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Introduction

Let X be a smooth and proper scheme over a perfect field k. Assume X
lifts to a smooth scheme X̃ over W (k). It was discovered by Grothendieck
that the hypercohomology of the de Rham complex Ω·

X̃/W (k)
does not de-

pend on the lifting but only on X. The crystalline cohomology defines this
hypercohomology intrinsically in terms of X. It makes sense without the
existence of any lifting X̃. Berthelot proved that this cohomology enjoys all
good properties, i.e. it is a Weil cohomology on the category of proper and
smooth schemes over k.

The de Rham-Witt complex WΩ·X/k was defined by Illusie [I] relying on

ideas of Lubkin, Bloch and Deligne. It is a complex of sheaves of W (k)-
modules on X, whose hypercohomology is the crystalline cohomology.

The main goal of this paper is to extend Illusie’s definition of the de Rham-
Witt complex to a relative situation, where X is an arbitrary scheme over a
Z(p)-algebra R. The de Rham-Witt complex is a projective system indexed
by N of complexes WnΩ

·
X/R of Wn(R)-algebras on X. If p is nilpotent in R

and X is smooth over SpecR the hypercohomology of WnΩ
·
X/R is isomorphic

to the crystalline cohomology H∗crys(X/Wn(R)) = H∗(X/Wn(R),Ocrys
X/Wn(R))

of the crystalline structure sheaf.
We define a de Rham-Witt complex with coefficients in a crystal E on the

crystalline site of X/Wn(R). Its hypercohomology computes the crystalline
cohomology of E.

As an application we show that the first crystalline cohomology of an
abelian scheme over a ring R where p is nilpotent has naturally the structure
of a 3n-display in the sense of Zink [Z]. This was known in the case where the
geometric fibres of this abelian scheme have no p-torsion points, and trivially
in the case where the ring R is reduced.

In the following we will give a more detailed description of the results of
this paper. Let R be a Z(p)-algebra. In the first chapter we define the de
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Rham-Witt complex for anyR-algebra S. It is projective system of complexes
of Wn(R)-modules {WnΩ

·
S/R}n∈N. We identify {WnΩ

·
S/R}n∈N as an initial

object in the category of F − V -procomplexes over the R-algebra S. These
procomplexes are defined as follows:

By a differential graded Wn(S)/Wn(R)-algebra Pn we mean the following:
Pn is a graded Wn(S)-algebra with unit element:

Pn =
⊕
i∈Z≥0

P i
n

and equipped with a Wn(R)-linear differential d : Pn → Pn, which is homo-
geneous of degree one such that

ω · η = (−1)ijηω , ω ∈ P i
n , η ∈ P j

n

d(ω · η) = (dω)η + (−1)iωdη
d2 = 0

Let γk, k ≥ 0 be the canonical divided powers on the ideal VWn−1(S) ⊂
Wn(S). We also denote by d the map Wn(S) −→ P 0

n
d−→P 1

n . If this map d
is a pd-differential, i.e. if

dγk(x) = γk−1(x)dx for x ∈ VWn−1(S)

we call Pn a pd-differential graded Wn(S)/Wn(R)-algebra.

Definition 1 An F −V -procomplex over an R-algebra S is a projective sys-
tem of differential graded Wn(S)/Wn(R)-algebras Pn for n ≥ 1:

. . .→ Pn+1 → Pn → . . .→ P1

This system is equipped with two sets of homomorphisms of graded abelian
groups

F : Pn+1 −→ Pn , V : Pn −→ Pn+1 n ≥ 1

such that the following properties hold:

(i) Let Pn,[F ] be the graded Wn+1(S)-algebra obtained by restriction of scalars
by F : Wn+1(S) → Wn(S). Then F induces a homomorphism of graded
algebras:

F : Pn+1 −→ Pn,[F ]
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(ii) The structure morphism Wn(S) → P 0
n is compatible with F and V .

(iii) The following relations hold:

FV ω = pω for ω ∈ Pn , n ≥ 1
Fd V ω = dω
Fd[x] = [xp−1]d[x] , x ∈ S

V (ω Fη) = ( V ω) · η , η ∈ Pn+1

This definition implies that Pn is even a pd-differential gradedWn(S)/Wn(R)-
algebra for each n. Let Ω̆·Wn(S)/Wn(R) be the pd-differential de Rham complex

(which is the universal pd-differential graded Wn(S)/Wn(R)-algebra) we ob-
tain a natural epimorphism:

Ω̆·Wn(S)/Wn(R) → WnΩ
·
S/R (1)

While Illusie works with V -procomplexes and identifies {WnΩ
·
S/R}n∈N —

for R = k a perfect field of characteristic p — as a universal V -procomplex
and afterwards shows that the Frobenius on {WnΩ

·
S/R}n∈N is well-defined by

a rather long computation, the starting point of our construction is that we
can already define the Frobenius on Ω̆·Wn(S)/Wn(R). The crucial observation
here is the following:

If ν : Wn(S) →M is a pd-derivation in some Wn(S)-module M , then

Fν : Wn+1(S) −→ M[F ]

ξ = [x] + V % 7−→ [x]p−1ν([x]) + ν(%)

is also a pd-derivation. The verification of the additivity of Fν requires that
ν is a pd-derivation.

Then WnΩ
·
S/R is defined as a quotient of Ω̆·Wn(S)/Wn(R). If R is a perfect

ring of characteristic p our complex agrees with Illusie’s complex.
By glueing arguments the definition is then extended to schemes X over

SpecR to obtain the de Rham-Witt complex WnΩ
·
X/R. We set

WΩ·X/R = lim
←−
n

WnΩ
·
X/R

We remark that Hesselholt and Madsen [HM] defined independently an
absolute de Rham-Witt complex WnΩ

·
S for a Z(p)-algebra S, which is closely

related to ours. There is a homomorphism WnΩS → WnΩ
·
S/Z(p)

, which com-

mutes with F and V , but this is in general not an isomorphism, e.g. S = Z(p).
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In the second chapter we give an explicit description of the de Rham-Witt
complex WΩ·S/R if S = R[T1, . . . , Td] is a polynomial ring. In this description

we ignore the Wn(S)-module structure on WΩ·S/R but consider it only as a

Wn(R)-module.
Let us first consider the case of one variable S = R[T ]. We denote the

Teichmüller representative of T byX = [T ] ∈ W (R[T ]). Let k ∈ Z≥0[
1
p
] be an

arbitrary element, which will be called a weight. We denote its denominator
by pu(k). Any Witt vector ω ∈ Wn(S) has a unique expression

ω =
∑

k integral

ξkX
k +

∑
k not integral

V u(k)

(ηkX
pu(k)k),

where ξk ∈ Wn(R) and ηk ∈ Wn−u(k)(R), and these elements are zero for
almost all k. Actually only weights such that pn−1k is integral appear in this
expression.

An element in ω ∈ WnΩ
1
S/R has a unique expression

ω =
∑

k≥1,k integral

ξkX
k−1dX +

∑
k not integral

d V u(k)

(ηkX
pu(k)k),

where ξk ∈ Wn(R) and ηk ∈ Wn−u(k)(R), and these elements are zero for
almost all k.

This means that there are direct decompositions as W (R)-modules:

Wn(S) =
⊕

k integral

Wn(R)Xk ⊕
⊕

k not integral

V u
Wn−u(R)Xk

WnΩ
1
S/R =

⊕
k≥1, integral

Wn(R)Xkd logX ⊕
⊕

k not integral

V u
Wn−u(R)dXk

(2)
In these formulas Xk, Xk, Xkd logX, and dXk are viewed as symbols. For
l 6= 0, 1 we have WnΩ

l
S/R = 0. The action of F, V, d on (2) can easily be made

explicit.

We turn now to the case of several variables S = R[T1, . . . Td]. For the
description of the de Rham-Witt complex we introduce the Cartier-Raynaud
algebra DR of the ring R. This algebra is a variant of the algebra introduced
by Illusie and Raynaud in [IR]. The elements of DR are formal sums:∑

n≥0

V nξn +
∑
n>0

ηnF
n +

∑
n≥0

dV nξ′n +
∑
n>0

η′nF
nd (3)
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Here n runs over integers as indicated. We consider F , V , d as indetermi-
nates. By ξn, ξ

′
n, ηn, η

′
n we denote arbitrary elements in W (R) which satisfy

the following condition:

For any given number u > 0 we have ηn, η
′
n ∈ V u

W (R) for almost all
n > 0.

On DR we have the obvious structure of an abelian group. Let c ≥ 0 be
an integer. We denote by DR(c) the subgroup which consists of all elements
satisfying the conditions:

ξn, ξ
′
n ∈ V c−n

W (R) for c > n
ηn, η

′
n ∈ V c

W (R) for n > 0
(4)

There is a unique ring structure on DR which is continuous with respect to
the topology defined by the DR(c), and such that the following relations hold:

FV = p = V 0p, V ξF = V ξ, for ξ ∈ W (R),
F ξ = F ξF, ξV = V F ξ,
dξ = ξd, d2 = 0,
FdV = d V d = dV p, dF = pFd

(5)

The elements of (3) with ξ′n = η′n = 0 form a subring ER ⊂ DR which is
complementary to the two-sided ideal generated by d. The ring ER is called
the Cartier ring. The subgroup DR(c) is a right ideal DR(c) = V cDR+dV cDR,
which is invariant under left multiplication by d.

For an arbitrary R-algebra S we extend the W (R)-module structure on
WΩ·S/R to a DR-module struture by setting: Fω = Fω, V ω = V ω, dω = dω
for ω ∈ WΩ·S/R.

Let us denote by [1, d] the intervall in N. We call a function k : [1, d] →
Z≥0 a primitive weight if not all of its values are divisible by p.

We fix for each primitive k an order of the set Supp k = {i1, . . . , ir} such
that

ordp ki1 ≤ . . . ≤ ordp kir .

Moreover we consider partitions P : I0 t I1 t . . . t Il = Supp k which are
increasing, and such that the intervalls Ij are not empty. For each primitive k
and each partition P of Supp k we define a basic Witt differential e(1, k,P) ∈
WΩl

S/R as follows: Let kIj be the vector with components ki for i ∈ Ij. Let
pτj be the highest power of p which divides all these components. We set:

XkIj =
∏
i∈Ij

[Ti]
ki
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Then we define e(1, k,P) to be the image of the following differential by the
map (1):

XkI0 (p−τ1dXkI1 ) · . . . · (p−τldXkIl )

Theorem 2 Each element of WΩ·S/R has a unique expression

ξ +
∑
k,P

θk,P e(1, k,P)

Here ξ ∈ W (R) is regarded as an element of WΩ0
S/R = W (S). The sum runs

over all primitive weights and partitions as above. The elements θk,P ∈ DR,
satisfy the following condition:

Let c > 0 be an arbitrary integer. Then for almost all primitive weights
k we have θk,P ∈ DR(c).

We have a canonical isomorphism:

WcΩ
·
S/R

∼= DR/DR(c)⊗DR
WΩ·S/R

In the remaining part of this introduction we assume for simplicity that
p is nilpotent in R. Let S be an arbitrary R-algebra. The de Rham-Witt
complex has the following base change properties. Let S → S ′ be an étale
morphism of R-algebras. Then Wn(S) → Wn(S

′) is étale and we have an
isomorphism of F − V -procomplexes

WnΩ
·
S′/R

∼= Wn(S
′)⊗Wn(S) WnΩ

·
S/R .

For the next base change property we consider an arbitrary ring homo-
morphism R → R′. Let S be a smooth R-algebra. We set S ′ = R′ ⊗R S.
There is a canonical isomorphism:

WcΩ
·
S′/R′

∼= DR′/DR′(c)⊗DR
WΩ·S/R

In the third chapter we prove that for a smooth scheme over SpecR the
de Rham-Witt complex computes the crystalline cohomology. This is first
done in the case where X lifts to a smooth formal scheme over Wn(R). The
essential point is to show that the de Rham complex of a lifting over Wn(R)
is quasiisomorphic to the de Rham-Witt complex. If R is a perfect ring
of characteristic p, Illusie shows this comparison theorem by computing the
graded quotients of the canonical filtration of the de Rham-Witt complex.
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In this paper we follow a different approach which is applicable to general R.
We show that for S = R[T1, . . . , Td] the de Rham-Witt complex decomposes
naturally into a direct sum of the subcomplexes such that one of them is
isomorphic to the de Rham complex of the lifting over W (R) and the other
one has zero cohomology, i.e. it is exact. (The reader notices quickly, which
are the two subcomplexes in the case S = R[T ].) For general smooth S/R
one uses the étale base change property of the de Rham-Witt complex.

Then we construct the de Rham-Witt complex for crystals. Let E be a
crystal on Crys(X/Wn(R)). We consider an affine open set U = SpecS ⊂ X
and a pd-thickening A → S relative to Wn(R). Then we have the pd-
differential deRham complex with coefficients in E:

(EA ⊗A Ω̆·A/Wn(R),∇)

where EA is the value of the crystal at the pd-thickening A→ S.
We apply this to the situation where A = Wn(S). We set En = EWn(S).

It is easy to see that ∇ is well-defined on the quotient obtained from (1):

En ⊗Wn(S) Ω̆·Wn(S)/Wn(R) → En ⊗Wn(S) WnΩ
·
S/R

This defines the de Rham-Witt complex with coefficients in E:

(En ⊗Wn(OX) WnΩ
·
X/R,∇)

Again the hypercohomology of this complex is the crystalline cohomology of
E if E is flat and if X is smooth over R.

Over a perfect ring R the de Rham-Witt complex with coefficients in E
was defined by Étesse [E]. It was shown by Bloch [Bl2] that the crystal E
may be recovered from ∇ for a perfect ring R. For a general base this is
proved in [LZ].

Let X be a proper and smooth scheme over SpecR, where R is a complete
local ring. We assume that the Frobenius R/pR → R/pR is a finite ring
homomorphism. We generalize the slope spectral sequence to this case.

Ej,i
1 = H i(X,WΩj

X/R) =⇒ H i+j
crys(X/W (R)).

If R is a perfect field of char. p, Bloch [Bl] shows that the spectral sequence
degenerates up to p-torsion. In our general situation we do not know at this
time how to prove any analogous result,e.g. whether this spectral sequence
degenerates up to V -torsion.
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In the end we give an application of the de Rham-Witt complex in the
theory of displays [Z]. Let R be a ring auch that p is nilpotent in R. Let A
be an abelian scheme over R of dimension g. By [BBM] the crystalline coho-
mology H1

crys(A/W (R)) is a projective W (R)-module of rank 2g. We show
that the de Rham-Witt complex of A over R defines on P = H1

crys(A/W (R))
the structure of a 3n-display (P,Q, F, V −1). This structure is functorial and
commutes with base change R→ R′.

The definition of the 3n-display is as follows: The Frobenius on A modulo
p defines an Frobenius operator F : P → P on the W (R)-module P . We
need to define aW (R)-submoduleQ of P which contains VW (R)P , such that
P/Q is a projective R-module. Moreover we need an F -linear epimorphism:

V −1 : Q −→ P

satisfying V −1( V ωx) = ωFx for x ∈ P , ω ∈ W (R).
Let us denote by IWΩ·A/R the subcomplex of the de Rham-Witt complex

WΩ·A/R which is obtained by replacing the group W (OA) in degree zero by
VW (OA). We define Q = H1(A, IWΩ·A/R) as the hypercohomology. The
natural inclusion IWΩ·A/R ⊂ WΩ·A/R induces an exact sequence:

0 → Q→ P → H1(A,OA) → 0

On the other hand we have the following map of complexes:

IWΩ·A/R : VW (OA)
d−→ WΩ1

A/R

d−→ WΩ2
A/R −→ . . .

V −1
y F

y pF
y

WΩ·A/R : W (OA)
d−→ WΩ1

A/R

d−→ WΩ2
A/R −→ . . .

The commutativity of the squares follows from the identities:

pFd = dF and FdV = d .

The diagram above induces a map

V −1 : Q := H1(X, IWΩ·X/R) −→ P = H1(X,WΩ·X/R) .

This defines the structure of a 3n-display on P.
Assume moreover that the geometric fibres of A over SpecR have no p-

division points. Then this construction gives the 3n-display which is dual to
the 3n-display associated to the p-divisible group of A in [Z].
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We note that the knowledge of the 3n-display is equivalent to that of the
p-divisible group by [Z] Theorem 3.2. if R is excellent. The crystal associated
to A in the sense of [BBM] may be recovered from the 3n-display in this case
but not vice versa if the ring R contains nilpotent elements.

We would like to thank Bill Messing for his interest in this work and many
useful suggestions on the manuscript.

We also thank the IHP in Paris where part of this work was done for its
hospitality during the “Automorphic Semester 2000”.
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Chapter 1

The de Rham-Witt complex

1.1 pd-Derivations

Let A be a unitary commutative ring, and let B be a unitary commutative
A-algebra. Assume that b ⊂ B is an ideal, which is equipped with divided
powers γn : b → b for n ≥ 1. We set γ0(b) = 1 for b ∈ b.

Definition 1.1 Let M be a B-module. A pd-derivation ν : B → M over A
is a A-linear derivation ν which satisfies:

ν(γn(b)) = γn−1(b)ν(b), (1.1)

for n ≥ 1 and each b ∈ b.

The pd-derivations form a B-module which we denote by

D̆erB/A(B,M).

There is a universal pd-derivation d : B → Ω̆1
B/A. The B-module Ω̆1

B/A is

obtained as the factor module of Ω1
B/A by the submodule generated by all

elements d(γn(b))− γn−1(b)d(b).

On b we introduce the function αp = (p−1)!γp. We will now assume that
A is a Z(p)-algebra. Then the function αp determines the functions γn for all
n uniquely ([G] p.70). A pd-derivation satisfies the relation:

ν(αp(b)) = bp−1ν(b) for b ∈ b (1.2)

11



Lemma 1.2 Let ν : B →M be an A-linear derivation, which satisfies (1.2).
Then ν is a pd-derivation.

Proof: This is a straightforward verification. Clearly (1.2) is equivalent with

ν(γp(b)) = γp−1(b)ν(b)

. We show by induction on n that this implies (1.1). This is clear for n ≤ p.
For the induction we represent n as a p-adic number n =

∑
i≥0

aip
i, where

0 ≤ ai < p. We have the well-known formula ([BO] 3.3):

ordpn! =
1

p− 1

∑
i≥0

ai(p
i − 1)

Let ak be the first non-zero digit. We set m = n− pk. Then we find

ordpn! =
1

p− 1

∑
i≥k

ai(p
i − 1) = ordpm! + ordp(p

k)!

This shows that the binonmial coefficient
(
n
m

)
is a unit. Therefore we obtain:

γn(a) =
m!(pk)!

n!
γm(a)γpk(a) (1.3)

First we assume m > 0. Then the formula (1.1) holds by induction assump-
tion for γm(b) and γpk(b). Applying the derivation ν to (1.3) we obtain:

ν(γn(b)) =
m!(pk)!

n!
(γm−1(b)γpk(b) + γm(b)γpk−1(b))ν(b)

=
m!(pk)!

n!

(
(n− 1)!

(m− 1)!pk!
+

(n− 1)!

m!(pk − 1)!

)
γn−1(a)ν(a) = γn−1(a)ν(a)

Hence it remains to consider the case n = pk. It is easy to see that

ordp
(pk)!

p!(p(k−1)!)p
= 0

This implies by [BO] 3.1

γpk(a) =
p!(p(k−1)!)p

pk!
γp(γpk−1(a))
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If we apply ν to this identity we obtain by the induction assumption:

ν(γpk(b)) =
p!(p(k−1)!)p

pk!
γp−1(γp(k−1)(b)) · γp(k−1)−1(b)ν(b)

=
p!(p(k−1)!)p

pk!

((p− 1)p(k−1))!

(p− 1)!(p(k−1)!)(p−1)
γ(p−1)p(k−1)(b) · γp(k−1)−1(b)ν(b)

=
p!(p(k−1)!)p

pk!

((p− 1)p(k−1))!

(p− 1)!(p(k−1)!)(p−1)

(pk − 1)!

((p− 1)p(k−1))!(p(k−1) − 1)!
γpk−1(b)ν(b)

= γpk−1(b)ν(b)

Q.E.D.

A differential graded B/A-algebra will be a unitary graded B-algebra:

P = ⊕i∈Zi≥0
P i

Moreover P is equipped with an A-linear differential d : P → P such that
the following relations hold:

ωη = (−1)ijηω ω ∈ P i, η ∈ P j

d(ωη) = (dω)η + (−1)iωdη
d2 = 0

(1.4)

A pd-differential graded algebra is a differential graded algebra such that
the composite of the following maps is a pd-derivation:

B → P 0 → P 1

We set Ω̆i
B/A = ∧iΩ̆1

B/A, and form the pd-deRham complex. This is a
pd-differential graded algebra. For any other algebra P · of this sort we have
a unique homomorphism:

Ω̆·B/A → P ·

of differential graded pd-algebras.
We will now consider a unitary commutative Z(p)-algebra R and a unitary

commutative R-algebra S. The Witt vectors of any length Wm(S) have a
divided power structure on the ideal IS = VWm−1(S) which is defined by
([G] p76):

γn(
V ξ) =

pn−1

n!
V (ξn), ξ ∈ Wm−1(S)
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Then we have:
αp(

V ξ) = pp−2 V (ξp)

A pd-derivation ν : Wm(S) →M to a Wm(S)-module M is one with respect
to these divided powers. In other words the following relation is satisfied:

pp−2ν( V (ξp)) = pp−2 V (ξ(p−1))ν( V ξ)

We will see that in the de Rham-Witt complex this relation remains true
even if we divide it by p(p−2).

Our next aim is to define the action of the Frobenius on pd-derivations. It
is convenient not to specify the length of the Witt vectors: We call a W (S)-
module M discrete, if it is obtained by restriction of scalars W (S) → Wm(S)
for some natural number m. A map W (S) → M is called continuous, if it
factors through Wl(S) for some number l.

Let us consider any continuous pd-derivation ν : W (S) →M to a discrete
W (S)-module M . The we define a map:

Fν : W (S) →M (1.5)

as follows. An arbitrary ξ ∈ W (S) has a unique representation ξ = [x] + V ρ
for [x] ∈ S and ρ ∈ W (S). We set

Fν(ξ) = [x(p−1)]ν([x]) + ν(ρ) (1.6)

Clearly Fν is again a continuous map. We have the relation:

ν( F ξ) = p Fν(ξ) (1.7)

Indeed, this follows by applying ν to the equation F ξ = [x]p + pρ.
Let us denote byM[F ] theW (S)-module obtained via restriction of scalars

by F : W (S) → W (S). This is again a discrete module.

Proposition 1.3 Let ν : W (S) → M be a continuous W (R)-linear pd-
derivation. Then Fν : W (S) → M[F ] is a continuous W (R)-linear pd-
derivation too.

Proof: The problem is to show the additivity of Fν:

Fν(ξ + η) = Fν(ξ) + Fν(η), ξ, η ∈ W (S)
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We set ξ = [x] + V ρ, η = [y] + V σ, and we define τ by the equation

[x+ y] = [x] + [y] + V τ (1.8)

We obtain ξ + η = [x+ y]−V τ +V ρ+V σ and hence by definition:

Fν(ξ + η) = [x+ y]p−1ν([x+ y])− ν(τ) + ν(ρ) + ν(σ)

On the other hand we have:

Fν(ξ) + Fν(η) = [xp−1]ν([x]) + [yp−1]ν([y]) + ν(ρ) + ν(σ)

Therefore it suffices to show for arbitrary x, y ∈ S the equation:

[x+ y]p−1ν([x+ y]) = [xp−1]ν([x]) + [yp−1]ν([y]) + ν(τ) (1.9)

where τ is given by (1.8). To prove this we first check the following identity
in the Witt ring: ∑

i+j+k=p
i6=p,j 6=p,k 6=p
i≥0,j≥0,k≥0

(p− 1)!

i!j!k!
[x]i[y]j(V τ)k + αp(

V τ) = τ (1.10)

To prove this relation we may restrict to the case, where S = Z(p)[x, y] is
the polynomial ring in two variables. Since in this case the multiplication
by p is injective in the Witt ring it is enough to check the identity (1.10)
after multiplication by p. But then by the polynomial theorem the identity
becomes:

([x] + [y] + V τ)p − [x]p − [y]p = pτ

Using (1.8) it remains to verify:

[x+ y]p − [x]p − [y]p = pτ

But this is obtained applying the Frobenius F to the equation (1.8). Hence
we have established (1.10).

Now we compute:
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[x+ y]p−1ν[x+ y]− [xp−1]ν[x]− [yp−1]ν[y]

= ([x] + [y] +V τ)p−1ν[x]− [xp−1]ν[x]

+([x] + [y] +V τ)p−1ν[y]− [yp−1]ν[y]

+([x] + [y] +V τ)p−1ν(V τ)

=
∑

i+j+k=p−1

i6=p−1

(p−1)!
i!j!k!

[x]i[y]j(V τ)kν[x]

∑
i+j+k=p−1

j 6=p−1

(p−1)!
i!j!k!

[x]i[y]j(V τ)kν[y]

∑
i+j+k=p−1

k 6=p−1

(p−1)!
i!j!k!

[x]i[y]j(V τ)kν( V τ) + ( V τ)(p−1)ν( V τ)

(1.11)

The right hand side of the last equality is just ν applied to the left hand side of
equality (1.10) because ν was assumed to be a pd-derivation : ν(αp(

V τ)) =
( V τ)(p−1)ν( V τ) . Hence (1.11) is equal to ν(τ). This proves that Fν is
additive.

Next we show that Fν satisfies the Leibniz rule:

Fν(ξη) =F ξ Fν(η) +F η Fν(ξ)

With the same notation as before we find:

ξη = [xy] + V ([x]pσ) + V ([y]pρ) + V (pρσ)

Therefore we obtain:

Fν(ξη) = [xy](p−1)ν([xy]) + ν([x]pσ) + ν([y]pρ) + ν(pρσ)

= [y]p[x](p−1)ν[x] + [x]p[y](p−1)ν[y]
+[x]pν(σ) + pσ[x](p−1)ν([x])
+[y]pν(ρ) + pρ[y](p−1)ν([y])

+pσν(ρ) + pρν(σ)

= [y]p([x](p−1)ν[x] + ν(ρ)) + [x]p([y](p−1)ν[y] + ν(σ))
+pσ([x](p−1)ν[x] + ν(ρ)) + pρ([y](p−1)ν([y]) + ν(σ))

= ([y]p + pσ) Fν(ξ) + ([x]p + pρ) Fν(η)

= Fη Fν(ξ) + F ξ Fν(η)

(1.12)
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This shows the Leibniz rule. If ν is W (R)-linear we obtain Fν(W (R)) = 0
from the definition. By the Leibniz rule this implies that Fν is W (R)-linear.

Finally we have to check that Fν is a pd-derivation. The assertion is the
following equation:

Fν(αp(
V ρ)) = F ( V ρ)(p−1) Fν( V ρ) (1.13)

The left hand side of this equation is by definition:

Fν(pp−2 V (ρp)) = p(p−2)ν(ρp) = p(p−1)ρ(p−1)ν(ρ)

For the right hand side of (1.13) we find readily the same result.
Q.E.D.

If we start with a pd-derivation ν : Wm(S) → M , then we obtain a
pd-derivation Fν : Wm+1(S) → M[F ]. If we take for ν the universal

pd-differential d : Wm(S) → Ω̆1
Wm(S)/Wm(R) we obtain a homomorphism of

Wm+1(S)-modules:

F : Ω̆1
Wm+1(S)/Wm+1(R) → (Ω̆1

Wm(S)/Wm(R))[F ] (1.14)

By definition this map satisfies the following equations:

F (dξ) = ( Fd)(ξ), ξ ∈ Wm+1(S)
Fd( V η) = dη, η ∈ Wm(S)
Fd([x]) = [x](p−1)d[x], x ∈ S
d( F ξ) = p Fdξ

(1.15)

1.2 F-V procomplexes

We will start with a ring homomorphism R→ S, and consider pd-differential
graded Wn(S)/Wn(R)-algebras, with respect to the canonical divided powers
on VWn−1(S) ⊂ Wn(S).

Definition 1.4 An F − V procomplex over the R-algebra S is a projective
system {Pn} of differential graded Wn(S)/Wn(R)-algebras Pn for n ≥ 1:

. . .→ Pn+1 → Pn → . . .→ P1.

Moreover {Pn} is equipped with two sets of homomorphisms of graded abelian
groups:

F : Pn+1 → Pn V : Pn → Pn+1 n ≥ 1

The following properties hold:
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(i) Let Pn,[F ] be the graded Wn+1(S)-algebra obtained via restriction of
scalars F : Wn+1(S) → W (S). Then F induces a homomorphism
of graded Wn+1(S)-algebras

F : Pn+1 → Pn,[F ]

(ii) The structure morphism Wn(S) → P 0
n is compatible with F and V .

(iii) FV ω = pω for ω ∈ Pn n ≥ 1

FdV ω = dω

Fd[x] = [xp−1]d[x], x ∈ S
V (ωFη) = (V ω)η, η ∈ Pn+1

We indicate a few consequences of these relations:
For arbitrary ωi ∈ Pn we have:

V (ω0dω1 . . . dωr) = V ω0d
V ω1 . . . d

V ωn (1.16)

Indeed, we replace on the left hand side dωi by FdV ωi. Then we obtain by
using the fourth relation of (iii) the relation (1.16).

V dω = V 1dV ω = pdV ω (1.17)

The first relation is (1.16). Since d is W (R) linear the second relation follows
because

V 1V ω = V ( FV 1ω) = p V ω.

V Fω = (V 1) · ω, ω ∈ Pn (1.18)

Indeed we have: V Fω =V (1Fω) = (V 1)ω.

d Fω = p Fdω (1.19)

Indeed, if we replace ω by Fω in the second equation of (iii) we obtain:

d Fω = Fd V Fω = Fd V 1ω = FV 1 Fdω

V (ξ[xp−1])dV [x] = V ξd[x], for x ∈ S, ξ ∈ Wn(S) (1.20)
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Indeed using (1.16) and the relations (iii) we obtain

V (ξ[xp−1])dV [x] = V (ξ[xp−1]d[x]) = V (ξFd[x]) = V ξd[x].

We note that (1.20) appears in Illusie’s definition of a V -procomplex, but
it is automatic if F is present. By (1.16) and the last relation of (iii) we
conclude that F and V take exact elements of Pn to closed elements:

d V dω = 0, d Fdω = 0 (1.21)

We note that by the requirements of the definition F and V are uniquely
determined on the subalgebra of Pn generated over Wn(S) by 1 and the
elements dξ ∈ P 1

n for ξ ∈ Wn(S). Indeed, if we write ξ = [x] +V η for x ∈ S
and η ∈ Wn−1(S), we obtain from (iii)

Fdξ = [xp−1]d[x] + dη. (1.22)

The uniqueness of V is a consequence of (1.16).

Lemma 1.5 Let Pn be an F − V procomplex over the R-algebra S. Then
for each n ≥ 1 the differential d : W (S) → P 1

n satisfies the relation:

d V (ξp) = V (ξ(p−1))d V ξ, ξ ∈ Wn(S) (1.23)

In particular d is a pd-differential.

Proof: The proof of (1.23) consists of 3 steps. First we show that (1.23)
holds for ξ = [x], x ∈ S. Secondly we show that (1.23) holds for ξ = η1 + η2,
if (1.23) holds for ξ = η1 and ξ = η2. Thirdly we show that (1.23) hold for
ξ =V η, if it holds for ξ = η. Then (1.23) follows clearly from these 3 steps.

If ξ = [x] we obtain:

d V ([x]p) = d V F [x] = d V 1 · [x] =
V 1d[x] = V Fd[x] = V ([xp−1]d[x]) = V [xp−1]dV [x].

Next we assume the relation (1.23) holds for ξ = η1 and ξ = η2. We have to
prove:

dV ((η1 + η2)
p) = V ((η1 + η2)

p−1)d V (η1 + η2)
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Because of our assumption this is equivalent to the relation∑
i+j=p
i6=0,j 6=0

p!
i!j!
dV (ηi1η

j
2) = V (ηp−1

1 )d V η2 + V (ηp−1
2 )d V η1

+
∑

l+k=p−1
l 6=0,k 6=0

(p−1)!
l!k!

V (ηk1η
k
2)d(

V η1 + V η2)
(1.24)

One term of the sum on the left hand side may be expressed as follows:

p!

i!j!
d V (ηi1η

j
2) =

(p− 1)!

i!j!
V d(ηi1η

j
2) =

(p− 1)!

(i− 1)!j!
V (η

(i−1)
1 ηj2dη1) +

(p− 1)!

i!(j − 1)!
V (ηi1η

(j−1)
2 dη2)

=
(p− 1)!

(i− 1)!j!
V (η

(i−1)
1 ηj2)d

V η1 +
(p− 1)!

i!(j − 1)!
V (ηi1η

(j−1)
2 )d V η2

This gives immediately the relation (1.24).
Next we assume that the relation (1.23) for a particular ξ ∈ Wn(S). Then

we want to show
dV ((V ξ)p) =V ((V ξ)p−1)dV

2

ξ

This equation is clearly equivalent with

pp−1dV
2

(ξp) = pp−2 V 2

(ξ(p−1))dV
2

ξ.

Hence it is enough to show:

pdV
2

(ξp) = V 2

(ξ(p−1))d V 2

ξ.

This follows if we apply V to the equation (1.23).
Finally we have to check that d is a pd-differential. By definition we have

αp(
V ξ) = pp−2 V (ξp)

Hence we have to verify that

p(p−2)dV (ξp) = (V ξ)p−1dV ξ

or equivalently
p(p−2)dV (ξp) = p(p−2) V (ξ(p−1))dV ξ.
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This follows from lemma 1.5 and is by the way trivial if p 6= 2, because then
the lefthand side is p(p−3)V dξp. Q.E.D.

Since Ω̆·Wn(S)/Wn(R) is a universal pd-differential graded Wn(S)/Wn(R)-
algebra, there is a canonical morphism of procomplexes

Ω̆·Wn(S)/Wn(R) → P ·n (1.25)

Since the Frobenius on Ω̆·Wn(S)/Wn(R) satisfies (1.15) we conclude that (1.25)
commutes with F :

Ω̆·Wn(S)/Wn(R)

F
��

// P ·n

F

��
Ω̆·Wn−1(S)/Wn−1(R)

// P ·n−1

1.3 Construction of the de Rham-Witt com-

plex

We come now to the construction of the universal F−V -procomplexWnΩ
·
S/R.

We do this by induction. We set

W1Ω
·
S/R = Ω·S/R = Ω̆·W1(S)/W1(R)

We assume that we have already constructed a system {WmΩ·S/R}m≤n of

pd-differential graded Wm(S)/Wm(R)-algebras:

WnΩ
·
S/R → Wn−1Ω

·
S/R → . . .→ Ω·S/R (1.26)

and surjective homomorphisms of differential graded algebras

Ω̆·Wm(S)/Wm(R) → WmΩ·S/R, m ≤ n

which are compatible with the restriction maps and with F . This implies
in particular that the system (1.26) meets the requirements (i), (ii) and the
third equation of (iii) in definition 1.4. Moreover we assume that there are
additive maps

V : WmΩ·S/R → Wm+1Ω
·
S/R, 1 ≤ m < n.
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We require that WmΩ0
S/R = Wm(S), and that the following relations holds:

FV ω = pω for ω ∈ WmΩ·S/R, m < n
FdV ω = ω
V (ωFη) = V ω · η for η ∈ Wm+1Ω

·
S/R

(1.27)

We define an ideal I ⊂ Ω̆·Wn+1(S)/Wn+1(R) as follows. We start with an

arbitrary relation in WnΩ
i
S/R:

M∑
l=1

ξ(l)dη
(l)
1 · . . . · dη(l)

i = 0. (1.28)

Here i and M are natural numbers ≥ 1 and ξ(l), η
(l)
k ∈ Wn(S) for l = 1, . . . ,M

and k = 1, . . . , i
Then we consider the following elements of Ω̆·Wn+1(S)/Wn+1(R):∑

l

V ξ(l)dV η
(l)
1 · . . . · dV η(l)

i (1.29)

∑
l

dV ξ(l)dV η
(l)
1 · . . . · dV η(l)

i (1.30)

These homogenous elements for all possible relations (1.28) generate a ho-
mogenous ideal I ⊂ Ω̆·Wn+1(S)/Wn+1(R). We see that dI ⊂ I.

Moreover it is clear that I is mapped to 0 by the map:

F : Ω̆·Wn+1(S)/Wn+1(R) → Ω̆·Wn(S)/Wn(R) → WnΩ
·
S/R, (1.31)

because we have FV ξ(l) = pξ(l) in Ω̆0
Wn(S)/Wn(R) = Wn(S) and FdV η(l) = dη(l)

in Ω̆1
Wn(S)/Wn(R).

We set
Ω
·
n+1 = (Ω̆·Wn+1(S)/Wn+1(R))/I.

This is a differential graded algebra.
The Frobenius (1.31) factors through a map of algebras:

F : Ω
·
n+1 → WnΩ

·
S/R.
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On the other hand we have by definition of I an additive map

V : WnΩ
·
S/R → Ω

·
n+1

ξdη1 . . . dηi 7→V ξdV η1 . . . d
V ηi

We see that this definition of V implies FdV ω = ω for all ω ∈ WnΩ
·
S/R.

Then we consider the ideal I ⊂ Ω
·
n+1, which is generated by the following

elements

V (ωFη)−V ωη, d(V (ωFη)−V ωη),

where ω ∈ WnΩ
·
S/R and η ∈ Ω

·
n+1 runs through all possible elements. This is

a homogenous d-invariant ideal. We set

Wn+1Ω
·
S/R = Ω

·
n+1/I

It is immediately verified that F : Ω
·
n+1 → WnΩ

·
S/R maps I to zero. Hence

we have constructed operators:

F : Wn+1Ω
·
S/R → WnΩ

·
S/R, V : WnΩS/R → Wn+1ΩS/R

meeting all requirements (1.27) of our induction assumption.
We note that the other two equations of definition 1.4 are satisfied, be-

cause they are already satisfied in Ω̆·Wn(S)/Wn(R).

Proposition 1.6 Let {Pn} be a F -V -procomplex such that Pn is a differen-
tial graded Wn(S)/Wn(R)-algebra. Then there is a unique morphism

WnΩ
·
S/R → Pn

of F − V -procomplexes.

Proof: It is clear from our construction that the natural morphism (1.25)
factors through WnΩ

·
S/R. Q.E.D.

1.4 Base change for étale morphisms

We will now establish the base change property of the de Rham-Witt complex
with respect to étale morphisms S → S ′.
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Let (P, d) be a differential graded B/A-algebra. Let B′ be a B-algebra.
Let us assume that the differential d : B → P 1 extends to a differential
d : B′ → B′ ⊗B P

1. Then B′ ⊗B P becomes a differential graded algebra if
we define the differential as follows:

d(b′ ⊗ p) = (db′)(1⊗ p) + b′ ⊗ dp

If B′ is etale over B, we know that an extension of d : B → P 1 to d : B′ →
B′⊗B P

1 always exists and is unique ([EGA] 17.2.4). Hence the base change
(B′ ⊗B P, d) is defined.

Let R be a ring and S be an R-algebra. We assume that S is F -finite
or that p is nilpotent in S. If S → S ′ is étale respectively unramified so is
Wn(S) → Wn(S

′) (see the appendix).
Assume we are given an F − V procomplex {Pn} of differential graded

Wn(S)/Wn(R)-algebras Pn. Let S ′ be an etale S-algebra.
Since Wn(S

′) is an étale Wn(S)-algebra, we obtain a projective system of
differential graded Wn(S

′)/Wn(R)-algebras

→ . . .→ Wn(S
′)⊗Wn(S) Pn → . . .→ W1(S

′)⊗W1(S) P1.

We equip this system with the structure of an F − V procomplex.
For this we have to define the operators F and V . The operator F is

simply given by the formula:

F : Wn+1(S
′)⊗Wn+1(S) Pn+1 → Wn(S

′)⊗Wn(S) Pn

ξ ⊗ x 7→ F ξ ⊗ Fx

For the definition of V we use the canonical isomorphism Wn+1(S
′)⊗Wn+1(S),F

Wn(S) → Wn(S
′), which maps ξ ⊗ η to F ξη. To define

V : Wn(S
′)⊗Wn(S) Pn → Wn+1(S

′)⊗Wn+1(S) Pn+1

we rewrite the left hand side:

Wn(S
′)⊗Wn(S) Pn = Wn+1(S

′)⊗Wn+1(S) Pn,[F ]

Hence we may define V as

V : Wn+1(S
′)⊗Wn+1(S) Pn,[F ] → Wn+1(S

′)⊗Wn+1(S) Pn+1

ξ ⊗ x 7→ ξ ⊗V x
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We omit the obvious verification that {Wn(S
′)⊗Wn(S)Pn} becomes with these

operators an F − V -procomplex.
By the universal property of the de Rham-Witt complex as an F − V

procomplex we obtain for S ′ etale over S a canonical map of F − V procom-
plexes

WnΩ
·
S′/R → Wn(S

′)⊗Wn(S) WnΩ
·
S/R. (1.32)

Proposition 1.7 Assume that S is F -finite or that p is nilpotent in S. Let
S ′ be etale over S. Then the morphism (1.32) is an isomorphism.

Proof: If we view WnΩ
·
S′/R as an F − V procomplex relative to S/R we

obtain a morphism of F − V procomplexes

β0 : WnΩ
·
S/R → WnΩ

·
S′/R.

This extends to a homomorphism of Wn(S
′)-modules.

β : Wn(S
′)⊗Wn(S) WnΩ

·
S/R → WnΩ

·
S′/R (1.33)

Because both sides of (1.33) are quotients of Wn(S
′) ⊗Wn(S) Ω·Wn(S)/Wn(R) =

Ω·Wn(S′)/Wn(R) the map β is an epimorphism. Let us denote the map (1.32)
by α. The map α ◦ β0 is a morphism of F − V -procomplexes, which must by
proposition 1.6 coincide with the obvious map: WnΩ

·
S/R → Wn(S

′) ⊗Wn(S)

WnΩ
·
S/R, x 7→ 1⊗ x.

This proves αβ = id. Since β is an epimorphism we obtain that α is an
isomorphism. Q.E.D.

Remark: The differential on the right hand side of (1.33) does not in-
duce 1⊗ d on the left hand side. To remedy this we may proceed as follows:
We fix the number n. Then we choose a number m such that pmWn(R) = 0.
Then pm annihilates all groups of (1.33). If we consider the groups WnΩ

·
S/R

as Wm+n(S)-mdodules via restriction of scalars Fm : Wm+n(S) → Wn(S) the
differential of WnΩ

·
S/R becomes Wm+n(S)-linear. By the appendix proposi-

tion A.8 we have a tensor product diagram:

Wm+n(S
′)

Fm

−−−→ Wn(S
′)x x

Wm+n(S)
Fm

−−−→ Wn(S)
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Inserting this in the isomorphism (1.33) we obtain an isomorphism:

Wm+n(S
′)⊗Wm+n(S),Fm WnΩ

i
S/R

∼= WnΩ
i
S′/R.

Here the map 1⊗d on the left hand side induces the differential d on the right
hand side. Since Wm+n(S) → Wm+n(S

′) is flat we obtain an isomorphism of
cohomology groups:

Wm+n(S
′)⊗Wm+n(S),Fm H i(WnΩS/R) ∼= H i(WnΩS′/R).

Proposition 1.8 Assume we are given ring homomorphisms R→ R′ → S.
Let p be nilpotent in R or let R be F -finite. If R→ R′ is an unramified ring
homomorphism, we have an isomorphism of F − V procomplexes

WnΩ
·
S/R → WnΩ

·
S/R′ . (1.34)

Proof: Clearly WnΩ
·
S/R′ is an F −V -procomplex relative to S/R. Hence we

obtain the morphism (1.34). On the other hand the differential Wn(R
′) →

Wn(S)
d→WnΩ

1
S/R is zero, because the restriction to Wn(R) is and because

Wn(R
′)/Wn(R) is unramified. This shows that WnΩ

·
S/R is an F −V procom-

plex relative to S/R′. Hence we obtain an arrow inverse to (1.34). Q.E.D.
Remark: Let R be an arbitrary Zp-algebra, and let R → S be a ring

homomorphism. The proof of proposition 1.7 shows that for an arbitrary
f ∈ S there is an isomorphism:

Wn(Sf )⊗Wn(S) WnΩ
·
S/R

∼= WnΩ
·
Sf/R

. (1.35)

Moreover if g ∈ R is an element whose image in S is a unit, we have an
isomorphism:

WnΩ
·
S/R

∼= WnΩ
·
S/Rg

(1.36)

This remark allows us to define the de Rham-Witt complex on a scheme.
Let X = SpecS and Y = SpecR. We set Wn(X) = SpecWn(S) and
Wn(Y ) = SpecWn(R). We denote by WnΩX/Y the quasicoherent sheaf on
Wn(X) associated to WnΩ

·
S/R.

More generally let X → Y be a morphism of schemes over Z(p). Then
there is a quasicoherent sheaf WnΩ

·
X/Y on Wn(X) which has the following

property:
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Let U ′ = Spec S ′ an affine open subscheme of X and V ′ = Spec R′ an
affine open subscheme of Y , such that U ′ is mapped to V ′ by X → Y . Then
we have a canonical isomorphism:

Γ(Wn(U
′),WnΩ

·
X/Y ) = WnΩ

·
S′/R′

If the schemes X and Y are F -finite and X → Y is a morphism of finite type
the sheaves WnΩ

·
X/Y are coherent because they are quotients of the coherent

sheaves Ω·Wn(X)/Wn(Y ). If moreover X is proper over Y = SpecR and R

is noetherian the cohomology groups H i(Wn(X),WnΩ
·
X/Y ) are modules of

finite type over Wn(R). This follows because Wn(X) → Wn(Y ) is a proper
morphism of noetherian schemes.

If p is locally nilpotent on X the schemes Wn(X) and X have the same
topological space. Therefore in this case the cohomology groups may be
identified with H i(X,WnΩ

·
X/Y ).

We may summarize our base change results as follows:

Proposition 1.9 Let X → Y is any morphism of schemes. We assume
either that p is locally nilpotent on Y , or that X and Y are F -finite. Assume
we are given a commutative diagram:

X ′

��

α // X

��
Y ′

β // Y

We assume that α is étale and that β is unramified. Then there is a canonical
isomorphism:

Wn(α)∗WnΩ
i
X/Y

∼= WnΩ
i
X′/Y ′ .

This allows under the assumption of the proposition to consider WnΩ
i
X/Y

as a sheaf on the etale site Xet.

1.5 The completed de Rham-Witt complex

In this section we fix a scheme Y such that p is locally nilpotent on Y . Let
X → Y be a morphism of schemes. Since the topological spaces of Wn(X)

27



and X are the same we can regard WnΩ
·
X/Y as a sheaf on X. We define for

an open set U of X:

WΩ·X/Y (U) = lim
←−
n

WnΩ
·
X/Y (U) (1.37)

This is a sheaf on X.
We gather a few facts about the projective limit which we apply to this

situation. We consider projective systems of abelian groups indexed by the
natural numbers:

. . .
π−→ An

π−→ . . .
π−→ A1

We associate the Eilenberg complex concentrated in degree 0 and 1:∏
n

An −→
∏
n

An (1.38)

An element (an) from the left hand side is mapped to (an − π(an+1)). The
kernel of the map (1.38) is by definition lim

←−
An and the cokernel is lim

←−
1An.

This cokernel is easily seen to be zero if all transition morphisms π : An+1 →
An are surjective.

For a projective system of exact sequences

0 → An → Bn → Cn → 0

We have the exact cohomology sequence:

0 → lim
←−

An → lim
←−

Bn → lim
←−

Cn → lim
←−

1An → lim
←−

1Bn → lim
←−

1Cn → 0

Each system An may be embedded in a system with surjective transition
morphisms, namely the system:

A1 ⊕ . . . An+1 −→ A1 ⊕ . . . An,

where the transition morphism maps an element (a1, . . . , an+1) of the left
hand side to (a1, . . . an−1, an + π(an+1)). One deduces that for a Mittag-
Leffler system An we have lim

←−
1An = 0.

We consider a projective system of noetherian complete local rings,

. . .→ Rn → . . .→ R1
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such that the transition homomorphisms are local surjective ring homo-
morphisms. A projective system of modules is a projective system Mn

such that Mn is an Rn module and such that the transition homomorphism
π : Mn+1 →Mn is an Rn+1-module homomorphism for each n.

Proposition 1.10 Let Mn a projective system of noetherian modules. Then
we have:

lim
←−

1Mn = 0 (1.39)

Proof: Suppose we are given an exact sequence of projective systems of
modules:

0 →Mn → Nn → Ln → 0 (1.40)

Since Mn may be embedded in a projective system of modules with surjective
transition morphisms, it suffices to show that (1.40) remains exact if we apply
the projective limit.

Let us denote by mn the maximal ideal of Rn. For each pair of natural
numbers n, i we consider the exact sequence:

0 →Mn/m
iMn → Nn/m

iMn → Ln → 0 (1.41)

If we fix n and pass to the projective limit over i we obtain the exact sequence
(1.40).

Let I be the set of pairs of natural numbers with the order (n′, i′) ≥ (n, i)
iff n′ ≥ n and i′ ≥ i. Then we have obvious projective systems indexed by I
if we set:

Mn,i = Mn/m
iMn, Nn,i = Nn/m

iMn, Ln,i = Ln

This makes (1.41) into a projective system of short exact sequences indexed
by I. By assumption Mn,i consists of artinian modules, and is therefore a
Mittag-Leffler system. Hence we obtain an exact sequence if we pass to the
projective limit. On the other hand this projective limit coincides with:

0 → lim
←−

Mn → lim
←−

Nn → lim
←−

Ln → 0

Q.E.D.
Let L·n be a projective system of complexes of abelian groups. We set

L· = lim
←−
n

L·n, and we assume that lim
←−
n

1L·n = 0. Then we have for each q ∈ Z

a short exact sequence:

0 → lim
←−
n

1Hq−1(L·n) → Hq(L·) → lim
←−
n

Hq(L·n) → 0 (1.42)
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Indeed, we consider the Eilenberg complex X · → X · associated to L·n (see
(1.38). By assumption we obtain an exact sequence of complexes:

0 → L· → X · → X · → 0

We obtain (1.42) from the spectral sequence of the double complex X · → X ·.

Proposition 1.11 Let X be a separated scheme. Let X → Y be a morphism,
such that p is locally nilpotent on Y . Then we have exact sequences:

0 → lim
←−
n

1Hq−1(X,WnΩ
·
X/Y ) → Hq(X,WΩ·X/Y ) → lim

←−
n

Hq(X,WnΩ
·
X/Y ) → 0

0 → lim
←−
n

1Hq−1(X,WnΩ
l
X/Y ) → Hq(X,WΩl

X/Y ) → lim
←−
n

Hq(X,WnΩ
l
X/Y ) → 0

Proof: We consider an affine covering U of X and consider the Cech com-
plexes:

C·(U ,WΩ·X/Y ) = lim
←−
n

C·(U ,WnΩ
·
X/Y ) (1.43)

By [EGA] 0III 13.3.1 the cohomology of WΩl
X/Y vanishes for each open set

U of the nerve of U . Therefore the left hand side of (1.43) computes the hy-
percohomology of WΩ·X/Y . We denote by L·n the simple complex associated
to the Cech complex of WnΩ

·
X/Y . Since the transition homomorphisms on

the right hand side of (1.43) are surjective we obtain the proposition from
(1.42). Q.E.D.

Corollary 1.12 Let Y = SpecR be the spectrum of a noetherian complete
local ring whose residue class field is a field of characteristic p with a finite
p-basis. We assume that p is nilpotent in R. Let X be a proper scheme over
Y . Then we have canonical isomorphisms:

Hq(X,WΩ·X/Y ) ∼= lim
←−
n

Hq(X,WnΩ
·
X/Y )

Hq(X,WΩl
X/Y ) ∼= lim

←−
n

Hq(X,WnΩ
l
X/Y )

(1.44)

Proof: By the appendix the scheme Wn(X) is proper over the noetherian
ring Wn(R). Therefore the cohomology groups Hq(X,WnΩ

l
X/Y ) are finite

Wn(R)-modules. If we knew that Wn(R) is a complete local ring the corollary
would follow from the propositions 1.11 and 1.10. Therefore we conclude the
proof by the following lemma.
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Lemma 1.13 Let R be a noetherian complete local ring whose residue class
field is a field of characteristic p with a finite p-basis. We denote by m the
maximal ideal of R.

Then Wn(R) is for each number n a noetherian complete local ring, whose

maximal ideal n is the kernel of the homomorphism Wn(R)
w0−→ R → R/m.

The n-adic topology of Wn(R) coincides with the topology defined by the fil-
tration by the ideals Wn(m

s).

Proof: The ring Wn(R) is complete and separated in the filtration above:

Wn(R) = lim
←−
s

Wn(R/m
s)

Since Frob : R/pR→ R/pR is finite, it is easy to see that the ringsWn(R/m
s)

are local artinian. It follows that Wn(R) is a local ring with maximal ideal
n.

Therefore it suffices to show the last sentence of the lemma. It is clear
that n is nilpotent in each of the rings Wn(R/m

s).
We have to show that for each number u there is a number s, such that

Wn(m
s) ⊂ (Wn(m))u

We assume this for n and show it for n+ 1.
Let a ⊂ R be the ideal generated by all products of the form:

c1c
pn

2 . . . cp
n

u , ci ∈ m

This is an m-primary ideal. We find a number s such that ms ⊂ a. In
Wn+1(R) we have the following equation:

V n

[c1][c2] . . . [cu] = V n

([c1c
pn

2 . . . cp
n

u ])

Since the right hand side is in (Wn+1(m))u it follows that

V n

[x] ∈ (Wn+1(m))u, for x ∈ ms (1.45)

We choose a number u1 > u such that (Wn+1(m))u1 ⊂ Wn+1(m
s). By induc-

tion hypothesis we find a number s1 > s such that Wn(m
s1) ⊂ (Wn(m))u1 .

Let us consider an arbitrary ξ ∈ Wn+1(m
s1). Then we find η ∈ (Wn+1(m))u1

such that
ξ = η + V n

[c], for c ∈ R
Since η ∈ Wn+1(m

s) we obtain c ∈ ms. But then we obtain from (1.45) that
ξ ∈ (Wn+1(m))u. Q.E.D.
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Chapter 2

The de Rham-Witt complex of
a polynomial algebra

2.1 A basis of the de Rham complex

Let R be a Zp-algebra. We consider the polynomial ring R[X1, . . . , Xn] =
R[X].

A weight is a function k : [1, n] → Z≥0 to the nonnegative integers. We
denote the value at the natural number i by ki. Let Supp k ⊂ [1, n] the
subset, where ki is not zero. We fix for any weight k a total order of Supp k:

Supp k = {i1, . . . , ir} , (2.1)

in such a way that

ordp ki1 ≤ ordp ki2 ≤ . . . ≤ ordp kir .

We denote by I an interval of Supp k:

I = {is+1, is+2, . . . , is+t}

We consider partitions of Supp k into disjoint intervals:

Supp k = I0 t I1 t . . . t I` . (2.2)

The intervals are numbered in such a way that the elements of Ij are smaller
than the elements of Ij+1. The intervals I1, . . . , I` are assumed to be not
empty but I0 may be empty.
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Let I ⊂ Supp k be an interval. Then we set

XkI =
∏
j∈I

X
kj

j .

Let ordp kI be the order ordp kj, where j is the smallest element in the interval
I. Then pordp kI is the biggest p-power, which divides all numbers kj for j ∈ I.
We set Z = X(p− ordp kI )·kI and define

(p− ordp kIdXkI ) = Z(pordp kI−1)dZ .

This is an honest equality if the ring R has no p-torsion.
To any weight k and any partition (2.2) of Supp k we associate a differ-

ential form:

XkI0 (p− ordp kI1dXkI1 ) . . . (p− ordp kI`dXkI` ) ∈ Ω`
R[X]/R . (2.3)

These elements are called the p-basic elements of the de Rham complex.
They depend on the total order (2.1), which we have chosen for each weight
k.

Proposition 2.1 The p-basic elements (2.3) for all weights and partitions
form a base of the de Rham complex Ω·R[X]/R as an R-module.

Proof: We use the notation:

d logXj =
dXj

Xj

.

The R-module Ω`
R[X]/R has the following elements as a basis

Xk1
1 . . . Xkn

n d logXi1 · . . . · d logXi` . (2.4)

Here k runs through all weights and i1 < i2 < . . . < i` through all subsets of
Supp k. The R-module spanned by all elements (2.4) for fixed k is called the
module of forms of weight k:

Ω`
R[X]/R(k) ⊂ Ω`

R[X]/R .

It is free of rank

(
m
`

)
, if m is the cardinality of Supp k. The number of p-

basic elements (2.3) for fixed k and ` is exactly

(
m
`

)
. These p-basic elements
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lie in Ω`
R[X]/R(k). If we show that these p-basic elements generate Ω`

R[X]/R(k)
our proposition follows. Hence it is enough to show the weaker assertion that
the p-basic elements generate the de Rham complex as an R-module.

We fix a weight k and set I = Supp k. By giving the variables new names
we may assume that the chosen order on I is the order of natural numbers.
Then we have

ordp ki < ordp kj for i < j; i, j ∈ I .

For ` = 1 our proposition is a consequence of the following

Lemma 2.2 Let a, b : I → Z≥0 be two functions, such that aj + bj = kj for
j ∈ I. Let i1 < i2 < . . . < ir be the support of the function a and j1 < . . . < js
be the support of the function b. Then the element

X
ai1
i1

. . . X
air
ir
p−δd(X

bj1
j1
. . . X

bjs
js

) ,

where pδ is a p-power dividing bj1 , . . . , bjr , is a linear combination of p-basic
elements of weight k.

Proof: Let a be a natural number and h ∈ R[X]. We will use the notation

1

a
dha = ha−1dh .

By the Leibniz rule it is enough to show the assertion for s = 1. We have
the formula:

X
aj1
j1
p−δdX

bj1
j1

= (p−δbj1)

(
1

aj1 + bj1
dX

aj1
+bj1

j1

)
. (2.5)

By assumption we have aj1 + bj1 = kj1 . The element (2.5) is a multiple of

p− ordp kj1dX
kj1
j1

. Therefore we are reduced to prove the lemma in the case
where the sets {i1, . . . , ir} and {j1, . . . , js} are disjoint. That means that we
consider elements of the form

X
ki1
i1
. . . X

kir
ir

(
dX

kj1
j1

. . . X
kjs
js

kj1

)
. (2.6)

This makes sense because pordp kj1/kj1 ∈ Z∗(p) is a unit. Let r′ ≤ r be the
smallest number, such that ir′ > j1.
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We prove our assertion by induction on r− r′. The induction starts with
the case where no r′ exists. Then (2.6) is already an p-basic element, and we
are done.

If r′ exists we have ir > j1. We find a number t ≤ s with

jt < ir < jt+1 .

In the case t = s the last inequality is absent. If t < s our expression (2.6) is
according to the Leibniz rule:

X
ki1
i1
. . . X

kir
ir
X
kj1
j1

. . . X
kjt
jt

(
dX

kjt+1
jt+1

...X
kjs
js

kj1

)
+ X

ki1
i1
. . . X

kir
ir
X
kjt+1

jt+1
. . . X

kjs
js

(
dX

kj1
j1

...X
kjt
jt

kj1

) (2.7)

The first summand here is already a multiple of an p-basic element. Hence
we have to show that the second summand is a linear combination of p-basic
elements. Note that in the case t = s the element (2.6) is already the second
summand.

Applying the Leibniz rule to the second summand of (2.7) we obtain

X
ki1
i1
. . . X

kir
ir
X
kjt+1

jt+1
. . . X

kjs
js

(
dX

kj1
j1

...X
kjt
jt

kj1

)
= X

ki1
i1
. . . X

kir−1

ir−1

(
dX

kj1
j1

...X
kjt
jt

X
kir
ir

X
kjt+1
jt+1

...X
kjs
js

kj1

)

− X
ki1
i1
. . . X

kir−1

ir−1
X
kj1
j1

. . . X
kjt
jt

(
dX

kir
ir

X
kjt+1
jt+1

...X
kjs
js

kj1

)
The first summand is by induction a linear combination of p-basic elements,
while the second is already a multiple of an p-basic element. This proves the
lemma. Q.E.D.

Since by the lemma Ω1
R[X]/R is generated by p-basic elements it is clearly

enough to show that a product of p-basic elements is again a linear combi-
nation of p-basic elements. We show that any p-basic element

XkI0p−δ1dXkI1p−δ2dXkI2 . . . p−δ`dXkI` (2.8)

with δi = ordp kIi , multiplied with any monom XhJ is again a linear combi-
nation of p-basic elements.

35



Indeed we may assume that J = {j} such that XhJ = Xh
j . If j is smaller

than any index of I`, we conclude by induction on `. If not we write by the
lemma Xh

j p
−δ`dXkI` as a linear combination of p-basic elements and apply

again induction on `.
It remains to be shown that (2.8) multiplied with p−δdXhJ , where δ =

ordp hJ is a linear combination of p-basic elements. By the last argument it
is enough to do this in the case I0 = ∅.

To see this we define an R-algebra homomorphism

α : Ω·R[X]/R −→ Ω·R[X]/R ,

which satisfies the relation dα = pαd.
On R[X] = Ω0

R[X]/R the R-algebra homomorphism α is defined by

α(Xi) = Xp
i .

On Ω1
R[X]/R we define

α : Ω1
R[X]/R −→ Ω1

R[X]/R
n∑
i=1

fidXi 7−→
n∑
i=1

α(fi)X
p−1
i dXi

We extend this to the higher degrees

α : Ωi
R[X]/R −→ Ωi

R[X]/R

ω1 ∧ . . . ∧ ωi 7−→ α(ω1) ∧ . . . ∧ α(ωi)

The relation
dα = pαd

is easily verified.
p-basic elements may be written by using the identity:

p− ordp kIdXkI = αordp kIdXp− ord kI ·kI .

It is clear that α maps p-basic elements to p-basic elements. The same is
true for d.

Let us consider the element

p−δdXhJp−δ1dXkI1 . . . p−δ`XkI` . (2.9)
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Let µ be the minimum of the numbers δ, δ1, . . . , δ`. Then the element (2.9)
may be rewritten using α:

αµ(p−(δ−µ)dXp−µhyp−(δ1−µ)dXp−µkI1 . . . p−(δ`−µ`)dXp−µkI` .

Since one of the p-powers in the bracket is 1, the element in the brackets is
an exact differential of an element, which is by induction on ` a linear com-
bination of p-basic elements. This proves that (2.9) is a linear combination
of p-basic elements, too. Hence we obtain the proposition. Q.E.D.

2.2 The basic Witt differentials

Let R be a Z(p)-algebra, and S = R[T1, . . . , Td] = R[T]. We will give an
explicit description of the de Rham-Witt complexWΩS/R. The part of degree
zero is the Wittring WΩ0

S/R = W (S). It has the following description.

We consider functions k : [1, d] → Z≥0

[
1
p

]
, which we call weights. The

value of k at i will be denoted by ki. We call k integral if all ki are integral.
We write Xi = [Ti] ∈ W (S) for the Teichmüller representative of Ti. If k

is integral we set:
Xk = Xk1

1 . . . Xkd
d .

We denote by pu(k) the denominator of k, i.e. u(k) is the smallest nonnegative
integer, such that pu(k)k is integral.

Proposition 2.3 Any element of W (R[T]) may be uniquely written as a
convergent sum ∑

k

V u(k)

(ηkX
pu(k)k) . (2.10)

The sum is over all weights k. The convergence means that for a given
number m, we have V u(k)

ηk ∈ V m
W (R) for almost all k. The last inclusion

holds for all k, iff (2.10) is an element of Vm
W (R[T]).

Proof: Take an element ξ ∈ W (R[T]), and consider the polynomial w0(ξ) =
ΣakT

k, ak ∈ R, where k runs over integral weights. Then we obtain

ξ − Σ[ak]X
k ∈ VW (R[T]) .
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By induction we obtain a unique expression for ξ:

ξ =
∑
m≥0,

k integral

Vm

([ak,m]Xk) .

We note that each summand may be rewritten as follows: Let for given m, k
the number % be maximal, such that p−%k is integral and % ≤ m. Then we
have the equation:

V m

([ak,m]Xk) = Vm−%

( V %

[ak,m] ·Xp−%·k) .

This gives the result. Q.E.D.

Corollary 2.4 Each element of Wm(R[T1 . . . Td]) may be uniquely written in
the form: ∑

k

V u(k)

(ηkX
pu(k)k) ηk ∈ Wm−u(k)(R)

where k runs through all weights such that u(k) < m. Except for finitely
many weights ηk = 0.

We will now introduce the basic Witt differentials of the de Rham-Witt
complex. For each weight k we fix once for all a total order on the arguments
where k doesn’t vanish:

Supp k = {i1, . . . , ir} ,

in such a way that

ordp ki1 ≤ ordp ki2 ≤ . . . ≤ ordp kir .

For later purposes we choose the total orders in such a way that for each
integer a and for each weight k the orders on Supp k = Supp pak agree. We
will call a weight k primitive if it is integral and not all ki are divisible by p.
We choose the orders for primitive weights in an arbitrary way.

We set t(ki`) = − ordp ki` and u(ki`) = max(0, t(ki`)).
We will denote by I an interval of Supp k in the given order.

I = {i`, i`+1, . . . , i`+m} .
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The restriction of k to I will be denoted by kI . The extension by zero to
[1, d] will be denoted by the same letter kI . Then we set

t(kI) = t(ki`) = max{t(ki) | i ∈ I}
u(kI) = u(ki`) = max(0, t(kI))

If k is fixed in our discussion we set t(I) = t(kI) and u(I) = u(kI) to avoid
too many indices. We have

t(i1) ≥ t(i2) ≥ . . . ≥ t(ir) .

The common denominator of the values of kI is pu(I). a basic Witt differential
of degree zero, i.e. in WΩ0

S/R is any element of the form

V u(I)

(ηXpu(I)·kI ) , η ∈ W (R) . (2.11)

For I = ∅ this is equal to η by definition.
In degree one we have two further types of basic Witt differentials: If the

weight kI is not integral we consider for I 6= ∅:

d V u(I)

(ηXpu(I)·kI ) . (2.12)

If the weight kI is integral we have the basic Witt differential

F−t(I)(dXpt(I)kI ) = X(kI−pt(I)kI)dXpt(I)kI . (2.13)

In the last case p−t(I) is the greatest p-power which divides kI , i.e. pt(I)kI is
integral but not divisible by p.

The following expressions for (2.11) (2.12) and (2.13) are suggestive, but
they have only a symbolic meaning:

V u(I)

ηXkI , V u(I)

ηdXkI ,

(
dXkI

p−t(I)

)
.

In general a basic Witt differential is obtained by taking products of these
elements in a certain way:

We let k fixed, and consider a partition of Supp k in disjoint intervals

Supp k = I0 t I1 . . . t I` = I . (2.14)

The elements in Ik are smaller than the elements in Ik+1. The interval I0
may be empty but the intervals I1, . . . , I` are asumed to be non-empty.
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For ξ ∈ V u(I)
W (R) we define a basic Witt differential

e = e(ξ, k, I0, . . . , I`) ∈ WΩ`
R[T1,...,Td]/R

of degree ` as follows:
We set ξ = V u(I)

η. Let us denote by r ∈ [0, ` − 1] the first index such
that kIr+1 is integral. We set r = ` if kI` is not integral.

We distinguish 3 cases in the definition of e:
First case: I0 6= ∅.

e = V u(I0)
(
ηXpu(I0)kI0

)(
d V u(I1)

Xpu(I1)kI1

)
. . .
(
d V u(Ir)

Xpu(Ir)kIr

)(
F−t(Ir+1)

dXpt(Ir+1)kIr+1

)
. . .
(
F−t(I`)dXpt(I`)kI`

) (2.15)

Second case: I0 = ∅ and k not integral, i.e. r > 0.

e =
(
dV

u(I1)
(
ηXpu(I1)kI1

))(
dV

u(I2)
Xpu(I2)kI2

)
. . .
(
dV

u(Ir)
Xpu(Ir)kIr

)(
F−t(Ir+1)

dXpt(Ir+1)kIr+1

)
. . .
(
F−t(I`)dXpt(I`)kI`

)
(2.16)

Third case: I0 = ∅ and k integral.

e = η
(
F−t(I1)

dXpt(I1)kI1

)
. . .
(
F−t(Ir)

dXpt(I`)kI`

)
(2.17)

In the first case we have ξ = V u(I0)
η, in the second case ξ = V u(I1)

η and
in the third case ξ = η.

If ξ ∈ Vm
W (R) the image of the basic Witt differential in WmΩ·S/R is

zero. The action of α ∈ W (R) on a basic Witt differential is given by

αe(ξ, k, I0, . . . , I`) = e(αξ, k, I0, . . . , I`) .

Proposition 2.5 The action of F and V on the basic Witt differentials is
as follows:

1. If I0 6= ∅, or if k is integral the following equality holds

F e(ξ, k, I0, . . . , I`) = e( F ξ, pk, I0, . . . , I`)

2. If I0 = ∅ and k is not integral

F e(ξ, k, I0, . . . , I`) = e( V −1

ξ, pk, I0, . . . , I`)
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3. If I0 6= ∅ or k is integral and divisible by p

V e(ξ, k, I0, . . . , I`) = e( V ξ,
1

p
k, I0, . . . , I`)

4. I0 = ∅ and 1
p
k is not integral

V e(ξ, k, I0, . . . , I`) = e(p V ξ,
1

p
k, I0, . . . , I`)

Proof: The first 2 equalities follow readily from the definition of the basic
Witt differentials.

Let us consider the third equation in the case I0 6= ∅. Let r ∈ [0, ` − 1]
be the first index, such that kIr+1 is integral and divisible by p. With this
new r we have still the equality (2.15). Since −t(Ij) > 0 for ` ≥ j ≥ r + 1
we obtain by the F -V -formula:

V e = V
(
V u(I0)

(
ηXpu(I0)kI0

)
. . . d V u(Ir)

Xpu(Ir)kIr

)
·(

F−t(Ir+1)−1

dXpt(Ir+1)kIr+1

)
. . .
(
F−t(I`)−1

dXpt(I`)kI`

)
.

Using the general identity in the de Rham-Witt complex:

V (ω0dω1 . . . dωr) = V ω0d
V ω0d

V ω1 . . . d
V ωr

we obtain the third equation of the proposition. In the case where k is integral
and divisible by p, the same result follows if we apply the F -V -formula to
(2.17).

Finally we consider the fourth equation. In this case we may take e of the
form (2.16) with r defined as above, and possibly u(I1) = t(I1) = 0. Then
we obtain

V e = V 1d V u(I1)+1
(
ηXpu(I1)kI1

)
. . .
(
F−t(Ir+1)−1

dXpt(Ir+1)kIr+1

)
. . .

Since
V 1 V u(I1)+1

η = V
(
p V u(I1)

η
)

= p V ξ

the last case of the proposition follows. Q.E.D.
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Proposition 2.6 Let k be a weight with support I. We set t = t(kI) and
t = 0 if I is empty. With this notation the action of the differential d on
basic Witt differentials is as follows:

de(ξ, k, I0, . . . , I`) = 0, if I0 = ∅
de(ξ, k, I0, . . . , I`) = e(ξ, k, φ, I0, . . . , I`), if I0 6= ∅ , k not integral
de(ξ, k, I0, . . . , I`) = p−te(ξ, k, φ, I0, . . . , I`) , if I0 6= ∅ , k integral

Proof: Let us consider the last equality. In this case a basic Witt differential
has the form

ξXkI0

(
F−t(I1)

dXpt(I1)kI1

)
· . . . ·

(
F−t(I`)dXpt(I`)kI`

)
. (2.18)

We have
d
(
ξXkI0

)
= ξd F−t(I0)

Xpt(I0)kI0

= p−t(I0)ξ F−t(I0)
dXpt(I0)kI0 .

From this our result follows, if we apply d to (2.18). The case where k is not
integral is even more obvious. The first equation of the proposition is trivial.

If we introduce in the definition of a basic Witt differential (2.15) (2.16)

for each factor of the form d V u(Ij)

Xpu(Ij)kIj a factor d V u(Ij)
(
ηjX

pu(Ij)kIj

)
we

obtain again a basic Witt differential because of the following lemma.

Lemma 2.7 Let S be any R-algebra. Let u0 ≥ u1 ≥ 0 be integer. Let
η0, η1 ∈ W (R) and s0, s1 ∈ S. Then the following formula holds in WΩS/R:

V u0 (η0[s0]) d
V u1 (η1[s1]) = V u0

(
η0

Fu0−u1η1[s0]
)
d V u1 [s1] .

Proof: We set w = u0 − u1. Then FdV = d and the F -V -relation shows:

V u0 (η0[s0]) d
V u1 (η1[s1]) = V u0

(
η0[s0]

Fw
d (η1[s1])

)
= V u0

(
η0

Fw
η1[s0]

Fw
d[s1]

)
.

If we repeat this equality with η0
Fw
η1 for η0 and 1 for η1 we obtain the

assertion of the lemma. Q.E.D.

2.3 The main theorem

Let k be a weight and I = Supp k. We will denote by

P = {I0, I1, . . . , I`}
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an arbitrary partition of I of the form (2.2):

I = I0 t . . . t I` .

Theorem 2.8 Each element ω ∈ WΩ·R[T1...T ]/R has a unique expression as a
convergent sum ∑

k,P

e(ξk,P , k,P)

where k runs over all possible weights and P over all partitions of Supp k,
and where for any given number m we have ξk,P ∈ V m

W (R) for all but
finitely many weights k.

This theorem was proved by Illusie in the case where R is a perfect ring. We
remark that all elements of the type e(ξ, k, I0, . . . , I`) for a fixed weight k
and a fixed partition P = (I0, . . . , I`) form a W (R)-submodule of WΩ`

R[T]/R,

which is by the theorem isomorphic to V u(I0)
W (R) in the case I0 6= ∅ and to

V u(I1)
W (R) in the case I0 = ∅.

In this section we will prove the theorem without the uniqueness assertion.
For the following we use an obvious notation:

Let f ∈ W (S) and let a, b > 0 be integers such that ordp
(
a
b

)
≥ 0. Then

we define (
dfa

b

)
=
a

b
fa−1df .

The left hand side is a symbol, which depends on f, a and b and not only on
fa.

Lemma 2.9 Let {i1, . . . , ir} ⊂ [1, d] be a subset and ai1 , . . . , air arbitrary
positive integers. Let 1 < k < r be a number and let c be the greatest
common divisor of aik , . . . , air . Then the following element in WΩR[T1...Td]/R

is a sum of basic Witt differentials:

X
ai1
i1

. . . X
aik−1

ik−1

(
dX

aik
ik

. . . X
air
ir

c

)
Proof: We may assume {i1 . . . ir} = [1, r] by renumeration of the variables.
The function i 7→ ai extended by zero to [1, n] is a weight. Again by renumer-
ation we may assume that the order on [1, r] assigned to this weight function
is the order on natural numbers. Then we have

ordp a1 ≤ ordp a2 ≤ . . . ≤ ordp ar .
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Then we may reformulate the assertion in a new notation: Assume we are
given a partition

[1, r] = {i1, . . . , ih} t {j1, . . . , j`} , (2.19)

where we assume i1 < . . . < ih and j1 < . . . j`. Then the element

X
ai1
i1
· . . . ·Xaih

ih

(
dX

aj1
j1

. . . X
aj`
j`

aj1

)
(2.20)

is a sum of basic Witt differentials for the weight function i 7→ ai. We show
this by induction on h. The beginning of the induction is the case where
h = 0 (i.e. the first set of the partition (2.19) is empty. In this case (2.20) is
clearly a basic Witt differential.

Next we consider an element (2.20) for h ≥ 1. If ih < j1 the element
(2.20) is basic. If not, let g be the greatest number such that

jg < ih .

If g < ` we may apply the Leibniz rule to obtain:

X
ai1
i1
· . . . ·Xaih

ih
X
aj1
j1

· . . . ·Xajg

jg

(
dX

ajg+1
jg+1

·...·X
aj`
j`

aj1

)
+X

ai1
i1
· . . . ·X

aih−1

ih−1

(
dX

aj1
j1
·...·X

ajg
jg

aj1

)
X
aih
ih
X
ajg+1

jg+1
· . . . ·Xaj`

j`
.

The first summand is already a basic Witt differential. We have to consider
the second summand. For g = ` our original element has already this form.
By the Leibniz rule we obtain for the second summand:

X
ai1
i1
· . . . ·X

aih−1

ih−1

(
dX

aj1
j1
·...·X

ajg
jg
·X

aih
ih
·X

ajg+1
jg+1

·...·X
aj`
j`

aj1

)

−Xai1
i1
· . . . ·X

aih−1

ih−1
X
aj1
j1

· . . . ·Xajg

jg

(
dX

aih
ih

X
ajg+1
jg+1

·...·X
aj`
j`

aj1

)
.

Here the first summand is a sum of basic Witt differentials by induction,
while the second summand is already a basic Witt differential. Q.E.D.
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Lemma 2.10 Let I ⊂ [1, d] be a subset. Let Ĩ and I be subsets of I, such
that I = Ĩ ∪I. Let ã : Ĩ → N resp. a : I → N be functions, which we extend
by zero to [1, n]. We define a weight function k with support I as follows:

ki = ãi for i ∈ Ĩ \ I
ki = ai for i ∈ I \ Ĩ
ki = ai + ãi for i ∈ I ∩ Ĩ .

Then the element

∏
i∈I

X ãi
i

d
∏
i∈I

Xai
i

c

 , c = g.c.d(ai|i ∈ I)

is a sum of basic Witt differentials of weight k.

Proof: If I ∩ Ĩ = ∅ this is the lemma 2.9. We fix an element j ∈ Ĩ ∩ I,
and argue by induction on the number of elements in Ĩ ∩ I. It is enough to
prove our assertion for the element

X
ãj

j

d
∏
i∈I

X
aj

i

c

 .

Indeed, if this is represented as a sum of basic Witt differentials as in the
proposition, we may multiply this sum by

∏
i∈Ĩ\{j}

X ãi
i and apply the induction

assumption.
Therefore we may assume {j} = Ĩ ⊂ I = I. After renumeration of the

variables we may assume that I = [1, r], and that

ordp a1 ≤ ordp a2 ≤ . . . ≤ ordp ar .

Then we have to consider an element of the form

Xb
j

(
dXa1

1 · . . . ·Xar
r

a1

)
, where b = ãj . (2.21)

First we represent this as a sum of basic Witt differentials in the case, where
ordp b < ordp a1. Using the Leibniz rule we may write (2.21) as follows

Xb
j

(
dX

aj

j

a1

)
Xa1

1 · . . . · X̂aj

j · . . . ·Xar
r +X

b+aj

j

dXa1
1 · . . . · X̂aj

j · . . . ·Xar
r

a1

 .
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The second summand is already basic of the right weight.
To see the same thing for the first summand we apply the formula

Xb
j

(
dX

aj

j

a1

)
=

(
aj
a1

)(
dX

aj+b
j

aj + b

)
.

This is immediate from the definition.
Finally we consider the case ordp b ≥ ordp a1. Then we may apply the

Leibniz rule as follows:

Xb
j

(
dX

a1
1 ·...·X

ar
r

a1

)
=

(
dX

a1
1 ...X

aj+b

j ...Xar
r

a1

)
−Xaj

j

(
dXb

j

a1

)
Xa1

1 · . . . · X̃aj

j . . . Xar
r .

To see that the second summand is a sum of basic Witt differentials we apply
the formula

X
aj

j

(
dXb

j

a1

)
=

(
b

a1

)(
dX

aj+b
j

aj + b

)
and apply lemma 2.9. Q.E.D.

We may now generalize lemma 2.10 to differential forms of arbitrary de-
gree.

Proposition 2.11 Let I ⊂ [1, d] be a subset. Let I0, I1, . . . , I` be subsets of
I, such that I1, . . . , I` are non-empty. Let aIk

: Ik → N be functions, which
we extend by zero to [1, d]. We denote by cIj

the greatest common divisor of
the values aIj ,i for Ij. Then the element of WΩ·R[T1,...,Td]/R:

∏
i∈I0

X
aI0 ,i

i

d
∏
i∈I1

X
aI1 ,i

i

cI1

 · . . . ·

d
∏
i∈I`

X
aI` ,i

i

cI`

 (2.22)

is a sum of basic Witt differentials for the weight function

ki =
∑̀
j=0

aI`,i . (2.23)
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Proof: By the lemma 2.10 this holds for ` = 1. We make induction on
`, and assume that the proposition holds for numbers smaller than `. The
induction assumption implies that (2.22) is a sum of basic Witt differentials,
if I0 is empty. Indeed, without loss of generality that

ordp cI1 ≤ ordp cI2 ≤ . . . ≤ ordp cI`
.

We set ej = ordp cIj
, and bj,i = p−ejaIj ,i for i ∈ Ij.

The bj,i are natural numbers, which don’t have p as a common divisor for
j fixed. Then the expression (2.22) may be written up to a unit in Z(p):

F e1

(
d
∏
i∈I1

X
b1,i

i

)
· . . . · F e`

(
d
∏
i∈I`

X
b`,i

i

)

= F e1d

(∏
i∈I1

X
b1,i

1 ·
(

F e2−e1d
∏
i∈I2

Xb2,i

)
· . . . ·

(
F e`−e1d

∏
i∈I`

Xb`,i

))
.

Applying the induction assumption to the element in the outer parentheses
we obtain the assertion for I0 = ∅.

Next we consider the case, where the subsets I0, I1, . . . , I` are disjoint.
The weight k defined by (2.23) puts an order on I. Let us denote by κ the
smallest index in this order. We argue by induction on card I. If κ ∈ I0

we divide the element (2.22) by X
aI0,κ
κ . Then we apply the induction to

the remaining expression. If we multiply the remaining sum with X
aI0,κ
κ we

obtain again a sum of basic Witt differentials. If κ 6∈ I0 we may assume that
κ ∈ I1. Then the element

∏
i∈I0

X
aI0,i

i

d
∏
i∈I1

X
aI1,i

i

c1


may be expressed as a sum of basic Witt differentials by lemma 2.9. If we
substitute this sum in the expression (2.22), we are for each summand either
in the case where I0 6= ∅, or where κ appears in I0. These cases were already
treated.

Finally we consider the general case. By induction on card I we may
reduce the proposition to the following assertion. Assume that (2.22) is a
basic Witt differential, i.e. I = I0t . . .tI` respects the order on Supp k = I.
Then for any m ∈ [1, d] and b ∈ N the product of (2.22) with Xb

m is a sum of
basic Witt differentials.
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If m belongs to I0 ord doesn’t belong to I we are in the case of a disjoint
union, which was already treated. If m ∈ I1 we first express

Xb
m

d
∏
i∈I1

X
aI1,i

i

cI1


as a sum of basic Witt differential. If we multiply this with the remaining
terms in (2.22), we are again in the case of a disjoint union. Q.E.D.

We accomplish now the first step in proving theorem (2.8)

Lemma 2.12 Any element in WΩ·R[T1,...,Td]/R is a convergent sum of basic
Witt differentials.

Proof: By the proposition 2.3 any elements in WΩ·S/R is a convergent sum
of elements of the form

V u0
(
η0X

pu0k(0)
)
d V u1

(
η1X

pu1k(1)
)
· . . . · d V u`

(
η`X

pu`k`
)

(2.24)

Here k(0), . . . , k(`) are arbitrary weights and pui is the denominator of k(i).
We have to show that an element (2.24) is a sum of basic Witt differentials.
We proved this in the case, where all weights k(j) are integral, i.e. u0 = . . . =
u` = 0 (proposition 2.11).

For the general case we make an induction on the degree ` by the differ-
ential form (2.24). Let us first assume that u0 ≥ uj for j = 1, . . . , k. Then
we may rewrite the expression (2.24).

V u0
(
η0X

pu0k(0) Fu0−u1dη1X
pu1k(1) · . . . · Fu0−u`dη`X

pu`k(`)
)

.

Then proposition 2.11 shows that the expression in brackets is a sum of basic
Witt differentials. Hence we finish this case by proposition 2.5.

Secondly we assume u1 ≥ uj for j = 0, 1, . . . , `. Then we apply the
Leibniz rule

V u0

(
η0X

pu0k(0)
)
d V u1

(
η1X

pu1k(1)
)

= d
(
V u0

(
η0X

pu0k(0)
)

V u1

(
η1X

pu1k(1)
))

− V u1

(
η1X

pu1k(1)
)
d V u0

(
η0X

pu0k(1)
) (2.25)
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Inserting this in the expression (2.24) the first summand of the right hand
side of (2.25) gives a differential of a form of degree (`− 1) while the second
summand gives an element considered in the case u0 ≥ uj. Using the induc-
tion assumption and the fact that d takes basic Witt differentials to basic
Witt differentials, we are done. Q.E.D.

Corollary 2.13 The kernel of WΩ·R[T]/R → WmΩ·R[T]/R consists of conver-

gent sums of basic Witt differentials e(ξ, k, I0, . . . , I`) with ξ ∈ V m
W (R).

Proof: By definition the kernel is topologically generated by elements of
the form (2.24) where for some index j we have V uj

ηj ∈ V m
W (R) (by

proposition 2.3). The proof of the lemma shows that these elements may be
written as a sum of basic Witt differentials of the indicated form. Q.E.D.

2.4 The phantom components

To prove the “linear independence” of basic Witt differentials, i.e. the unique-
ness assertion in theorem 2.8 we will now introduce the phantom components
for the de Rham-Witt complex.

Let R be a Z(p)-algebra and S be an R-algebra. If M is an S-module,
we will denote by Mwn the W (S)-module induced by restriction of scalars
wn : W (S) → S via the Witt polynomial wn. We consider the map for
n ≥ 0:

δn : W (S) −→ Ω1
S/R,wn

(x0, x1, x2 . . .) 7−→
n∑
i=0

Xpn−i−1
i dxi

The map δ0 is the usual differential dx0.

Lemma 2.14 δn is a continuous W (R)-linear pd-derivation.

Proof: Since δn factors through Wn+1(S) it is continuous. In the case where
Ω1
S/R,wn

has no p-torsion the assertion is obvious, because δn = 1
pndwn and

the torsionfreeness guarantees that any derivation is a pd-derivation. But we
may restrict to this case by considering homomorphisms R′ → R, S ′ → S,
where R′ has no p-torsion and S ′ = R′[x0, x1, . . .] is the polynomial algebra
in infinitely many variables.

Q.E.D.
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The maps δn define Wn+1(S)-linear maps

ωn : Ω̆1
Wn+1(S)/Wn+1(R) −→ Ω1

S/R,wn
, for n ≥ 0 ,

which we extend to the exterior powers

ωn : Ω̆i
Wn+1(S)/Wn+1(R) −→ Ωi

S/R,wn
(2.26)

by the following formula

ωn(ξdη1 . . . dηi) = wn(ξ)δnη1 . . . δnηi ,

where ξ ∈ Wn+1(S), η1, . . . , ηi ∈ Wn+1(S).
Consider the complex of Wn(S)-modules

P ·n =
n−1⊕
i=0

Ω·S/R,wi
.

With respect to the natural projection Pn → Pn−1 we obtain a procomplex.
We consider Pn as an algebra with respect to componentwise addition and
multiplication. Hence we have a procomplex of differential graded algebras.

We define operators F and V on Pn, but they will not satisfy the relations
required for an F -V -procomplex. Let us denote an element of Pn as follows

% = [%0, . . . , %n−1] , where %i ∈ Ω·S/R,wi
.

We set
F [%0, . . . , %n−1] = [%1, %2, . . . , %n−1] ∈ Pn−1
V [%0, . . . , %n−1] = [0, p%0, . . . , p%n−1] ∈ Pn+1

Then F : Pn → Pn−1,F is an algebra homomorphism. The F -V -formula
holds:

V (% F τ) = V % · τ , % ∈ Pn−1 , τ ∈ Pn .

The sum of the maps (ω0, . . . , ωn−1) define a homomorphism of Wn(S)-
modules

ωn : Ω̆·Wn(S)/Wn(R) −→ Pn , n ≥ 1 (2.27)

which is by definition (2.26) a homomorphism of projective systems of alge-
bras.
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Proposition 2.15 The ωn factor through a homomorphism of projective sys-
tems of algebras

ωn : WnΩ
·
S/R −→ Pn .

This homomorphism commutes with F and V but not with d.

dωn = [1, p, p2, . . .]ωnd ,

where [1, p, p2, . . .] ∈ ΠS = P 0
n .

Proof: Since Pn is not a F − V -procomplex the universality of W ·Ω is not
applicable. We must give a direct argument.

Let ξ = (x0, x1, . . . , xn−1) ∈ Wn(S). Then we have the relations

δn(
V ξ) =

{
δn−1(ξ), n > 0 δn−2(

F ξ) = pδn−1(ξ),
0 n = 0 for n ≥ 2

(2.28)

This is an obvious calculation.
We consider an element

u = ξdη1 . . . dηi ∈ Ω̆i
Wn(S)/Wn(R) , where ηj ∈ Wn(S) .

Then we have the formulas

ωn+1( V ξd V η1 . . . d
V ηi) = V (ωn(ξdη1 · . . . · dηi)), n ≥ 1

ωn−1( Fu) = F (ωn(u)), n ≥ 2
(2.29)

Indeed, the first relation says:
For 0 < m ≤ n we have

ωm( V ξd V η1 . . . d
V ηi) = pωm−1(ξdη1 . . . dηi) . (2.30)

The left hand side is by definition:

wm( V ξ)δm( V η1) · . . . · δm( V ηi) = pwm−1(ξ)δm−1(η1) · . . . · δm−1(ηi) .

Hence we obtain (2.30). For m = 0 the left hand side of (2.30) is obviously
zero.

The second equation of (2.29) asserts that for 0 ≤ m ≤ n− 2

ωm( F ξ Fdη1 . . .
Fdηi) = ωm+1(ξdη1 . . . dηi) . (2.31)

51



Clearly it is enough to show that

ωm( Fdη) = ωm+1(dη) for η ∈ Wn(S) . (2.32)

Let η = (y0, . . . , yn−1) and % = (y1 . . . yn−1). Then we may write η = [y0]+
V %.

By definition we have Fdη = [yp−1
0 ]d[y0] + d%.

ωm( Fdη) = wm([yp−1
0 ])δm[y0] + δm%

= y
(p−1)pm

0 yp
m−1

0 dy0 + δm+1(
V %)

= yp
m+1−1

0 dy0 + δm+1(
V %)

= δm+1([y0] + V %)
= ωm+1(dη) .

This proves the relation (2.31) and (2.32).
Next we prove the relation

pmωm(du) = dωm(u) . (2.33)

We may assume u = ξdη1 . . . dηi. Then we obtain

pmωm(dξdη1 . . . dηi) = pmδm(ξ) . . . δm(ηi)
= dwm(ξ)δm(η1) · . . . · δm(ηi)
= d(wm(ξ)δm(η1) . . . δm(ηi))
= dωm(ξdη1 . . . dηi).

Here the third equation holds because the form δm(ηj) are obviously closed.
Finally we have to show that the map (2.27) factors through ωn. For this

it suffices to show that the map

ωn : Ω̆i
Wn+1(S)/Wn+1(R) −→ Ωi

S/R,wn

factors through Wn+1Ω
i
S/R.

Let ξ(`) and η
(`)
j ∈ Wn(S) be some elements, such that∑

`

ξ(`)dη
(`)
1 · . . . · dη(`)

i = 0

in WnΩS/R. We will show that the following elements are annihilated by ωn:∑
`

V ξ(`)d V η
(`)
1 . . . d V η

(`)
i ,

∑
`

d V ξ(`)d V η
(`)
1 . . . d V η

(`)
i . (2.34)
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We compute by (2.30) for n > 0

ωn(
∑
`

V ξ(`)d V η
(`)
1 · . . . · d V η

(`)
i ) = pωn−1(

∑
`

ξ(`)dη
(`)
1 . . . dη

(`)
i ) .

This expression is zero because ωn−1 factors by induction through WnΩS/R.
The second element of (2.34) is annihilated by ωn because for n > 0

ωn(d
V ξ(`)d V η

(`)
1 . . . d V η

(`)
i ) = ωn−1(dξ

(`)dη
(`)
1 . . . dη

(`)
i ) . (2.35)

This follows readily from (2.28).

Let Ω
i

n+1 be the quotient of Ω̆i
Wn+1(S)/Wn+1(R) by the ideal generated by

all possible elements (2.34). This is stable by d and ωn : Ω
i

n+1 → Ωi
S/R,wn

is
defined. By definition we have a well-defined map

V : WnΩ
i
S/R −→ Ω

i

n+1

ξdη1 . . . dηi 7−→ V ξd V η1 . . . d
V ηi .

From (2.35) we obtain

ωn(d
V t) = ωn−1(dt) , t ∈ WnΩ

i
S/R . (2.36)

By construction Wn+1Ω
· is the quotient of Ω

i

n+1 by the d-stable ideal gener-
ated by the elements

V (t Fu)− V tu , t ∈ WnΩ
i
S/R , u ∈ Ω

i

n+1 . (2.37)

The formulas (2.30) and (2.31) show that this element is annihilated by ωn.
We have to verify that d( V (t Fu)− V tu) is annihilated by ωn. Using (2.36)
we obtain

ωn(d(
V (t Fu)− V tu)) = ωn−1(d(t

Fu))− ωn(d(
V tu))

= ωn−1(dt)ωn−1(
Fu) + ωn−1(t)ωn−1(d

Fu)
−ωn(d V t)ωn(u)− ωn(

V t)ωn(du)

This vanishes because the following relations hold:

ωn(d
V t) = ωn−1(dt) ωn−1(

Fu) = ωn(u)
ωn−1(d

Fu) = pωn(du) ωn(
V t) = pωn−1(t) ,

by (2.31), (2.29), resp. (2.28). This proves proposition 2.15 Q.E.D.
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We note that (2.31) may be written

ωn+1(d V u) = [0, ω0(du), . . . , ωn−1(du)] , for u ∈ WnΩS/R .

By the proposition 2.15 the map ωn defined by (2.26) factors through

ωn : Wn+1Ω
·
S/R −→ Ω·S/R,wn

.

This is an algebra homomorphism which satisfies

dωn = pnωnd .

Proposition 2.16 Let e = e(ξ, k, I0, . . . , I`) ∈ WΩ`
S/R be a basic Witt dif-

ferential. Then ωn(e) = 0 unless pn · k is integral. If pnk is integral we
have

ωn(e) = wn(ξ)T
pnkI0 (p− ord pnkI1dT p

nkI1 ) . . . (p− ord pnkI`dT p
nkI` )

if I0 6= ∅ or if k is integral, and

ωn(e) = wn−u(η)(p
− ord pnkI1dT p

nkI1 ) . . . (p− ord pnkI`dT p
nkI` )

with V u
η = ξ, if I0 = ∅.

Proof: If k is a weight with support I and u = u(kI), we find by (2.30)

ωn(
V u

(ηXpuk)) = puωn−u(ηX
puk) =

puwn−u(η)(T
puk)p

n−u
= wn(

V u
η)T p

n·k

We note that the last expression is 0 for u > n.
Next we find:

ωn(d
V u

(ηXpu·k)) = δn(
V u

(ηXpuk)) .

We note that this is zero for u > n. For u ≤ n we obtain for the last
expression:

δn−u(ηX
pu·kI ) = wn−u(η)T

(pu·kI)(pn−u−1)dT p
ukI

= wn−u(η)(p
−n+udT p

n·kI ) = wn−u(η)(p
− ord pnkIdT p

nkI )

Finally we consider an element F−t
dXptk, where t ≤ 0, and ptk is integral

but not divisible by p.

ωn(
F−t

dXptk) = ωn−t(dX
ptk) = T p

t·k(pn−t−1)dT p
tk

= p−n+tdT p
nk = p− ord pnkdT p

nk .

We obtain the proposition by multiplying these results together. Q.E.D.
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2.5 The independence of basic Witt differen-

tials

Let us denote by en(ξk,P , k,P) the image of e(ξk,P , k,P) in WnΩ
·
R[T1,...,Td]/R.

This element depends only on the residue class of ξk,P in Wn(R). Let pu(k)

be the common denominator of the values of k as before. If k ≡ 0 we set
u(k) = 0. By definition of the basic Witt differentials we have

ξk,P ∈ V u(k)

Wn−u(k)(R) . (2.38)

For n ≤ u(k) this should be read: ξk,P = 0, i.e. the elements en(ξk,P , k,P)
are non-zero only if p(n−1) · k is integral.

Proposition 2.17 Assume that R is a Z(p)-algebra. Then any element ω of
WnΩR[T1,...,Td] may be written as a finite sum

ω =
∑
k,P

en(ξk,P , k,P) , ξk,P ∈ V u(k)

Wn−u(k)(R) . (2.39)

Here k runs over all weights, such that pn−1 · k is integral. The coefficients
ξk,P are uniquely determined by ω.

The kernel of the map WΩ·R[T1,...,Td]/R → WnΩ
·
R[T1,...,Td]/R consists of con-

vergent series of basic Witt differentials e(ξ, k,P) with ξ ∈ V n
W (R). In

particular this kernel is

V n

WΩ·R[T1,...,Td]/R + d V n

WΩ·R[T1,...,Td]/R .

Proof: Clearly an element e(ξ, k,P) with ξ ∈ V n
W (R) maps to zero in

WnΩ
·
R[T1,...,Td]/R. Therefore by the lemma 2.12 any ω may be written in the

form (2.39). Let us first do the case where R has no p-torsion. Assume that
we are given an expression (2.39) with ω = 0. We want to show that ξk,P = 0
for all k,P . For this we consider the map

ωm : WnΩ
·
R[T1,...,Td]/R −→ Ω·R[T1,...,Td]/R,wm

for m = 0, . . . , n− 1. The proposition 2.16 shows

wm(ξk,P) = 0 for m = 0, . . . , n− 1 ,
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since the basic Witt differentials in Ω·R[T1,...,Td]/R are linearily independent by
proposition 2.1. Since R is p-torsion free this implies ξk,P = 0. This implies
the theorem 2.8 in the case where R has no p-torsion. Then the assertion
that the kernel in the corollary is generated by e(ξ, k,P) with ξ ∈ V n

W (R)
is clear. We set ξ = V n

η. If the partition P = {I0, . . . , I`} considered has
I0 6= ∅ we conclude e(ξ, k,P) ∈ V n

WΩ·R[T1,...,Td]/R by proposition 2.5 3). If

I0 = ∅ and k is integral we find by the same proposition:

V n

e(η, pnk, ∅, I1, . . . , I`) = e(ξ, k, ∅, I1, . . . , I`)

If I0 = ∅ and k is not integral we apply propostion 2.6:

de( V n

η, k, I1, . . . , I`) = e(ξ, k, ∅, I1, . . . , I`)

We have already seen that e( V n
η, k, I1, . . . , I`) ∈ V n

WΩ·R[T1,...,Td]/R. This
proves the proposition if R has no p-torsion.

Corollary 2.18 Assume that R has no p-torsion. Then the natural map

ω : WnΩ
·
R[T1,...,Td]/R −→

n−1
⊕
m=0

Ω·R[T1,...,Td]/R,wm

is injective.

We return now to the proof of the proposition, if R is arbitrary. We write
S = [T1, . . . , Td]. The ring R may be represented in the form R = R̃/a,
where R̃ is a ring without p-torsion. We set S̃ = R̃[T1, . . . , Td]. We consider
the subgroup WΩ·

aS̃/R̃
⊂ WΩ·

S̃/R̃
, which consists of convergent sums of basic

Witt differentials e(ξk,P , k,P) with ξk,P ∈ W (a). From the proof of lemma
2.12 and from the proposition 2.11 it follows that WΩaS̃/R is an ideal of the
algebra WΩS/R, which is invariant by F, V, d. We define a complex E as the
quotient:

0 −→ WΩ·
aS̃/R̃

−→ WΩ·
S̃/R̃

−→ E −→ 0. (2.40)

Then we have E0 = W (S). If we consider the exact sequence (2.40) for
the truncated Witt vectors, we see that E is an F − V -procomplex over the
R-algebra S. Therefore we obtain a homomorphism

WΩ·S/R −→ E
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of F − V -procomplexes such that the following diagram is commutative:

WΩ·S/R −→ E

↖ ↗
WΩ·

S̃/R̃

(2.41)

By the torsion-free case any element ω ∈ En has a unique expression (2.39).
By the lemma 2.12 and the diagram (2.41) we conclude that the same holds
for WnΩ

·
S/R. The other assertions of the proposition follow formally as in the

torsion free case. This completes also the proof of theorem 2.8. Q.E.D.

2.6 The filtration

In this section we extend the last statement of proposition 2.17 to an arbitrary
smooth R-algebra.

Let R be a ring such that p is nilpotent in R, or assume that R is F -finite.
Let S be a smooth R-algebra.

Proposition 2.19 Let n be a number. The kernel Filn of the map:

WΩ·S/R → WnΩ
·
S/R, (2.42)

is the subcomplex
V nWΩ·S/R + dV nWΩ·S/R. (2.43)

Proof: We begin with the case where S is étale over a polynomial algebra
S0 = R[T1, . . . , Td]. Then we have the base change isomorphism:

WmΩ·S/R → Wm(S)⊗Wm(S0) WmΩ·S0/R

We denote by F̄il
m

the kernel of the obvious map:

W (S)⊗W (S0) WΩ·S0/R
→ Wm(S)⊗Wm(S0) WmΩ·S0/R

(2.44)

The completion of the left hand side in the linear topology defined by the
ideals F̄il

m
will be denoted by W (S)⊗̂W (S0)WΩ·S0/R

. This is identified with

WΩ·S/R by base change. Then Film is the completion of F̄il
m

. (We do not

claim that this topology is separated.)
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We claim that any element θ ∈ Filn is of the form:

V n

θ1 + d V n

θ2, θ1, θ2 ∈ W (S)⊗̂W (S0)WΩ·S0/R

Let us consider the case where θ is in the image of the canonical map F̄il
n →

Filn. We can compute the kernel of (2.44) by proposition 2.17. This shows
that θ is a sum of elements of the form:

V n

ξ ⊗ ω, ξ ⊗ V n

ω, ξ ⊗ d V n

ω, (2.45)

where ξ ∈ W (S) and ω ∈ WΩ·S0/R
. By the F-V formula the elements of

(2.45) may be rewritten:

V n

(ξ ⊗ Fn

ω), V n

( Fn

ξ ⊗ ω), d V n

( Fn

ξ ⊗ ω)

This settles the case where θ is in the image of F̄il
n
.

Now we consider an arbitrary θ ∈ Filn. Then we find an element θ(n+1)

in the image of the map

W (S)⊗W (S0) WΩ·S0/R
→ W (S)⊗̂W (S0)WΩ·S0/R

, (2.46)

such that θ − θ(n+1) ∈ Filn+1. Then we have that θ(n+1) is in the image of
F̄il

n
, because F̄il

n
is the preimage of Filn by the map (2.46). Hence there

exists a representation in W (S)⊗̂W (S0)WΩ·S0/R
:

θ(n+1) = V n

θ
(n+1)
1 + d V n

θ
(n+1)
2

Inductively we obtain elements θ(m) in the image of (2.46) such that

θ − θ(n+1) − . . .− θ(m+1) ∈ Fil(m+1)

This implies that θ(m+1) is in the image of F̄il
m

, and therefore has a repre-
sentation:

θ(m+1) = Vm

θ
(m+1)
1 + d V m

θ
(m+1)
2

This yields the desired representation of θ:

θ = V n

(
∑
m>n

V m−1−n

θ
(m)
1 ) + d V n

(
∑
m>n

Vm−1−n

θ
(m)
2 )

This proves the result if S is étale over a polynomial algebra.
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Finally let S be an arbitrary smooth algebra. Then we consider the
assertion at a finite level, i.e. we want to show that the following map is
surjective:

V nWmΩ·S/R ⊕ dV nWmΩ·S/R → Ker(Wm+nΩ
·
S/R → WnΩ

·
S/R) (2.47)

We remark that by base change all W (S)-modules involved in this map are
compatible with localizations, e.g. (WnΩ

·
S/R)[f ]

∼= WnΩ
·
Sf/R

. Therefore it
suffices to find elements f1, . . . fs ∈ S, which generate the unit ideal such
that (2.47) becomes an isomorphism after localization with each Teichmüller
representative [fi]. But this is true if Sfi

is étale over a polynomial algebra.
Q.E.D.

2.7 The Cartier-Raynaud ring

Let us consider the set D0
R which consists of the following finite sums:∑

n≥0

V nξn +
∑
n>0

ηnF
n +

∑
n≥0

dV nξ′n +
∑
n>0

η′nF
nd (2.48)

Here ξn, ξ
′
n, ηn, η

′
n ∈ W (R) are arbitrary elements, which are almost all zero.

The letters F, V, d denote indeterminates. We consider D0
R as an abelian

group which is isomorphic to a direct sum of copies ofW (R) with components
ξn, ξ

′
n, ηn, η

′
n. Obviously there is a unique ring structure on D0

R which obeys
the following rules:

FV = p = V 0p, V ξF = V ξ, for ξ ∈ W (R),
F ξ = F ξF, ξV = V F ξ,
dξ = ξd, d2 = 0,
FdV = d V d = dV p, dF = pFd

(2.49)

For each number c let us consider the right ideal D0
R(c) = V cD0

R+dV cD0
R.

Lemma 2.20 The right ideal D0
R(c) consists of the elements (2.48) which

satisfy the following conditions:

ξn, ξ
′
n ∈ V c−n

W (R) for c > n
ηn, η

′
n ∈ V c

W (R) for n > 0
(2.50)
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Proof: Let us denote the abelian group defined by (2.50) by B(c). Consider
an element (2.48) which belongs to B(c). For n < c we obtain:

V nξn = V n V c−n

ρ = V nV c−nρF n−c ∈ V cD0
R

Here ρ exists by the definition (2.50) of B(c). The same consideration shows
that all summands of (2.48) are in D0

R(c). For the inverse inclusion D0
R(c) ⊂

B(c) we apply consecutively V c and then dV c to an arbitrary element of the
form (2.48). We have to show that the result is in B(c). Since dB(c) ⊂ B(c)
it is enough to look for the effect of V c. If we apply V c to the summand
ηmF

m we obtain for c ≥ m:

V cηmF
m = V c−m Vm

ηm ∈ B(c)

For c < m we obtain:

V cηmF
m = V c

ηmF
m−c ∈ B(c)

The rest of the proof is done using the same argument. Q.E.D.
The filtration by the right ideals D0

R(c) defines a topology on D0
R. We call

this the canonical topology. The next lemma implies that the ring multipli-
cation is continuous for the canonical topology:

Lemma 2.21 Let c be a number and α ∈ D0
R be an element. Then there is

a number c′ such that
αD0

R(c′) ⊂ D0
R(c)

Proof: We may restrict to the case where α is just one summand of (2.48).
We omit the straightforward verification. Q.E.D.

Definition 2.22 The Cartier-Raynaud ring DR is the completion of D0
R with

respect to the canonical topology.

DR = lim
←−
c

D0
R/D0

R(c)

Indeed, DR inherits a ring structure from D0
R by the last lemma.

Any element of DR may be written uniquely as a convergent sum:∑
n≥0

V nξn +
∑
n>0

ηnF
n +

∑
n≥0

dV nξ′n +
∑
n>0

η′nF
nd (2.51)
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Here ξn, ξ
′
n for n ≥ 0 and ηn, η

′
n for n > 0 are any elements which satisfy the

following condition:

For any given number u > 0 we have
ηn, η

′
n ∈ V u

W (R) for almost all n > 0.

The subring of DR which consists of all sums∑
n≥0

V nξn +
∑
n>0

ηnF
n

is the Cartier ring ER. We denote by ϑR ⊂ DR the two-sided ideal generated
by d. One checks easily that ϑ2

R = 0. We have a direct decomposition:

DR = ER ⊕ ϑR

We consider the the Witt ring W (R) as a DR-left module by the following
rules:

V ρ = V ρ, Fρ = Fρ, dρ = 0, for ρ ∈ W (R)

The subring W (R) ⊂ DR acts on W (R) by the natural multiplication.

Lemma 2.23 The DR-module homomorphism

DR/DR(F − 1) + DRd→ W (R)

which maps 1 to 1 is an isomorphism. If R → R′ is a ring homomorphism,
we have the natural isomorphism of DR′-modules:

DR′ ⊗DR
W (R) ∼= W (R′)

DR′/DR′(c)⊗DR
W (R) ∼= Wc(R

′)
(2.52)

Proof: It is clear that the first isomorphism implies the other second. Then
we also obtain the third since obviously:

DR′/DR′(c)⊗DR′
W (R′) ∼= Wc(R

′).

If we consider W (R) as an ER-left module, we have by Cartier theory and
isomorphism:

ER/ER(F − 1) ∼= W (R) (2.53)
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Therefore it suffices to show that the two-sided ideal ϑR is contained in the
left ideal DR(F − 1) + DRd. By (2.53) we have the congruence:∑

n

V nξ′n =
∑

V n

ξ′n mod DR(F − 1)

If we multiply the congruence with d we obtain the result, because the ele-
ment on the right hand side commutes with d. Q.E.D.

Let S be an R-algebra and consider the completed de Rham-Witt complex
WΩ·S/R. We extend the action of W (R) on this complex to an action of D0

R

by setting

V ω = V ω, Fω = Fω dω = dω, for ω ∈ WΩS/R.

If ξ ∈ W (R), then the projection of the elements V c
ξ, d V c

ξ ∈ WΩ·S/R to the

complex WcΩ
·
S/R are zero. It follows that for any α ∈ DR(c) the projection

of αω to WcΩ
·
S/R is zero.

Let us fix a number c and an arbitrary element α ∈ D0
R. It is clear that

there is a number c′ such that the action of α on WΩ·S/R factors through
α : Wc′Ω

·
S/R → WcΩ

·
S/R. Moreover we have just shown that any element in

α+ D0
R(c) has the same factorization with the same c′.

This shows that the action of D0
R extends to an action of the Cartier-

Raynaud algebra on the completed de Rham-Witt complex WΩ·S/R.

We consider now the case of the polynomial algebra S = R[T1, . . . Td]. The
structure theorem for the de Rham-Witt complex as formulated in proposi-
tion 2.17 and the formulas for the action of V , F , and d on the basic Witt
differentials given in the propositions 2.5 and 2.6 show the following:

WcΩ
·
S/R = Wc(R)⊕

⊕
k primitive

P

DR/DR(c)e(1, k,P) (2.54)

The sum runs for each primitive weight k over all partitions of P = I0 t I1 t
. . . Il of Supp k such that I0 is not empty. More over we have already shown:

DR/DR(c)⊗DR
WΩ·S/R

∼= WΩ·S/R/V
cWΩ·S/R+dV cWΩ·S/R

∼= WcΩ
·
S/R (2.55)

In the completed form these results say:
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Theorem 2.24 Let S = R[T1, . . . Td] be the polynomial ring. Each element
of WΩ·S/R has a unique expression

ξ +
∑
k,P

θk,P e(1, k,P)

Here ξ ∈ W (R) is regarded as an element of WΩ0
S/R = W (S). The sum runs

over all primitive weights and partitions as above. The elements θk,P ∈ DR,
satisfy the following condition:

Let c > 0 be an arbitrary integer. Then for almost all primitive weights
k we have θk,P ∈ DR(c).

From this theorem we obtain a base change property, which is similar to
base change in Cartier theory.

Theorem 2.25 Let R be a ring such that p is nilpotent in R, or assume
that R is F -finite. Let S be a smooth algebra over R. Let R′ be an arbitrary
R-algebra. We set S ′ = R′ ⊗R S. Then we have a canonical isomorphism:

DR′/DR′(c)⊗DR
WΩ·S/R

∼= WcΩ
·
S′/R′

Proof: By the universal property of the de Rham-Witt complex we have a
canonical map:

WΩ·S/R → WΩ·S′/R′

From this we obtain a map DR′⊗DR
WΩ·S/R → WΩ·S′/R′ . The last map factors

through:
DR′/DR′(c)⊗DR

WΩ·S/R −→ WcΩ
·
S′/R′ . (2.56)

More precisely we claim that this map is an isomorphism.
We begin with the case where S is a polynomial algebra over R. By (2.54)

any element in WcΩS′/R′ has a unique expression as a finite sum:

ξ′ +
∑

θ′k,Pe(1, k,P) (2.57)

We denote by τ(ξ′) the image of ξ′ by the canonical map induced by (2.52):

ξ′ ∈ Wc(R
′) → DR′/DR′(c)⊗DR

Wc(R) → DR′/DR′(c)⊗DR
WΩ·S/R

Then we can define a map inverse to (2.56). It maps (2.57) to the element:

τ(ξ′) +
∑

θ′k,P ⊗ e(1, k,P).
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This proves the result for a polynomial algebra.

We will now consider the case, where S is étale over a polynomial algebra
S0 = R[T1, . . . Td]. We set S ′0 = R′[T1, . . . Td]. Then S ′ is et́ale over S ′0 and
we have S ′ = S ′0 ⊗S0 S. For the Witt rings we obtain by the appendix the
isomorphism: W (S ′) = W (S ′0)⊗W (S0) W (S). We set

W (S)⊗̂W (S0)WΩ·S0/R
= lim

←−
n

W (S)⊗W (S0) WnΩ
·
S0/R

By base change this group identifies with WΩ·S/R and is therefore a DR-

module. Hence we may rewrite the left hand side of (2.56) as: DR′/DR′(c)⊗DR

W (S)⊗̂W (S0)WΩ·S0/R
.

We now rewrite the right hand side of (2.56). By étale base change we
have an isomorphism: WcΩ

·
S′/R′ = W (S ′) ⊗W (S′0) WcΩS′0/R

′ = W (S) ⊗W (S0)

WcΩ
·
S′0/R

′ . If we apply to the last complex the base change for a polyno-

mial algebra we obtain that the right hand side of (2.56) identifies with
W (S) ⊗W (S0) (DR′/DR′(c) ⊗DR

WΩ·S0/R
). The W (S0)-module structure on

DR′/DR′(c)⊗DR
WΩ·S0/R

) can be made explicit. For ρ0 ∈ W (S0), ξ ∈ W (R′),
and ω ∈ WΩ·S0/R

we have the following formulas:

ρ0(V
nξ ⊗ ω) = V nξ ⊗ Fn

ρ0ω
ρ0(dV

nξ ⊗ ω) = dV nξ ⊗ Fn
ρ0ω

ρ0(ξF
n ⊗ ω) = ξ ⊗ ρ0

Fn
ω

ρ0(ξF
nd⊗ ω) = ξ ⊗ ρ0

Fn
dω

(2.58)

Now we can rewrite the base change homomorphism (2.56) as follows:

DR′/DR′(c)⊗DR
(W (S)⊗̂W (S0)WΩ·S0/R

) →
W (S)⊗W (S0) (DR′/DR′(c)⊗DR

WΩ·S0/R
)

(2.59)

An inverse map to (2.59) is given by the formulas: Let ρ ∈ W (S), ξ ∈ W (R′),
and ω ∈ WΩ·S0/R

. Then we define:

ρ⊗ V nξω 7→ V nξ ⊗ Fn
ρ⊗ ω

ρ⊗ dV nξω 7→ dV nξ ⊗ Fn
ρ⊗ ω

ρ⊗ ξF n ⊗ ω 7→ ξ ⊗ ρ⊗ Fn
ω

ρ⊗ ξF nd⊗ ω 7→ ξ ⊗ ρ⊗ Fn
dω

(2.60)

To see that this map is inverse to (2.59) we make (2.59) more explicit. We
begin with the following remark: Fix an element θ ∈ DR′/DR′(c). Then there
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is a number c′ such that for any element α in the kernel of the map

W (S)⊗̂W (S0)WΩ·S0/R
→ W (S)⊗W (S0) Wc′Ω

·
S0/R

we have θ ⊗ α = 0. Indeed, this follows since by the proposition 2.19 any
element in this kernel is of the form α = V c′α1 + dV c′α2. Therefore it is
enough to see the effect of (2.59) on elements, which may be written in the
form: θ⊗ρ⊗ω with θ ∈ DR′/DR′(c), ρ ∈ W (S), and ω ∈ WΩ·S0/R

. Moreover
we may assume that θ is an element of the following form: V nξ, dV nξ, ξF n,
or ξF nd, where n is an arbitrary number and ξ ∈ W (R′). By the appendix
corollary A.11 respectively A.18 we have an isomorphism:

Wc+n(S)⊗Wc+n(S0),Fn Wc(S0) ∼= Wc(S)

Therefore the element ρ may be expressed as follows:

ρ
∑
i

Fn

ρiσi +
V c

ρ′, ρi, ρ
′ ∈ W (S), σi ∈ W (S0)

Then the effect of (2.59) is:

V nξ ⊗ ρ⊗ ω 7→
∑

i ρi ⊗ V nξ ⊗ σiω
dV nξ ⊗ ρ⊗ ω 7→

∑
i ρi ⊗ dV nξ ⊗ σiω

(2.61)

For the remaining cases the effect is defined as follows:

ξF n ⊗ ρ⊗ ω 7→ Fn
ρ⊗ ξF n ⊗ ω

ξF nd⊗ ρ⊗ ω 7→ Fn
ρ⊗ ξF nd⊗ ω

(2.62)

That this formulas coincide with the definition of (2.59) is obvious if we iden-
tify the the right hand side of (2.59) with WcΩS′/R′ . Finally these formulas
show that (2.60) is an inverse map. This proves the base change in the case
where S is étale over the polynomial algebra S0.

Let S be an arbitrary smooth algebra over R. First we will see that the
question whether (2.56) is an isomorphism is local for the Zariski-topology
on SpecS. Let f ∈ S be an element and [f ] ∈ W (S) be its Teichmüller
representative. We will show that the localization of (2.56) by [f ] coincides
with the base change map for Sf/R, if Sf is étale over a polynomial algebra
over R.

We know that the right hand side of (2.56) is compatible with localization:

(WcΩ
·
S′/R′)[f ]

∼= WcΩ
·
S′f/R

′
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We have to prove the same thing for the left hand side of (2.56). This means
that the following natural map is an isomorphism:

(DR′/DR′(c)⊗DR
WΩ·S/R)[f ] → DR′/DR′(c)⊗DR

WΩ·Sf/R

is an isomorphism. This map is defined because [f ] acts bijectively on the
right hand side. Indeed, by what we have shown the right hand side is
canonically isomorphic to WΩ·S′f/R′

.

We define the inverse map. Consider an element θ⊗α ∈ DR′/DR′(c)⊗DR

WΩ·Sf/R
. We know that there is an index c′ depending on θ such that θ⊗α =

0 whenever α is in the kernel of the map:

WΩ·Sf/R
→ Wc′Ω

·
Sf/R

∼= (Wc′Ω
·
S/R)[f ]

We choose β ∈ (WΩ·S/R)[f ] with the same image in (Wc′Ω
·
S/R)[f ] as α. Hence

we may write θ ⊗ α in the form θ ⊗ [f ]−mω for some number m and some
ω ∈ WΩ·S/R. We consider separately the cases where θ is V nξ, dV nξ, ξF n,

respectively ξF nd. Then we find the following relation in DR′/DR′(c) ⊗DR

WΩ·Sf/R
:

[f ]m(V nξ ⊗ [f ]−mω) = V nξ ⊗ [f ]m(pn−1)ω

Hence we map V nξ⊗ [f ]−mω to [f ]−m(V nξ⊗ [f ]m(pn−1)ω) ∈ (DR′/DR′(c)⊗DR

WΩ·S/R)[f ]. If θ = dV nξ we proceed in the same way. An element of the form

ξF n ⊗ [f ]−mω is mapped to [f ]−mp
n
(ξF n ⊗ ω) and finally ξF nd ⊗ [f ]−mω

to [f ]−mp
n
(ξF nd ⊗ ω). One checks that these definitions are bilinear and

therefore give a well defined map on the tensor product DR′/DR′(c) ⊗DR

WΩ·Sf/R
. This completes the proof of the theorem. Q.E.D.
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Chapter 3

The comparison to crystalline
cohomology

3.1 Liftings over the Witt vectors

Let R be a ring such that p is nilpotent in R. Let X be a smooth scheme over
R. We consider for a fixed number n the crystalline topos (X/Wn(R))crys
with respect to the canonical divided powers on the kernel of w0 : Wn(R) →
R. Let OX/Wn(R) be the structure sheaf on (X/Wn(R))crys (compare [BO] for
the notation). In this chapter we prove:

Theorem 3.1 There is a canonical isomorphism:

H i((X/Wn(R))crys,OX/Wn(R)) ∼= Hi(X,WnΩ
·
X/R)

The right hand side of this isomorphism is the hypercohomology of the de
Rham-Witt complex with respect to the Zariski topology. To prove this we
use the fact that the crystalline cohomology on the left hand side is the
de Rham cohomology of a lifting of X to a smooth scheme Y over Wn(R),
provided a lifting exists. In this section we choose local liftings carefully.

Proposition 3.2 Let p be nilpotent in R. Let A be a smooth R-algebra.
Then locally for the Zariski topology on SpecA the following set of data exists:

1) For each number n ≥ 1 a smooth lifting An over Wn(R) of A, and
isomorphisms Wn(R)⊗Wn+1(R) An+1

∼= An, where A1 = A.
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2) For each n > 1 a homomorphism φn : An → An−1, which is compatible
with the Frobenius on the Witt ring F : Wn(R) → Wn−1(R), and with the
absolute Frobenius Frob : A/pA→ A/pA.

3) For each n ≥ 1 a homomorphism:

δn : An → Wn(A),

such that w0δn is the natural map An → A, and such that the following
diagrams commute:

An+1
δn+1−−−→ Wn+1(A) An+1

δn+1−−−→ Wn+1(A)y y φn+1

y F

y
An

δn−−−→ Wn(A) An
δn−−−→ Wn(A)

We will call the system (An, φn, δn) a Frobenius lift of A to W (R).
Proof: This is almost trivial if A is a polynomial algebra over R. Indeed,

let A = R[T1, . . . , Td]. We set An = Wn(R)[T1, . . . , Td]. Then we extend the
Frobenius F : Wn(R) → Wn−1(R) to a homomorphism:

F : Wn(R)[T1, . . . , Td] → Wn−1(R)[T1, . . . , Td]
Ti 7→ T pi

Finally δn is the Wn(R)-algebra homomorphism

δn : Wn(R)[T1, . . . , Td] → Wn(R[T1, . . . , Td]),

which maps Ti to its Teichmüller representative [Ti]. This meets all require-
ments of a Frobenius lift.

Since, locally A is étale over a polynomial algebra, it suffices to prove the
following: Let A→ B be an étale homomorphism of R-algebras. Assume we
are given a Frobenius lift (An, φn, δn) of A. Then there is a unique Frobenius
lift (Bn, ψn, εn) of B such that A→ B lifts to a homomorphism (An, φn, δn) →
(Bn, ψn, εn).

We obtain the Frobenius lift Bn as follows. Since the surjection An → A
has nilpotent kernel there is a unique étale An-algebra Bn which lifts B.
Hence we obtain a projective system of liftings of B:
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. . . −−−→ Bn+1 −−−→ Bn −−−→ . . . −−−→ B1 = Bx x x

. . . −−−→ An+1 −−−→ An −−−→ . . . −−−→ A1 = A

For the construction of ψn we consider the étale An−1-algebra B∗n = Bn⊗An,φn

An−1. Since φn lifts the absolute Frobenius on A/pA we obtain isomorphisms:

B∗n ⊗An−1 A/pA
∼= (Bn ⊗An A/pA)⊗A/pA,Frob A/pA
∼= B/pB ⊗A/pA,Frob A/pA

(3.1)

Because B/pB is étale over A/pA we have the isomorphism:

B/pB ⊗A/pA,Frob A/pA ∼= B/pB
b⊗ a 7→ bpa

Therefore B∗n is a lifting of the étale A/pA-algebra B/pB with respect to
the morphism An−1 → A/pA. Since Bn−1 has the same property there is a
unique isomorphism of An−1-algebras B∗n

∼= Bn−1. This induces the desired
morphism ψn : Bn → Bn−1. It is the unique morphism compatible with φn.

The morphisms εn are obtained by the same kind of argument: The
Wn(A)-algebra Bn⊗An,δn Wn(A) is étale and is a lifting of B with respect to
the morphism w0 : Wn(A) → A. By the appendix the same is true for the
étale Wn(A)-algebra Wn(B). We obtain a canonical isomorphism:

Bn ⊗An,δn Wn(A) ∼= Wn(B) (3.2)

This provides the desired morphism εn : Bn → Wn(B).
The isomorphism (3.2) lifts the identity on B with respect to the mor-

phism Wn(A) → A. This shows that w0εn coincides with the restriction
Bn → B.

Finally ψn ⊗ F : Bn ⊗An,δn Wn(A) → Bn−1 ⊗An−1,δn−1 Wn−1(A) is the
unique map which lifts the Frobenius on B/pB and is compatible with F :
Wn(A) → Wn−1(A). Since the same is true for F : Wn(B) → Wn−1(B) the
isomorphism (3.2) takes ψn⊗F to F . This shows the last property required
in the lemma. Q.E.D.

Let A and A′ be smooth R-algebras. Assume we are given Frobenius lifts
(An, φn, δn) respectively (A′n, φ

′
n, δ
′
n). Then we may form the tensor product
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(An ⊗Wn(R) A
′
n, φn ⊗ φ′n, δn ⊗ δ′n). Here δn ⊗ δ′n denotes the composition of

the following obvious homomorphisms:

An ⊗Wn(R) A
′
n → Wn(A)⊗Wn(R) Wn(A

′) → Wn(A⊗R A
′).

In this way we obtain a Frobenius lift of A⊗R A
′.

For many purposes a weaker type of lifting is sufficient which we call a
Witt-lift.

Definition 3.3 Let p be nilpotent in R. Let A be a smooth R-algebra. A
Witt-lift of A consists of the following set of data:

1) For each number n ≥ 1 a smooth lifting An over Wn(R) of A, and
isomorphisms Wn(R)⊗Wn+1(R) An+1

∼= An, where A1 = A.

2) For each n ≥ 1 a homomorphism:

δn : An → Wn(A),

such that w0δn is the natural map An → A, and such that the following
diagram commutes:

An+1
δn+1−−−→ Wn+1(A)y y

An
δn−−−→ Wn(A)

It is easy to see that a Witt-lift (An, δn) always exists.

Proposition 3.4 Any morphism of smooth R-algebras φ : B → A extends
to a morphism of Witt-lifts (Bn, εn) → (An, δn).

Proof: We take arbitrary Witt-liftings (Bn, εn) and (An, δn) but we forget
the data εn. Then we construct by induction homomorphisms φn : Bn → An
and maps εn : Bn → Wn(B), such that the φn become a morphism of Witt-
lifts. We consider the following diagram of Wn+1-algebras:

An+1 ×Wn+1(A) Wn+1(B)

↓
Bn+1 → An ×Wn(A) Wn(B)

(3.3)
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The lower horizontal arrow is the composition Bn+1 → Bn → An ×Wn(A)

Wn(B), where the last arrow is φn on the first factor and εn on the second
factor. We note that the kernel of the vertical arrow is nilpotent. Since Bn+1

is smooth overWn+1(R) the diagram (3.3) may be extended to a commutative
diagram of Wn+1(R)-algebras by an arrow Bn+1 → An+1 ×Wn+1(A) Wn+1(B).
Q.E.D.

3.2 The comparison morphism

Let Xzar denote the topos of Zariski sheaves on X. Let us denote by un the
natural map of topoi ([BO] proposition 5.18):

un : (X/Wn(R))crys → Xzar

The structure sheaf OX/Wn(R) on the crystalline topos will be denoted by On.
It is a sheaf of Wn(R)-modules. We will define a morphism in the derived
category D+(X,Wn(R)) of sheaves of Wn(R)-modules on Xzar:

Run∗On → WnΩ
·
X/R (3.4)

For the definition we use the comparison between crystalline cohomology and
deRham cohomology ([BO] theorem 7.1).

Let us first assume that X admits an embedding in a smooth scheme Y
over R, which has a Witt-lift (Yn,∆n). Here Yn is a system of smooth liftings
of Y over Wn(R), and ∆n : Wn(Y ) → Yn are morphisms, which are global
versions of the homomorphisms δn in definition 3.3. Let us denote by Ȳn the
divided power envelope of X in Yn relative to the canonical divided powers
on VW (R). By the properties of a Witt-lift we have a commutative diagram:

X −−−→ Yn

w0

y x∆n

Wn(X) −−−→ Wn(Y )

(3.5)

Since X → Wn(X) is a pd-thickening relative to Wn(R) it follows that the
morphism Wn(X) → Yn given by the last diagram factors through a mor-
phism:

Wn(X) → Ȳn (3.6)
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Now the left hand side of (3.4) is represented by the de Rham complex
OȲn

⊗OYn
Ω·Yn/Wn(R), which can be viewed as a complex of sheaves on X, since

X → Ȳn is a nilimmersion. We define the comparison morphism (3.4) as the
composition of the following morphisms:

OȲn
⊗OYn

Ω·Yn/Wn(R)y
OȲn

⊗OYn
Ω·Wn(Y )/Wn(R) −−−→ Wn(OX)⊗Wn(OY ) Ω·Wn(Y )/Wn(R)y

WnΩ
·
X/R

(3.7)

Two different embeddings X → Y respectively X → Y ′ into smooth schemes
Y respectively Y ′ over R, which have a Witt-lift lead to the same morphism
(3.4). This follows from a standard argument since we may take fibre prod-
ucts (compare [I]).

In the case where X admits no embedding into a smooth scheme Y over
R, which has a Witt-lift one ([I]) proceeds by simplicial methods: Let X(i)
for i ∈ I be an open covering of X, such that each X(i) admits an em-
bedding in a smooth scheme Y (i) which has a Witt-lift Yn(i). One sets
X(i1, . . . , ir) = X(i1)∩. . .∩X(ir) and Yn(i1, . . . , ir) = Yn(i1)×Wn(R). . .×Wn(R)

Yn(ir). We denote by Ȳn(i1, . . . , ir) the pd-envelope of the canonical mor-
phism X(i1, . . . , ir) → Yn(i1, . . . , ir). This gives us three simplicial schemes:

X · → Ȳ ·n → Y ·n

Let ε : X · → X the natural augmentation. From [BO] §7 one obtains an
isomorphism

Run∗On
∼= Rε∗(OȲ ·n

⊗Y ·n Ω·Y ·n/Wn(R))

By the liftable case we have a natural morphism of simplicial sheaves:

OȲ ·n
⊗Y ·n Ω·Y ·n/Wn(R) → WnΩ

·
X·/R

If we apply Rε∗ to this morphism we obtain the desired comparison morphism
(3.2). Indeed, by étale base change for the deRham-Witt complex we have a
natural isomorphism:

Rε∗WnΩ
·
X·/R

∼= WnΩ
·
X/R
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3.3 The comparison theorem

Theorem 3.5 Let R be a ring such that p is nilpotent in R. Let X be a
smooth scheme over R. Then the canonical homomorphism (3.4):

Run∗On → WnΩ
·
X/R

is an isomorphism. This isomorphism is functorial in X.

Proof: The question is local for the Zariski topology onX. We may therefore
assume that X = SpecB is affine, and that B is étale over a polynomial
algebra A = R[T1, . . . , Td]. We set An = Wn(R)[T1, . . . , Td], and give it its
natural structure of a Frobenius lift φ : An+1 → An (see proof of proposition
3.2). Then the morphism of R-algebras A → B extends to a morphism of
Frobenius lifts An → Bn. Let us denote by ψ : Bn+1 → Bn the Frobenius
structure. We are then exactly in the situation of the isomorphism (3.2), and
we use the notation there.

Since B is smooth over R we may use the Frobenius lift Bn to compute
the comparison morphism of the theorem. It becomes the map

Ω·Bn/Wn(R) → WnΩ
·
B/R, (3.8)

which is induced by the map εn : Bn → Wn(B) of the Frobenius lift Bn.
Let us assume that (3.8) is a quasiisomorphism if we replace B by A.

We fix n and choose m such that pmWn(R) = 0. Then the differential of
Ω·An/Wn(R) becomes linear if we consider this complex as a complex of Am+n-
modules via restriction of scalars by φm : Am+n → An. By the tensor product
diagram:

Bm+n
ψm

−−−→ Bnx x
Am+n

ψm

−−−→ An

we find a quasiisomorphism:

Ω·Bn/Wn(R)
∼= Bn ⊗An Ω·An/Wn(R)

∼= Bm+n ⊗Am+n,φm Ω·An/Wn(R)

The point is that the differential d on the first complex commutes with 1⊗ d
on the last complex. Similarly we find by the remark to proposition 1.7
quasiisomorphisms:

WnΩ
·
B/R

∼= Wm+n(B)⊗Wm+n,Fm WnΩ
·
A/R

∼= Bm+n ⊗Am+n,φm WnΩ
·
A/R
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Since Bm+n is flat over Am+n the quasiisomorphism (3.8) is obtained from the
corresponding quasiisomorphism for the polynomial algebra A by tensoring
with Bm+n⊗Am+n,φm . To show that (3.8) is a quasi isomorphism we may
therefore without loss of generality assume that B = A is a polynomial
algebra over R.

We will use the basic Witt differentials of the de Rham-Witt complex
WnΩ

·
A/R. We call ω ∈ WnΩ

·
A/R integral, if the unique expression of ω as

a sum of basic Witt differentials contains only integral weights, i.e. if in
the expression (2.39) ξk,P = 0 if k is not integral. The integral elements of
WnΩ

·
A/R form a subcomplex which we denote by Cint.

If the unique expression of ω as a sum of basic Witt differentials contains
only non-integral weights we call Ω fractional. The subcomplex of fractional
elements of WnΩ

·
A/R will be denoted by Cfrac. We obtain a direct decompo-

sition:
WnΩ

·
A/R = Cint ⊕ Cfrac (3.9)

In the introdution we wrote this decomposition explicitly (formula 2) in the
case A = R[T ] of one variable. One sees immediately that the integral part is
just the de Rham-Witt complex of ΩWn(R)[T ]/Wn(R) while the fractional part
is acyclic. It is enough to verify that the same holds for several variables.

By proposition 2.1 2.1 we know that the elements:

T kI0 (p− ordp kI1dT kI1 ) · . . . · (p− ordp kI`dT kI` ) (3.10)

form a basis of ΩAn/Wn(R) if k runs through all integral weights and Supp k =
I0 t I1 t . . . t I` runs through all partitions as in this proposition. The
comparison morphism (3.8) maps the element (3.10) to the following basic
Witt differential:

XkI0 ( F−t(I1)

dXpt(I1)kI1 ) · . . . · ( F−t(I`)dXpt(I`)kI` ) (3.11)

The independence of basic Witt differentials shows that the comparison mor-
phism maps ΩAn/Wn(R) isomorphically to the complex Cint.

It therefore remains to be shown that Cfrac is acyclic. This is a conse-
quence of proposition 2.6. Indeed an element ω ∈ Cfrac has the form:

ω =
∑

en(ξk,P , k,P),

where the sum runs over all k which are not integral and P runs over all
partitions. The independence of basic Witt differentials and the proposition
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2.6 shows that ω is a cycle iff ξk,P = 0 for partitions P with I0 6= ∅. On the
other hand en(ξk,P , k,P) is a boundary if I0 = ∅. This completes the proof
of the theorem.

Finally we must verify the functoriality. Let X → X ′ be a morphism of
smooth schemes over R. Then we obtain a commutative diagram of topoi:

(X/Wn(R))crys
un−−−→ Xzary α

y
(X ′/Wn(R))crys

u′n−−−→ X ′zar

(3.12)

Let On respectively O′n be the structure sheaves on (X/Wn(R))crys respec-
tively (X ′/Wn(R))crys. Our claim is the commutativity of the following dia-
gram.

α∗Ru′n∗O′n −−−→ α∗WnΩ
·
X′/Ry y

Run∗On −−−→ WnΩ
·
X/R

The horizontal arrows are defined simplicially by affine open coverings of
X respectively X ′. By the construction at the and of §1.2 we are therefore
reduced to prove the following statement:

Assume we are given embeddings X → Y and X ′ → Y ′ into smooth
affine schemes Y and Y ′ over R, and a commutative diagram:

X −−−→ Y

α

y α̃

y
X ′ −−−→ Y ′

(3.13)

By proposition 3.4 there are Witt lifts (Yn,∆n) and (Y ′n,∆
′
n) such that α̃

extends to a map of these Frobenius lifts. Let Ȳn be the pd-envelope of
X → Yn, and Ȳ ′n be the pd-envelope of X ′ → Y ′n. Then our assertion is the
commutativity of the following diagram given by (3.7):

α̃∗(OȲ ′n
⊗OY ′n

Ω·Y ′n/Wn(R)) −−−→ α∗WΩ·X′/Ry y
OȲn

⊗OYn
Ω·Yn/Wn(R) −−−→ WΩ·X/R

(3.14)
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But this is obvious. Q.E.D.
We are going to explain the compatibility of the Frobenius with the com-

parison morphism. This is the point where we need Frobenius lifts. Let A
be an R-algebra. The commutative diagram:

Wn(A)
F−−−→ Wn−1(A)x x

Wn(R)
F−−−→ Wn−1(R)

(3.15)

induces a map F : Ω·Wn(A)/Wn(R) → Ω·Wn−1(A)/Wn−1(R) which factors through a
map of the deRham-Witt complexes:

F : WnΩ
·
A/R → Wn−1Ω

·
A/R.

We call this map the absolute Frobenius. On the group WnΩ
i
A/R we have

F = piF . This follows from the equation d F ξ = p Fdξ for ξ ∈ Wn(A). More
generally we obtain for a scheme X over S = SpecR an absolute Frobenius:

F : WnΩ
·
X/S → Wn−1Ω

·
X/S (3.16)

On the other hand let Run∗On be the direct image of the structure sheaf
by un : (X/Wn(S))crys → Xzar. Then again we have an absolute Frobenius:

F : Run∗On → Run−1∗On−1 (3.17)

This map is defined as follows. We set X0 = X × Spec Fp and S0 = S ×
Spec Fp. Then the nilimmersion S0 → Wn(S) has a natural pd-structure
which is an extension of the pd-structure S → Wn(S) which we considered
so far. For this pd-structure the Frobenius is a pd-morphism F : Wn−1(S) →
Wn(S). We consider the morphism:

ūn : (X0/Wn(S)) → Xzar = X0 zar

By [BO] 5.17 we have a canonical isomorphism Rūn∗OX0/Wn(S)
∼= Run∗On.

Then we consider the commutative square:

X0
Frob−−−→ X0y y

Wn−1(S)
F−−−→ Wn(S)

(3.18)

It induces a map Rūn∗OX0/Wn(S) → Rūn−1∗OX0/Wn−1(S). Hence we obtain
the absolute Frobenius (3.17).
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Proposition 3.6 Let X be a smooth scheme over S = SpecR. The com-
parison isomorphism of theorem 3.5 respects the absolute Frobenius, i.e. we
have a commutative diagram:

Run∗On −−−→ WnΩ
·
X/R

F

y yF

Run−1∗On −−−→ Wn−1Ω
·
X/R

(3.19)

Proof: By the simplicial methods above we may reduce the assertion to
the case where X is embedded in a smooth affine scheme Y which admits
a Frobenius lift Yn. Let Φn : Yn−1 → Yn be the given lift of the Frobenius.
As before we denote by Ȳn the pd-envelope of X → Yn. Since Φ is a lift
of the absolute Frobenius we obtain from [BO] 7.1 that the map (3.17) is
represented by the following map of complexes induced by Φn:

OȲn
⊗OYn

Ω·Yn/Sn
→ OȲn−1

⊗OYn−1
Ω·Yn/Sn−1

.

Here we wrote Sn = SpecWn(R). Therefore our assertion is the commuta-
tivity of the following diagram:

OȲn
⊗OYn

Ω·Yn/Sn
−−−→ OȲn−1

⊗OYn−1
Ω·Yn/Sn−1y y

WnΩ
·
X/S

F−−−→ Wn−1Ω
·
X/S

(3.20)

This follows from the properties of the Frobenius lift Φn. Q.E.D.

3.4 Displays

Let R be a ring where p is nilpotent. We set S = SpecR. Let A be an
abelian scheme over S. Using the de Rham-Witt complex we will equip
the Dieudonné crystal associated to A by [BBM] with the structure of a
3n-display (see [Z] Introduction).

We start with a more general situation. Let f : X → S be a smooth and
proper morphism. Then we consider the W (R)-module

P = lim
←

H1(X,WnΩ
·
X/S)
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We define InΩ
·
X/S as the subcomplex of WnΩ

·
X/S obtained by replacing the

group Wn(OX) in degree zero by the subgroup VWn−1(OX) but leaving the
other degrees untouched. Then we obtain an exact sequence of complexes of
sheaves on X:

0 → InΩ
·
X/S → WnΩ

·
X/S → OX → 0 (3.21)

Here OX is viewed as a complex with OX placed in degree zero and zero
otherwise. We set Qn = H1(X, InΩ

·
X/S) and Pn = H1(X,WnΩ

·
X/S). Then the

sequence of hypercohomology of (3.21) gives:

H0(X,WnΩ
·
X/S) → H0(X,OX) → Qn → Pn → H1(X,OX) (3.22)

We claim that the first arrow is surjective if S is noetherian. Indeed, R′ =
H0(X,OX) is an étale R-algebra by EGA III 7.8.10. By definition the group
H0(X,WnΩX/S) is the kernel of the differential:

H0(X,Wn(OX)) → H0(X,WnΩ
1
X/S)

The ring Wn(R
′) is naturally a subring of H0(X,Wn(OX)). Because Wn(R

′)
is étale over Wn(R) and because the differential is zero on Wn(R) by defini-
tion, it is also zero on Wn(R

′). Hence Wn(R
′) is contained in the first term

of (3.22), and therefore the first arrow of (3.22) is surjective.
If we pass in (3.22) to the projective limit we obtain an exact sequence:

0 → Q→ P → H1(X,OX) (3.23)

We set IR = VW (R). Then we obtain IRP ⊂ Q since this holds on the level
of complexes.

We denote by
F : WnΩX/S → Wn−1Ω

·
X/S (3.24)

the homomorphism which is piF in degree i. It induces a Frobenius linear
endomorphism of the W (R)-module P :

F : P → P

which is called a Frobenius.
Next we define a morphism of complexes:

V −1 : InΩX/S → Wn−1Ω
·
X/S (3.25)
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by the commutative diagram:

VWn−1(OX)
d−−−→ WnΩ

1
X/S

d−−−→ WnΩ
2
X/S −−−→ . . .

V −1

y F

y pF

y
Wn−1(OX)

d−−−→ Wn−1Ω
1
X/S

d−−−→ Wn−1Ω
2
X/S −−−→ . . .

(3.26)

The commutativity is obvious from the relations:

FdV = d pFd = dF

We obtain a Frobenius linear homomorphism of W (R)-modules

V −1 : Q→ P.

Let ω ∈ WnΩ
i
X/S and ξ ∈ W (R). Then V ξω ∈ InΩ

i
X/S. One checks easily

the relation:
V −1( V ξω) = ξFω

Here F respectively V −1 are the homomorphisms of complexes (3.24) re-
spectively (3.25). This shows that for x ∈ P and ξ ∈ W (R) we have the
relation:

V −1( V ξx) = ξFx (3.27)

Let us now consider the case where X = A is an abelian scheme over
S = SpecR. Then we can drop the assumption that R is noetherian. We
denote by D(A) the Dieudonné crystal associated to A (compare [BBM]). By
the comparison isomorphism we have for each n a canonical isomorphism:

H1(A,WnΩ
·
X/S)

∼= D(A)(S,Wn(S),γ) (3.28)

Here γ denotes the canonical divided powers on Wn(S).
The right hand side of (3.28) is a finitely generated projective Wn(R)-

module of rank 2dim A. Using that D(A) is a crystal we conclude that P is
a finitely generated projective W (R)-module of rank 2dim A. Using [BBM]
2.5.8 we conclude the exactness of the sequence:

0 → Q→ P → H1(A,OA) → 0 (3.29)

We want to show that (P,Q, F, V −1) is a 3n-display. Since H1(A,OA) is
known to be a finitely generated projective R-module ([BBM]) we have a
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decomposition P = L ⊕ T as W (R)-module, such that Q = L ⊕ IRT . This
is called a normal decomposition in [Z].

We have to show that V −1 : Q → P is an F -linear epimorphism. All
other requirements of a 3n-display are trivially fulfilled. It is easy to see ([Z])
that V −1 is an F -linear epimorphism, iff the following map is an F -linear
isomorphism:

V −1 ⊕ F : L⊕ T → P (3.30)

Since the question is local we may assume that P is a free W (R)-module.
We consider δ = det(V −1 ⊕ F ) with respect to some basis of P . We have
to show that δ is a unit in W (R). If R = k is a perfect field we know that
ordp detF = dimA = dimW (k)L. Since we have F = pV −1 on L we conclude
that ordp δ = 0. Hence δ is a unit.

In the general case it clearly suffices to check that w0(δ) is a unit in R,
i.e. non-zero in R/m for any maximal ideal m. Since D(A) is a crystal on
the big crystalline situs it commutes with arbitrary base change. This shows
that it is enough to treat the case R = R/m. Finally we see by a base change
to the perfect closure of R/m that (P,Q, F, V −1) is a 3n-display.

We will now give the comparison to the theory in [Z]. Let us assume that
R/pR is essentially of finite type over a perfect field k. Then we may write
R as a quotient

W (k)[T1, . . . , Tr]M → R (3.31)

of a polynomial ring over W (k) localized in a multiplicative closed system
M . Let a be the kernel of the map (3.31). Let S be the completion of
W (k)[T1, . . . , Tr] with respect to the a-adic topology. Then the ring S is
without p-torsion. We set Sn = S/an.

Let A be an abelian scheme over R. We have defined the structure of a
3n-display on the finitely generated projective W (R)-module

P = H1
crys(A/W (R)) = lim

←
H1
crys(X/Wn(R)) = lim

←
H1(X,WnΩ

·
X/S). (3.32)

We set Pn = H1
crys(An/W (Sn)) and P̂ = lim

←
Pn. Then P̂ is a finitely gener-

ated projective W (S)-module. We define Qn to be the kernel of the canonical
map:

H1
crys(An/W (Sn)) → H1

DR(An/Sn) → H1(An,OAn).

The maps Qn+1 → Qn are surjective. We set Q̂ = lim
←
Qn. One checks

that FQn ⊂ pPn. Indeed one can reduce the problem modulo the ideal
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pW (Sn) + VW (Sn). Let Ān be the abelian variety obtained by base change
over S̄n = Sn/pSn. The one has to show that the Frobenius induces the zero
map on H0(Ān,ΩĀn/S̄n

). This is clear. Since the ring S has no p-torsion

we obtain a unique map V −1 : Q̂ → P̂ , such that pV −1 = F . Therefore
(P̂ , Q̂, F, V −1) coincides with the 3n-display defined by the de Rham-Witt
complex. Let (P,Q, F, V −1) be the 3n-display we have associated to A. Then
V −1 is uniquely determined by the commutative diagram:

Q̂
V −1

−−−→ P̂y y
Q

V −1

−−−→ P

(3.33)

We can summarize our considerations as follows. Assume we are given
a functor which associates to an abelian scheme A over R a 3n-display
(PA, QA, F, V

−1), such that (PA, F ) = (H1
crys(A/W (R)), F ) is the crystalline

cohomology equipped with the Frobenius, and such that QA is the kernel of
the morphism

H1
crys(A/W (R)) → H1(A,OA).

Assume moreover that the functor commutes with base change. Then the
functor is uniquely determined. This proves in particular:

Proposition 3.7 Let A be an abelian variety over R with no p-divison points
in the geometric fibres. Let P = (P,Q, F, V −1) be the 3n-display associated
to the p-divisible group of A by [Z]. Then the dual 3n-display P̂ is canonically
isomorphic to the 3n-display given on H1

crys(A/W (R)) by the de Rham-Witt
complex.

Proof: It is shown in [Z] that P is canonically isomorphic to the Lie algebra
of the universal extension of A over W (R). Therefore the proposition follows
from [MM] Theorem 1 and the duality theory of [BBM]. Q.E.D.

One might define the structure of a 3n-display on H1
crys(A/W (R)) by a

lifting as above, without using the de Rham-Witt complex. But then the
point is, that it seems difficult to show that this structure is independent of
the lifting.
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3.5 The de Rham-Witt complex for a crystal

We consider an arbitrary scheme X over a ring R, where p is nilpotent. Let
us denote by Crys(X/Wn(R)) the crystalline site. We recall that an object of
this site is a triple (U, T, δ), where U is a Zariski open subset of X, U → T is
a closed immersion of Wn(R)-schemes defined by an ideal J ⊂ OT , and δ is
a pd-structure on J which is compatible with the pd-structure on VWn(R).
If there is no confusion possible we will denote this object simply by T . As
before we denote by On = OX/Wn(R) the structure sheaf of this site, i.e.
On(T ) = OT .

A sheaf E of On-modules on Crys(X/Wn(R)) induces a sheaf ET of OT -
modules on the scheme T . We call E quasicoherent if for all objects T in
Crys(X/Wn(R)) the OT -module ET is quasicoherent.

In this work a crystal is a quasicoherent sheaf E of On-modules such that
for any morphism α : T ′ → T in Crys(X/Wn(R)) the induced homomorphism
of OT ′-modules α∗ET → ET ′ is an isomorphism. Let us denote the Zariski
sheaf EWn(X) given by the pd-thickening X → Wn(X) by En. Since X and
Wn(X) have the same topological space we can view En as a sheaf on X.
The aim of this section is to build a procomplex for varying n ≥ 1:

(WnΩ
·
X/R ⊗Wn(OX) En,∇)

For n = 1 the OX-module E1 is equipped with an integrable connection (see
also below) and the complex above coincides with the de Rham complex
defined by this integrable connection.

Let (U, T, γ) be an object of Crys(X/Wn(R)) such that U is affine. We
set U = SpecA and T = SpecS. Then we have a surjective map α : S → A
whose kernel a is equipped with divided powers γn which are compatible with
the canonical divided powers on VWn−1(R) ⊂ Wn(R).

Let ν : S → Ω be a Wn(R)-linear pd-derivation to an S-module Ω. By
definition we have for each number n ≥ 1 and each a ∈ a the equation:

ν(γn(a)) = γn−1(a)ν(a) (3.34)

The direct sum S ⊕ Ω has a natural ring structure such that Ω is an ideal
whose square is zero. We define on the kernel a⊕Ω of the ring homomorphism

α⊕ 0 : S ⊕ Ω → A (3.35)
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a pd-structure denoted by the same letter γn as follows:

γn(a+ ω) = γn(a) + γn−1(a)ω, for a ∈ a, ω ∈ Ω. (3.36)

Clearly this extends the canonical pd-structure on VWn−1(R). Hence we
may view (3.35) as an object in Crys(X/Wn(R)). The homomorphism of
Wn(R)-algebras

ν̃ : S → S ⊕ Ω,
s 7→ s+ ν(s)

(3.37)

is a morphism of pd-thickenings of A, i.e. induces a morphism in the category
Crys(X/Wn(R)). Indeed, this is equivalent to the requirement that ν is a
pd-derivation: On one hand we have:

γn(ν̃(a)) = γn(a+ ν(a)) = γn(a) + γn−1(a)ν(a) (3.38)

On the other hand we have:

ν̃(γn(a)) = γn(a) + ν(γn)(a) (3.39)

The expressions (3.38) and (3.39) are equal iff (3.34) holds.
There is a second morphism of Wn(R)-algebras:

ν̃0 : S → S ⊕ Ω,
s 7→ s+ 0

(3.40)

which is also a morphism of pd-thickenings of A.
Let now E be a quasicoherent crystal on X. Then we obtain a quasico-

herent sheaf ESpecS on SpecS. We denote the associated S-module by ES.
In the same way the pd-thickening (3.35) defines an S ⊕ Ω-module ES⊕Ω.
Since E is a crystal, we have isomorphisms of S ⊕ Ω-modules:

(S ⊕ Ω)⊗ν̃,S ES ∼= ES⊕Ω
∼= (S ⊕ Ω)⊗ν̃0,S ES (3.41)

This induces the identity when tensored with the map S ⊕ Ω → S of pd-
thickenings which sends Ω to 0. We identify the right hand side of (3.41)
with ES ⊕Ω⊗S ES. Then an element 1⊗m from the left hand side of (3.41)
is mapped to an element of the form m⊕∇m ∈ ES ⊕ Ω⊗S ES. One checks
easily that

∇ : ES → Ω⊗S ES, (3.42)
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is a connection, i.e. an additive map which satisfies the equation:

∇(sm) = ν(s)m+ s∇m (3.43)

We apply this to the canonical pd-thickening Wn(A) → A. If we denote
by En,A the value of the crystal E at Wn(A) we obtain a connection:

∇ : En,A → Ω̆1
Wn(A)/Wn(R) ⊗Wn(A) En,A (3.44)

We have to check that this connection is integrable. Then we may extend
the connection to a complex (Ω̆·Wn(A)/Wn(R) ⊗Wn(A) En,A,∇) by the formula:

∇(ω ⊗m) = dω ⊗m+ (−1)deg ωω ∧∇m for m ∈ En,A.

Let I · ⊂ Ω̆·Wn(A)/Wn(R) be a graded d-invariant ideal. Then ∇ leaves I ·⊗Wn(A)

En,A ⊂ Ω̆·Wn(A)/Wn(R) ⊗Wn(A) En,A stable. Indeed, for a ∈ I i and m ∈ En,A
we write

∇(a⊗m) = da⊗m+ a∇m.

Clearly each summand of the right hand side is in I i+1 ⊗Wn(A) En,A. If we

apply this remark to the kernel I · of the canonical surjection Ω̆·Wn(A)/Wn(R) →
WnΩ

·
A/R we obtain a complex (WnΩ

·
A/R ⊗Wn(A) En,A,∇).

For varying U = SpecA these complexes glue to the desired complex

(WnΩ
·
X/R ⊗Wn(OX) En,∇).

The integrability is a consequence of the theory of HPD-stratifications:
Indeed, since the question is local on X, we may assume that there is a
smooth Wn(R)-algbra B, and a surjection B → Wn(A). Let us denote by

Dγ(B) the pd-envelope of the surjection B → Wn(A)
w0→ A ofWn(R)-algebras

relative to the canonical divided powers γ on the ideal VWn−1(R). Since
w0 : Wn(A) → A is a pd-thickening we obtain by the universal property of
the pd-envelope a morphism of pd-thickenings of A:

Dγ(B) → Wn(A)

We apply our general construction of a connection above to the case where
S = Dγ(B) and d : Dγ(B) → Ω̆·Dγ(B)/Wn(R). Then we obtain a connection:

∇ : EDγ(B) → Ω̆·Dγ(B)/Wn(R) ⊗Dγ(B) EDγ(B) (3.45)
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Taking into account the canonical isomorphism (compare [I] 0. proposition
3.1.6): Ω̆·Dγ(B)/Wn(R)

∼= Dγ(B) ⊗B ΩB/Wn(R), we obtain from the proof of

the theorem in [BO] 6.6 that the connection (3.45) is just the connection
associated to the crystal E, and hence integrable. The connection (3.44) is
by construction the push-forward of (3.45) by the morphismDγ(B) → Wn(A)
and therefore is integrable too.

Let U = SpecA as before and denote by un : (U/Wn(R))crys → U
the canonical morphism of topoi. Then Run∗EU is in the derived category
D+(U,Wn(R)) represented by the de Rham complex Ω̆·Dγ(B)/Wn(R) ⊗Dγ(B)

EDγ(B). Therefore the morphism:

(Ω̆·Dγ(B)/Wn(R) ⊗Dγ(B) EDγ(B),∇) → (WnΩ
·
X/R ⊗Wn(OX) En,∇)

provides by [BO] 7.1 a morphism in D+(U,Wn(R)):

Run∗EU → (WnΩ
·
U/R ⊗Wn(OU ) En,∇) (3.46)

As in section 1.2 this morphism is independent of the embedding B → Wn(A)
and globalizes by the method described in section 1.2 to a morphism:

Run∗E → (WnΩ
·
X/R ⊗Wn(OX) En,∇). (3.47)

Theorem 3.8 Let un : (X/Wn(R))crys → Xzar be the natural morphism of
topoi. Then the morphism (3.47) above is a quasiisomorphism for any crystal
E of flat modules.

Proof: We have proved this in the case where E is the structure sheaf On

of (X/Wn(R))crys. The proof will be a reduction to this case using the ideas
of [BO] theorem 7.1.

Since the question is local on X we may assume that X = SpecA where A
is étale over a polynomial algebra R[T1, . . . , Td]. We lift A to an étale algebra
An over Wn(R)[T1, . . . , Td] as in the proof of proposition 3.2. In particular
we obtain a map

δn : An → Wn(A). (3.48)

We set S0 = SpecR, S = SpecWn(R), and Y = SpecAn Then we obtain a
commutative diagram:

X
i−−−→ Yy y

S0 −−−→ S

(3.49)
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We note that S0 → S is a pd-thickening with respect to the natural pd-
structure on the ideal VWn−1(R) ⊂ Wn(R). This pd-structure extends to
Y , and hence i : X → Y becomes a pd-thickening.

Let DY/S(1) be the pd-envelope of the diagonal Y → Y ⊗S Y considered
as a quasicoherent sheaf on Y . If we set ξi = 1 ⊗ Ti − Ti ⊗ 1 we may
identify DY/S(1) with the pd-polynomial algebra OY < ξ1, . . . , ξd > ([BO]
proposition 3.32), in such a way that the canonical OY -module structure
on the pd-polynomial algebra corresponds to the OY -module structure on
DY/S(1) from the right (sic).

Let δ : DY/S(1) → DY/S(1)⊗OY
DY/S(1) be the map defined by:

δ(ξ[k]) = (ξ ⊗ 1 + 1⊗ ξ)[k] =
∑
i+j=k

ξi ⊗ ξj

This map is needed for Grothendieck’s linearization LY of HPD-differential
operators. LY is a functor from the category of quasicoherent OY -modules
and HPD-differential operators to the category of OY -modules with an HPD-
stratification and horizontal maps. By [BO] (6.9) the last category is equiv-
alent to the category of crystals on (Y/S)crys. We will denote the corre-
sponding crystal by LY , if it is necessary to distinguish it from the HPD-
stratification.

If M is a OY -module then LY (M) = DY/S(1)⊗OY
M is equipped with an

HPD-stratification. A HPD-differential operator

D : DY/S(1)⊗OY
M → N

induces a horizontal map of HPD-stratified OY -modules:

LY (D) : DY/S(1)⊗M
δ⊗idM−−−−→ DY/S(1)⊗DY/S(1)⊗M

id⊗D−−−→ DY/S(1)⊗N

where all tensor products are taken over OY .
We will apply this construction to the case where D is a differential

operator of order ≤ 1. In this case D is given by an OS-linear map

D : M → N.

For f ∈ OY we define [D, f ] : M → N by the formula

[D, f ](m) = D(fm)− fD(m).
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This is an OY -linear map since D is a differential operator of order ≤ 1. We
linearize D to an OY -linear map:

D] : OY ⊗OS
M → N

Let J be the kernel of the multiplication OY ⊗OS
OY → OY . Then D] factors

through a quotient:

D] : (OY ⊗OS
OY )/J2 ⊗OY

M → N

By [BO] 4.2 we have a natural surjection

DY/S(1) → (OY ⊗OS
OY )/J2.

Hence we obtain a HPD-differential operator

D] : DY/S(1)⊗OY
M → N.

We denote its linearization simply by LY (D) = LY (D]). In local coordi-
nates T1, . . . Td as above this linearization is given as follows. An element of
DY/S(1)⊗OY

M may be uniquely written as a finite sum:∑
k

ξ[k] ⊗mk, mk ∈M. (3.50)

Here k = (k1, . . . , kd) runs through all vectors of nonnegative integers. In
this notation one finds:

LY (D)(ξ[k]⊗mk) = ξ[k]⊗Dmk+
d∑
i=1

ξ
[k1]
1 . . . ξ

[ki−1]
i . . . ξ

[kd]
d [D,Ti](mk), (3.51)

with the convention ξ
[−1]
i = 0.

In the following lemma S can be an arbitrary scheme where p is locally
nilpotent and Y can be an arbitrary smooth scheme over S.

Lemma 3.9 Let D1 : M1 →M2 and D2 : M2 →M3 be differential operators
of order ≤ 1 between quasicoherent OY -modules, such that D2D1 = 0. If
p = 2 we require moreover that [D2, f ][D1, f ] = 0 for any element f ∈ OY .
Assume that the sequence of OS-linear maps

M1 D1−→M2 D2−→M3
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is exact in M2.
Then LY (D2)LY (D1) = 0 and the following sequence is exact:

DY/S(1)⊗OY
M1 LY (D1)−→ DY/S(1)⊗OY

M2 LY (D2)−→ DY/S(1)⊗OY
M3

We postpone the proof to the end of this section.
More generally we can consider a complex of differential operators of

order ≤ 1, i.e. a sequence of quasicoherent OY -modules M i for i ∈ Z and
differential operators Di : M i →M i+1 of order ≤ 1, such that

. . .→M i Di−→M i+1 → . . .

is a complex of OS-modules. If p = 2 we add the condition that for any
f ∈ OY and i ∈ Z:

[Di+1, f ][Di, f ] = 0 (3.52)

By the last lemma this ensures that LY (M ·) is a complex.
A morphism α : M · → N · of complexes of differential operators of or-

der ≤ 1 is a graded homomorphism of OY -modules α : M i → N i which
is also a homomorphism of complexes. Since the compositions αDi respec-
tively Diα as OS-module homomorphisms corresponds to the composition as
HPD-differential operators we obtain that LY (α) : LY (M ·) → LY (N ·) is a
morphism of complexes.

Corollary 3.10 Let α : M · → N · be a quasiisomorphism of complexes
of differential operators of order ≤ 1. Then LY (α) : DY/S(1) ⊗OY

M · →
DY/S(1)⊗OY

N · is a quasiisomorphism of complexes of OY -modules.

Proof: The mapping cone C = M i+1 ⊕ N i of α is an acyclic complex of
differential operators of order ≤ 1. Clearly the functor LY respects mapping
cones. Since by the last lemma LY (C) = ConeLY (α) is acyclic we are done.
Q.E.D.

We apply the functor LY to the de Rham-Witt complex (WnΩ
·
X/R⊗Wn(OX)

En,∇) defined before. We view this as a complex consisting of OY -modules
by (3.48). If EY denotes the value of E at the pd-thickening X → Y we have
an isomorphism:

WnΩ
·
X/R ⊗Wn(OX) En ∼= WnΩ

·
X/R ⊗OY

EY .
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Using that ∇ is a connection we find:

[∇, f ](α) = ∇(fα)− f∇(α) = df ∧ α for α ∈ WnΩ
i
X/R ⊗OY

EY f ∈ OY

(3.53)
Hence we find that (WnΩ

·
X/R⊗OY

EY ,∇) is a complex of differential operators

of order ≤ 1. Indeed the extra condition (3.52) for p = 2 is fulfilled by (3.53).
It therefore induces a HPD-differential operator which is explicitly given as
follows:

∇ : DY/S(1) ⊗OY
WnΩ

i
X/R ⊗OY

EY → WnΩ
i+1
X/R ⊗OY

EY

y ⊗ α 7→ y∇α
ξi ⊗ α 7→ d[Ti] ∧ α
ξ

[k]
i ⊗ α 7→ 0

(3.54)

Here y ∈ OY , k ≥ 2, and α ∈ WnΩ
i
X/R⊗OY

EY . The differential d[Ti] appears

because δn maps Ti to the Teichmüller representative [Ti].
By theorem 3.5 we have a quasiisomorphism Ω·Y/S → WnΩ

·
X/R which is

transformed by LY into a quasiisomorphism of complexes of crystals (corol-
lary 3.10). By [BO] 7.1 we obtain quasiisomorphisms:

OY/S → LY (Ω·Y/S) → LY (WnΩ
·
X/R)

We note that the category of crystals over Y is equivalent to the category
of crystals over X by [BO] 6.7. If K is a crystal over Y we will denote by
ι∗K the corresponding crystal over X.

If we apply the functor ι∗ we obtain a resolution in the category of crystals
on X:

OX/S → ι∗LY (WnΩ
·
X/R)

Then we obtain a chain of isomorphisms in the derived category D+(Xzar):

Run∗E
(1)∼= un∗LY (Ω·Y/S ⊗OY

EY )
(2)∼= un∗(LY (Ω·Y/S)⊗OY

EY )
(3)∼= un∗(LY (WnΩ

·
X/R)⊗OY

EY )
(4)∼= un∗LY (WnΩ

·
X/R ⊗OY

EY )
(5)∼= WnΩ

·
X/R ⊗OY

EY
(3.55)

Indeed, the isomorphisms (1) and (5) follow from the proof of theorem 7.1
in [BO]. The isomorphism (3) follows because EY is a flat OY -module by
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assumption and because we have shown that LY (Ω·Y/S) → LY (WnΩ
·
X/R) is

a quasiisomorphism. Finally we obtain the isomorphisms (2) and (4) from
[BO] proposition 6.15. Therefore the proof of the theorem 3.8 is finished
modulo the missing proof of lemma 3.9. Q.E.D.

Proof of Lemma 3.9: The question is local. We may assume that S =
SpecR and that Y is étale over SpecR[T1, . . . Td]. We set ξi = 1⊗Ti−Ti⊗ 1
as before.

First we must verify that LY (D2)LY (D1) = 0. Using the explicit formula
for the linearization this reduces to the following identities. Let f, g ∈ OY

and m ∈M1 the following relations hold:

[D2, f ](D1m) +D2([D1, f ]m) = 0 (3.56)

[D2, f ]([D1, g]m) + [D2, g](D1, f ]m) = 0 (3.57)

[D2, f ]([D1, f ]m) = 0 (3.58)

We note that the last equation holds by assumption if p = 2.
The assumption that D1 is a differential operator of order ≤ 1 is equiva-

lent with the relation:

D1(fgm) = fD1(gm) + gD1(fm)− fgD1(m) (3.59)

A similar relation holds for D2. From this and from D2D1 = 0 it is straight-
forward to verify the relations (3.56), (3.57), and (3.58). We do it only for
the last relation with the assumption p 6= 2. We compute the left hand side
of (3.58):

[D2, f ](D1(fm)− fD1(m)) =
D2(fD1(fm)− f 2D1(m))− fD2(D1(fm)− fD1(m)) =
D2(fD1(fm))−D2(f

2D1(m)) + fD2(fD1m)
(3.60)

By (3.59) we find:

D1(f
2m) = 2fD1(fm)− f 2D1(m)

Applying D2 gives:

D2(f
2D1(m)) = 2D2(fD1(fm))

Using that D2 is a differential operator of order ≤ 1 we obtain:

D2(f
2D1(m)) = 2fD2(fD1(m))
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If we add the last two equations we find that (3.60) becomes zero when
multiplied by 2. Hence the relation LY (D2)LY (D1) = 0 is established.

In the decomposition (3.50) we give ξk⊗mk the grade |k| = k1 + . . .+kd.
Then we obtain Z≥0-graded abelian groups DY/S(1) ⊗OY

M i, for i = 1, 2, 3.
We write the formula (3.51) for D1 respectively D2 as follows:

LY (Di)(ξ
[k] ⊗mk) = D̃0

i (ξ
[k] ⊗mk) + D̃−i (ξ[k] ⊗mk) (3.61)

Here D̃0
i (ξ

[k]⊗mk) = ξ[k]⊗Dimk is the first summand on the right hand side of
(3.51) and D̃−i (ξ[k]⊗mk) is the second. Then D̃0

i for i = 1, 2 are homogenous
maps of degree 0 of graded abelian groups. Clearly the sequence

DY/S(1)⊗OY
M1 D̃0

1−→ DY/S(1)⊗OY
M2 D̃0

2−→ DY/S(1)⊗OY
M3

is exact. The operators D̃−i for i = 1, 2 are homogenous maps of degree −1 of
graded abelian groups. Consider an element ω of degree h in DY/S(1)⊗OY

M2:

ω =
∑
|k|≤h

ξ[k] ⊗mk, mk ∈M2,

which is in the kernel of LY (D2). We set ωh =
∑
|k|=h ξ

[k] ⊗ mk Then

LY (D2)(ω) = 0 implies by homogeneity that D̃0
2(ω

h) = 0. Hence ωh = D̃0
1η

h,
where ηh ∈ DY/S(1)⊗OY

M1 is homogenous of degree h. Then ω−LY (D1)(η
h)

is of degree less than h and is in the kernel of LY (D2). We conclude by in-
duction on h that ω − LY (D1)(η

h) is in the image of LY (D1). Q.E.D.
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Appendix A

A.1 The ring of Witt vectors

In this appendix we collect some general facts about Witt vectors.

Let X be a scheme. Then we define for any natural number n a scheme
Wn(X) by a glueing process as follows. If X = SpecR is affine we set
Wn(X) = SpecWn(R). We note that for any element f ∈ R there is a
natural isomorphism

Wn(R)[f ]
∼= Wn(Rf ).

If elements f1, . . . , fr generate the unit ideal in R, then their Teichmüller
representatives [f1], . . . , [fr] in Wn(R) generate the unit ideal. Indeed, by
induction it suffices to show that any element of the form V n−1

[a] for a ∈ R
is in the ideal generated by the [fi]. It suffices to find elements xi ∈ R such
that the following equality holds in Wn(R):

r∑
i=1

( V n−1

[xi])[fi] = V n−1

[a]

This is equivalent with the following equality in R which is clearly solvable.

r∑
i=1

xif
pn−1

i = a

This shows that Wn(X) is the union of the open subschemes Wn(SpecRfi
) for

i = 1, . . . r. Morally this means that the construction of Wn(X) for an affine
scheme X is local. If SpecS → SpecR is an open immersion of affine schemes
one deduces easily that Wn(SpecS) → Wn(SpecR) is an open immersion.
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If U is a quasiaffine scheme we choose an open embedding U → SpecR
and define Wn(U) as the union of all affine subschemes Wn(SpecRf ) of
Wn(SpecR) with SpecRf ⊂ U . One can show that this is independent
of the chosen embedding.

Finally if X is any scheme and Uα α ∈ I is an affine covering we define
Wn(X) as the ringed space obtained by glueing the affine schemes Wn(Uα)
along the open subspaces Wn(Uα ∩ Uβ).

Proposition A.1 If the scheme X is separated, so is Wn(X).

Proof: We apply the criterion EGA I 5.5.6. Then we are reduced to prove
the following statement: Let R1 → R and R2 → R be ring homomorphisms,
which induce open immersions of the affine schemes. We assume that the the
images of R1 and R2 generate R as a ring, i.e. R = R1R2. Then the images
of Wn(R1) and Wn(R2) generate Wn(R) as a ring.

We assume this assertion for n and show it for n + 1. We consider the
situation modulo p. It follows from the isomorpism (A.5) below that R =
Rpn

R1 + pR and hence by our assumtion that R = Rpn

2 R1 + pR. Iterating
this equation we find R = Rpn

2 R1 + pnR1R2. This means that any element
a ∈ R may be expressed in the following form:

a =
r∑
i=1

xiy
pn

i +
s∑
j=1

x′jp
ny′j

where the xi and x′j are elements of R1 and the yi and y′j are elements of R2.
But this implies the following identity in Wn+1(R):

V n[a] =
r∑
i=1

(V n[xi])[yi] +
s∑
j=1

V n[x′j]V
n[y′j]

Hence V nW1(R) is in the subring of Wn+1(R) generated by Wn+1(R1) and
Wn+1(R2). We obtain the result from the induction assumption. Q.E.D.

We remark that this construction becomes trivial if p is nilpotent in R.
In this case the kernel of w0 : Wn(R) → R is nilpotent. Therefore if p is
locally nilpotent on X the scheme Wn(X) has the same topological space as
X but the structure sheaf is Wn(OX).

We want to formulate finiteness conditions for Wn(X) in terms of X.
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Proposition A.2 Let R be a Z(p)-algebra. Then the following conditions
are equivalent:

(i) For some number n ≥ 1 the Frobenius F : Wn+1(R) → Wn(R) is a finite
ring homomorphism.

(i bis) For each number n ≥ 1 the Frobenius F : Wn+1(R) → Wn(R) is a
finite ring homomorphism.

(ii) For some number n ≥ 1 the Witt polynomial wn : Wn+1(R) → R is a
finite ring homomorphism.

(ii bis) For each number n ≥ 1 the Witt polynomial wn : Wn+1(R) → R is
a finite ring homomorphism.

(iii) The absolute Frobenius Frob : R/pR → R/pR is a finite ring homo-
morphism.

Proof: If for some number n ≥ 1 the homomorphism wn : Wn+1(R) → R is
finite then wn : Wn+1(R/p

nR) → R/pnR is obviously finite too. The converse
statement is also true. Indeed, let x1, . . . , xk ∈ R generate (R/pnR)[wn], i.e.
R/pnR considered as a Wn+1(R/p

nR)-module via wn : Wn+1(R/p
nR) →

R/pnR. Then any element of R has a representation:

k∑
i=1

wn(ξi)xi + pnr =
k∑
i=1

wn(ξi)xi + wn(
V n

[r])1

This shows that R[wn] is finitely generated too.
Moreover by the lemma of Nakayama (R/pnR)[wn] is finitely generated iff

(R/pR)[wn] is finitely generated. The map wn : Wn+1(R) → R/pR factors as
follows:

Wn+1(R)
w0→ R/pR

Frobn→ R/pR.

Since the first map here is surjective, we see that wn : Wn+1(R) → R/pR is
finite, iff Frob : R/pR → R/pR is finite. Therefore we have shown that the
conditions (ii), (iibis), and (iii) are equivalent. These conditions are also
equivalent with (i) for n = 1, since the map F : W2(R) → R coincides with
w1.
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We will show now that the condition (i) implies (ii). Knowing this for
n = 1 we apply induction. For n > 1 we consider the following commutative
diagram:

Wn+1(R)
F−−−→ Wn(R)

Res

y yRes
Wn(R)

F−−−→ Wn−1(R)

It shows that condition (i) holds for n− 1. We conclude by induction.

Finally we show that the condition (iibis) implies (ibis). We prove by
induction on n that the homomorphism F : Wn+1(R) → Wn(R) is finite.
For n = 1 this is w1 which starts our induction. Let us assume that n > 1,
and that F : Wn(R) → Wn−1(R) is finite. We denote by Wn−1(R)[F ] the
Wn+1(R)-module obtained by the homomorphism:

Wn+1(R)
Res→ Wn(R)

F→ Wn−1(R)

Then Wn−1(R)[F ] is finitely generated by induction.
We obtain an exact sequence:

0 → R[wn]
V n−1

→ Wn(R)[F ] → Wn−1(R)[F ] → 0

Then the module in the middle is finitely generated because the other mod-
ules in this sequence are. Q.E.D.

Definition A.3 We call a ring R, which satisfies the equivalent conditions
of the last proposition F -finite.

Let X be a scheme. The Frobenius on the Witt vectors induces a mor-
phism F : Wn(X) → Wn+1(X). Let U ⊂ X be an open subset. By reduction
to the affine case one shows that the following diagram is cartesian:

Wn(U)
F−−−→ Wn+1(U)y y

Wn(X)
F−−−→ Wn+1(X)

(A.1)

This shows that the morphism F : Wn+1(X) → Wn(X) is finite iff X admits
an open covering by affine schemes SpecRi, such that each ring Ri is finite.
In this case we say that the scheme X is F -finite.
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Proposition A.4 Let R be a F -finite noetherian ring. Then Wn+1(R) is a
noetherian ring for each number n ≥ 0.

Proof: Since wn : Wn+1(R) → R is a finite ring homomorphism and since R
is noetherian we see easily that R[wn] is a noetherian Wn+1(R)-module. We
consider the exact sequence:

0 → R[wn]
V n

→ Wn+1(R) → Wn(R) → 0

This shows the proposition by induction on n. Q.E.D.

Proposition A.5 Let R be an F -finite ring, and S be a finitely generated
R-algebra. Then for each number n the Wn(R)-algebra Wn(S) is finitely
generated.

Proof: It is enough to prove our proposition in the case of a polynomial
algebra in one variable S = R[T ]. We consider the morphism Wn+1(R)[X] →
Wn+1(R[T ]) which maps X to the Teichmüller representative [T ]. We have
to prove that this last homomorphism is of finite type. We will see that this
homomorphism is even finite.

Let us consider the exact sequence:

0 → R[T ][wn]
V n

→ Wn+1(R[T ]) → Wn(R[T ]) → 0

By induction it is enough to prove that R[T ][wn] is a finitely generated module
over Wn+1(R)[X]. But this module is obtained form the homomorphism:

Wn+1(R)[X] → R[X] → R[T ]

where the first morphism is induced by wn and the second is the R-algebra
homomorphism which maps X to T p

n
. Since both morphisms are finite we

are done. Q.E.D.
From the last proposition we deduce the global version:

Proposition A.6 Let T be an F -finite scheme. If X → T is a morphism of
finite type then X is F -finite. The morphism Wn(X) → Wn(T ) is of finite
type. If T is noetherian then Wn(X) and Wn(T ) are noetherian.

Corollary A.7 Let T be an F -finite scheme. If X → T is a proper mor-
phism then the morphism Wn(X) → Wn(T ) is proper.
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Proof: We assume the corollary for n and show it for n + 1. Consider the
commutative diagram:

Wn(X) tWn(X) −−−→ Wn+1(X)y y
Wn(T ) tWn(T ) −−−→ Wn+1(T )

(A.2)

The horizontal arrows are induced by F on the first summand and by
the restriction on the second summand. These morphisms are finite by the
proposition. It follows from the induction that the diagonal in the diagram
above is proper. The arrow Wn+1(X) → Wn+1(T ) is separated by proposition
A.1. Therefore it suffices to show that the upper horizontal arrow in the
diagram is surjective. For this we may restrict ourself to the case where
X = SpecR is affine. Then it suffices to show that the kernel of the following
map is nilpotent for n ≥ 1:

Wn+1(R)
(F,Res)−→ Wn(R)×Wn(R)

But this kernel consists of elements V n
[a] with a ∈ R and pa = 0. It is clear

that the product of two of these elements is zero. Q.E.D.
Next we find conditions which ensure that the functor Wn(X) takes étale

morphisms to étale morphisms. We begin with the case where the prime p
is nilpotent.

Proposition A.8 Let R be a ring such that p is nilpotent in R. Let R→ S
be an étale morphism. Then for each number n the morphism of Witt rings
Wn(R) → Wn(S) is étale. For m < n the natural restriction map Wn(S) →
Wm(S) induces an isomorphism:

Wn(S)⊗Wn(R) Wm(R) ∼= Wm(S) (A.3)

In particular we obtain isomorphisms:

Wn(S)⊗Wn(R)
Vm

Wn−m(R) ∼= Vm

Wn−m(S)

Proof: Take any elements u1, . . . ur, which generate S as an R-algebra.
We denote by ti = [ui] ∈ W (S) their Teichmüller representatives.
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Lemma A.9
W (S) = W (R)[t1, . . . tr]

More precisely any element of Vm
W (S) may be written as a polynomial in

t1, . . . , tr with coefficients in V m
W (R).

Proof: We show that
S = R[up1, . . . , u

p
r] (A.4)

Since p is nilpotent we may restrict by the lemma of Nakayama to the case
where pR = 0. One considers the relative Frobenius over R:

R⊗Frob,R S → S (A.5)

This is known to be an isomorphism. Indeed, the morphism of affine schemes
induced by (A.5) this is obviously radical and surjective. On the other hand
both sides of (A.5) are étale over R, and therefore the morphism is also étale.
Hence we have an isomorphism by EGA IV 17.9.1. From the isomorphism
(A.5) we conclude (A.4) in the case pR = 0.

Let us consider an element Vm
ξ ∈ W (S), and denote by ξ0 = w0(ξ) its

first Witt component. By (A.4) we may write:

ξ0 =
∑
I

aIu
pmI ,

where the sum goes over multiindices I = (i1, . . . , ir) and aI ∈ R. Hence

ξ −
∑
I

[aI ]
Fm

tI ∈ VW (S)

If we apply V m to the last equation we obtain

V m

ξ −
∑
I

V m

[aI ]t
I = V m+1

η

for some η ∈ W (S). From this the lemma follows by an easy induction.
Q.E.D.

We continue with the proof of the proposition. The lemma shows that
Wn(R) → Wn(S) is of finite type and that the isomorphism (A.3) holds.

We want to think in terms of schemes. We set Y = SpecS, X = SpecR,
Wn(Y ) = SpecWn(S), and Wn(X) = SpecWn(R). For m < n the Witt
polynomials wm define morphisms:
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ωm : Y → Wn(Y )

These maps are radical and surjective, and the homoeomorphism induced on
the underlying spaces is independent of m.

Next we verify that the morphism Wn(Y ) → Wn(X) is unramified. Since
ω0 : X → Wn(X) is a nilimmersion we may lift the étale scheme Y over X
to an étale scheme Zn over Wn(X). Consider the commutative diagram:

Y −−−→ Zn

ω0

y y
Wn(Y ) −−−→ Wn(X)

Applying the infinitesimal criterion for étale to the étale morphism Zn →
Wn(X) we obtain an arrow Wn(Y ) → Zn. We set Zn = SpecCn and consider
the comorphism Cn → Wn(S) of Wn(R)-algebras. Since the composite with
w0 is surjective we find that

C̄n + IS = Wn(S)

where C̄n denotes the image of Cn in Wn(S). By the lemma we know that
IS = IRWn(S). Hence the lemma of Nakayama shows that C̄n = Wn(S).
Hence Wn(Y ) → Zn is a closed immersion which shows that Wn(Y ) →
Wn(X) is unramified.

Now we show that the following diagram is a fibre product:

Y
ωm−−−→ Wn(Y )y y

X
ωm−−−→ Wn(X)

Indeed, consider the fibre product T and the canonical morphism Y → T .
Since T is unramified over X, by what we have shown, and since Y is étale
over X by assumption, the morphism Y → T is étale (compare EGA IV
17.7.10, 17.1.4.) On the other hand this morphism is radical and surjective.
Therefore we conclude Y = T as desired.

Let IB,n−1 = V n−1
W1(S) ⊂ Wn(S). This is an ideal, which is isomorphic

to S considered as a Wn(S) via wn−1. Therefore the cartesian diagram above
just says that we have an isomorphism:

IR,n−1 ⊗Wn(R) Wn(S) = IS,n−1
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On the other hand we have already remarked that IR,n−1Wn(S) = IB,n−1.
Therefore by the local criterion for flatness we deduce that Wn(R) → Wn(S)
is flat if Wn−1(R) → Wn−1(S) is flat. The proposition follows by induction.
Q.E.D.

Corollary A.10 Let p be nilpotent in R. If R → S is an unramified ho-
momorphism then for each n ≥ 0 the homomorphism Wn(R) → Wn(S) is
unramified too.

Proof: This is clear if R→ S is surjective or étale. The general case follows
from [EGA] IV 18.4.7. Q.E.D.

Corollary A.11 With the assumptions of proposition A.8 the homomor-
phism F : Wn+1(S) → Wn(S) induces an isomorphism of Wn(R)-algebras:

Wn+1(S)⊗Wn+1(R),F Wn(R) → Wn(S) (A.6)

Proof: We see that the left hand side of (A.6) is étale over Wn(R) if we
tensor the étale morphismWn+1(R) → Wn+1(S) by ⊗Wn+1(R),FWn(R). Hence
the morphism (A.6) is étale since it is a morphism of étale Wn(R)-algebras.

On the other hand we have a commutative diagram:

Wn+1(S)⊗Wn+1(R),F Wn(R) −→ Wn(S)
↓ ↓

S/pS ⊗R/pR,Frob R/pR −→ S/pS
(A.7)

The vertical arrows are induced by w0. They are surjective with nilpotent
kernel. Since the arrow below is an isomorphism by (A.5) we conclude that
(A.6) induces a morphism of affine schemes which is radical and surjective.
Since we know that this morphism is étale it is an isomorphism. Q.E.D.

Corollary A.12 With the assumption of proposition A.8 let R′ be an R-
algebra. We set S ′ = S ⊗R R

′. Then we have a canonical isomorphism for
each number n:

Wn(S)⊗Wn(R) Wn(R
′) → Wn(S

′) (A.8)

100



Proof: Again the canonical map (A.8) is étale, since both sides are étale
over Wn(R

′). Using the commutative diagram:

Wn(S)⊗Wn(R) Wn(R
′) −→ Wn(S

′)
↓ ↓

S ⊗R R
′ −→ S ′

(A.9)

We conclude as in the proof of the last corollary. Q.E.D.

Corollary A.13 With the assumption of proposition A.8 let a ⊂ R be an
ideal. Then we have for each number n natural isomorphisms:

Wn(S)⊗Wn(R) Wn(R/a) ∼= Wn(S/aS)

Wn(S)⊗Wn(R) Wn(a) ∼= Wn(aS)
(A.10)

Proof: The first isomorphism is a special case of the second. Since Wn(S)
is flat over Wn(R) the first isomorphism implies the second. Q.E.D.

We want to remove the condition that p is nilpotent in proposition A.8.
Instead we introduce the condition F -finite:

Proposition A.14 Let R be an F -finite ring, and let S be an étale R-
algebra. Then Wn(S) is étale over Wn(R) for each number n.

For the proof we need a form of the local criterion of flatness ([BAC] chapt.III
§5, théorème 1):

Lemma A.15 Let A→ B be a homomorphism of noetherian rings. Let a ∈
A be an element, such that the homomorphism obtained by localization Aa →
Ba is flat. Assume moreover that for each number n the homomorphism
A/anA→ B/anB is flat.

Then the homomorphism A→ B is flat.

Proof: Consider the multiplicatively closed system U = 1 + aB of B. Then
the image of SpecBU → SpecB contains V (a) ⊂ SpecB. We set C =
Ba×BU . This is a faithfully flat B-algebra. Hence it is enough to show that
A → C is flat, i.e. we must show that A → BU and A → Ba are flat. This
is clear for the last arrow.

It remains to be shown that A → BU is flat. By loc.cit. chapt III
§5 proposition 2 BU is an ideally separated A-module with respect to a.
Therefore théorème 1 loc.cit. says that it is enough to verify that A/anA→
BU/a

nBU is flat for all numbers n ≥ 1. But because of the isomorphism
BU/a

nBU
∼= B/anB this is true by assumption. Q.E.D.
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Corollary A.16 Let A→ B be a homomorphism of finite type of noetherian
rings. Let a ∈ A be an element, such that the homomorphism obtained by
localization Aa → Ba is étale. Assume moreover that for each number n the
homomorphism A/anA→ B/anB is étale.

Then the homomorphism A→ B is étale.

Proof: We have to show that A → B is unramified, i.e. Ω1
B/A = 0. By

assumption Ω1
B/A is a B-module of finite type. Since the module of Kähler

differentials commutes with base change we have (Ω1
B/A)a = 0 and Ω1

B/A ⊗A

A/aA = 0. We conclude that Ω1
B/A = 0. Q.E.D.

Proof of proposition A.14: We apply the last corollary to the homo-
morphism Wn(R) → Wn(S). We take for a the Teichmüller representative
[p] ∈ Wn(R). We have to prove that the following ring homomorphisms are
étale:

Wn(R)[p] → Wn(S)[p] (A.11)

Wn(R)/[p]mWn(R) → Wn(S)/[p]mWn(S) (A.12)

We have isomorphisms:

Wn(R)[p]
∼= Wn(Rp) ∼= Rp × . . .×Rp (A.13)

The last isomorphism is provided by the Witt polynomials. Since the same
holds for S we see that (A.11) is étale.

It remains to be shown that (A.12) is étale for each number m. Obviously
we have the following inclusions:

Wn(p
mpn−1

R) ⊂ pmWn(R)

We set c = pmp
n−1

. Then we find isomorphisms:

Wn(R)/[p]mWn(R) ∼= (Wn(R)/Wn(p
cR))/[p]m(Wn(R)/Wn(p

cR))
∼= Wn(R/p

cR)/[p]mWn(R/p
cR)

(A.14)
Since the same holds for S the arrow (A.12) may be indentified with:

Wn(R/p
cR)/[p]mWn(R/p

cR) → Wn(S/p
cS)/[p]mWn(S/p

cS)

But this is étale because by proposition A.8 Wn(R/p
cR) → Wn(S/p

cS) is
étale. Q.E.D.
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Corollary A.17 Let R be an F -finite ring, and let S be an unramified R-
algebra. Then Wn(S) is unramified over Wn(R) for each number n.

This follows in the same way as corollary A.10.

Corollary A.18 Let R → S be an étale morphism of F -finite rings. Then
we have the following natural isomorphisms for arbitrary numbers n ≥ m ≥
1:

Wn(S)⊗Wn(R) Wm(R) → Wm(S)
Wn+1(S)⊗Wn+1(R),F Wn(R) → Wn(S)

(A.15)

Moreover let R′ be an R-algebra. Then we have the natural isomorphism:

Wn(S)⊗Wn(R) Wn(R
′) → Wn(S ⊗R R

′) (A.16)

If a is an ideal in R we have the isomorphism:

Wn(S)⊗Wn(R) Wn(a) → Wn(aS) (A.17)

Proof: If in the notation of lemma A.15 Aa → Ba and A/amA → B/amB
are injective then A → B is injective. This is a consequence of Krull’s
intersection theorem [BAC]. If we assume that A → B is finite the same
statement holds for injective replaced by surjective.

Let us begin with the first homomorphism of (A.15). We have a canonical
surjection:

Wn(S)⊗Wn(R) Wm(R) → Wm(S)

We apply our starting remark to a = [p]. If we localize the surjection by [p]
it becomes an isomorphism by equation (A.13). If we consider the morphism
modulo [p]m we obtain an isomorphism using (A.14) and proposition A.8.

The next homomorphism of (A.15) is by assumption finite. Therefore it
suffices to show that it becomes an isomorphism if we localize by [p], and if
we consider it modulo [pm]. We conclude as above using corollary A.11.

We show now that the canonical homomorphism (A.16) is an isomor-
phism. Let us first consider the case where p is nilpotent in R′. In this case
it follows from corollary A.12 that the homomorphism (A.16) is surjective.
Therefore we need only to verify that the homomorphism is injective modulo
pm, which can be done as above.

We use induction and assume that our assertion is true for n. We set
S ′ = S ⊗R R

′. By the case where p is nilpotent in R′ it is enough to prove
that for some m the group Wn+1(p

mS ′) is in the image of the homomorphism:

Wn+1(S)⊗Wn+1(R) Wn+1(R
′) → Wn+1(S

′). (A.18)
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We consider the commutative diagramm (with tensor products taken over
Wn(R):

Wn(S)⊗Wn(p
mR′) −−−→ Wn(S)⊗Wn(R

′) −−−→ Wn(S)⊗Wn(R
′/pmR′)y y y

Wn(p
mS ′) −−−→ Wn(S

′) −−−→ Wn(S
′/pmS ′)

(A.19)
Note that the first row is a short exact sequence because Wn(S) is étale over
Wn(R). We have shown that the right vertical arrow is an isomorphism, and
assume it by induction for the middle one. Hence the left vertical arrow is
an isomorphism.

Now we consider an arbitrary ξ ∈ Wn+1(p
mS ′). We want to show that it

is in the image of (A.18). Let ξ̄ ∈ Wn(p
m)(S ′) be its residue class. By the

last diagram ξ̄ is the image of an element η̄ ∈ Wn(S)⊗Wn(R)Wn(p
mR′). This

element we lift to η ∈ Wn+1(S) ⊗Wn+1(R) Wn+1(R
′). Then the image ξ1 of η

by (A.18) is in Wn+1(p
mS ′). On the other hand ρ = ξ − ξ1 map to zero in

Wn(p
mS ′). Hence ρ = V n

[pms′] for some s′ ∈ S ′. We have to show that for
some fixed m expressions of the form V n

[pms′] are in the image of (A.18).
But this is an immediate consequence of the equation in Wn+1(S

′):

V n

[s] V
n

[r′] = V n

([pnsr′]).

Takingm = n this proves the surjectivity of (A.18). The injectivity is done as
usual by considering the morphism modulo powers of [p], and by considering
the localization with respect to p. This proves the isomorphism (A.16).
The isomorphism (A.17) is a formal consequence (compare corollary (A.13).
Q.E.D.
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