel, Real subspaces of a vector space over the quaternions,
Can. J. Math. 30 (1978), 1228-1242.

A. Schofield, Universal localization for hereditary rings and quivers, in
Springer Lec. Notes 1197 (1986).

D. Baer, WGCeigle & H Lenzing, The preprojective algebra of a tane
hereditary Artin al gebra, Conm Al gebra 15 (1987), 425-457.

W Cr awl ey- Boevey, Regul ar nodul es for tane hereditary al gebras, Proc.
London Math. Soc., 62 (1991), 490-508.
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(8) Infinite dinensional representations, and contrast with the theory of
abel i an groups.

C. M Ringel, Infinite dinmensional representations of finite dinensiona
hereditary al gebras, Synposia Math., 23 (1979), 321-412.

F. Gkoh, I ndeconposabl e pure-injective nodules over hereditary artin
al gebras of tane type, Conmun. in Al gebra 8 (1980), 1939-1941.

F. Okoh, Separabl e nodul es over finite-dinensional algebras, J. Algebra, 116
(1988), 400-414. _

A . Dean & F. Zorzitto, Infinite dinensional representations of D4, d asgow
Math. J. 32 (1990), 25-33.

F. Lukas, A class of infinite-rank nodul es over tane hereditary al gebras,
preprint.

D. Happel & L.Unger, A fanmily of infinite-dinensional non-selfextending
bricks for wild hereditary al gebras, preprint
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