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Rigid integral representations of quivers

WILLIAM CRAWLEY-BOEVEY

Dedicated to the memory of Maurice Auslander

We study representations of a quiver by means of finitely gen-
erated free modules for a principal ideal domain. In particular we determine
all representations X with Ext} (X, X) = 0.

1. Introduction

Let @ be a finite quiver and let R be a principal ideal domain. By an RQ-
lattice we mean a representation of ¢ by means of finitely generated free R-
modules; equivalently it is an RQ-module which is finitely generated and free
over R. If Q has vertex set {1,...,n}, the rank vector rank X € N" of a lattice
X gives the rank of the R-module attached to each vertex. A lattice is rigid
if Ext!(X,X) = 0, and is ezceptional if in addition End(X) = R. A lattice is
absolutely indecomposable if X K = X ®g K is an indecomposable K@Q-module
for each homomorphism R — K to an algebraically closed field.

In this paper we use an action of the braid group to describe the exceptional
lattices. We then use exceptional lattices to compute all rigid lattices. At the
end we prove some special cases of the following conjecture: for each positive
rea) root o € N™ there is a unique absolutely indecomposable lattice of rank
vector a.

2. Exceptional lattices

By an R-field we mean a homomorphism of R into a field K. We normally only
consider algebraically closed R-fields, meaning that K is algebraically closed. We
write MK for M ® g K. If M is an RQ-module, then we consider MK asa KQ-
module. Since R is a principal ideal domain, a f.g. R-module M is free if and
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only if M’ has constant dimension for all algebraically closed R-fields K , and a
homomorphism 6 : M — N between f.g. free R-modules is an isomorphism (resp.
an epimorphism, resp. a split monomorphism) if and only if 85 : M¥ — NK s
an isomorphism (resp. an epimorphism, resp. a monomorphism) for all K.

LEMMA 1. If X is an RQ-lattice, then it has projective dimension at most 1
and Ext}m (X, V)K =~ Ext}(Q(XK, Y¥) for all RQ-modules Y and algebraically
closed R-fields K. In particular X is rigid if and only if X¥ is a rigid KQ-
module for all algebraically closed R-fields K.

PROOF. There is a standard exact sequence
0 - RQ®s B®s RQ — RQ ®s RQ — RQ — 0.

where S is the R-subalgebra of RQ with basis the trivial paths e;,...,e,, and B
is the free R-submodule of RQ with basis the arrows. Applying — ® ro X gives

0= Torf?(RQ,X) > RQ®s B®s X — RQ®s X — X — 0,

a projective resolution. The statement about extensions holds since if P is a f.g.
projective RQ-module then Homgq(P,Y)X = Homyq(PX,YX). O

For o, B8 € N the Ringel form is defined by

{a,8) = Zazﬂi - aip;,
=1

a:i—j

and ext(a, 8) € N is defined inductively by ext(a,0) = ext(0, 3) = 0 and

ext(a, 8) = rnax{ —(a', 8)

0<o <a, extld,a—a)=0 }

0<p8'<B, ext(B-p,8)=0

By the results of [S3] and [C2] this is the general value of dim Extj., (M, N) with
M and N running through the varieties of K@Q-modules of dimension vectors «
and 3, where K is any algebraically closed field. In particular if M and N are
rigid K@Q-modules then dim Ext}{Q (M, N) = ext{a, ) since they correspond to
open orbits in these varieties.

LEMMA 2. If X and Y are rigid lattices with rank vectors o and 83, then
Ext}{Q(X, Y) and Hompgg(X,Y') are free R-modules. They have ranks ext(a, (3)
and hom(c, 8) = (a, 8) + ext(a, 8) respectively.

PRrROOF. For all algebraically closed R-fields K the modules X¥ and Y are
rigid KQ-modules of dimension vectors a and S, so dim Ext}{Q(X K yKy =
ext(a, 3) by the remarks above. By Lemma 1 it follows that Ext}%Q (X,Y) is free
over R of rank ext(a, ). If 0 = P — P’ — X — 0 is a projective resolution of
X then the long exact sequence

0 — Hompg(X,Y) — Hompq(P',Y) = Hompo(P,Y) — Extho(X,Y) — 0
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consists of free R-modules, so remains exact on tensoring with K. It follows that
the natural map Hompgg(X,Y)¥ — Homgq(X%,Y¥) is an isomorphism. Now
dim Homgq(X¥,Y*) = hom(a, B) since the Ringel form gives the difference
in the dimensions of Hom and Ext', and the assertion about Hompgg(X,Y)
follows. [

LEMMA 3. There is at most one exceptional lattice of each rank vector.

PROOF. Say X and Y are exceptional lattices of rank «. Now hom(a,a) =1
since Endrg(X) = R, and then Hompgg(X,Y) = R since R is a principal ideal
domain. Let & : X — Y be a generator. If K is an algebraically closed R-
field, then the map 8% : X¥ — Y¥ is nonzero. Since there is at most one
rigid KQ-module of any given dimension vector we have XX =~ YK  Now
Hompg g (XX, Y X) is one-dimensional, so 6% is an isomorphism. It follows that
0 is an isomorphism. O

By an exceptional sequence (X1,...,X,) of length r we mean a sequence of
exceptional lattices with Hom(X;, X;) = Ext'(X;, X;) = 0 for i > j. If (X,Y)
is an exceptional sequence and X and Y have ranks «, 3, then the mutations
LxY and Ry X are defined as follows. We write D for Hompg(—, R), and use
Lemma 2 to ensure that the universal constructions exist.

(1) If Hom(X,Y) = 0 then LxY and Ry X are defined by the universal exact
sequences

0—-Y — LxY - XQrExt/(X,Y) =0
0—-Y ®rDExt'(X,Y) - Ry X — X — 0.
(2) Suppose that Hom(X,Y) # 0. If 3 > (a, B)a then LxY is the cokernel of

the universal map
X ®g Hom(X,Y) - Y,

and otherwise it is the kernel. If o > (a,3)F then Ry X is the kernel of the
universal map
X - Y ®g DHom(X,Y),

and otherwise it is the cokernel.
LEMMA 4. (LxY,X) and (Y, Ry X) are exceptional sequences, and
rank LxY = +(8 — (o, B)a), rank Ry X = +(a — (a, 8)3).

PRroOF. Passing to an algebraically closed R-field K, these are the standard
constructions of the mutations in [C1], cf. [Ru]. The assertion follows. For
example if Hom(X,Y) # 0 and a > («, )0 we have an exact sequence

00— RyX —-X—-Y®r DHom(X,Y) — C — 0,

and hence
X¥ 5 [Y g DHom(X,Y)|¥ — C¥ - 0.
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Now the standard mutation is
0— RyxX¥ - XX - YK @ D Hom(X¥,YE) -0
where Dy is the duality with K. Thus C¥ =0, so C is zero. It follows that
(Ry X)® = Ryx X ¥,
so Ry X is an exceptional lattice of rank o — {, 8)5. O

Recall that the braid group on r strings is generated by o1,...,0,_1 subject
to the relations o;0; = 0;0; for ¢ # j+1 and 0,0,110; = 0;410;0;41. By Lemma
3 and [C1] we obtain

LEMMA 5. The braid group on r strings acts naturally on the set of exceptional
sequences of length r via the assignments

O’i(X1, e ,XT) = (Xl, e 7Xi—1aXi+17RXi+1Xi,Xi+2a P ,Xr)
o7 ( X1y X)) = (X1, Xio1, L, X1, Xiy Xioy oo, Xr).

Recall that o € N™ is a real Schur root if over an algebraically closed field
there is an exceptional representation of dimension vector . By Kac’s canonical
decomposition the real Schur roots can be characterized as the oo € N™ with
(o, @) = 1 and with no non-trivial decomposition a = 8 + v with 3,7 € N® and
ext(3,v) = ext(y, ) = 0, see [K1, §4]. This characterization shows that the real
Schur roots do not depend on the field.

THEOREM 1. The assignment X — rank X induces a 1-1 correspondence be-
tween exceptional lattices and real Schur roots.

Proor. Thanks to lemma 3 we only need to show that the rank vectors of
the exceptional lattices are the real Schur roots. Let K be an algebraically closed
R-field. If X is an exceptional lattice of rank o then X ¥ is an exceptional K Q-
module, so « is a real Schur root. On the other hand, if « is a real Schur root
then there is an exceptional K@Q-module of dimension «. This implies that the
full subquiver of ¢ on the support of « has no oriented cycles (for otherwise one
can construct representations of dimension a on which the trace of the oriented
cycle is arbitrary, but the variety of representations of dimension « has a dense
orbit, so the trace must be constant). Thus, passing to the support of & we may
suppose that @ has no oriented cycles. Suppose the vertices are ordered so that
the sequence of projectives (KQe1,...,KQe,) is an exceptional sequence. By
the result of [C1] there is an element g of the braid group on n strings such that
g(KQe,...,KQe,) includes the exceptional K @Q-module of dimension «. Then
g(RQe1, ..., RQe,) includes an exceptional lattice of rank a. [O
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3. Rigid modules

An RQ-module X is rigid if Extl(X ,X) = 0. We can now give a complete
description of the rigid RQ-modules which are f.g. over R.

THEOREM 2. (1) Any rigid RQ-module, f.g. over R, is a lattice.

(2) Any rigid lattice is a direct sum of exceptional lattices, and the terms in
this direct sum are unique up to isomorphism and reordering.

(3) There is at most one rigid lattice of each rank vector, and the rank vectors
which arise in this way do not depend on R.

ProOOF. (1) Let X be the module, and consider it as a representation of Q,
with a f.g. R-module X; for each vertex ¢, and a homomorphism X, : X; — X
for each arrow a : ¢ — j. Since R is a principal ideal domain we can choose a
decomposition of each X; as a direct sum of copies of R and R/7" with w prime
and » > 1. Let 0 —» X; — E; — X; — 0 be the direct sum of a split exact
sequence 0 — R — R?> — R — 0 for each occurrence of R as a summand of X,
and a non-split exact sequence

r (71r) r—1 r+1 (=7 1) r
0—-R/m" S R/7" " @®R/7 —" R/7" -0
for each occurrence of R/#" as a summand of X;. If a : ¢ — j is an arrow then
the map X, : X; — X, can be completed to a commutative diagram

| | |x

0—>Xj—>Ej—>Xj—->0.

To prove this we may suppose that X; and X; are indecomposable.

If X; = R then the top sequence splits, X, factors through the epi E; — Xj,
and it is easy to construct E,. On the other hand, if X; = R/n" and the map
X, is nonzero then X; must be of the form R/7°. Now X, is multiplication by
x € R with 77z € 7°R, and one can take E, with matrix (§2).

We have constructed an exact sequence of representations 0 - X — E —
X — 0, and by assumption this splits. Thus each short exact sequence 0 —
X; — E; — X; — 0 splits, so each X; must be free. This proves the result.

(2) First uniqueness. If X can be written as a direct sum of exceptionals
lattices Y7 @ --- @ Y, and K is an algebraically closed R-field then X K is the
direct sum of indecomposables VX @ - - @Y. By the Krull-Schmidt theorem the
YiK are uniquely determined, so by Theorem 1 the Y; are uniquely determined.

For the existence of a decomposition, fix an algebraically closed R-field F' and
let My, ..., M, be the non-isomorphic indecomposable summands of X F say

XFeMMe oM™

The M; are exceptional and by [HR, Corollary 4.2] they can be ordered so
that (M,..., M,) is an exceptional sequence. Let (X1,...,X,) be the sequence



160 WILLIAM CRAWLEY-BOEVEY

of exceptional lattices with the same ranks. It is an exceptional sequence by
Lemma 2. For any algebraically closed R-field K we have

XK= (™ @ (XY
since both sides are rigid of the same dimension vector. Also
rank Hom(X,, X) = dim Hom(XX, X¥) = m, > 0.

Let 6 : X, ® g Hom(X,, X) — X be the universal map and let C be its cokernel.
Now the map 6% can be identified with the universal map

XX ®k Hom(X X, XKy - x¥

which is the inclusion of (XKX)™ as a direct summand of X*. Since this holds
for all K, the map 6 is mono and C is free over R. Also

CK = Coker(8%) = (XK g - .. @ (X )m

so Ext'(CK,C¥) = 0 and Ext’(CKX,XX) = 0, and hence C is rigid and
Ext'(C,X,) = 0. Thus X & X, ®g Hom(X,, X) ® C, and by induction X
is a direct sum of exceptional lattices.

(3) If X and Y are rigid lattices, both of rank «, and if K is an algebraically
closed R-field, then X* and Y¥ are rigid KQ-modules of dimension ¢, so iso-
morphic. As in the uniqueness part of (2), the assertion X = Y follows on
considering the decompositions of X and Y into exceptional lattices. The rank
vectors which arise can be characterized as the sums «; + - - - + «, of real Schur
roots with ext(o;, ;) =0 for all ¢,5. O

Remark 1. We can reformulate some of the previous theorem. Fix an R-field
R — K and let M be an K@Q-module. By an R-form of M we mean an RQ-
lattice X and an isomorphism XX — M. We say that an R-form is rigid if it
is so as an RQ-lattice. We say that two R-forms X,Y are conjugate if there is
an isomorphism 6§ : X — Y. In this case ¥ is an isomorphism X¥ — Y ¥ and
identifying both sides with M we obtain ¢ € Autxg (M) making the diagram

XK — M
x| Lo
YE M

commute.

Observe that in case the homomorphism R — K is mono the R-forms of M
can be identified with RQ-submodules of M, and two R-forms X, Y are conjugate
if and only if there is ¢ € Autxg(M) with ¢(X) =Y.

Now Theorem 2 implies that any rigid KQ-module has a rigid R-form, unique
up to conjugacy.
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Remark 2. The theory of perpendicular categories extends to integral repre-
sentations. If ¢} has no oriented cycles, X is an exceptional lattice of rank «,
and X+ is the category of RQ-modules M with Hom(X, M) = Ext!(X, M) = 0,
then there is an equivalence RQ’-Mod — X' for some quiver Q' with n — 1
vertices and no oriented cycles. To prove this, recall that if K is an algebraically
closed R-field then the category of K@Q-modules perpendicular to X¥ is equiva-
lent to K Q’-Mod for some quiver @' with n—1 vertices [S1]. Now the dimension
vectors py, . .., pn—1 of the indecomposable relative projectives in (X¥)+ do not
depend on K since they can be characterized as the real Schur roots p with
hom(a,p) = ext(a,p) = 0 and ext(p,3) = 0 for all real Schur roots 8 with
hom(a, 8) = ext(,3) = 0. Also the dimension vectors sq,...,s,_1 of the cor-
responding simple objects in (X®)L are independent of K, since they can be
deduced from the Cartan matrix ({p;,p;))i;. Let P; and S; be the exceptional
lattices of rank vectors p; and s;. Now P = P, @ --- @ P,_; is rigid, belongs
to X+, and is a generator for X+ (for if M € X+ then M¥ ¢ (XK)L so PK
generates MKX). Thus P is a f.g. projective generator for X1, so X< is equiv-
alent to End(P)°*-Mod. Now Hom(P;, S;) = R, so we can choose an R-module
generator 6, : P, — S;. Since 6X is an epimorphism for all K, with relative
projective kernel, it follows that 6; is an epimorphism with kernel isomorphic to
a direct sum of copies of the P;. Moreover the number of copies of P; in a direct
sum decomposition of Ker(8;) is the number of arrows i — j in Q’. Thus there
is a natural map RQ" — End(P)°P, which is an isomorphism, since it is so on
inducing to any R-field.

Remark 3. If @@ is Dynkin then the lattices X which are direct sums of ex-
ceptionals can be characterized as those with dim X K and dim " X¥ in-
dependent of K for all n € N, where 75 and 7, are the Auslander-Reiten
translates for KQ. For a proof one uses the functors 7(—) = D Ext'(—, RQ) and
r=(-) = Bxt'(D(-), RQ).

4. A conjecture

One can conjecture that for each positive real root o € N™ there is a unique
absolutely indecomposable lattice of rank vector a.

(1) In case R is an algebraically closed field the conjecture is part of Kac’s
Theorem, see [K2], to which we also refer for the definition of real roots in
case the quiver has loops. For R an arbitrary field the conjecture holds by a
Galois-theoretic argument of Schofield [S2].

(2) In case « is a real Schur root the conjecture follows from Theorem 1. If X
is a lattice of rank & then by definition X is absolutely indecomposable if and
only if X* is indecomposable for each algebraically closed R-field K. Since o
is a real root, by Kac’s theorem the exceptional K @-module of dimension « is
the unique indecomposable KQ-module of dimension . Thus X is absolutely
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indecomposable if and only if each X* is exceptional, so if and only if X is
exceptional.

(3) In case @ has only two vertices the conjecture holds: if either vertex has
a loop there is nothing to do, since there is at most one positive real root, while
if there are no oriented cycles then all positive real roots are real Schur roots.
It only remains to deal with the quiver T'y;, with a > 0 arrows from 1 to 2 and
b > 0 arrows from 2 to 1. In this case the claim follows from Ringel’s work [Ri].
All we need is the following version of Ringel’s reflection functor og.

Let S be an exceptional lattice. Let 92 be the category of lattices X such
that for all algebraically closed R-fields K, Ext'(S¥, X¥) = Ext!(X¥,5%) = 0
and XX has no summand which can be embedded in, or is a quotient of, a
direct sum of copies of S¥. Write zmg /S for the category obtained by fatoring
out those maps which factor through a direct sum of copies of S. Let Emjg
be the category of lattices X with Hom(S¥, X¥) = Hom(X¥,SX) = 0 for all
K. If X € M3, it is easy to see that Hom(S, X) and Hom(X, S) are both free,
Hom(S, X)¥ = Hom(S¥, X¥), and Hom(X, §)¥ = Hom(X¥,§K). Now the
universal maps 6 : S ®r Hom(S,X) - X and ¢ : X — S ®g DHom(X, S) are
a mono- and an epimorphism, since they are on inducing to any R-field [Ri,
Lemma 2], and the composition ¢@ is zero, since it is zero over any R-field,
[Ri, p470]. The assertion is that the functor og(X) = Ker(¢)/Im(6) defines an
equivalence 93 /S — M”%, cf. [Ri, Proposition 2]. The proof is straightforward.

(4) In case @ is Dynkin or Euclidean the conjecture holds: in order to deal
with positive real roots which are not real Schur roots one can use perpendicular
categories to reduce to A, with cyclic orientation, and thence to the quiver I'y;.
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