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Introduction

Let X be a smooth and proper scheme over a perfect field k. Assume X
lifts to a smooth scheme X over W (k). It was discovered by Grothendieck
that the hypercohomology of the de Rham complex Q¢ W) does not de-
pend on the lifting but only on X. The crystalline cohomology defines this
hypercohomology intrinsically in terms of X. It makes sense without the
existence of any lifting X. Berthelot proved that this cohomology enjoys all
good properties, i.e. it is a Weil cohomology on the category of proper and
smooth schemes over k.

The de Rham-Witt complex Wy, was defined by Illusie [I] relying on
ideas of Lubkin, Bloch and Deligne. It is a complex of sheaves of W (k)-
modules on X, whose hypercohomology is the crystalline cohomology.

The main goal of this paper is to extend Illusie’s definition of the de Rham-
Witt complex to a relative situation, where X is an arbitrary scheme over a
ZLp-algebra R. The de Rham-Witt complex is a projective system indexed
by N of complexes W, QY p of W, (R)-algebras on X. If p is nilpotent in R
and X is smooth over Spec R the hypercohomology of W) /R 18 isomorphic
to the crystalline cohomology H(,, (X/Wy(R)) = H*(X/W,o(R), O% . r))
of the crystalline structure sheaf.

We define a de Rham-Witt complex with coefficients in a crystal E on the
crystalline site of X/W,(R). Its hypercohomology computes the crystalline
cohomology of E.

As an application we show that the first crystalline cohomology of an
abelian scheme over a ring R where p is nilpotent has naturally the structure
of a 3n-display in the sense of Zink [Z]. This was known in the case where the
geometric fibres of this abelian scheme have no p-torsion points, and trivially
in the case where the ring R is reduced.

In the following we will give a more detailed description of the results of
this paper. Let R be a Z)-algebra. In the first chapter we define the de
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Rham-Witt complex for any R-algebra S. It is projective system of complexes
of W,(R)-modules {W,, g, p}nen. We identify {W,Q5 p}lren as an initial
object in the category of F' — V-procomplexes over the R-algebra S. These
procomplexes are defined as follows:

By a differential graded W,,(S)/W,,(R)-algebra P, we mean the following:
P, is a graded W, (S)-algebra with unit element:

P,=pr

ieZZO

and equipped with a W,,(R)-linear differential d : P, — P,, which is homo-
geneous of degree one such that
wn = ()nw, we P,
dw-n) = (dw)n+ (=1)'wdn
> = 0

, ne P

Let vk, k > 0 be the canonical divided powers on the ideal VIV, _;(S) C

W, (S). We also denote by d the map W, (S) — P° - PL.If this map d
is a pd-differential, i.e. if

dye(x) = ye—1(z)dx for x € VIW,_1(S)
we call P, a pd-differential graded W,,(S)/W,,(R)-algebra.

Definition 1 An F —V -procomplex over an R-algebra S is a projective sys-
tem of differential graded W, (S)/W,(R)-algebras P, forn > 1:

=Py —-P,—...— P

This system is equipped with two sets of homomorphisms of graded abelian
groups
F:Pyy—PFP, , V:P,b—FP,1 n>1

such that the following properties hold:

(i) Let P, (r) be the graded W, 1(S)-algebra obtained by restriction of scalars
by F - W1 (S) — W,(S). Then F induces a homomorphism of graded
algebras:

F: Pn+1 e Pn,[F]



(ii) The structure morphism W,(S) — P? is compatible with F and V.

(111) The following relations hold:

VY = pw forweP,, n>1
FdVw = dw
Fdlz] = [277Y)d[z] , z €S

V<WF77) = (vw)'"’? ., n€ P

This definition implies that P, is even a pd-differential graded W,,(.S)/W,,(R)-
algebra for each n. Let QWn (S)/Wn(R) be the pd-differential de Rham complex
(which is the universal pd-differential graded W,,(S)/W,,(R)-algebra) we ob-
tain a natural epimorphism:

%

Qw,. s wnir) — Walls/r (1)

While Illusie works with V-procomplexes and identifies {2 / RIneN —
for R = k a perfect field of characteristic p — as a universal V-procomplex
and afterwards shows that the Frobenius on {W, / rinen is well-defined by
a rather long computation, the starting point of our construction is that we
can already define the Frobenius on Q'Wn( )/ Wi (R)" The crucial observation
here is the following:

If v:W,(S) — M is a pd-derivation in some W, (S)-module M, then

Fy o Woa(S) — Mg
§=[z]+ Vo — [2lP"w([a]) +v(e)
is also a pd-derivation. The verification of the additivity of v requires that
v is a pd-derivation.
' Then WnQS/}; i§ defined as a quotient of 'QWH(S) JWa(R): If R is a perfect
ring of characteristic p our complex agrees with Illusie’s complex.

By glueing arguments the definition is then extended to schemes X over
Spec R to obtain the de Rham-Witt complex W, IR We set

We remark that Hesselholt and Madsen [HM] defined independently an

absolute de Rham-Witt complex W, {2y for a Z,-algebra S, which is closely
related to ours. There is a homomorphism W,Qgs — W, Qg /2y’ which com-

mutes with I and V', but this is in general not an isomorphism, e.g. S = Z).
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In the second chapter we give an explicit description of the de Rham-Witt
complex W p if S = R[T\,...,Ty] is a polynomial ring. In this description
we ignore the W, (S)-module structure on W /g but consider it only as a
W, (R)-module.

Let us first consider the case of one variable S = R[T]. We denote the
Teichmiiller representative of T by X = [T] € W(R[T]). Let k € ZZO[%] be an
arbitrary element, which will be called a weight. We denote its denominator
by p“®). Any Witt vector w € W,,(S) has a unique expression

D SR S S R}

kintegral k not integral

where & € W,(R) and 1, € W,_yu)(R), and these elements are zero for
almost all k. Actually only weights such that p"~1k is integral appear in this
expression.

An element in w € WnQ}g R has a unique expression

w= Y axtlax+ > aVmxetE),

k>1,k integral k not integral

where &, € W,(R) and 7, € W,_ym)(R), and these elements are zero for
almost all k.
This means that there are direct decompositions as W (R)-modules:

W.(S) = @ W.RX*e VW, o (R) X
k integral k not integral
Wy = @ WiuR)XFdlogXa @ VW, . (R)dX*
k>1, integral k not integral

(2)
In these formulas X*, X* X*dlog X, and dX* are viewed as symbols. For
[ # 0,1 we have WanS/R = 0. The action of F,V,d on (2) can easily be made
explicit.

We turn now to the case of several variables S = R[1},...Ty]. For the
description of the de Rham-Witt complex we introduce the Cartier-Raynaud
algebra Dy of the ring R. This algebra is a variant of the algebra introduced
by Illusie and Raynaud in [IR]. The elements of Dy are formal sums:

DVIGAD e Fr Y dViE, + ) n, Fd (3)

n>0 n>0 n>0 n>0
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Here n runs over integers as indicated. We consider F', V', d as indetermi-
nates. By &,,&.,m,, 1, we denote arbitrary elements in W (R) which satisfy
the following condition:

For any given number u > 0 we have n,,7, € Y"W(R) for almost all
n > 0.

On Dg we have the obvious structure of an abelian group. Let ¢ > 0 be
an integer. We denote by Dg(c) the subgroup which consists of all elements
satisfying the conditions:

&6 e V"W(R) for c>n )
Myt € V' W(R)  for n>0

There is a unique ring structure on Dp which is continuous with respect to
the topology defined by the Dg(c), and such that the following relations hold:

FV=p=V%, VEF=Y¢ for & e W(R),

F¢ = T¢F, V=V 7Fre, (5)
d§ = &d, d? =0,

FdV = d Vd=dVp, dF —pFd

The elements of (3) with &, = r/, = 0 form a subring Er C Dg which is
complementary to the two-sided ideal generated by d. The ring Ep is called
the Cartier ring. The subgroup Dg(c) is a right ideal Dg(c) = VDr+dV Dp,
which is invariant under left multiplication by d.

For an arbitrary R-algebra S we extend the W (R)-module structure on
W, to a Dg-module struture by setting: Fw = "w, Vw = Yw, dw = dw
for w € W .

Let us denote by [1,d] the intervall in N. We call a function & : [1,d] —
Z>( a primitive weight if not all of its values are divisible by p.

We fix for each primitive k an order of the set Supp k = {i1,...,4,} such
that

ord, k;y < ... <ordyk;,

Moreover we consider partitions P : Iy U [; U ... U I; = Suppk which are
increasing, and such that the intervalls I; are not empty. For each primitive k
and each partition P of Supp k we define a basic Witt differential e(1, k, P) €
WQ% /R 85 follows: Let k7, be the vector with components k; for i € [;. Let
p™ be the highest power of p which divides all these components. We set:

kry _ H[Tz]kl

iG]j
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Then we define e(1, k, P) to be the image of the following differential by the
map (1):
Xk (p~maXkny .. .. (pTtdX*n)

Theorem 2 Fach element of WQ'S/R has a unique expression

£+ Orpe(lk,P)

kP

Here £ € W(R) is regarded as an element of WQ%/R =W(S). The sum runs
over all primitive weights and partitions as above. The elements 0 p € Dp,
satisfy the following condition:

Let ¢ > 0 be an arbitrary integer. Then for almost all primitive weights
k we have 0 p € Dg(c).

We have a canonical isomorphism:
WcQS/R = Dr/Dr(c) @y, WQS/R

In the remaining part of this introduction we assume for simplicity that
p is nilpotent in R. Let S be an arbitrary R-algebra. The de Rham-Witt
complex has the following base change properties. Let S — S’ be an étale
morphism of R-algebras. Then W, (S) — W, (S’) is étale and we have an
isomorphism of F' — V-procomplexes

For the next base change property we consider an arbitrary ring homo-
morphism R — R’. Let S be a smooth R-algebra. We set S’ = R' ®p S.
There is a canonical isomorphism:

WCQS'//R’ = DR//DR/(C) ®]D)R WQS/R

In the third chapter we prove that for a smooth scheme over Spec R the
de Rham-Witt complex computes the crystalline cohomology. This is first
done in the case where X lifts to a smooth formal scheme over W, (R). The
essential point is to show that the de Rham complex of a lifting over W, (R)
is quasiisomorphic to the de Rham-Witt complex. If R is a perfect ring
of characteristic p, Illusie shows this comparison theorem by computing the
graded quotients of the canonical filtration of the de Rham-Witt complex.
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In this paper we follow a different approach which is applicable to general R.
We show that for S = R[T},...,Ty| the de Rham-Witt complex decomposes
naturally into a direct sum of the subcomplexes such that one of them is
isomorphic to the de Rham complex of the lifting over W (R) and the other
one has zero cohomology, i.e. it is exact. (The reader notices quickly, which
are the two subcomplexes in the case S = R[T].) For general smooth S/R
one uses the étale base change property of the de Rham-Witt complex.

Then we construct the de Rham-Witt complex for crystals. Let E be a
crystal on Crys(X /W, (R)). We consider an affine open set U = Spec S C X
and a pd-thickening A — S relative to W,,(R). Then we have the pd-
differential deRham complex with coefficients in E:

(Ea®a Q;4/Wn(R)a V)

where E 4 is the value of the crystal at the pd-thickening A — S.
We apply this to the situation where A = W,,(S). We set E,, = Ew, s).
It is easy to see that V is well-defined on the quotient obtained from (1):

%

En @w,s) Qw,(s)wn(r) — En Ow,(s) Wally/p

This defines the de Rham-Witt complex with coefficients in E':

(En @w,(0x) Walkx/r: V)

Again the hypercohomology of this complex is the crystalline cohomology of
E if F is flat and if X is smooth over R.

Over a perfect ring R the de Rham-Witt complex with coefficients in £
was defined by Etesse [E]. It was shown by Bloch [BI2] that the crystal E
may be recovered from V for a perfect ring R. For a general base this is
proved in [LZ].

Let X be a proper and smooth scheme over Spec R, where R is a complete
local ring. We assume that the Frobenius R/pR — R/pR is a finite ring
homomorphism. We generalize the slope spectral sequence to this case.

E?" = H'(X, WQQ/R) = H' (X/W(R)).

crys

If R is a perfect field of char. p, Bloch [Bl] shows that the spectral sequence
degenerates up to p-torsion. In our general situation we do not know at this
time how to prove any analogous result,e.g. whether this spectral sequence
degenerates up to V-torsion.



In the end we give an application of the de Rham-Witt complex in the
theory of displays [Z]. Let R be a ring auch that p is nilpotent in R. Let A
be an abelian scheme over R of dimension g. By [BBM] the crystalline coho-
mology H},, . (A/W(R)) is a projective W (R)-module of rank 2g. We show
that the de Rham-Witt complex of A over R defines on P = H_,, .(A/W(R))
the structure of a 3n-display (P, Q, F,V~!). This structure is functorial and
commutes with base change R — R/'.

The definition of the 3n-display is as follows: The Frobenius on A modulo
p defines an Frobenius operator F' : P — P on the W(R)-module P. We
need to define a W (R)-submodule @ of P which contains VIV (R)P, such that

P/Q is a projective R-module. Moreover we need an F-linear epimorphism:
VL. Q— P

satisfying V=Y Ywz) = wFx for x € P, w € W(R).

Let us denote by ITW €Y, /R the subcomplex of the de Rham-Witt complex
wer, /R which is obtained by replacing the group W(O,) in degree zero by
VIW(0,). We define Q = Hl(A,IWQ'A/R) as the hypercohomology. The
natural inclusion JTW €2, /R C wer, /R induces an exact sequence:

0—-Q—P— H'(A 04 —0

On the other hand we have the following map of complexes:

IWQy p: VW(O4) -5 WQL, 5 WO, —

v F| PF|
Wy p: W(O0.) -5 WL, -5 W, —

The commutativity of the squares follows from the identities:
pFd=dF and FdV =d .
The diagram above induces a map
Vi Q = H(X, IWQyp) — P = H'(X, WQy/r) -

This defines the structure of a 3n-display on P.

Assume moreover that the geometric fibres of A over Spec R have no p-
division points. Then this construction gives the 3n-display which is dual to
the 3n-display associated to the p-divisible group of A in [Z].
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We note that the knowledge of the 3n-display is equivalent to that of the
p-divisible group by [Z] Theorem 3.2. if R is excellent. The crystal associated
to A in the sense of [BBM] may be recovered from the 3n-display in this case
but not vice versa if the ring R contains nilpotent elements.

We would like to thank Bill Messing for his interest in this work and many
useful suggestions on the manuscript.

We also thank the THP in Paris where part of this work was done for its
hospitality during the “Automorphic Semester 2000”.
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Chapter 1

The de Rham-Witt complex

1.1 pd-Derivations

Let A be a unitary commutative ring, and let B be a unitary commutative
A-algebra. Assume that b C B is an ideal, which is equipped with divided
powers 7, : b — b for n > 1. We set vy(b) =1 for b € b.

Definition 1.1 Let M be a B-module. A pd-derivation v : B — M over A
1s a A-linear derivation v which satisfies:

V(7n()) = Yu-1(b)v(b), (1.1)
forn >1 and each b € b.

The pd-derivations form a B-module which we denote by
Derg,a(B, M).

There is a universal pd-derivation d : B — Q}B /A The B-module Q}B /A is
obtained as the factor module of Q7 /4 by the submodule generated by all
elements d(, (b)) — Yn_1(b)d(b).

On b we introduce the function a;, = (p—1)!v,. We will now assume that
A is a Zpy)-algebra. Then the function «,, determines the functions =, for all
n uniquely ([G] p.70). A pd-derivation satisfies the relation:

v(ay(b)) = b u(b) forb € b (1.2)
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Lemma 1.2 Letv: B — M be an A-linear derivation, which satisfies (1.2).
Then v is a pd-deriwation.

Proof: This is a straightforward verification. Clearly (1.2) is equivalent with

V(%(b)) = 'Yp—l(b)’/(b)

. We show by induction on n that this implies (1.1). This is clear for n < p.

For the induction we represent n as a p-adic number n = Y a;p’, where
i>0
0 < a; < p. We have the well-known formula ([BO] 3.3):

1 .
O?”dpn! = F Zai(pl — 1)

>0

Let a, be the first non-zero digit. We set m = n — p*. Then we find

1 .
ordyn! = —— Z ai(p' — 1) = ord,m! + ord,(p")!
p—1 i>k
This shows that the binonmial coefficient (:1) is a unit. Therefore we obtain:
m!(p")!
nle) = B (@) ) (13)

First we assume m > 0. Then the formula (1.1) holds by induction assump-
tion for 7,,(b) and ~,x(b). Applying the derivation v to (1.3) we obtain:

_ ml(p")!
() = — = (Ym-1(b)3pr (0) + Y (b) -1 (0) ) ()

m!(p")! n—1)! n—1)
_ mlph) ((( L >!)%1<a>y<a>:%1<a>u<a>

ol m — 1)Ipkl — ml(pF — 1)

Hence it remains to consider the case n = p*. It is easy to see that

)
O’I“dpm = 0
This implies by [BO] 3.1
p' p(k_l)' p
Vpk (a) = %%ﬁ(’ypk—lm))
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If we apply v to this identity we obtain by the induction assumption:

(k=1)1\p
oy 8) = 2 G 0) e (B

Pl ((p = D)p* ).
= = Do et (0) - ppuena () (0)

(I (p— Dpt ). (¥ —1)!
- ppk! (p —pl)!(p(f‘l)!)(”‘” ((p— 1)p(£1))!(p(k—1) = 1)!%'&1(5)’/(5)
= Y1 () (D)

Q.E.D.
A differential graded B/A-algebra will be a unitary graded B-algebra:

P = @iEZizopi

Moreover P is equipped with an A-linear differential d : P — P such that
the following relations hold:

wn = (=1)pw  wePinepPl
dwn) = (dw)n+ (—1)'wdn (1.4)
Z? =0

A pd-differential graded algebra is a differential graded algebra such that
the composite of the following maps is a pd-derivation:

B— P"— p!

We set i, 4= NQL /4> and form the pd-deRham complex. This is a
pd-differential graded algebra. For any other algebra P of this sort we have
a unique homomorphism:

Q'B /A= P
of differential graded pd-algebras.

We will now consider a unitary commutative Z,-algebra R and a unitary
commutative R-algebra S. The Witt vectors of any length W,,(S) have a
divided power structure on the ideal Is = YW, {(S) which is defined by
([G] p76):

n—1

WO =T VE), Ee Wi (S)
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Then we have:

ap(VE) = pP2 V(EP)
A pd-derivation v : W,,,(S) — M to a W,,(S)-module M is one with respect
to these divided powers. In other words the following relation is satisfied:

PP V(ER)) = pr2 V(e ( Ve)

We will see that in the de Rham-Witt complex this relation remains true
even if we divide it by p®=2).

Our next aim is to define the action of the Frobenius on pd-derivations. It
is convenient not to specify the length of the Witt vectors: We call a W (S)-
module M discrete, if it is obtained by restriction of scalars W (S) — W,,,(S)
for some natural number m. A map W(S) — M is called continuous, if it
factors through W;(S) for some number .

Let us consider any continuous pd-derivation v : W(S) — M to a discrete
W (S)-module M. The we define a map:

Fy . w(S) - M (1.5)

as follows. An arbitrary £ € W(S) has a unique representation £ = [z] + Vp
for [z] € S and p € W(S). We set

(&) = [ VNw([2]) + v(p) (1.6)
Clearly f'v is again a continuous map. We have the relation:
v("€) =p (¢ (1.7)

Indeed, this follows by applying v to the equation ¢ = [z]? + pp.
Let us denote by Mg the W (S)-module obtained via restriction of scalars
by F: W(S) — W(S). This is again a discrete module.

Proposition 1.3 Let v : W(S) — M be a continuous W (R)-linear pd-

derivation. Then Yv : W(S) — Mg is a continuous W (R)-linear pd-

derivation too.

Proof: The problem is to show the additivity of fv:
wE+n) = ")+ Tvn),  &new(s)
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We set £ = [z] + Vp, n=[y] + Vo, and we define T by the equation
[z +yl = [2] + ]+ V7 (1.8)
We obtain £ +n = [z +y] =¥ 7+ p+" o and hence by definition:
(& +n) = [z +yl (e +yl) — () +v(p) + v(o)
On the other hand we have:
() + "vln) = [P (=) + [y (Y] + vip) + v(o)
Therefore it suffices to show for arbitrary z,y € S the equation:
@+ yl" (2 +y)) = [P () + [y v(ly]) + v(r) (1.9)

where 7 is given by (1.8). To prove this we first check the following identity
in the Witt ring:

(p—D' i 4
> i WP by = (1.10)
i+j+k=p
i#p,j#p,k#p
120,j>0,k>0

To prove this relation we may restrict to the case, where S = Zy,)[z,y] is
the polynomial ring in two variables. Since in this case the multiplication
by p is injective in the Witt ring it is enough to check the identity (1.10)
after multiplication by p. But then by the polynomial theorem the identity
becomes:

([2] + ]+ ") =[] = )" = pr

Using (1.8) it remains to verify:

[z +y]" = [2]" = [y]" = pT

But this is obtained applying the Frobenius F' to the equation (1.8). Hence
we have established (1.10).
Now we compute:
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= ([l + [y +Y 7P~ vfa] — [aP M v[z]
+([2] + [y] + )P ly] = [y vy]
(2] + [y] +Y )P (V)
= Hg;p l%hﬂylj(vf)’“vm (1.11)
i#tp—1
oz 1‘5;2’[ Tyl (V1) uly]
Jj#p—1
m;p 1 C el Tyl (V)R Vr) 4+ (V) e Vr)
#p—1

The right hand side of the last equality is just v applied to the left hand side of
equality (1.10) because v was assumed to be a pd-derivation : v(a,( V7)) =
( Vo) P=Dy( V7). Hence (1.11) is equal to v(7). This proves that v is
additive.

Next we show that v satisfies the Leibniz rule:

Fu(en) =" € Tuvln) +7 n Tu(€)

With the same notation as before we find:

&n=[zy] + V([z]Po) + V([wlPp) + V(ppo)
Therefore we obtain:
Fulen) = [ey]® Vu(lzy)) + v([z]Po) + v([y]Pp) + v(ppo)
= ][] P~ Du[z] + [2]P[y] P D vy]

+[z]Pv(0) 4 polz] P~V ([z])
+ylPr(p) + poly] Vv ([y)
+pov(p) + ppv (o) (1.12)

)

= [P([]P"Vvla] + v(p) + [2P([y) P Dvly] + (o)
+po([2]~Vv(2] + v(p)) + pp([y] P~ Vu((y)) + v(0))
)+
)+

p
p
)
= (y]? +p0) v(€) + ([ +pp) Fv(n)

= (&) + ¢ Fv(n)
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This shows the Leibniz rule. If v is W(R)-linear we obtain “v(W(R)) =0
from the definition. By the Leibniz rule this implies that v is W (R)-linear.

Finally we have to check that v is a pd-derivation. The assertion is the
following equation:

Fulap( Vo)) = T(Vp)"D P (Vp) (1.13)

The left hand side of this equation is by definition:

o2 V(pP) = "2 u(p) = p® V" Vu(p)
For the right hand side of (1.13) we find readily the same result.

Q.E.D.
If we start with a pd-derivation v : W,,(S) — M, then we obtain a
pd-derivation v : W,,41(S) — Myp. If we take for v the universal

pd-differential d : W,,(S) — Q‘l,vm(s) Jw,.(ry We obtain a homomorphism of
Wine1(S)-modules:
F Q%/[/m+1(S)/Wnl+1(R) - (Qll/Vm(S)/Wm(R))[F] (1.14)

By definition this map satisfies the following equations:

F(dé) - ( Fd)<€)7 § € Wm—l—l(S)
Fa(Vn) = dn, n € Wn(S) (1.15)
Pd(lz]) = [2)®Vd[z], x€S8 '
act§) = pldg

1.2 F-V procomplexes

We will start with a ring homomorphism R — S, and consider pd-differential
graded W,,(S) /W, (R)-algebras, with respect to the canonical divided powers
on VIW,_1(S) C W,(S).

Definition 1.4 An F — V procomplex over the R-algebra S is a projective
system {P,} of differential graded W,(S)/W,(R)-algebras P, for n > 1:

.= P41 —-P,—...— P

Moreover { P, } is equipped with two sets of homomorphisms of graded abelian
groups:
F:P,.— P, V:P,— P, n>1

The following properties hold:
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(i) Let P, g be the graded W, 1(S)-algebra obtained wvia restriction of
scalars F: W,11(S) — W(S). Then F induces a homomorphism
of graded W, 1(S)-algebras

F: PnJrl - Pn,[F}

(ii) The structure morphism W, (S) — P° is compatible with F and V.
(iii) Vw = pw for w € P, n>1

FdVw = dw
Fd[z] = [2P71)d[x], reS
Ywin) = (wn,  nEPun

We indicate a few consequences of these relations:
For arbitrary w; € P, we have:

Viwedwy . .. dw,) = Ywod wy ...d"w, (1.16)

Indeed, we replace on the left hand side dw; by dw;. Then we obtain by
using the fourth relation of (iii) the relation (1.16).

Vdw = Y1d"w = pd"w (1.17)

The first relation is (1.16). Since d is W (R) linear the second relation follows

because
Vlvw — V( FVl(.U) =p Vw.

V=" -w, weRr, (1.18)

Indeed we have: VFw =Y (1Fw) = (V1)w.

dfw=pFfdw (1.19)

Ty in the second equation of (iii) we obtain:

Indeed, if we replace w by
dfw=Ta"Fyu= T dV1w= V1 Ftaw

V€PN d" [z] = Véd[x], for x €S, € € W,(S) (1.20)
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Indeed using (1.16) and the relations (iii) we obtain

V(€ d" o] = V(eladla]) = V(e d[2]) = Védla].

We note that (1.20) appears in Illusie’s definition of a V-procomplex, but
it is automatic if F is present. By (1.16) and the last relation of (iii) we
conclude that F' and V take exact elements of P, to closed elements:

dVdv=0 d¥dw=0 (1.21)

We note that by the requirements of the definition F' and V' are uniquely
determined on the subalgebra of P, generated over W,(S) by 1 and the
elements d¢ € P! for £ € W,(S). Indeed, if we write £ = [z] +V n for z € S
and n € W,_1(95), we obtain from (iii)

Fae = [xP~Yd[z] + dn. (1.22)

The uniqueness of V' is a consequence of (1.16).

Lemma 1.5 Let P, be an F' — V procomplex over the R-algebra S. Then
for each n > 1 the differential d : W(S) — P! satisfies the relation:

dV(en) = "(E"d e, geWa(s) (1.23)
In particular d is a pd-differential.

Proof: The proof of (1.23) consists of 3 steps. First we show that (1.23)

holds for £ = [z], z € S. Secondly we show that (1.23) holds for £ = 1y + 12,

if (1.23) holds for £ = n; and £ = 1. Thirdly we show that (1.23) hold for

¢ =V n, if it holds for £ = n. Then (1.23) follows clearly from these 3 steps.
If £ = [x] we obtain:

d " ([a]") = d "] =d "1 [a] =
"ld[z) = "dla] = "([a"d[z]) = V]a"d" [a].

Next we assume the relation (1.23) holds for £ = n; and £ = 1,. We have to
prove:

d"((m +nm2)?) = V((m 4+ n2)"d V(1 +12)
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Because of our assumption this is equivalent to the relation

> FdVmim) = V(i d Y+ Vg d Y

i+j=p
i#0,7#0 (1 24)
—1) .
+ X B Vkbd( Vi + Vi)
I+k=p—1
15£0,k0

One term of the sum on the left hand side may be expressed as follows:

(p—1)! i J

p=D! v i oy
~ 3 d
A1) (ming"~dns)
|

p—1)! i—1) p—1)! i e
P T G

ilj—1)

This gives immediately the relation (1.24).
Next we assume that the relation (1.23) for a particular £ € W,,(S). Then
we want to show

d'(("e) =V (Ve
This equation is clearly equivalent with
Pl (e = prt Ve )
Hence it is enough to show:

pd"* (er) = V(P )d Ve,

This follows if we apply V' to the equation (1.23).
Finally we have to check that d is a pd-differential. By definition we have

ap(VE) =2 V(€
Hence we have to verify that
pPPd"(er) = (Verde

or equivalently
pP=2dY (€P) = pP=2 V(gr=DygVe,

20



This follows from lemma 1.5 and is by the way trivial if p # 2, because then
the lefthand side is p®=3)V d¢r. Q.E.D.

Since QWn('_S) W (R) is' a universfal pd-differential graded W, (S)/W,(R)-
algebra, there is a canonical morphism of procomplexes

Since the Frobenius on Q'Wn(s) Jw(r) Satisfies (1.15) we conclude that (1.25)
commutes with F":

v

Qi )W (R) P,
iF lF
Qs () War(r) — D

1.3 Construction of the de Rham-Witt com-
plex

We come now to the construction of the universal F'—V-procomplex W, /R
We do this by induction. We set

Wilks/r = Qg/r = Qw, (s)/w1(w)

We assume that we have already constructed a system {WmQ‘S/ Rm<n Of
pd-differential graded W,,(.S)/W,,(R)-algebras:

and surjective homomorphisms of differential graded algebras

Q)W) = Wnsyps  m <

which are compatible with the restriction maps and with F. This implies
in particular that the system (1.26) meets the requirements (i), (i) and the
third equation of (iii) in definition 1.4. Moreover we assume that there are
additive maps

V. WmQS/R — m+1Q:S/R7 1 S m <n.
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We require that W,,Q% /g = Wn(5), and that the following relations holds:

V) = pw foerWmQS/R, m<n
FdVw  =w (1.27)
Vwfn) = Yw-n forne Wint1€

We define an ideal I C QWn+1(S) Wi (R) 38 follows. We start with an
arbitrary relation in W, Q% IR

M
> eOdn - dn = 0. (1.28)
=1

Here i and M are natural numbers > 1 and €W, 77,(6[) e Wo(S)forli=1,....M
and k=1,...,7 y
Then we consider the following elements of Qizvn+1( )/ Wasa(R):

> VWl dVa? (1.29)
l

> dVehdvyl . avyl (1.30)
l

These homogenous elements for all possible relations (1.28) generate a ho-
mogenous ideal I C QWnH(S)/WnH(R)' We see that dI C I.

Moreover it is clear that [ is mapped to 0 by the map:

v

F Q)W (2) = Qwnis)war) = Walls/g, (1.31)

becuause we have FVeW = pe® in Q(I)/Vn(s)/WH(R) = W,(9) and Fd"n® = dan®
i Ly s)/w, ()
We set

Qn—H

(i (8)Woea )/ 1

This is a differential graded algebra.
The Frobenius (1.31) factors through a map of algebras:

F:Q, ., — Wolds) R
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On the other hand we have by definition of I an additive map

V . WnQS/R — ﬁ;z-l—l
€d771 RN dnl I—>V fdvnl e dVTh

We see that this definition of V' implies d"w = w for all w € W, 2 IR

Then we consider the ideal Z C Q, 41, which is generated by the following
elements

Vwrn) =" wn,  d(V(w"n) =" wn),

where w € W, g and n € 0,1 runs through all possible elements. This is
a homogenous d-invariant ideal. We set

Wos1Qs/p = Qi1 /T

It is immediately verified that ' : Q, ., — W, /g maps I to zero. Hence
we have constructed operators:

FoWoaSQhg g = Walkg g, Vi Wolds/r — WiaSlsyr

meeting all requirements (1.27) of our induction assumption.
We note that the other two equations of definition 1.4 are satisfied, be-
cause they are already satisfied in £y, (S)/Wa(R)"

Proposition 1.6 Let {P,} be a F-V-procomplex such that P, is a differen-
tial graded W, (S)/Wy(R)-algebra. Then there is a unique morphism

of F' — V -procomplezes.

Proof: It is clear from our construction that the natural morphism (1.25)
factors through W, . Q.E.D.
1.4 Base change for étale morphisms

We will now establish the base change property of the de Rham-Witt complex
with respect to étale morphisms S — 5’.
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Let (P, d) be a differential graded B/A-algebra. Let B’ be a B-algebra.
Let us assume that the differential d : B — P! extends to a differential
d: B — B'®p P'. Then B’ ®@p P becomes a differential graded algebra if
we define the differential as follows:

dit/ @ p) = (db') (1 ®@p) +V @dp

If B’ is etale over B, we know that an extension of d : B — P! tod: B’ —
B’ ®@p P! always exists and is unique ([EGA] 17.2.4). Hence the base change
(B' ®p P,d) is defined.

Let R be a ring and S be an R-algebra. We assume that S is F-finite
or that p is nilpotent in S. If S — S’ is étale respectively unramified so is
W, (S) — W,(S) (see the appendix).

Assume we are given an F' — V procomplex {P,} of differential graded
W, (S) /W, (R)-algebras P,. Let S” be an etale S-algebra.

Since W,,(S”) is an étale W, (S)-algebra, we obtain a projective system of
differential graded W,,(S")/W,,(R)-algebras

— ... — Wn(S,) ®Wn(S) P, —.. .- Wl(S/) ®W1(S) P.

We equip this system with the structure of an F' — V' procomplex.
For this we have to define the operators F' and V. The operator F' is
simply given by the formula:

F:W,(5) W,y (5) Pug1 — W (S Ow,(s) Pn
(@re— Tt Ma

For the definition of V' we use the canonical isomorphism W,,,1(5") ®w,,,(s),r
W,o(S) — W,(S"), which maps € ® n to F'én. To define

Vi Wo(S) @wis) P = Wit (S') @wya(s) Pt
we rewrite the left hand side:
W (S") @w,(s) Po = Wit (S") @wi () Por)
Hence we may define V' as
Vi Woia (5) @was) Putr) = Wit (5) @w,a(s) P

E@r—ERV x
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We omit the obvious verification that {W,(S") ®w, s)Pn} becomes with these
operators an F' — V-procomplex.

By the universal property of the de Rham-Witt complex as an F' — V'
procomplex we obtain for S etale over S a canonical map of F'—V procom-
plexes

Proposition 1.7 Assume that S is F-finite or that p is nilpotent in S. Let
S’ be etale over S. Then the morphism (1.32) is an isomorphism.

Proof: If we view WnQS,/R as an F' — V procomplex relative to S/R we
obtain a morphism of /' — V' procomplexes

This extends to a homomorphism of W, (S’)-modules.

Because both sides of (1.33) are quotients of Wy (S") ®w.,s) Q.. (s)/w(r) =
Q.. (s1)/w, () the map (3 is an epimorphism. Let us denote the map (1.32)
by a. The map a o 3y is a morphism of F' — V-procomplexes, which must by
proposition 1.6 coincide with the obvious map: W,y , — Wi(S') ®@w,(s)
WnQ'S/R, r—1Qx.

This proves a3 = id. Since [ is an epimorphism we obtain that « is an
isomorphism. Q.E.D.

Remark: The differential on the right hand side of (1.33) does not in-
duce 1 ® d on the left hand side. To remedy this we may proceed as follows:
We fix the number n. Then we choose a number m such that p™W,,(R) = 0.
Then p™ annihilates all groups of (1.33). If we consider the groups W, (2 R
as W1, (S)-mdodules via restriction of scalars F™ : W,,1,(S) — W, (S) the
differential of W, Qg R becomes W, (S)-linear. By the appendix proposi-
tion A.8 we have a tensor product diagram:

Fm

Wm+n(S,) - Wn(sl)

T I

Fm

Winan(S) —— W,L(S)

25



Inserting this in the isomorphism (1.33) we obtain an isomorphism:

Here the map 1®d on the left hand side induces the differential d on the right
hand side. Since Wy, (S) — Wiin(S') is flat we obtain an isomorphism of
cohomology groups:

Winin(S") @wppn(s),5m H (WoQs/r) = H' (W, Qs/R).

Proposition 1.8 Assume we are given ring homomorphisms R — R’ — S.
Let p be nilpotent in R or let R be F-finite. If R — R’ is an unramified ring
homomorphism, we have an isomorphism of F' —V procomplexes

Proof: Clearly WnQ'S/R, is an ' — V-procomplex relative to S/R. Hence we
obtain the morphism (1.34). On the other hand the differential W, (R') —

W, (S) <, WnQ}g/R is zero, because the restriction to W, (R) is and because
W, (R')/W,(R) is unramified. This shows that W, (X p is an F'—V procom-
plex relative to S/R'. Hence we obtain an arrow inverse to (1.34). Q.E.D.

Remark: Let R be an arbitrary Z,-algebra, and let R — S be a ring
homomorphism. The proof of proposition 1.7 shows that for an arbitrary
f € S there is an isomorphism:

Moreover if ¢ € R is an element whose image in S is a unit, we have an
isomorphism:

Wl 2= Wallg p, (1.36)

This remark allows us to define the de Rham-Witt complex on a scheme.
Let X = SpecS and Y = SpecR. We set W,(X) = SpecW,(S) and
Wo(Y) = Spec W,(R). We denote by W,{x/y the quasicoherent sheaf on
W, (X) associated to WnQ'S/R.

More generally let X — Y be a morphism of schemes over Z). Then
there is a quasicoherent sheaf W,y on W,(X) which has the following

property:
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Let U' = Spec S’ an affine open subscheme of X and V' = Spec R’ an
affine open subscheme of Y, such that U’ is mapped to V' by X — Y. Then
we have a canonical isomorphism:

If the schemes X and Y are F-finite and X — Y is a morphism of finite type
the sheaves W, (2 Jy are coherent because they are quotients of the coherent
sheaves QWn(X) SWa (V)" If moreover X is proper over Y = Spec R and R
is noetherian the cohomology groups H'(W,(X), W,{y/y ) are modules of
finite type over W,,(R). This follows because W, (X) — W, (Y) is a proper
morphism of noetherian schemes.

If p is locally nilpotent on X the schemes W, (X) and X have the same
topological space. Therefore in this case the cohomology groups may be
identified with H'(X, W,Qy,y).

We may summarize our base change results as follows:

Proposition 1.9 Let X — Y is any morphism of schemes. We assume
either that p is locally nilpotent on'Y , or that X andY are F-finite. Assume
we are giwen a commutative diagram:

X’L>X

L,

Y —Y

We assume that o is étale and that 3 s unramified. Then there is a canonical
1somorphism:

W) Woly y = W Qs y.

This allows under the assumption of the proposition to consider W, Q% Iy
as a sheaf on the etale site X,;.

1.5 The completed de Rham-Witt complex

In this section we fix a scheme Y such that p is locally nilpotent on Y. Let
X — Y be a morphism of schemes. Since the topological spaces of W,,(X)
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and X are the same we can regard W) /y as a sheaf on X. We define for
an open set U of X:

WG (U) = Him W, 23 (U) (1.37)

This is a sheaf on X.

We gather a few facts about the projective limit which we apply to this
situation. We consider projective systems of abelian groups indexed by the
natural numbers:

A, DA

We associate the Eilenberg complex concentrated in degree 0 and 1:
14 — [[4- (1.38)

An element (a,) from the left hand side is mapped to (a, — 7(a,y1)). The
kernel of the map (1.38) is by definition lim A,, and the cokernel is lim'A,,.

This cokernel is easily seen to be zero if all transition morphisms 7 : A, .1 —
A, are surjective.
For a projective system of exact sequences

0—A,—B,—C,—0

We have the exact cohomology sequence:
0 — lim A4, — lim B,, — limC,, — lim'4,, — lim'B,, — lim'C,, — 0

Each system A,, may be embedded in a system with surjective transition
morphisms, namely the system:

Al@...An+1—>A1€B...An,

where the transition morphism maps an element (ay,...,a,.1) of the left
hand side to (ai,...an 1,0, + 7(ans1)). One deduces that for a Mittag-
Leffler system A,, we have lim'A4,, = 0.

We consider a projective system of noetherian complete local rings,

.—R,— ... — R
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such that the transition homomorphisms are local surjective ring homo-
morphisms. A projective system of modules is a projective system M,
such that M, is an R,, module and such that the transition homomorphism
7w M, — M, is an R, 1-module homomorphism for each n.

Proposition 1.10 Let M, a projective system of noetherian modules. Then
we have:
lim' M, =0 (1.39)

Proof: Suppose we are given an exact sequence of projective systems of
modules:

0— M, — N, —L,—0 (1.40)

Since M, may be embedded in a projective system of modules with surjective
transition morphisms, it suffices to show that (1.40) remains exact if we apply
the projective limit.

Let us denote by m,, the maximal ideal of R,,. For each pair of natural
numbers n, 7 we consider the exact sequence:

0 — M,/m'M, — N,/m'M, — L, — 0 (1.41)

If we fix n and pass to the projective limit over ¢ we obtain the exact sequence
(1.40).

Let Z be the set of pairs of natural numbers with the order (n/,7) > (n,1)
iff n” > n and ¢/ > i. Then we have obvious projective systems indexed by Z
if we set:

Mn,z’ - Mn/mana Nn,i = Nn/mle Ln’i = Ln

This makes (1.41) into a projective system of short exact sequences indexed
by Z. By assumption M, ; consists of artinian modules, and is therefore a
Mittag-Leffler system. Hence we obtain an exact sequence if we pass to the
projective limit. On the other hand this projective limit coincides with:

0 — lim M, — limN, —limL, —0

Q.E.D.
Let L, be a projective system of complexes of abelian groups. We set
L' =1lim L;, and we assume that lelLﬁ = (0. Then we have for each ¢ € Z

n’
n

n
a short exact sequence:

0 — lim'H"(L;)) — H(L') — lim H(L;,) — 0 (1.42)
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Indeed, we consider the Eilenberg complex X — X associated to L, (see
(1.38). By assumption we obtain an exact sequence of complexes:

0—-L —-X —-X —0
We obtain (1.42) from the spectral sequence of the double complex X~ — X

Proposition 1.11 Let X be a separated scheme. Let X — 'Y be a morphism,
such that p 1s locally nilpotent on Y. Then we have exact sequences:

0 — Lim"H" (X, W, Qyy) — HY(X, WQy ) — Im HY(X, W, Qyy) — 0

n

0— n_mlHq—l(X, WanX/Y) — H(X, WQ’X/Y) — lim HY(X, WanX/Y) —0

Proof: We consider an affine covering & of X and consider the Cech com-
plexes:

C (U WQy)y) = limC U, W,y y) (1.43)

By [EGA] 0777 13.3.1 the cohomology of W /y Vanishes for each open set
U of the nerve of Y. Therefore the left hand side of (1.43) computes the hy-
percohomology of W2 Iy We denote by L, the simple complex associated
to the Cech complex of W) Iy Since the transition homomorphisms on

the right hand side of (1.43) are surjective we obtain the proposition from
(1.42). Q.E.D.

Corollary 1.12 Let Y = Spec R be the spectrum of a noetherian complete
local ring whose residue class field is a field of characteristic p with a finite
p-basis. We assume that p is nilpotent in R. Let X be a proper scheme over
Y. Then we have canonical isomorphisms:

HY(X, Wy ) =2 lmHO(X, W,y )
HIX, WY ) =2 lim HI(X, W, Q4 )

n

(1.44)

Proof: By the appendix the scheme W, (X) is proper over the noetherian
ring W, (R). Therefore the cohomology groups H?(X, WanX/Y) are finite
W, (R)-modules. If we knew that W,,(R) is a complete local ring the corollary
would follow from the propositions 1.11 and 1.10. Therefore we conclude the
proof by the following lemma.
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Lemma 1.13 Let R be a noetherian complete local ring whose residue class
field is a field of characteristic p with a finite p-basis. We denote by m the
maximal ideal of R.

Then W, (R) is for each number n a noetherian complete local ring, whose
mazimal ideal n is the kernel of the homomorphism W, (R) % R — R/m.
The n-adic topology of W, (R) coincides with the topology defined by the fil-
tration by the ideals W, (m?®).

Proof: The ring W, (R) is complete and separated in the filtration above:
Win(R) = lim W, (R/m?)

Since Frob: R/pR — R/pR is finite, it is easy to see that the rings W,,(R/m?)
are local artinian. It follows that W,,(R) is a local ring with maximal ideal
n.

Therefore it suffices to show the last sentence of the lemma. It is clear
that n is nilpotent in each of the rings W,,(R/m?®).

We have to show that for each number u there is a number s, such that

Wi (m®) C (W (m))"

We assume this for n and show it for n + 1.
Let a C R be the ideal generated by all products of the form:

7 (0
clcg...cﬁ, cGem

This is an m-primary ideal. We find a number s such that m* C a. In
W,+1(R) we have the following equation:

(o)

Viedlea .. ed = Vi (Jeidy .. eE)

u

Since the right hand side is in (W,,4;(m))* it follows that
V2] € (W (m))®, forz € m® (1.45)

We choose a number u; > u such that (W, 1(m))“ C Wn+1( *). By induc-
tion hypothesis we find a number s; > s such that W, (m*) C (W, (m))".
Let us consider an arbitrary £ € W, 1(m®!). Then we find n € (W, 1 (m ))“1
such that

E=n+ Y[, forceR

Since n € W, 11(m*) we obtain ¢ € m®. But then we obtain from (1.45) that
§ € (Whp(m))". Q.E.D.
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Chapter 2

The de Rham-Witt complex of
a polynomial algebra

2.1 A basis of the de Rham complex

Let R be a Z,-algebra. We consider the polynomial ring R[X;,...,X,] =
R[X].

A weight is a function k : [1,n] — Zs¢ to the nonnegative integers. We
denote the value at the natural number i by k;. Let Suppk C [1,n] the
subset, where k; is not zero. We fix for any weight £k a total order of Supp k:

Suppk = {i1, ..., i} (2.1)
in such a way that
ord, k;, <ord,k;, <...<ord,k; .
We denote by I an interval of Supp k:
I = {is41,0612, - isie)
We consider partitions of Supp k into disjoint intervals:
Suppk=IL,UulU...Ul, . (2.2)

The intervals are numbered in such a way that the elements of I; are smaller
than the elements of I;;;. The intervals I,..., [, are assumed to be not
empty but Iy may be empty.
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Let I C Supp k be an interval. Then we set
kr _ k;
Xt =T1%;
jer

Let ord, kr be the order ord,, k;, where j is the smallest element in the interval
I. Then p°dr* is the biggest p-power, which divides all numbers k; for j € I.

We set Z = X @ """ kr and define
(p—ordkakaI) _ Z(pordpkl_l)dZ .

This is an honest equality if the ring R has no p-torsion.
To any weight k& and any partition (2.2) of Supp k we associate a differ-
ential form:

Xk (ot k x| (pm o d X ) € Q- (23)

These elements are called the p-basic elements of the de Rham complex.
They depend on the total order (2.1), which we have chosen for each weight
k.

Proposition 2.1 The p-basic elements (2.3) for all weights and partitions
form a base of the de Rham complex QR[X}/R as an R-module.

Proof: We use the notation:
dX;
X,

J

The R-module Q?-z[x] /R has the following elements as a basis
X7 XMdlog Xy, - ... -dlog X, . (2.4)

Here k runs through all weights and i; < i < ... < i, through all subsets of
Supp k. The R-module spanned by all elements (2.4) for fixed k is called the
module of forms of weight k:

Qaxyr(k) C Qe -

It is free of rank (7?), if m is the cardinality of Supp k. The number of p-

basic elements (2.3) for fixed k and ¢ is exactly (m

/ > . These p-basic elements
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lie in Q%[X] sr(k). If we show that these p-basic elements generate Q%[X} r(k)
our proposition follows. Hence it is enough to show the weaker assertion that
the p-basic elements generate the de Rham complex as an R-module.

We fix a weight k and set I = Supp k. By giving the variables new names
we may assume that the chosen order on [ is the order of natural numbers.
Then we have

ord, k; < ord,k; fori <j;i,je€l .

For ¢ = 1 our proposition is a consequence of the following

Lemma 2.2 Let a,b: 1 — Z>o be two functions, such that a; +b; = k; for
J eI Letiy < iy < ...< 1, bethe support of the function a and j; < ... < js
be the support of the function b. Then the element

X

11

CLXPrp (XX

Js

where p° is a p-power dividing bj,,...,bj., is a linear combination of p-basic
elements of weight k.

Proof: Let a be a natural number and h € R[X]. We will use the notation
1 a a—1
—dh® = h"""dh .
a

By the Leibniz rule it is enough to show the assertion for s = 1. We have
the formula:

a5y, — bjy — aj; +bj;
X pdX; = (p 5bjl)( dX;; ) : (2.5)

aj + bjl
By assumption we have aj + b;, = k;,. The element (2.5) is a multiple of

p~ e ki d X fljl. Therefore we are reduced to prove the lemma in the case
where the sets {i1,...,4.} and {ji,...,js} are disjoint. That means that we
consider elements of the form

k. k.
) ) ax.t .. X
X xhe (SR ) (2.6)
kjl

11 ir

This makes sense because p”r*in /k;, € Z{, is a unit. Let " < r be the
smallest number, such that i, > j;.
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We prove our assertion by induction on r — r’. The induction starts with
the case where no ' exists. Then (2.6) is already an p-basic element, and we
are done.

If " exists we have i, > j;. We find a number ¢ < s with

Jie <t < Je41

In the case t = s the last inequality is absent. If ¢ < s our expression (2.6) is
according to the Leibniz rule:

k. k.
Jt+1 Js
xFaxhe k| xche [ e R
11 " 1 Ji e Jt kjl

k. kir K k. ax i x"ie 27)
1 28 t Js J1 g
+ Xt XXX (—1’%1 ! )
The first summand here is already a multiple of an p-basic element. Hence
we have to show that the second summand is a linear combination of p-basic
elements. Note that in the case t = s the element (2.6) is already the second
summand.
Applying the Leibniz rule to the second summand of (2.7) we obtain

_ i1 Jt
XP ke x|k (—dle " >

11 2 Jt+1 Js k’jl
. ax i xRie i S kg
_ Xkll X r—1 J1 It i Jt41 s
- 11 e Tp—1 kjl
Kip o Fier1 o Fj
k; ki,_y ki kj dXiT“"thJI X
XXX X -

The first summand is by induction a linear combination of p-basic elements,
while the second is already a multiple of an p-basic element. This proves the
lemma. Q.E.D.

Since by the lemma Q}z[x] /R 18 generated by p-basic elements it is clearly
enough to show that a product of p-basic elements is again a linear combi-
nation of p-basic elements. We show that any p-basic element

XMop=tdXFnp=rd Xt pTod Xt (2.8)

with ¢; = ord, kz,, multiplied with any monom X"’ is again a linear combi-
nation of p-basic elements.
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Indeed we may assume that J = {j} such that X" = X If j is smaller
than any index of I,, we conclude by induction on ¢. If not we write by the
lemma X J’-‘p_‘sé’dX k1, as a linear combination of p-basic elements and apply
again induction on /.

It remains to be shown that (2.8) multiplied with p~°d X", where § =
ord, h; is a linear combination of p-basic elements. By the last argument it
is enough to do this in the case Iy = ().

To see this we define an R-algebra homomorphism

@ : Qpxyr — Qrxyr

which satisfies the relation da = pad.
On R[X] = Q%[X] /r the R-algebra homomorphism o is defined by

On Q}z[)q /r We define

. Q}%[X]/R - Q}%[X]/R

S fdX: — Y a(f) XX,
=1 =1

We extend this to the higher degrees

o QZ}%[X] /R - QZJ#[X} /R

WA Aw o a(w) A A aw;)

The relation
da = pad

is easily verified.
p-basic elements may be written by using the identity:

p—ordp k[ka:I _ aordp k:Ipr_ordkLkI

It is clear that o maps p-basic elements to p-basic elements. The same is
true for d.
Let us consider the element

pldXhp=haxkn | pToextkn (2.9)
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Let p be the minimum of the numbers 9, d1,...,d,. Then the element (2.9)
may be rewritten using a:

au(p—(5—u)dxp*“hyp—(51—u)pr*“kfl N .p—(5e—uz)pr*“k1L,

Since one of the p-powers in the bracket is 1, the element in the brackets is
an exact differential of an element, which is by induction on ¢ a linear com-
bination of p-basic elements. This proves that (2.9) is a linear combination
of p-basic elements, too. Hence we obtain the proposition. Q.E.D.

2.2 The basic Witt differentials

Let R be a Zy-algebra, and S = R[Ty,...,T;] = R[T]. We will give an
explicit description of the de Rham-Witt complex W{lg/r. The part of degree
zero is the Wittring WQ% /g = W(S). It has the following description.

We consider functions k : [1,d] — Zsg [%], which we call weights. The

value of k£ at ¢ will be denoted by k;. We call k integral if all k; are integral.
We write X; = [T;] € W(S) for the Teichmiiller representative of T;. If k
is integral we set:
XF =Xk Xk

We denote by p**) the denominator of k, i.e. u(k) is the smallest nonnegative
integer, such that p“®k is integral.
Proposition 2.3 Any element of W(R[T|) may be uniquely written as a

convergent sum
SV ey (2.10)
k

The sum s over all weights k. The convergence means that for a given
number m, we have V""n, € V"W (R) for almost all k. The last inclusion

holds for all k, iff (2.10) is an element of V"W (R[T]).

Proof: Take an element £ € W(R|T]), and consider the polynomial w(§) =
Ya,T*, a, € R, where k runs over integral weights. Then we obtain

¢ — Slap]X* € VW(R[T]) .
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By induction we obtain a unique expression for ¢:

e= Y larmlXY)

m>0,
k integral

We note that each summand may be rewritten as follows: Let for given m, k
the number ¢ be maximal, such that p~¢k is integral and o < m. Then we
have the equation:

Vm([a/kﬂn]Xk) _ an*Q( Ve [akﬂn] X Xp*@.k) )
This gives the result. Q.E.D.

Corollary 2.4 Fach element of Wy, (R[T} ... Ty]) may be uniquely written in
the form:

S VTR XTE) e € Wonsuey(R)
k

where k runs through all weights such that u(k) < m. FEzcept for finitely
many weights n = 0.

We will now introduce the basic Witt differentials of the de Rham-Witt
complex. For each weight k we fix once for all a total order on the arguments
where k doesn’t vanish:

Suppk = {i1,..., 0} ,
in such a way that
ord, k;, <ordyk;, <...<ord,k;, .

For later purposes we choose the total orders in such a way that for each
integer a and for each weight & the orders on Supp k& = Supp p®k agree. We
will call a weight k primitive if it is integral and not all k; are divisible by p.
We choose the orders for primitive weights in an arbitrary way.

We set t(k;,) = —ord, k;, and u(k;,) = max(0, ¢(k;,)).

We will denote by I an interval of Supp k in the given order.

I - {?:[,7:[+1, e ,Z€+m} .
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The restriction of k& to I will be denoted by k;. The extension by zero to
[1,d] will be denoted by the same letter k7. Then we set

t(k;) = t(k,) = max{t(k;)|iel}
u(kr) = wu(k;,) = max(0,t(ks))

If k£ is fixed in our discussion we set ¢(I) = t(k;) and u(I) = u(k;) to avoid
too many indices. We have

t(iy) > t(is) > ... > t(i,) .

The common denominator of the values of k; is p!). a basic Witt differential
of degree zero, i.e. in WQY /g 1s any element of the form

For I = () this is equal to n by definition.
In degree one we have two further types of basic Witt differentials: If the
weight k; is not integral we consider for I # ():

d v xrrkny (2.12)
If the weight k; is integral we have the basic Witt differential
FiD (gxr Phry = x k=" O g oDk (2.13)

In the last case p~*!) is the greatest p-power which divides k;, i.e. p"Dk; is
integral but not divisible by p.

The following expressions for (2.11) (2.12) and (2.13) are suggestive, but
they have only a symbolic meaning;:

kr
Vu(]) kr Vu(I) kr dX

In general a basic Witt differential is obtained by taking products of these
elements in a certain way:
We let k fixed, and consider a partition of Supp k in disjoint intervals

Suppk=IL Uul,...ul,=1 . (2.14)

The elements in [ are smaller than the elements in I,;. The interval I
may be empty but the intervals Iy, ..., I, are asumed to be non-empty.
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For £ € V"W(R) we define a basic Witt differential

e=ce(&k Iy,..., 1) € WQ%[TI /R

-----

of degree ¢ as follows:

We set € = V1. Let us denote by r € [0, — 1] the first index such
that k., is integral. We set r = £ if k;, is not integral.

We distinguish 3 cases in the definition of e:
First case: [ # ().

o= VI nXpqu)kIO (d Ve ek (g Vu(fr)Xpuur)kIT)

(F_t(1r+1)prt(1r+1)kIT+1> <F*t(12)prt(Ig>kIé) (2'15)

Second case: [, = () and k not integral, i.e. r > 0.

o — dV“(I“ <77Xpu<11)k,11>> (dvu(IQ)Xpu(12>kI2> . <dvu(1r)Xpu(Ir)k‘]7.)
Fft(1r+1)prt(I'r+1)kIT+1) ( F—t(Ie)prtw)kIg)

(2.16)

Third case: Iy = () and k integral.
e=1n ( F’“’“dXPt“”kn) . ( F*“’”dxp“’”’fﬂ (2.17)
In the first case we have ¢ = VWO)n, in the second case £ = Vu(mn and

in the third case £ = n.
If £ € V"W(R) the image of the basic Witt differential in Willg g 1s
zero. The action of & € W(R) on a basic Witt differential is given by

ae(& k1o, ..., 1) =e(al, k, Io,..., 1) .

Proposition 2.5 The action of F' and V' on the basic Witt differentials is
as follows:

1. If Iy # 0, or if k is integral the following equality holds
Fe(& kLo, ... . Ip) = e( P& pk, Lo, ..., 1)
2. If Iy =0 and k is not integral

Pe( k Iy, ..., 1) =e( V& pk, 1o, ... 1))
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3. If Iy # 0 or k is integral and divisible by p

1
Ve(€,k Iy, ..., L) =e( VE =k, Iy, ..., 1))
P

4. Iy =10 and Ilokr is mot integral
v ve L
e(& k, Iy, ..., 1) =e(p f,];k,[o,...,[g)

Proof: The first 2 equalities follow readily from the definition of the basic
Witt differentials.

Let us consider the third equation in the case Iy # 0. Let r € [0,¢ — 1]
be the first index, such that kj,_, is integral and divisible by p. With this
new r we have still the equality (2.15). Since —t(f;) > 0for ¢ > j > r+1
we obtain by the F-V-formula:

Vo,V v ullp) nXpu(Io)klo o d Vu(I’I‘)Xpu(IT‘>kIT

e
(F—t(IT+1)71prt(1r+1)k1T+l> ( Fft(lg)flprt(Il)kQ) )

Using the general identity in the de Rham-Witt complex:
Viwgdwy . .. dw,) = Ywod Vwed Vwy ... d Y,

we obtain the third equation of the proposition. In the case where k is integral
and divisible by p, the same result follows if we apply the F-V-formula to
(2.17).

Finally we consider the fourth equation. In this case we may take e of the
form (2.16) with r defined as above, and possibly u(/;) = t(/;) = 0. Then
we obtain

Ve _ Vld Vu([1)+1 (/)”Xpu<11)kll) o < F*t(1r+1)*1prt(Ir+1)kIT+1> o

Since
Vl V“(11)+177 _ Vv (p Vu(11)n> —p v5

the last case of the proposition follows. Q.E.D.
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Proposition 2.6 Let k be a weight with support I. We set t = t(k;) and
t =0 if I is empty. With this notation the action of the differential d on
basic Witt differentials is as follows:

de(,k, Io, ..., o) = 0, if I =0
de(&,k, Iy, ..., 1) = e(& k, ¢, 1o, ..., 1)), if Iy # 0, k not integral
de(é? ka IOJ"'7I€> :p_t€(§7k7¢7 107"'716) ) Zf-[(] 7£ Q) ’ k integml

Proof: Let us consider the last equality. In this case a basic Witt differential
has the form

kaIO ( F*“Il)prt(Il)kIl) . ( F*t(I@)prt(Ie)kje> ] (2.18)

We have
d(EXH0) = gd P X,
_ p_t(IO)§ F*t(Io>prt(Io)kIO

From this our result follows, if we apply d to (2.18). The case where k is not
integral is even more obvious. The first equation of the proposition is trivial.
If we introduce in the definition of a basic Witt differential (2.15) (2.16)

w(l;) w(l;) w(l;) u(l;)
for each factor of the form d V"' X? """ a factor d V"’ <77jXp ’ k’ﬂ') we

obtain again a basic Witt differential because of the following lemma.

Lemma 2.7 Let S be any R-algebra. Let ug > uy > 0 be integer. Let
N0, € W(R) and sg,s1 € S. Then the following formula holds in Wg/p:

Y tmlsol)d Y (mlsi]) = 7 (w0 T sl ) d V5]
Proof: We set w = ug — u;. Then F'dV = d and the F-V-relation shows:

"l d " ninl) = T (vl © dplad)
Mo = MilSo S1

If we repeat this equality with ny ©"n; for ny and 1 for 7, we obtain the
assertion of the lemma. Q.E.D.

2.3 The main theorem

Let k£ be a weight and I = Supp k. We will denote by
P = {[07117"'7I€}
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an arbitrary partition of I of the form (2.2):
I=1u...ul, .

Theorem 2.8 Fach element w € WQR[TI...T}/R has a unique expression as a

convergent sum
> el k. P)
kP

where k runs over all possible weights and P over all partitions of Supp k,

and where for any given number m we have &p € YV W(R) for all but
finitely many weights k.

This theorem was proved by Illusie in the case where R is a perfect ring. We
remark that all elements of the type e(§, k, Iy, ..., I;) for a fixed weight k
and a fixed partition P = (I, ..., I;) form a W(R)-submodule of WQ%[T]/R,
which is by the theorem isomorphic to V*“”’ W (R) in the case Iy # 0 and to
VHID W (R) in the case Iy = 0.

In this section we will prove the theorem without the uniqueness assertion.

For the following we use an obvious notation:
Let f € W(S) and let a,b > 0 be integers such that ord, (%) > 0. Then

we define of
a a,,
= —fodf .
(b) ‘ot

The left hand side is a symbol, which depends on f,a and b and not only on
fe.

Lemma 2.9 Let {iy,...,i,} C [1,d] be a subset and a;,,...,a; arbitrary
positive integers. Let 1 < k < r be a number and let ¢ be the greatest
common dwisor of a;,,...,a; . Then the following element in W Qg 1,1/r

1s a sum of basic Witt differentials:

a; a; <anZk Xazr>
XX (S D

11 k-1 c

Proof: We may assume {i; ...i.} = [1,7] by renumeration of the variables.
The function i — a; extended by zero to [1,n| is a weight. Again by renumer-
ation we may assume that the order on [1, 7] assigned to this weight function
is the order on natural numbers. Then we have

ord,a; <ord,a; <...<ord,a, .
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Then we may reformulate the assertion in a new notation: Assume we are
given a partition

[1,7] = {in, oo yind UG,y ded (2.19)

where we assume 71 < ... <1, and j; < ...Jy. Then the element

o o [dXT X
XX (%) (2.20)
J1

i1 in

is a sum of basic Witt differentials for the weight function ¢ +— a;. We show
this by induction on h. The beginning of the induction is the case where
h =0 (i.e. the first set of the partition (2.19) is empty. In this case (2.20) is
clearly a basic Witt differential.

Next we consider an element (2.20) for h > 1. If i), < j; the element
(2.20) is basic. If not, let g be the greatest number such that

jg<ih

If g < ¢ we may apply the Leibniz rule to obtain:

%g+1 aj

. . ) . ax . 9th..x 7t

iq Fip 31 @jg Jg+1 Je

Xpte XXX -
ajl a’jg

a; Qi X, e X a; aj 1 a;
XX [ e ) Xt e
1 Th—1 ajy h Jg+1 Je

The first summand is already a basic Witt differential. We have to consider
the second summand. For g = ¢ our original element has already this form.
By the Leibniz rule we obtain for the second summand:

a.; a; a; C’«j a;
a; a; dx V. .x J9.x thox ot x e
X 1. Xt J1 Jg " 'h " Jg+1 Je
i th—1 a;
J1
Yip Mg+l g
@iy Gip_1 x5y ajo [ 4Xi Xjgyr Xy
=X, XXX
11 th—1 J1 Jg ajy

Here the first summand is a sum of basic Witt differentials by induction,
while the second summand is already a basic Witt differential. Q.E.D.
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Lemma 2.10 Let I C [1,d] be a subset. Let T and T be subsets of I, such
that I =ZUZ. Leta:Z — N resp. a:Z — N be functions, which we extend
by zero to [1,n]. We define a weight function k with support I as follows:

k‘z‘ :dl fOTiEj:\I
ki =a; forieI\ZT
ki =a;+a; forieInNZ .

Then the element
d[[ X"
HXf |, e=g.ed(alie D)

! C
€T

1s a sum of basic Witt differentials of weight k.

Proof: If ZN7Z =  this is the lemma 2.9. We fix an element j € Nz,
and argue by induction on the number of elements in Z NZ. It is enough to
prove our assertion for the element
d]] X"
b i€T
J c
Indeed, if this is represented as a sum of basic Witt differentials as in the
proposition, we may multiply this sum by [[ X" and apply the induction
i€Z\{j}

assumption.

Therefore we may assume {j} = Z C Z = I. After renumeration of the
variables we may assume that [ = [1,r], and that

ord,a; <ord,ay <...<ord,a, .

Then we have to consider an element of the form

X .. X
Xf?< 1 ) , where b=a; . (2.21)

J a;

First we represent this as a sum of basic Witt differentials in the case, where
ord, b < ord, a;. Using the Leibniz rule we may write (2.21) as follows

dX’ — o [AXT X X
Xf( ])Xfl-...-X‘.‘J-...-X;}uLX]’.’*f - : -

aq J aq

45



The second summand is already basic of the right weight.
To see the same thing for the first summand we apply the formula

aj aj—i-b
o (57 () (4]
J aq aq Q5 +b

This is immediate from the definition.
Finally we consider the case ord,b > ord,a;. Then we may apply the
Leibniz rule as follows:

b (XX dX XX
J al - al
. /dX?b ;
X% J ar | LYY a
X () XXX

To see that the second summand is a sum of basic Witt differentials we apply

the formula )
. (dX]’?) (b) (dX]‘.”J’ )
Xj’ —L | = —
aq ay Q; + b

and apply lemma 2.9. Q.E.D.
We may now generalize lemma 2.10 to differential forms of arbitrary de-
gree.

Proposition 2.11 Let I C [1,d] be a subset. Let Iy, Iy, ...,Z; be subsets of
I, such that 1y,...,7, are non-empty. Let az, : I, — N be functions, which
we extend by zero to [1,d]. We denote by cz, the greatest common divisor of

.....

I E SN0 B

ITx=" | = . | (2.22)

C C
€1y 2 L

1s a sum of basic Witt differentials for the weight function

L
ki = Z az,i - (223)

=0
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Proof: By the lemma 2.10 this holds for £ = 1. We make induction on
¢, and assume that the proposition holds for numbers smaller than ¢. The
induction assumption implies that (2.22) is a sum of basic Witt differentials,
if 7y is empty. Indeed, without loss of generality that

ord, ¢z, <ord,cz, < ... <ord,cg,

We set e; = ord, cz;, and b;; = p~“ag,; for i € Z;.
The b;; are natural numbers, which don’t have p as a common divisor for
j fixed. Then the expression (2.22) may be written up to a unit in Z,):

Fe1 (d 11 Xf“) . Fe g 11 Xzbu
i€y €Ly
= g T xhe (Fe?eld I wa) | Ea T e
1€l i€ls 1€y

Applying the induction assumption to the element in the outer parentheses
we obtain the assertion for Zy = 0.

Next we consider the case, where the subsets Zy,Z1,...,Z, are disjoint.
The weight k defined by (2.23) puts an order on I. Let us denote by k the
smallest index in this order. We argue by induction on cardI. If k € I,
we divide the element (2.22) by X.™". Then we apply the induction to
the remaining expression. If we multiply the remaining sum with X" we
obtain again a sum of basic Witt differentials. If x & Z; we may assume that

k € Z;. Then the element
d [T x; ™"
H X?Io,i 7461—1
i 1

i€Zp

may be expressed as a sum of basic Witt differentials by lemma 2.9. If we
substitute this sum in the expression (2.22), we are for each summand either
in the case where Zy # (), or where x appears in Z,. These cases were already
treated.

Finally we consider the general case. By induction on cardZ we may
reduce the proposition to the following assertion. Assume that (2.22) is a
basic Witt differential, i.e. I = ZyU...UZ, respects the order on Suppk = 1.
Then for any m € [1,d] and b € N the product of (2.22) with X? is a sum of
basic Witt differentials.
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If m belongs to Zy ord doesn’t belong to I we are in the case of a disjoint
union, which was already treated. If m € Z; we first express

ATy ,i
a1 X,
b (ASYAY
Xm
Cll

as a sum of basic Witt differential. If we multiply this with the remaining
terms in (2.22), we are again in the case of a disjoint union. Q.E.D.
We accomplish now the first step in proving theorem (2.8)

Lemma 2.12 Any element in WQR[Tl,...,Td]/R is a convergent sum of basic
Witt differentials.

Proof: By the proposition 2.3 any elements in W /R is a convergent sum
of elements of the form

v (XY @V () v () (2.4

Here k@ ... k© are arbitrary weights and p% is the denominator of k(.
We have to show that an element (2.24) is a sum of basic Witt differentials.
We proved this in the case, where all weights k) are integral, i.e. ug = ... =
ug = 0 (proposition 2.11).

For the general case we make an induction on the degree ¢ by the differ-
ential form (2.24). Let us first assume that ug > w; for j = 1,..., k. Then
we may rewrite the expression (2.24).

Vo (noXpuok@) FUO*U1dn1Xpu1k(1) ) ) FHO*“edWXp“ék(@>

Then proposition 2.11 shows that the expression in brackets is a sum of basic
Witt differentials. Hence we finish this case by proposition 2.5.

Secondly we assume u; > u; for j = 0,1,...,¢. Then we apply the
Leibniz rule

Vo (noXpuOk(())) d VUl TllXpul k;(1>
= (Ve (k) vV () (2.25)
_vu <T]1Xpulk(1)> d Vvu@o (nOXp“Ok(1)>
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Inserting this in the expression (2.24) the first summand of the right hand
side of (2.25) gives a differential of a form of degree (¢ — 1) while the second
summand gives an element considered in the case ug > u;. Using the induc-
tion assumption and the fact that d takes basic Witt differentials to basic
Witt differentials, we are done. Q.E.D.

Corollary 2.13 The kernel of WQR[T}/R — WmQR[T}/R consists of conver-
gent sums of basic Witt differentials e(&,k, I, ..., I;) with & € V" W(R).

Proof: By definition the kernel is topologically generated by elements of
the form (2.24) where for some index j we have V7, € V"W(R) (by
proposition 2.3). The proof of the lemma shows that these elements may be
written as a sum of basic Witt differentials of the indicated form. Q.E.D.

2.4 The phantom components

To prove the “linear independence” of basic Witt differentials, i.e. the unique-
ness assertion in theorem 2.8 we will now introduce the phantom components
for the de Rham-Witt complex.

Let R be a Zg)-algebra and S be an R-algebra. If M is an S-module,
we will denote by M, the W (S)-module induced by restriction of scalars
w, : W(S) — S via the Witt polynomial w,. We consider the map for
n > 0:

on : W(S) — Q}S'/R,wn

(xo,x1,22...) — > an_ifldxi
i=0
The map dq is the usual differential dxg.

Lemma 2.14 ¢, is a continuous W (R)-linear pd-derivation.

Proof: Since ¢, factors through W,,,1(S) it is continuous. In the case where
Qy I Rown, has no p-torsion the assertion is obvious, because 9, = #dwn and
the torsionfreeness guarantees that any derivation is a pd-derivation. But we
may restrict to this case by considering homomorphisms R — R, S’ — S,
where R’ has no p-torsion and S’ = R'[x, 21, ...] is the polynomial algebra

in infinitely many variables.

Q.E.D.
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The maps 9,, define W,,1(S)-linear maps

v

1 1
Wy, - QWn+1(S)/Wn+1(R) — QS/R,Wn s for n 2 0 N

which we extend to the exterior powers

Wn Q) Waer(B) — Yo/ Rown (2.26)

by the following formula

wn(dny .. dni) = Wp()0nmy .. 0

where £ € W,,11(S), 1, ..., € Wit (9).
Consider the complex of W, (S)-modules

n—1
P, = G_? s/ rw,

With respect to the natural projection P, — P,_; we obtain a procomplex.
We consider P, as an algebra with respect to componentwise addition and
multiplication. Hence we have a procomplex of differential graded algebras.

We define operators F' and V' on P, but they will not satisfy the relations
required for an F-V-procomplex. Let us denote an element of P, as follows

0= [QO> CIR) anl] ) where Qi € Q;S/R,wi

We set
il
Y

QOJ"‘?QTL—I] = [QluQQw"aQﬂ—l] epn—l
QO:"')Qn—l] - [07p907"‘)p9n—1] € Pn+1

Then F' : P, — P,_1r is an algebra homomorphism. The F-V-formula
holds:

V(QFT): VQ'T ’ QGP’I’L—17 TGP’I’L .
The sum of the maps (wp,...,w, 1) define a homomorphism of W, (5)-
modules y

which is by definition (2.26) a homomorphism of projective systems of alge-
bras.
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Proposition 2.15 Thew™ factor through a homomorphism of projective sys-
tems of algebras
W' Wy g — Py .

This homomorphism commutes with F' and V' but not with d.
dw" = [1,p,p% .. Ju"d |
where [1,p,p?,...] € 1S = PY.

Proof: Since P, is not a F' — V-procomplex the universality of W) is not
applicable. We must give a direct argument.
Let & = (zo, 21, ..., Tn-1) € W,(S). Then we have the relations

571( Vf) _ { (Snfl(g)? n>0 5n72< Fg) = p6n71<€)7 (228)

0 n=>0 forn > 2

This is an obvious calculation.
We consider an element

u=2~&dn ...dn; € Q%/Vn(s)/wn(R) , where n; € W,(5) .

Then we have the formulas

W Ved Voo d V) = V(w(&dny ..o dy)), n>1

o) = ), nz2 22
Indeed, the first relation says:
For 0 < m <n we have
W (Ve Yy .. d V) = pwm_1(Edny ... dn;) (2.30)

The left hand side is by definition:

Wi ( Vf)5m( V771) oo O V77i) = pWin1(§)0m-1(m) - -+ O1 (i)

Hence we obtain (2.30). For m = 0 the left hand side of (2.30) is obviously
Zero.
The second equation of (2.29) asserts that for 0 <m <n —2

Wi FeFan, ... Fdni) = wmi1(&dny ... dn;) . (2.31)
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Clearly it is enough to show that

o Fl) = s (dn) for 1 € Wo(S) . (2.32)
Letn = (Yo, Yn_1) and 0 = (y1 ... Yn_1). Then we may write n = [yo]+ V0.
By definition we have Fdn = [y5"]d[yo] + do-.

wn( ) =W ([0~ 1)0mlyo] + Omo
=y gy + S (Vo)
= 0" T dyo + i ( Vo)
= Omi1([yo] + Vo)
- wm—f—l(dn) .

This proves the relation (2.31) and (2.32).
Next we prove the relation

P wm(du) = dwp,(u) . (2.33)
We may assume u = &dn; ... dn;. Then we obtain

P W (d€dny ... dn;) = ™0 (&) .. O ()
= dwy, (§dny . . . dn;).

Here the third equation holds because the form d,,(n;) are obviously closed.
Finally we have to show that the map (2.27) factors through w”. For this
it suffices to show that the map

Wit Qi) Waia (R) — Ls/Riwn

factors through Wi, 119, 5.
Let ¢ and 77](-5) € W,(S) be some elements, such that

> eWan? - dn” =0
¢
in W,Qs/r. We will show that the following elements are annihilated by wy,:

¢ ¢ ¢ ¢
Z Ve g VUE)---CZVUE) : Zd Velyg Vnp...dvng) : (2.34)
¢ J4
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We compute by (2.30) for n > 0

4 4 4 4
W VDV d V) = pwe (O €Wan L dnl”) .
4 0

This expression is zero because w,_; factors by induction through W, Qg/r.
The second element of (2.34) is annihilated by w, because for n > 0

wa(d VOV a V) = w1 (deOdn? . an) . (2.35)

This follows readily from (2.28).
Let ﬁ; 41 be the quotient of Q%,V (S)/Wns1(R) by the ideal generated by

n+1
all possible elements (2.34). This is stable by d and w, : Q,,,, — Q% Rowy, 1
defined. By definition we have a well-defined map

& Wan/R - ﬁjzﬂ

Edny...dny — Veéd 'V ...dVn .
From (2.35) we obtain

wn(d V) = wny(dt) , t €W, Qp - (2.36)

By construction W, ;1) is the quotient of ﬁ; 41 by the d-stable ideal gener-
ated by the elements

)

Vit Fu) — Viu tEWan/R , wEQ, 4 . (2.37)

The formulas (2.30) and (2.31) show that this element is annihilated by wy,.
We have to verify that d( V(¢ u) — Ytu) is annihilated by w,. Using (2.36)
we obtain

Wa(d( V' (t Fu) — Viu)) = w1 (d(t Fu)) — wu(d( Viu))
= wp_1(dt)wp_ 1 ( Fu) + wp 1 (Hwn_1(d Fu)
—wn(d Vt)wn (1) — wn( V) w,(du)

This vanishes because the following relations hold:

wy(d V) = Woa(dt)  wu(Fu) = wu(u)
Woo1(d Fu) = pwn(du)  w,( V) = pwp-1(t) ,
by (2.31), (2.29), resp. (2.28). This proves proposition 2.15 Q.E.D.
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We note that (2.31) may be written
W d V) = [0, wo(du), . .., wa_1(du)] , for u € WoQs/r -
By the proposition 2.15 the map w, defined by (2.26) factors through
wn : WoiaQsp — Qs/pw, -

This is an algebra homomorphism which satisfies

dw, = p"w,d .
Proposition 2.16 Let e = e(&, k, 1y, ..., 1)) € WQS/R be a basic Witt dif-
ferential. Then w,(e) = 0 unless p™ - k is integral. If p"k is integral we

have
wp(e) = Wn(g)Tp”kzo (p~ ordp™kry dTp"kfl) (p” Ordpnk[ZdTp”kIé)
if Iy # 0 or if k is integral, and
wn(e) = Wnﬂ»(”) (pi ordp™kr, dTpnkjl) o (pi ordp™kyp, dTpnk,l)
with V'n=¢, if Iy =
Proof: If k is a weight with support I and u = u(k;), we find by (2.30)
(

wn( V" (nXPUR)) = plwy,_ (nXPF
P Wiy () (TP F)P"" = wy (Vi) TPk

We note that the last expression is 0 for u > n.
Next we find:

wald (X)) = 6. ( VT (nXPH))

We note that this is zero for u > n. For v < n we obtain for the last
expression:

Op—u(nXP ) = Wy () TP D@ =) g ks
= Wi—u () (p~ T dTP"H1) = Wiy () (p~ AP R TP )

Finally we consider an element * 'dX?'* where t < 0, and p'k is integral
but not divisible by p.

wo( T AXPHRY = w,_ (dXPR) = TP R =D geth
— p—n+thp"k =p ordp"dep"k )

We obtain the proposition by multiplying these results together. Q.E.D.

o4



2.5 The independence of basic Witt differen-
tials

.....

This element depends only on the residue class of { p in W, (R). Let ptk)
be the common denominator of the values of k as before. If £ = 0 we set
u(k) = 0. By definition of the basic Witt differentials we have

gk,p € VU(MWn_u(k)(R) . (2.38)

For n < w(k) this should be read: & p = 0, i.e. the elements e, (&, k, P)
are non-zero only if p(*~ . k is integral.

Proposition 2.17 Assume that R is a Z,)-algebra. Then any element w of
1,) may be written as a finite sum

.....

w = Zen(gk,kaap) ) 5/6,73 € Vu(k)anu(k)(R) . (239>
k,P

Here k runs over all weights, such that p"~' - k is integral. The coefficients
&kp are uniquely determined by w.

..........

vergent series of basic Witt differentials e(&,k,P) with € € V'W(R). In
particular this kernel is

..........

.....

form (2.39). Let us first do the case where R has no p-torsion. Assume that
we are given an expression (2.39) with w = 0. We want to show that {,» =0
for all k£, P. For this we consider the map

77777777

for m=0,...,n — 1. The proposition 2.16 shows

Wi (§ep) =0 form=0,...,n—1 ,
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.....

proposition 2.1. Since R is p-torsion free this implies § » = 0. This implies
the theorem 2.8 in the case where R has no p-torsion. Then the assertion
that the kernel in the corollary is generated by e(&, k, P) with £ € V"W (R)
is clear. We set £ = Y"n. If the partition P = {Iy, ..., I;} considered has

.....

Iy = () and k is integral we find by the same proposition:
Vi, p"k,0,11,..., 1)) = e(&,k,0, 1, ..., Ip)
If Iy = () and k is not integral we apply propostion 2.6:
de( V', k, Ip,... 1) = e(&, k0,10, ..., 1)

We have already seen that e( V'n,k,I1,...,I;) € VnV[/Q‘R[T1
proves the proposition if R has no p-torsion.

Corollary 2.18 Assume that R has no p-torsion. Then the natural map

18 1njective.

We return now to the proof of the proposition, if R is arbitrary. We write
S = [T1,...,Ty. The ring R may be represented in the form R = R/a,
where R is a ring without p-torsion. We set S = R[T1, ..., Ty]. We consider
the subgroup W . 7 C Wy IR which consists of convergent sums of basic
Witt differentials e(&g p, k, P) with &.p € W(a). From the proof of lemma
2.12 and from the proposition 2.11 it follows that W g /r is an ideal of the
algebra W g, which is invariant by F,V,d. We define a complex E as the
quotient:

Then we have E° = W(S). If we consider the exact sequence (2.40) for
the truncated Witt vectors, we see that E is an F' — V-procomplex over the
R-algebra S. Therefore we obtain a homomorphism

— E —0. (2.40)
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of F' — V-procomplexes such that the following diagram is commutative:

WQ'S/R — E
AN / (2.41)
W 5

By the torsion-free case any element w € E,, has a unique expression (2.39).
By the lemma 2.12 and the diagram (2.41) we conclude that the same holds
for W, Qg IR The other assertions of the proposition follow formally as in the
torsion free case. This completes also the proof of theorem 2.8. Q.E.D.

2.6 The filtration

In this section we extend the last statement of proposition 2.17 to an arbitrary
smooth R-algebra.

Let R be a ring such that p is nilpotent in R, or assume that R is F-finite.
Let S be a smooth R-algebra.

Proposition 2.19 Let n be a number. The kernel Fil* of the map:

18 the subcomplex
VW Qg p + dV*W Qg . (2.43)

Proof: We begin with the case where S is étale over a polynomial algebra
So = RI[T\,...,Ty]. Then we have the base change isomorphism:

WmQS/R — Win(S) Wi (So) WmQSO/R
We denote by Fil™ the kernel of the obvious map:
W(S) Qw (o) WQSO/R — Win(9) W, (So) WmQSO/R (2.44)

The completion of the left hand side in the linear topology defined by the
ideals Fil" will be denoted by W (S)@w (s,)WQg, /g~ This is identified with
Wy /g Dy base change. Then Fil™ is the completion of Fil™. (We do not
claim that this topology is separated.)
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We claim that any element 6 € Fil" is of the form:
V”91 +d Vneg, 01, 92 € W(S)®W(SO)WQSO/R

Let us consider the case where 6 is in the image of the canonical map Fil" —
Fil". We can compute the kernel of (2.44) by proposition 2.17. This shows
that € is a sum of elements of the form:

Veow, @ Vw, @dVw, (2.45)

where { € W(S) and w € WSy . By the F-V formula the elements of
(2.45) may be rewritten:

ew Tw), V(Teéew), dV(TEew)

This settles the case where € is in the image of Fil".
Now we consider an arbitrary § € Fil”. Then we find an element 6¢
in the image of the map

n+1)

W(S) @w (sp) W, /p — W (S)®w (sy) W g, IR (2.46)

such that ¢ — 97(7”1) € Fil"™'. Then we have that #**Y is in the image of
Fil", because Fil" is the preimage of Fil” by the map (2.46). Hence there
exists a representation in W(S)@W(SO)WQ'SO/R:

n n a(n+1 n A(n+1
ot = Vgt g Vrpimty

Inductively we obtain elements ™ in the image of (2.46) such that

g — gt . gimtl) o gy m+D)

This implies that ™+ is in the image of Fil", and therefore has a repre-

sentation:
e(m—i-l) _ Vm‘9§m+1) +d Vmegm-‘rl)

This yields the desired representation of 6:

o=""0" V") +a YD Ve

m>n m>n

This proves the result if S is étale over a polynomial algebra.
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Finally let S be an arbitrary smooth algebra. Then we consider the
assertion at a finite level, i.e. we want to show that the following map is
surjective:

VWSl g ® AV WSl — Ker(Wenls/p — Wally/g)  (247)

We remark that by base change all W (S)-modules involved in this map are
compatible with localizations, e.g. (W,{kg )y = Wills  p- Therefore it
suffices to find elements fi,...fs € S, which generate the unit ideal such
that (2.47) becomes an isomorphism after localization with each Teichmiiller
representative [f;]. But this is true if Sy, is étale over a polynomial algebra.
Q.E.D.

2.7 The Cartier-Raynaud ring

Let us consider the set DY% which consists of the following finite sums:

Svre 3 > avee, + > i Frd (2.48)

n>0 n>0 n>0 n>0

Here &, &, mn, 1, € W(R) are arbitrary elements, which are almost all zero.
The letters F,V,d denote indeterminates. We consider D% as an abelian
group which is isomorphic to a direct sum of copies of W (R) with components
&y & M, L. Obviously there is a unique ring structure on D% which obeys
the following rules:

FV=p=V%, VE&F="VY¢ for& e W(R),
F&= F¢F, &V =Vv7re,

dé = &d. & =0,

FdV =d Vd=dVp, dF =pFd

(2.49)

For each number ¢ let us consider the right ideal D% (c) = VD% + dV°DY%.

Lemma 2.20 The right ideal D%(c) consists of the elements (2.48) which
satisfy the following conditions:

&€V W(R) for c>n

sty € VW(R)  for n >0 (2:50)
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Proof: Let us denote the abelian group defined by (2.50) by B(c). Consider
an element (2.48) which belongs to B(c). For n < ¢ we obtain:

Vné;n — vn VC_"p — anc—onn—c c VC]D)%

Here p exists by the definition (2.50) of B(c). The same consideration shows
that all summands of (2.48) are in D%(c). For the inverse inclusion D% (c) C
B(c) we apply consecutively V¢ and then dV¢ to an arbitrary element of the
form (2.48). We have to show that the result is in B(c). Since dB(c) C B(c)
it is enough to look for the effect of V¢ If we apply V¢ to the summand
N ™ we obtain for ¢ > m:

Ve Fm =vem Vi, € Bc)
For ¢ < m we obtain:
Vi EF™ = Vi, F™ ¢ € B(c)

The rest of the proof is done using the same argument. Q.E.D.

The filtration by the right ideals D% (c) defines a topology on D%. We call
this the canonical topology. The next lemma implies that the ring multipli-
cation is continuous for the canonical topology:

Lemma 2.21 Let ¢ be a number and o € DY, be an element. Then there is

a number ¢ such that
aD% () € D%(c)

Proof: We may restrict to the case where « is just one summand of (2.48).
We omit the straightforward verification. Q.E.D.

Definition 2.22 The Cartier-Raynaud ring Dg is the completion of D% with
respect to the canonical topology.

Dg = lim D%/D%(c)

Indeed, Dp inherits a ring structure from D% by the last lemma.
Any element of Di may be written uniquely as a convergent sum:

DVIGAD S Fr Y dViE, + Y n, Fd (2.51)

n>0 n>0 n>0 n>0
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Here &,, &), for n > 0 and 7,7, for n > 0 are any elements which satisfy the
following condition:

For any given number u > 0 we have
Ny 1l € VW (R) for almost all n > 0.

The subring of Dg which consists of all sums

n>0 n>0

is the Cartier ring Ez. We denote by ¥g C Dy the two-sided ideal generated
by d. One checks easily that 9% = 0. We have a direct decomposition:

DR:ER@ﬁR

We consider the the Witt ring W (R) as a Dg-left module by the following
rules:

Vo= Yp, Fp= Tp, dp=0, forpe W(R)
The subring W(R) C Dg acts on W(R) by the natural multiplication.
Lemma 2.23 The Dg-module homomorphism

which maps 1 to 1 is an isomorphism. If R — R’ is a ring homomorphism,
we have the natural isomorphism of Dgr-modules:

Dr ®p, W(R)
Dg/ /Dr/(c) @p, W(R)

W(R')
We(R')

[raie

(2.52)

Proof: It is clear that the first isomorphism implies the other second. Then
we also obtain the third since obviously:

Dp /D (c) ®p,, W(R) = W,(R).

If we consider W (R) as an Eg-left module, we have by Cartier theory and
isomorphism:
Egr/Er(F —1) 2 W(R) (2.53)
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Therefore it suffices to show that the two-sided ideal ¥ is contained in the
left ideal Dr(F — 1) + Dgd. By (2.53) we have the congruence:

> ovrg, =Y Vg, mod Dp(F — 1)

n

If we multiply the congruence with d we obtain the result, because the ele-
ment on the right hand side commutes with d. Q.E.D.

Let S be an R-algebra and consider the completed de Rham-Witt complex
W, p. We extend the action of W(R) on this complex to an action of D%
by setting

Vo= Yw, Fw= Twdw = duw, for w € WQg/r.

If £ € W(R), then the projection of the elements V¢, d V¢ € W p to the
complex Wldg p are zero. It follows that for any a € Dg(c) the projection
of aw to WCQ‘S/R is zero.

Let us fix a number ¢ and an arbitrary element o € D%. Tt is clear that
there is a number ¢ such that the action of o on W2 IR factors through
a: Welly /R WY IR Moreover we have just shown that any element in

a + D%(c) has the same factorization with the same .
This shows that the action of D% extends to an action of the Cartier-
Raynaud algebra on the completed de Rham-Witt complex W) /R

We consider now the case of the polynomial algebra S = R[T7,...T,]. The
structure theorem for the de Rham-Witt complex as formulated in proposi-
tion 2.17 and the formulas for the action of V', F', and d on the basic Witt
differentials given in the propositions 2.5 and 2.6 show the following;:

Wl /p =We(R)® €D Dr/Dr(c)e(l,k,P) (2.54)

k primitive

The sum runs for each primitive weight k over all partitions of P = Iy L I; L
... Iy of Supp k such that Iy is not empty. More over we have already shown:

In the completed form these results say:
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Theorem 2.24 Let S = R[Ty,...Ty] be the polynomial ring. Each element
of WQ'S/R has a unique expression

5 + Z ek’,P 6(17 k? 7))
k,P

Here £ € W(R) is regarded as an element of WQ%/R =W(S). The sum runs
over all primitive weights and partitions as above. The elements 0 p € Dp,
satisfy the following condition:

Let ¢ > 0 be an arbitrary integer. Then for almost all primitive weights
k we have O p € Dg(c).

From this theorem we obtain a base change property, which is similar to
base change in Cartier theory.

Theorem 2.25 Let R be a ring such that p is nilpotent in R, or assume
that R is F-finite. Let S be a smooth algebra over R. Let R' be an arbitrary
R-algebra. We set 8" = R' @ S. Then we have a canonical isomorphism:

DR//DR/(C) ®DR WQS/R = WCQ;S"/R’

Proof: By the universal property of the de Rham-Witt complex we have a
canonical map:

From this we obtain a map Dp ®p,, WQ'S/R — WQS,/R,. The last map factors
through:

More precisely we claim that this map is an isomorphism.
We begin with the case where S is a polynomial algebra over R. By (2.54)
any element in W.{lg//p has a unique expression as a finite sum:

&+ 0, pe(1,k,P) (2.57)
We denote by 7(¢£’) the image of £ by the canonical map induced by (2.52):
¢ € We(R') — Dpi /Dri(c) @y We(R) — D/ /Dri(c) @p, W/p
Then we can define a map inverse to (2.56). It maps (2.57) to the element:
7€)+ bp@e(lk,P).
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This proves the result for a polynomial algebra.

We will now consider the case, where S' is étale over a polynomial algebra
So = R[Ty,...Ty). We set Sy = R'[Ty,...Ty]. Then S’ is etale over S}, and
we have " = S ®g, S. For the Witt rings we obtain by the appendix the
isomorphism: W (S") = W(S)) @w sy W(S). We set

W (S)@w(s0)W s, r = im W(S) @w(se) WaSs, /g

By base change this group identifies with Wy /g and is therefore a Dg-
module. Hence we may rewrite the left hand side of (2.56) as: Dg//Dg/(¢c)®p,
W(S)@w(s) W, -

We now rewrite the right hand side of (2.56). By étale base change we
have an isomorphism: WCQ'S//R, = W(S') @w(sy) Weldsy/r = W(S) Qw(sy)
WCQ'% IR If we apply to the last complex the base change for a polyno-
mial algebra we obtain that the right hand side of (2.56) identifies with
W(S) ®w(so) (Dr/Dri(c) ®p, Wk ). The W(Sp)-module structure on
Dp /Dr(c) @b, W s, /i) can be made explicit. For py € W(So), £ € W(R),
and w € WQ /R We have the following formulas:

po(ViE®@w) =V pw
po(dViE@w) = dViER T pw
pEFrow) ={@p Mw
po({Frd@w) =E@p Mdw

(2.58)

Now we can rewrite the base change homomorphism (2.56) as follows:

D /Dr(c) @py, (W(S)Ow(s0)W s, /1) —

2.59
W(S) @wisy) (D /D (0) Dy W, ) 20

An inverse map to (2.59) is given by the formulas: Let p € W(S5), £ € W(R'),
and w € Wy p. Then we define:

pRVYW V¥R Mpew
pRAVYéw = dVE® Fpow
PREF"Rw —ERpe Mw
PREFARw —ERp® Mdw

(2.60)

To see that this map is inverse to (2.59) we make (2.59) more explicit. We
begin with the following remark: Fix an element 6 € Dg/ /Dg/ (c). Then there
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is a number ¢ such that for any element « in the kernel of the map
W (S)@w 50 W sy — W(S) @w(sy) Wes,/n

we have # ® a = 0. Indeed, this follows since by the proposition 2.19 any
element in this kernel is of the form o = V<a; + dV¢ay. Therefore it is
enough to see the effect of (2.59) on elements, which may be written in the
form: 0® p@w with 0 € D/ /Dr/(c), p € W(S), and w € WS, /r- Moreover
we may assume that 6 is an element of the following form: V"¢, dV"E, EF™,
or {F™d, where n is an arbitrary number and £ € W(R’'). By the appendix
corollary A.11 respectively A.18 we have an isomorphism:

Wc—‘rn(s) ®Wc+n(50)7Fn WC(SO) = WC(S)

Therefore the element p may be expressed as follows:

P> Mpioi+ Vo, pi o € W(S), i € W(Sp)

Then the effect of (2.59) is:

VEQpPpQuw Y, pi®VEQow

AVEDpDw — S p @ dAVE D o (2.61)
For the remaining cases the effect is defined as follows:
n m n
EF"QpRuw +— " pREFMQw (2.62)

EFd®@pQw +— MpREF"dow

That this formulas coincide with the definition of (2.59) is obvious if we iden-
tify the the right hand side of (2.59) with W.Qg /. Finally these formulas
show that (2.60) is an inverse map. This proves the base change in the case
where S is étale over the polynomial algebra Sj.

Let S be an arbitrary smooth algebra over R. First we will see that the
question whether (2.56) is an isomorphism is local for the Zariski-topology
on SpecS. Let f € S be an element and [f] € W(S) be its Teichmiiller
representative. We will show that the localization of (2.56) by [f] coincides
with the base change map for S;/R, if Sy is étale over a polynomial algebra
over R.

We know that the right hand side of (2.56) is compatible with localization:

(Welkgr g )i = Wells: /o
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We have to prove the same thing for the left hand side of (2.56). This means
that the following natural map is an isomorphism:

(Dr /Dr(c) @, Ws/p)i5) = Dr//Dr(c) @pp W,/

is an isomorphism. This map is defined because [f] acts bijectively on the
right hand side. Indeed, by what we have shown the right hand side is
canonically isomorphic to WQ‘S} IR

We define the inverse map. Consider an element 0§ ® o € Dg/ /D (¢) Qp,,
WQSf IR We know that there is an index ¢’ depending on 6 such that 6@« =
0 whenever « is in the kernel of the map:

WQSf/R - Wc’QSf/R = (Wc’QS/R)[f]

We choose 8 € (WSl p)(s) with the same image in (WxQg, )y as a. Hence
we may write # ® « in the form 6 @ [f] ™w for some number m and some
w e Wy IR We consider separately the cases where 6 is V&, dV"E, EF,
respectively F™d. Then we find the following relation in Dg /Dpg/(c) ®p,
Wst IR

Ve [f)mw) = Vg [ N

Hence we map V"¢ ® [f]™™w to [f]7™(V @ [f]™P"Dw) € (Dr//Dr(c) @p,,
Wy / r)if)- I 0 = dV"E we proceed in the same way. An element of the form
EF™ @ [f]7™w is mapped to [f]7™" (£F™ ® w) and finally £F"d @ [f]""w
to [f]7™""(EF"d ® w). One checks that these definitions are bilinear and
therefore give a well defined map on the tensor product Dp//Dr (c) ®p,
Wst /R This completes the proof of the theorem. Q.E.D.
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Chapter 3

The comparison to crystalline
cohomology

3.1 Liftings over the Witt vectors

Let R be a ring such that p is nilpotent in R. Let X be a smooth scheme over
R. We consider for a fixed number n the crystalline topos (X/W,,(R))crys
with respect to the canonical divided powers on the kernel of wq : W,,(R) —
R. Let Oxw, (r) be the structure sheaf on (X/W,(R))erys (compare [BO] for
the notation). In this chapter we prove:

Theorem 3.1 There is a canonical isomorphism:
H'((X/Wa(R))erys, Oxjw,(my) = H' (X, Wy p)

The right hand side of this isomorphism is the hypercohomology of the de
Rham-Witt complex with respect to the Zariski topology. To prove this we
use the fact that the crystalline cohomology on the left hand side is the
de Rham cohomology of a lifting of X to a smooth scheme Y over W,,(R),
provided a lifting exists. In this section we choose local liftings carefully.

Proposition 3.2 Let p be nilpotent in R. Let A be a smooth R-algebra.
Then locally for the Zariski topology on Spec A the following set of data exists:

1) For each number n > 1 a smooth lifting A, over W,(R) of A, and
isomorphisms Wy (R) @w,,,(r) Ant1 = An, where Ay = A.
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2) For each n > 1 a homomorphism ¢, : A, — A,_1, which is compatible
with the Frobenius on the Witt ring F' : W,(R) — W,_1(R), and with the
absolute Frobenius Frob : A/pA — A/pA.

3) For each n > 1 a homomorphism:
On + Ap — W,H(A),

such that wqo, is the natural map A, — A, and such that the following
diagrams commute:

Anir 25 Wiy (A) Apir 25 Wiy (A)
[ I
A, =2 W, (A) A, =2 W, (A)

We will call the system (A, ¢, ,) a Frobenius lift of A to W(R).

Proof: This is almost trivial if A is a polynomial algebra over R. Indeed,
let A= R[Ty,...,Ty]. We set A, = W, (R)[T1,...,Ty). Then we extend the
Frobenius F': W,,(R) — W,,_1(R) to a homomorphism:

F Wn(‘R)[TlJ?Td] - n—l(R>[T17"'7Td]
T; — 7

Finally 0,, is the W,,(R)-algebra homomorphism
On : Wo(R)[T1, ..., Ty = Wo(R[TY,...,T4]),

which maps T; to its Teichmiiller representative [T;]. This meets all require-
ments of a Frobenius lift.

Since, locally A is étale over a polynomial algebra, it suffices to prove the
following: Let A — B be an étale homomorphism of R-algebras. Assume we
are given a Frobenius lift (A,,, ¢p, 0,) of A. Then there is a unique Frobenius
lift (B, ¥n, €,) of B such that A — B lifts to a homomorphism (A,,, ¢y, d,) —
(B, ¥ny €1)-

We obtain the Frobenius lift B,, as follows. Since the surjection A, — A
has nilpotent kernel there is a unique étale A,-algebra B, which lifts B.
Hence we obtain a projective system of liftings of B:
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. —— By —— B, B,=B

[ I

S Ap —— A, A=A

For the construction of v, we consider the étale A,,_;-algebra B} = B,® 4, 4.
A, _1. Since ¢, lifts the absolute Frobenius on A/pA we obtain isomorphisms:

B ®a,_, A/pA = (B, ®@a, A/DA) ®a/paFron A/DA

3.1
= B/pB ®A/pA,Frob A/pA ( )

Because B/pB is étale over A/pA we have the isomorphism:

B/pB ®A/pA,Frob A/pA = B/pB
b®a —  bla

Therefore B is a lifting of the étale A/pA-algebra B/pB with respect to
the morphism A,_; — A/pA. Since B,_; has the same property there is a
unique isomorphism of A,_j-algebras B} = B,,_;. This induces the desired
morphism v, : B, — B,,_;. It is the unique morphism compatible with ¢,.

The morphisms ¢, are obtained by the same kind of argument: The
W, (A)-algebra B, ®a, s, Wn(A) is étale and is a lifting of B with respect to
the morphism wq : W,,(A) — A. By the appendix the same is true for the
étale W, (A)-algebra W, (B). We obtain a canonical isomorphism:

B, X Ay b Wn(A) = Wn(B) (3.2)

This provides the desired morphism €, : B, — W, (B).

The isomorphism (3.2) lifts the identity on B with respect to the mor-
phism W, (A) — A. This shows that woe, coincides with the restriction
B, — B.

Finally ZZJn ® F Bn ®An75n Wn(A) — Bn—l ®An—l75n—l Wn_l(A) is the
unique map which lifts the Frobenius on B/pB and is compatible with F' :
W, (A) — W,—1(A). Since the same is true for F': W, (B) — W,,_1(B) the
isomorphism (3.2) takes ¢, ® F' to F. This shows the last property required
in the lemma. Q.E.D.

Let A and A’ be smooth R-algebras. Assume we are given Frobenius lifts
(Apn, On, On) respectively (AL, ¢!, 6!). Then we may form the tensor product
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(An @w,(r) Ap, O ® ¢, 0, @ 6),). Here 6, ® 6], denotes the composition of
the following obvious homomorphisms:

A, Qw,(ry A1, = Wi(A) Qw,r) Wa(A) —» W, (A@gr A).

In this way we obtain a Frobenius lift of A @z A’.
For many purposes a weaker type of lifting is sufficient which we call a
Witt-lift.

Definition 3.3 Let p be nilpotent in R. Let A be a smooth R-algebra. A
Witt-lift of A consists of the following set of data:

1) For each number n > 1 a smooth lifting A, over W,(R) of A, and
isomorphisms Wy (R) Qw, ,,(r) Ans1 = Apn, where A} = A.

2) For each n > 1 a homomorphism:
On + Ay — W, (A),

such that wgo, s the natural map A, — A, and such that the following
diagram commutes:

On
App1 == Wy (A)
On
A, W,.(A)
It is easy to see that a Witt-lift (A,,d,) always exists.

Proposition 3.4 Any morphism of smooth R-algebras ¢ : B — A extends
to a morphism of Witt-lifts (B, €n) — (An, 0n)-

Proof: We take arbitrary Witt-liftings (B, €,) and (4,,d,) but we forget
the data €,. Then we construct by induction homomorphisms ¢,, : B,, — A,
and maps €, : B, — W,,(B), such that the ¢, become a morphism of Witt-
lifts. We consider the following diagram of W, ;-algebras:

Ani1 Xwp iy (4) W (B)
l (3.3)
Bn+1 — An XWn(A) Wn(B>
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The lower horizontal arrow is the composition B,y — B, — A, Xw,(a)
W, (B), where the last arrow is ¢, on the first factor and ¢, on the second
factor. We note that the kernel of the vertical arrow is nilpotent. Since B, 1
is smooth over W,, ;1 (R) the diagram (3.3) may be extended to a commutative
diagram of W11 (R)-algebras by an arrow By,11 — Api1 X, 4) Waga (B).
Q.E.D.

3.2 The comparison morphism

Let X, denote the topos of Zariski sheaves on X. Let us denote by u,, the
natural map of topoi ([BO] proposition 5.18):

Up * (X/Wn(R))crys - Xzar

The structure sheaf Ox,w, r) on the crystalline topos will be denoted by O,,.
It is a sheaf of W, (R)-modules. We will define a morphism in the derived
category DT (X, W,,(R)) of sheaves of W, (R)-modules on X,

For the definition we use the comparison between crystalline cohomology and
deRham cohomology ([BO] theorem 7.1).

Let us first assume that X admits an embedding in a smooth scheme Y
over R, which has a Witt-lift (Y,,, A,,). Here Y, is a system of smooth liftings
of Y over W,(R), and A,, : W,,(Y) — Y, are morphisms, which are global
versions of the homomorphisms §,, in definition 3.3. Let us denote by Y,, the
divided power envelope of X in Y, relative to the canonical divided powers
on VW(R). By the properties of a Witt-lift we have a commutative diagram:

X — Y,
WO\I/ TA,L (3.5)

Since X — W,(X) is a pd-thickening relative to W, (R) it follows that the
morphism W,,(X) — Y,, given by the last diagram factors through a mor-
phism:

Wa(X) =Y, (3.6)

71



Now the left hand side of (3.4) is represented by the de Rham complex
Oy, ®oy, {1y, JW(R)? which can be viewed as a complex of sheaves on X, since
X — Y, is a nilimmersion. We define the comparison morphism (3.4) as the
composition of the following morphisms:

Oy, @oy,, Y, jwor)

|

Oy, ®oy, Yy, vryywary — WalOx) Qwiiov) Qwvywary (3.7)

l

Woldy g

Two different embeddings X — Y respectively X — Y” into smooth schemes
Y respectively Y’ over R, which have a Witt-lift lead to the same morphism
(3.4). This follows from a standard argument since we may take fibre prod-
ucts (compare [I]).

In the case where X admits no embedding into a smooth scheme Y over
R, which has a Witt-lift one ([I]) proceeds by simplicial methods: Let X (7)
for i € I be an open covering of X, such that each X (i) admits an em-
bedding in a smooth scheme Y (i) which has a Witt-lift Y,,(¢). One sets
X(il, e ,ir) = X(il)ﬁ. ;.ﬁX(iT) and Yn(il, ce ,ir) = Yn(il)XWn(R). - XWa(R)
Y, (i,). We denote by Y, (i1,...,i.) the pd-envelope of the canonical mor-
phism X (i1,...,4.) — Y, (i1,...,4.). This gives us three simplicial schemes:

X'—>§_/T;—>Yn'

Let € : X° — X the natural augmentation. From [BO] §7 one obtains an
isomorphism

Run.Op = Re.(Oy, @y, Uy jw,(r))
By the liftable case we have a natural morphism of simplicial sheaves:
Oy, @v, yywary = Wnlli/n

If we apply Re, to this morphism we obtain the desired comparison morphism
(3.2). Indeed, by étale base change for the deRham-Witt complex we have a
natural isomorphism:

Re,Wolx i = Wy g
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3.3 The comparison theorem

Theorem 3.5 Let R be a ring such that p is nilpotent in R. Let X be a
smooth scheme over R. Then the canonical homomorphism (3.4):

Rup. O, — WSy g
s an isomorphism. This isomorphism is functorial in X.

Proof: The question is local for the Zariski topology on X. We may therefore
assume that X = Spec B is affine, and that B is étale over a polynomial
algebra A = R[T},...,Ty]. We set A, = W,(R)[T\,...,T,], and give it its
natural structure of a Frobenius lift ¢ : A,,1 — A, (see proof of proposition
3.2). Then the morphism of R-algebras A — B extends to a morphism of
Frobenius lifts A, — B,. Let us denote by ¢ : B,y — B, the Frobenius
structure. We are then exactly in the situation of the isomorphism (3.2), and
we use the notation there.

Since B is smooth over R we may use the Frobenius lift B,, to compute
the comparison morphism of the theorem. It becomes the map

g, pwor) = Wall/ g, (3.8)

which is induced by the map €, : B, — W, (B) of the Frobenius lift B,.

Let us assume that (3.8) is a quasiisomorphism if we replace B by A.
We fix n and choose m such that p™W, (R) = 0. Then the differential of
Qy, IWa(R) becomes linear if we consider this complex as a complex of A, -
modules via restriction of scalars by ¢™ : A,,+, — A,. By the tensor product
diagram:

wm

Bern EE— Bn

I [

m
Am+n ? An

we find a quasiisomorphism:

[

Qg wor) = Bn ®a, Q4w (r) = Bmtn @ inom Qa, jwi(r)

The point is that the differential d on the first complex commutes with 1 ® d
on the last complex. Similarly we find by the remark to proposition 1.7
quasiisomorphisms:

WnQB/R = Wm-l-n(B) OWoyg, WnQA/R = Botn O A d™ WnQA/R
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Since By, 1, is flat over A, the quasiisomorphism (3.8) is obtained from the
corresponding quasiisomorphism for the polynomial algebra A by tensoring
with By4n®a,,..,em- To show that (3.8) is a quasi isomorphism we may
therefore without loss of generality assume that B = A is a polynomial
algebra over R.

We will use the basic Witt differentials of the de Rham-Witt complex
W, IR We call w € W00, R integral, if the unique expression of w as
a sum of basic Witt differentials contains only integral weights, i.e. if in
the expression (2.39) & = 0 if k is not integral. The integral elements of
W, /R form a subcomplex which we denote by Cj,;.

If the unique expression of w as a sum of basic Witt differentials contains
only non-integral weights we call Q fractional. The subcomplex of fractional
elements of W, /R will be denoted by C},q.. We obtain a direct decompo-
sition:

WnQA/R = Cint @ Cfrac (39>

In the introdution we wrote this decomposition explicitly (formula 2) in the

case A = R|[T] of one variable. One sees immediately that the integral part is

just the de Rham-Witt complex of Qy, (r)ir)w,(r) While the fractional part

is acyclic. It is enough to verify that the same holds for several variables.
By proposition 2.1 2.1 we know that the elements:

T o (p=ordekngTrny . .. (p~ o edThe) (3.10)

form a basis of €04, yw, (r) if k runs through all integral weights and Supp k =
Iy U I; U ... U I, runs through all partitions as in this proposition. The
comparison morphism (3.8) maps the element (3.10) to the following basic
Witt differential:

X ( F*Wl)prt(Il)kIl) o F_t(l")prt(I")kfz) (3.11)

The independence of basic Witt differentials shows that the comparison mor-
phism maps €4, /w, (r) isomorphically to the complex Cj,;.

It therefore remains to be shown that Cf,,. is acyclic. This is a conse-
quence of proposition 2.6. Indeed an element w € Cf,q, has the form:

W = Z en(ék,’/% ka P)a

where the sum runs over all £ which are not integral and P runs over all
partitions. The independence of basic Witt differentials and the proposition
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2.6 shows that w is a cycle iff £ p = 0 for partitions P with Iy # (). On the
other hand e, (& p, k, P) is a boundary if Iy = (). This completes the proof
of the theorem.

Finally we must verify the functoriality. Let X — X’ be a morphism of
smooth schemes over R. Then we obtain a commutative diagram of topoi:

U

(X/Wi(R))erys — Xar

| | (3.12)

(X! /Wi R))erys —— X!

zar

Let O, respectively (', be the structure sheaves on (X/W,,(R))erys respec-
tively (X'/Wi(R))erys- Our claim is the commutativity of the following dia-

gram.
ES ! / * .
o*Ru, O, —— « W”QX’/R

l l

RunOn  —— Wallyp

The horizontal arrows are defined simplicially by affine open coverings of
X respectively X’. By the construction at the and of §1.2 we are therefore
reduced to prove the following statement:

Assume we are given embeddings X — Y and X’ — Y’ into smooth
affine schemes Y and Y’ over R, and a commutative diagram:

X — Y
al dl (3.13)
X — Y

By proposition 3.4 there are Witt lifts (Y,,,A,) and (Y,,, Al) such that &
extends to a map of these Frobenius lifts. Let Y, be the pd-envelope of
X —Y,, and Y/ be the pd-envelope of X’ — Y. Then our assertion is the
commutativity of the following diagram given by (3.7):

| | (3.14)

Oy, ®oy, Y jwomy —— Wyp
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But this is obvious. Q.E.D.

We are going to explain the compatibility of the Frobenius with the com-
parison morphism. This is the point where we need Frobenius lifts. Let A
be an R-algebra. The commutative diagram:

Wa(A) —— Wi (4)
T T (3.15)

WH(R) - n—l(R)
induces a map F : Q1w ) — Qy 4y w,_,(r) Which factors through a
map of the deRham-Witt complexes:

We call this map the absolute Frobenius. On the group W, Q' /R We have

F = p'F. This follows from the equation d ©'¢ = p F'd¢ for € € W, (A). More
generally we obtain for a scheme X over S = Spec R an absolute Frobenius:

On the other hand let Ru,.O, be the direct image of the structure sheaf
by wy, : (X/Wi,(S))erys — Xzar- Then again we have an absolute Frobenius:

F: Run*On — Run,l*On,l (317)

This map is defined as follows. We set Xy = X x SpecF, and Sy = S X
SpecF,. Then the nilimmersion Sy — W, (S) has a natural pd-structure
which is an extension of the pd-structure S — W,,(S) which we considered
so far. For this pd-structure the Frobenius is a pd-morphism F' : W,,_;(S) —
W,.(S). We consider the morphism:

an : (XO/Wn(S>> - Xzar - XO zar

By [BO] 5.17 we have a canonical isomorphism Rt,.Ox,/w,(s) = Rin.On.
Then we consider the commutative square:

Frob
Xo Xo

l l (3.18)

Wo1(S) —2 W,(S)

It induces a map Run.Ox,/w,(s) — Rin—1.0x,/w,_,(s)- Hence we obtain
the absolute Frobenius (3.17).
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Proposition 3.6 Let X be a smooth scheme over S = Spec R. The com-
parison isomorphism of theorem 3.5 respects the absolute Frobenius, i.e. we
have a commutative diagram:

RupOp —— Wallyp
Pl |¥ (3.19)

Run—l*on - Wn—lQ:)(/R

Proof: By the simplicial methods above we may reduce the assertion to
the case where X is embedded in a smooth affine scheme Y which admits
a Frobenius lift Y,,. Let &, : Y,,_1 — Y,, be the given lift of the Frobenius.
As before we denote by Y, the pd-envelope of X — Y. Since ® is a lift
of the absolute Frobenius we obtain from [BO] 7.1 that the map (3.17) is
represented by the following map of complexes induced by ®,,:

OYn ®0Yn QYn/Sn - OYH71 ®0Yn_1 QYn/Snfl

Here we wrote S,, = Spec W,,(R). Therefore our assertion is the commuta-
tivity of the following diagram:

O?n ®OYn QYH/STL OYnfl ®0Yn—1 QYR/Sn_l

| | (3.20)

Wallys — —— Wt Q)

This follows from the properties of the Frobenius lift ®,,. Q.E.D.

3.4 Displays

Let R be a ring where p is nilpotent. We set S = Spec R. Let A be an
abelian scheme over S. Using the de Rham-Witt complex we will equip
the Dieudonné crystal associated to A by [BBM] with the structure of a
3n-display (see [Z] Introduction).

We start with a more general situation. Let f: X — S be a smooth and
proper morphism. Then we consider the W (R)-module

P = liinHl(X, WSy /)
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We define I, /g as the subcomplex of W) /s obtained by replacing the
group W, (Ox) in degree zero by the subgroup VW,,_1(Ox) but leaving the
other degrees untouched. Then we obtain an exact sequence of complexes of

sheaves on X:

Here Ox is viewed as a complex with Ox placed in degree zero and zero
otherwise. We set @, = H'(X, [,Qy/g) and P, = H' (X, W, Q). Then the
sequence of hypercohomology of (3.21) gives:

HO (X, W Qys) — H(X, Ox) = Qn — P, — H'(X, Ox) (3.22)

We claim that the first arrow is surjective if S is noetherian. Indeed, R’ =
H°(X,Oyx) is an étale R-algebra by EGA III 7.8.10. By definition the group
HY(X, W,Qx/s) is the kernel of the differential:

H(X,W,(Ox)) — H(X, W)

The ring W, (R’) is naturally a subring of H°(X, W,,(Ox)). Because W, (R')
is étale over W, (R) and because the differential is zero on W,,(R) by defini-
tion, it is also zero on W,,(R’). Hence W, (R') is contained in the first term
of (3.22), and therefore the first arrow of (3.22) is surjective.

If we pass in (3.22) to the projective limit we obtain an exact sequence:

0—Q— P— HY(X,Ox) (3.23)

We set Ir = VIW(R). Then we obtain IrP C @ since this holds on the level
of complexes.
We denote by
F. WnQX/S - Wn—lQ.X/S (324)

the homomorphism which is p’F in degree i. It induces a Frobenius linear
endomorphism of the W (R)-module P:

F:P—P

which is called a Frobenius.
Next we define a morphism of complexes:

Vol LQxys — WaaQy)s (3.25)
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by the commutative diagram:

VIWaoa(Ox) —— WoQk s —— WoQ%s — ...

V‘ll Fl pFl (3.26)

d d
Wo1(0Ox) —— nﬂ%{/s—’ nflggf/s

The commutativity is obvious from the relations:
FdV =d  pFd=dF
We obtain a Frobenius linear homomorphism of W (R)-modules
V=l.Q— P

Let w € WnQ&/S and ¢ € W(R). Then Yéw € [an(/s- One checks easily
the relation:
VI Vew) = EFw

Here F respectively V! are the homomorphisms of complexes (3.24) re-

spectively (3.25). This shows that for x € P and £ € W(R) we have the
relation:
Vi Ver) = ¢Fx (3.27)
Let us now consider the case where X = A is an abelian scheme over
S = Spec R. Then we can drop the assumption that R is noetherian. We
denote by D(A) the Dieudonné crystal associated to A (compare [BBM]). By
the comparison isomorphism we have for each n a canonical isomorphism:

H' (A, Wy s) = D(A) (s,w,.(5)) (3.28)

Here v denotes the canonical divided powers on W, (5).

The right hand side of (3.28) is a finitely generated projective W, (R)-
module of rank 2dim A. Using that D(A) is a crystal we conclude that P is
a finitely generated projective W (R)-module of rank 2dim A. Using [BBM]
2.5.8 we conclude the exactness of the sequence:

0—=Q—P— H'(A 04 —0 (3.29)

We want to show that (P,Q,F,V 1) is a 3n-display. Since H'(A,O,) is
known to be a finitely generated projective R-module ([BBM]) we have a
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decomposition P = L & T as W(R)-module, such that Q) = L & IgT. This
is called a normal decomposition in [Z].

We have to show that V! : Q — P is an F-linear epimorphism. All
other requirements of a 3n-display are trivially fulfilled. It is easy to see ([Z])
that V! is an F-linear epimorphism, iff the following map is an F-linear
isomorphism:

VieF:LeT — P (3.30)

Since the question is local we may assume that P is a free W(R)-module.
We consider § = det(V ™! & F) with respect to some basis of P. We have
to show that ¢ is a unit in W(R). If R = k is a perfect field we know that
ord, det F' = dimA = dimy () L. Since we have F' = pV =" on L we conclude
that ord, 6 = 0. Hence 0 is a unit.

In the general case it clearly suffices to check that wy(d) is a unit in R,
i.e. non-zero in R/m for any maximal ideal m. Since D(A) is a crystal on
the big crystalline situs it commutes with arbitrary base change. This shows
that it is enough to treat the case R = R/m. Finally we see by a base change
to the perfect closure of R/m that (P,Q, F,V 1) is a 3n-display.

We will now give the comparison to the theory in [Z]. Let us assume that
R/pR is essentially of finite type over a perfect field k. Then we may write
R as a quotient

W(k)T,..., T\ — R (3.31)
of a polynomial ring over W (k) localized in a multiplicative closed system
M. Let a be the kernel of the map (3.31). Let S be the completion of
W(k)[T1,...,T,] with respect to the a-adic topology. Then the ring S is
without p-torsion. We set S,, = S/a".

Let A be an abelian scheme over R. We have defined the structure of a
3n-display on the finitely generated projective W (R)-module

P = HY, (A/W(R)) = limHL , (X/W,(R)) = lim H' (X, W, 2y 5). (3.32)

crys crys

We set P, = H}, (A,/W(S,)) and P =lim P,. Then P is a finitely gener-

ated projective W (S)-module. We define @), to be the kernel of the canonical
map:

The maps Q1 — Q. are surjective. We set Q = limQ,. One checks
that F'Q), C pP,. Indeed one can reduce the problem modulo the ideal
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pW(S,) + YW (S,). Let A, be the abelian variety obtained by base change
over S, = S, /pSy. The one has to show that the Frobenius induces the zero
map on H°(A,, Q4. /s,). This is clear. Since the ring S has no p-torsion
we obtain a unique map V! : Q — P, such that pV~! = F. Therefore
(ﬁ’, Q,F, V1) coincides with the 3n-display defined by the de Rham-Witt
complex. Let (P,Q, F, V') be the 3n-display we have associated to A. Then
V1 is uniquely determined by the commutative diagram:

Q 1=

l l (3.33)

oY p

We can summarize our considerations as follows. Assume we are given
a functor which associates to an abelian scheme A over R a 3n-display
(Pa,Qa, F, V1), such that (Pa, F) = (H},,(A/W(R)), F) is the crystalline
cohomology equipped with the Frobenius, and such that ()4 is the kernel of
the morphism
Heyo(A/W(R)) — H'(A, Oa).

Assume moreover that the functor commutes with base change. Then the
functor is uniquely determined. This proves in particular:

Proposition 3.7 Let A be an abelian variety over R with no p-divison points
in the geometric fibres. Let P = (P,Q, F,V 1) be the 3n-display associated
to the p-divisible group of A by [Z]. Then the dual 3n-display P s canonically
isomorphic to the 3n-display given on H}, (A/W(R)) by the de Rham-Witt
complez.

Proof: It is shown in [Z] that P is canonically isomorphic to the Lie algebra
of the universal extension of A over W(R). Therefore the proposition follows
from [MM] Theorem 1 and the duality theory of [BBM]. Q.E.D.

One might define the structure of a 3n-display on H/.  (A/W(R)) by a
lifting as above, without using the de Rham-Witt complex. But then the
point is, that it seems difficult to show that this structure is independent of
the lifting.
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3.5 The de Rham-Witt complex for a crystal

We consider an arbitrary scheme X over a ring R, where p is nilpotent. Let
us denote by Crys(X/W,,(R)) the crystalline site. We recall that an object of
this site is a triple (U, T, ), where U is a Zariski open subset of X, U — T is
a closed immersion of W,,(R)-schemes defined by an ideal J C Or, and ¢ is
a pd-structure on J which is compatible with the pd-structure on VW, (R).
If there is no confusion possible we will denote this object simply by 7. As
before we denote by O, = Ox,w, () the structure sheaf of this site, i.e.
O,(T) = Or.

A sheaf E of O,-modules on Crys(X/W,(R)) induces a sheaf E7 of Op-
modules on the scheme T. We call E quasicoherent if for all objects T' in
Crys(X/W,(R)) the Op-module Er is quasicoherent.

In this work a crystal is a quasicoherent sheaf E of O,-modules such that
for any morphism « : 7" — T in Crys(X/W,,(R)) the induced homomorphism
of Or-modules o*Er — Ep/ is an isomorphism. Let us denote the Zariski
sheaf Ey, (x) given by the pd-thickening X — W, (X) by E,. Since X and
W, (X) have the same topological space we can view FE, as a sheaf on X.
The aim of this section is to build a procomplex for varying n > 1:

(Walx/r ®w,(0x) Ens V)

For n =1 the Ox-module Fj is equipped with an integrable connection (see
also below) and the complex above coincides with the de Rham complex
defined by this integrable connection.

Let (U,T,~) be an object of Crys(X/W,(R)) such that U is affine. We
set U = Spec A and T' = Spec S. Then we have a surjective map a: S — A
whose kernel a is equipped with divided powers +,, which are compatible with
the canonical divided powers on VW, _1(R) C W, (R).

Let v : § — Q be a W,(R)-linear pd-derivation to an S-module Q. By
definition we have for each number n > 1 and each a € a the equation:

v(n(a)) = ym-1(a)v(a) (3.34)

The direct sum S @ €2 has a natural ring structure such that  is an ideal
whose square is zero. We define on the kernel a&(2 of the ring homomorphism

ad0: 500 - A (3.35)
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a pd-structure denoted by the same letter ~,, as follows:
Tnla 4+ w) =y(a) + Yp_1(a)w, fora € a, we Q. (3.36)

Clearly this extends the canonical pd-structure on VW, _;(R). Hence we
may view (3.35) as an object in Crys(X/W,,(R)). The homomorphism of
W, (R)-algebras

v: § — SoQ,

s = s+uv(s) (3.37)

is a morphism of pd-thickenings of A, i.e. induces a morphism in the category
Crys(X/W,(R)). Indeed, this is equivalent to the requirement that v is a
pd-derivation: On one hand we have:

m(P(a)) = mla+v(a)) = (@) + m-(a)r(a) (3.38)

On the other hand we have:

(n(a)) = mla) + v(va)(a) (3.39)

The expressions (3.38) and (3.39) are equal iff (3.34) holds.
There is a second morphism of W,,(R)-algebras:

ﬁoi S — S@Q,

s = s+0 (3.40)

which is also a morphism of pd-thickenings of A.

Let now E be a quasicoherent crystal on X. Then we obtain a quasico-
herent sheaf Egpecs on Spec.S. We denote the associated S-module by Ejs.
In the same way the pd-thickening (3.35) defines an S @ Q-module Eggq.
Since F is a crystal, we have isomorphisms of S & 2-modules:

(S Q) Rps s = Fgga = (S®N) s Fs (3.41)

This induces the identity when tensored with the map S @& 2 — S of pd-
thickenings which sends 2 to 0. We identify the right hand side of (3.41)
with Fg @ Q®g Eg. Then an element 1 ® m from the left hand side of (3.41)
is mapped to an element of the form m & Vm € Eq @ Q) ®g Fg. One checks
easily that

V:FEs— Q®g Eg, (342)
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is a connection, i.e. an additive map which satisfies the equation:
V(sm) =v(s)m + sVm (3.43)

We apply this to the canonical pd-thickening W, (A) — A. If we denote
by E,. a the value of the crystal E at W, (A) we obtain a connection:

V:E,4— Qll/Vn(A) W (R) ®Wa(4) B, (3.44)

We have to check that this connection is integrable. Then we may extend

the connection to a complex (QWn( A) /Wi (R) OWa(4) Ln,a, V) by the formula:
Viwem)=do@m+ (—1)™“ucAVm form € E, 4.

Let T CvSBZWn( A)/Wn(R) be a graded d-invariant ideal. Then V leaves 7" @, (a)

Ena C Q. ayw(my ©Wa(4) Enoa stable. Indeed, for a € T and m € E,.a
we write
V(a®m)=da®m+aVm.

Clearly each summand of the right hand side is in 7™ @y, (4) Ena. If we
apply this remark to the kernel Z* of the canonical surjection Q'Wn( A Wa(R)
WnQ'A/R we obtain a complex (WnQ'A/R Qw,(4) En,a, V).

For varying U = Spec A these complexes glue to the desired complex

(WnQX/R QW (0x) En, V)-

The integrability is a consequence of the theory of HPD-stratifications:
Indeed, since the question is local on X, we may assume that there is a
smooth W, (R)-algbra B, and a surjection B — W, (A). Let us denote by
D.,(B) the pd-envelope of the surjection B — W, (A) % A of W,,(R)-algebras
relative to the canonical divided powers v on the ideal VW, _;(R). Since
wo : W, (A) — A is a pd-thickening we obtain by the universal property of
the pd-envelope a morphism of pd-thickenings of A:

D,(B) — W,(A)

We apply our general construction of a connection above to the case where
S =D,(B) and d : Dy(B) — 2w, (r)- Then we obtain a connection:

v

V:FEp ) — Q.D.,(B)/WH(R) ®p,(B) £p,(B) (3.45)
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Taking into account the canonical isomorphism (compare [I] 0. proposition
3.1.6): Q'DW(B)/Wn(R) = D,(B) @5 Qp/w,(r), We obtain from the proof of
the theorem in [BO] 6.6 that the connection (3.45) is just the connection
associated to the crystal F, and hence integrable. The connection (3.44) is
by construction the push-forward of (3.45) by the morphism D.,(B) — W,,(A)
and therefore is integrable too.

Let U = SpecA as before and denote by wu, : (U/W,(R))erys — U
the canonical morphism of topoi. Then Ru,.FEy is in the derived category
DT (U, W,(R)) represented by the de Rham complex SU)'DV(B) W (R) ©D.(B)
FEp (). Therefore the morphism:

%

(. (8)wa(r) @D, (B) Ep,(8), V) = (Wallx/r @, (0x) En, V)
provides by [BO] 7.1 a morphism in D (U, W,,(R)):
Ru,.Fy — (WnQU/R Qw, (0p) E,, V) (3.46)

As in section 1.2 this morphism is independent of the embedding B — W,,(A)
and globalizes by the method described in section 1.2 to a morphism:

Ru,.Fl — (Wan/R Ow, (0x) E,, V) (347)

Theorem 3.8 Let u,, : (X/Wy(R))erys — Xaar be the natural morphism of
topoi. Then the morphism (8.47) above is a quasiisomorphism for any crystal
E of flat modules.

Proof: We have proved this in the case where FE is the structure sheaf O,
of (X/Wy(R))erys- The proof will be a reduction to this case using the ideas
of [BO] theorem 7.1.

Since the question is local on X we may assume that X = Spec A where A
is étale over a polynomial algebra R[T7, ..., T,]. We lift A to an étale algebra
A, over W, (R)[Ty, ..., T4 as in the proof of proposition 3.2. In particular
we obtain a map

On + Ap — W,L(A). (3.48)
We set Sy = Spec R, S = Spec W,,(R), and Y = Spec A,, Then we obtain a
commutative diagram:
X =Y

J l (3.49)

S()—>S
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We note that Sy — S is a pd-thickening with respect to the natural pd-
structure on the ideal YW, _1(R) C W,(R). This pd-structure extends to
Y, and hence i : X — Y becomes a pd-thickening.

Let Dy;s(1) be the pd-envelope of the diagonal Y — Y ®g Y considered
as a quasicoherent sheaf on Y. If we set §;, = 1 ® T, —T; ® 1 we may
identify Dy,g(1) with the pd-polynomial algebra Oy < &, ..., > ([BO]
proposition 3.32), in such a way that the canonical Oy-module structure
on the pd-polynomial algebra corresponds to the Oy-module structure on
Dy/s(1) from the right (sic).

Let 6 : Dy;s(1) — Dy;s(1) ®o, Dyss(1) be the map defined by:

(M) =(¢e1+10)l =>" ey

i+j=k

This map is needed for Grothendieck’s linearization Ly of HPD-differential
operators. Ly is a functor from the category of quasicoherent Oy-modules
and HPD-differential operators to the category of Oy-modules with an HPD-
stratification and horizontal maps. By [BO] (6.9) the last category is equiv-
alent to the category of crystals on (Y/S)eys. We will denote the corre-
sponding crystal by Ly, if it is necessary to distinguish it from the HPD-
stratification.

If M is a Oy-module then Ly (M) = Dy,5(1) ®p, M is equipped with an
HPD-stratification. A HPD-differential operator

D Dy/S(l) ®OY M — N
induces a horizontal map of HPD-stratified Oy-modules:
id®D

Ly(D) : Dy/s(1) @ M 229, Dy o(1) @ Dyss(1) @ M 2225 Dy (1) @ N

where all tensor products are taken over Oy.
We will apply this construction to the case where D is a differential
operator of order < 1. In this case D is given by an Og-linear map

D: M — N.

For f € Oy we define [D, f] : M — N by the formula

[D, fl(m) = D(fm) = fD(m).
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This is an Oy-linear map since D is a differential operator of order < 1. We
linearize D to an Oy-linear map:

D*: Oy ®p, M — N

Let J be the kernel of the multiplication Oy ®p, Oy — Oy. Then D! factors
through a quotient:

D*: (Oy ®og Oy)/J? @0, M — N
By [BOJ 4.2 we have a natural surjection
Dy/s(1) = (Oy ®o; Oy)/J%.
Hence we obtain a HPD-differential operator
D*: Dy/s(1) @, M — N.

We denote its linearization simply by Ly (D) = Ly(D*). In local coordi-
nates 11, ...T,; as above this linearization is given as follows. An element of
Dy;s(1) ®o, M may be uniquely written as a finite sum:

Sl @my,  mype M. (3.50)
k

Here k = (ki,...,kq) runs through all vectors of nonnegative integers. In
this notation one finds:

d
Ly(D)(EW@my) = Mo Dm+> g™ g gD, T (my), (3.51)
=1

with the convention 51[71} = 0.
In the following lemma S can be an arbitrary scheme where p is locally
nilpotent and Y can be an arbitrary smooth scheme over S.

Lemma 3.9 Let Dy : My — My and Dy : My — Mj be differential operators
of order < 1 between quasicoherent Oy -modules, such that DyDy = 0. If
p = 2 we require moreover that [Day, f][D1, f] = 0 for any element f € Oy .
Assume that the sequence of Og-linear maps

D D
MY =5 M= M
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is exact in M?.
Then Ly (Ds)Ly(Dy) = 0 and the following sequence is ezact:

Ly (D1 Lv (D
Dys(1) ®o, M "B Dy (1) @0, M? "B Dy g(1) 20, M

We postpone the proof to the end of this section.

More generally we can consider a complex of differential operators of
order < 1, i.e. a sequence of quasicoherent Oy-modules M® for i € Z and
differential operators D; : M* — M+ of order < 1, such that

oo M M

is a complex of Og-modules. If p = 2 we add the condition that for any
f €Oy and i € Z:

By the last lemma this ensures that Ly (M) is a complex.

A morphism « : M — N of complexes of differential operators of or-
der < 1 is a graded homomorphism of Oy-modules o : M* — N? which
is also a homomorphism of complexes. Since the compositions aD; respec-
tively D;a as Og-module homomorphisms corresponds to the composition as
HPD-differential operators we obtain that Ly («a) : Ly (M) — Ly (N') is a
morphism of complexes.

Corollary 3.10 Let o« : M — N be a quasiisomorphism of complexes
of differential operators of order < 1. Then Ly (o) : Dys(l) ®o, M° —
Dy/s(1) ®o, N is a quasiisomorphism of complexes of Oy -modules.

Proof: The mapping cone C = M @ N* of « is an acyclic complex of
differential operators of order < 1. Clearly the functor Ly respects mapping
cones. Since by the last lemma Ly (C') = ConeLy () is acyclic we are done.
Q.E.D.

We apply the functor Ly to the de Rham-Witt complex (W, JROW,(0x)
E,, V) defined before. We view this as a complex consisting of Oy-modules
by (3.48). If Ey denotes the value of E at the pd-thickening X — Y we have
an isomorphism:

W"QX/R Qw,(0x) E, = WnQ}(/R Koy FEy.
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Using that V is a connection we find:

[V, fl(@) = V(fa) = fV(a) =df N for a € W, ), @0y, By f € Oy
(3.53)
Hence we find that (W, Q /R®0y Ey, V) is a complex of differential operators
of order < 1. Indeed the extra condition (3.52) for p = 2 is fulfilled by (3.53).
It therefore induces a HPD-differential operator which is explicitly given as
follows:

V: Dys(l) ®oy Wallyn®o, By — WoQilh @o, By
y ® « = yVa (3.54)
fi X o — d[T‘Z]/\O./
& ® a — 0

Herey € Oy, k > 2, and a € WHQ&/R@)@Y Ey. The differential d[T;] appears
because 6,, maps 7; to the Teichmiiller representative [T}].

By theorem 3.5 we have a quasiisomorphism Q'Y/S — W,y R which is
transformed by Ly into a quasiisomorphism of complexes of crystals (corol-
lary 3.10). By [BO] 7.1 we obtain quasiisomorphisms:

Oyys — Ly (Qy)s) = Ly (WoQx/p)

We note that the category of crystals over Y is equivalent to the category
of crystals over X by [BOJ] 6.7. If K is a crystal over Y we will denote by
t*K the corresponding crystal over X.

If we apply the functor :* we obtain a resolution in the category of crystals
on X:

Ox/s — "Ly (Wally )

Then we obtain a chain of isomorphisms in the derived category Dt (X, ):

—~
—_
~
—
N
~

Run*E = un*LY<Qy/S ®Oy EY) = un*(LY(Qy/S> ®Oy EY)
(3) )
= Un*(LY(WnQ'X/R) R, By) = Un*LY(WnQ'X/R R0y, Ey)
(5)

1%

WnQX /R Koy Ey

(3.55)
Indeed, the isomorphisms (1) and (5) follow from the proof of theorem 7.1
in [BOJ]. The isomorphism (3) follows because Ey is a flat Oy-module by
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assumption and because we have shown that Ly (¢}y/5) — Ly (Wn(ly p) is
a quasiisomorphism. Finally we obtain the isomorphisms (2) and (4) from
[BO] proposition 6.15. Therefore the proof of the theorem 3.8 is finished
modulo the missing proof of lemma 3.9. Q.E.D.

Proof of Lemma 3.9: The question is local. We may assume that S =
Spec R and that Y is étale over Spec R[T1,...Ty]. Weset § =171, —T;®1
as before.

First we must verify that Ly (Ds)Ly (D;) = 0. Using the explicit formula
for the linearization this reduces to the following identities. Let f,g € Oy
and m € M, the following relations hold:

[Ds, f](D1m) + Ds([Dy, flm) =0 (3.56)
[Dz, fI([D1, glm) + [Ds, g](D1, flm) = 0 (3.57)
[Dy, fI([D1, flm) =0 (3.58)

We note that the last equation holds by assumption if p = 2.
The assumption that D, is a differential operator of order < 1 is equiva-
lent with the relation:

Di(fgm) = fDi(gm) + gD:(fm) — fgD1(m) (3.59)

A similar relation holds for D,. From this and from DyD; = 0 it is straight-
forward to verify the relations (3.56), (3.57), and (3.58). We do it only for
the last relation with the assumption p # 2. We compute the left hand side
of (3.58):

[Dy, fI(D1(fm) — fDi(m)) =
Dy (fDy(fm) — f>Di(m)) — fDao(Dy(fm) — fDi(m)) = (3.60)
Dy(fDi1(fm)) — Do(f>Di(m)) + fDa(fDym)

By (3.59) we find:
Dy(f*m) = 2fDi(fm) — f*Di(m)
Applying D, gives:
Ds(f*Di(m)) = 2D2(f D1 (fm))

Using that Ds is a differential operator of order < 1 we obtain:
Dy (f?Dy(m)) = 2f Dy (f Dy (m))
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If we add the last two equations we find that (3.60) becomes zero when
multiplied by 2. Hence the relation Ly (D) Ly (D;) = 0 is established.

In the decomposition (3.50) we give §, ® my, the grade |k| = k1 + ...+ kq.
Then we obtain Zso-graded abelian groups Dy,s(1) ®o, M’ for i = 1,2, 3.
We write the formula (3.51) for D; respectively D, as follows:

Ly(D;) (™ @ my,) = DY(€M @ my) + Dy (¢M @ my) (3.61)

Here D? (¢ @my) = M@ D;my, is the first summand on the right hand side of
(3.51) and D; (¢ @ my;) is the second. Then D? for i = 1,2 are homogenous
maps of degree 0 of graded abelian groups. Clearly the sequence

0 9
Dy/s(1) ®o, M' — Dy;s(1) ®0, M? == Dyys(1) ®0, M®

is exact. The operators ZN?[ for ¢+ = 1,2 are homogenous maps of degree —1 of
graded abelian groups. Consider an element w of degree h in Dy s(1)®0, M?*:

szﬁ[k]@)mk, mkGMZ,
|k|<h

which is in the kernel of Ly (D). We set wh = > k=h ¢l © my, Then
Ly (D3)(w) = 0 implies by homogeneity that D9(w") = 0. Hence w" = D,
where n" € Dy,5(1)®0, M* is homogenous of degree h. Then w— Ly (D1)(n")

is of degree less than h and is in the kernel of Ly (D). We conclude by in-
duction on h that w — Ly (D;)(n") is in the image of Ly (D). Q.E.D.
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Appendix A

A.1 The ring of Witt vectors

In this appendix we collect some general facts about Witt vectors.

Let X be a scheme. Then we define for any natural number n a scheme
W,(X) by a glueing process as follows. If X = SpecR is affine we set
W,(X) = SpecW,(R). We note that for any element f € R there is a
natural isomorphism

Wa(R)) = Wa(Ry).

If elements fi,..., f, generate the unit ideal in R, then their Teichmiiller
representatives [fi],...,[fr] in W,(R) generate the unit ideal. Indeed, by
induction it suffices to show that any element of the form ¥ '[a] for a € R
is in the ideal generated by the [f;]. It suffices to find elements z; € R such
that the following equality holds in W,,(R):

r

Y (DI = )

=1

This is equivalent with the following equality in R which is clearly solvable.

T

pnl
E zi fi =a
i=1

This shows that W,,(X) is the union of the open subschemes W,,(Spec Ry,) for
i =1,...r. Morally this means that the construction of W,,(X) for an affine
scheme X is local. If Spec S — Spec R is an open immersion of affine schemes
one deduces easily that W,,(Spec S) — W,,(Spec R) is an open immersion.
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If U is a quasiaffine scheme we choose an open embedding U — Spec R
and define W, (U) as the union of all affine subschemes W, (Spec Ry) of
W, (Spec R) with Spec Ry C U. One can show that this is independent
of the chosen embedding.

Finally if X is any scheme and U, « € [ is an affine covering we define
W,(X) as the ringed space obtained by glueing the affine schemes W, (U,)
along the open subspaces W, (U, N Up).

Proposition A.1 If the scheme X is separated, so is W, (X).

Proof: We apply the criterion EGA I 5.5.6. Then we are reduced to prove
the following statement: Let Ry — R and Ry — R be ring homomorphisms,
which induce open immersions of the affine schemes. We assume that the the
images of R; and R, generate R as a ring, i.e. R = R;R,. Then the images
of W, (Ry) and W, (Ry) generate W, (R) as a ring.

We assume this assertion for n and show it for n + 1. We consider the
situation modulo p. It follows from the isomorpism (A.5) below that R =
RP"R; + pR and hence by our assumtion that R = Rgan + pR. Iterating
this equation we find R = Rgan + p"R1Ry. This means that any element
a € R may be expressed in the following form:

T S
— " /on, /!
a= E TiY; + E T;PY;
i=1 j=1

where the z; and z; are elements of R; and the y; and y; are elements of Ry.
But this implies the following identity in W, 1 (R):

Vel = ) (VPl)lw] + )V VL))
i=1 j=1

Hence V"W, (R) is in the subring of W, ;;(R) generated by W, 1(R;) and
W,41(R2). We obtain the result from the induction assumption.  @Q.E.D.

We remark that this construction becomes trivial if p is nilpotent in R.
In this case the kernel of wy : W,,(R) — R is nilpotent. Therefore if p is
locally nilpotent on X the scheme W,,(X) has the same topological space as
X but the structure sheaf is W,,(Ox).

We want to formulate finiteness conditions for W,,(X) in terms of X.
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Proposition A.2 Let R be a Zgy)-algebra. Then the following conditions
are equivalent:

(1) For some number n > 1 the Frobenius F' : Wy, 11 (R) — W,(R) is a finite
ring homomorphism.

(i bis) For each number n > 1 the Frobenius F : Wy 11(R) — W,o(R) is a
finite ring homomorphism.

(i1) For some number n > 1 the Witt polynomial w,, : W11 (R) — R is a
finite ring homomorphism.

(i1 bis) For each number n > 1 the Witt polynomial wy, : W,11(R) — R is
a finite ring homomorphism.

(111) The absolute Frobenius Frob : R/pR — R/pR is a finite ring homo-
morphism.

Proof: If for some number n > 1 the homomorphism w,, : W,;1(R) — R is
finite then w,, : W, 11 (R/p"R) — R/p™R is obviously finite too. The converse
statement is also true. Indeed, let z1,..., 2, € R generate (R/p"R)w,], i.e.
R/p™R considered as a W, 1(R/p"R)-module via w,, : W, 1(R/p"R) —
R/p™R. Then any element of R has a representation:

an(fz)xl +p'r = Z W, (&) + Wi ( Ve [r))1

This shows that R|w,) is finitely generated too.
Moreover by the lemma of Nakayama (R/p" R)jw,,) is finitely generated iff
(R/pR)w,) is finitely generated. The map w,, : W,,;1(R) — R/pR factors as

follows:
Frob™

Wi (R) ™ R/pR ™" R/pR.
Since the first map here is surjective, we see that w,, : W,,.1(R) — R/pR is
finite, iff Frob: R/pR — R/pR is finite. Therefore we have shown that the
conditions (i7), (iibis), and (iii) are equivalent. These conditions are also
equivalent with (¢) for n = 1, since the map F' : Wy(R) — R coincides with
Wi.
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We will show now that the condition (i) implies (i¢). Knowing this for
n = 1 we apply induction. For n > 1 we consider the following commutative
diagram:

W1 (R) —— W,(R)

Resl lRes

Wa(R) —"— W,_1(R)

It shows that condition (7) holds for n — 1. We conclude by induction.

Finally we show that the condition (iibis) implies (ibis). We prove by
induction on n that the homomorphism F' : W, 1(R) — W,(R) is finite.
For n = 1 this is w; which starts our induction. Let us assume that n > 1,
and that F' : W,(R) — W,_1(R) is finite. We denote by W,_1(R)(r the
Wy 41(R)-module obtained by the homomorphism:

Woia (R) 55 W (R) 5 W, _1(R)

Then W,_1(R)(p) is finitely generated by induction.
We obtain an exact sequence:

0 = Rpwy) '~ Wa(R)r) — Wai(R)(m — 0

Then the module in the middle is finitely generated because the other mod-
ules in this sequence are. Q.E.D.

Definition A.3 We call a ring R, which satisfies the equivalent conditions
of the last proposition F'-finite.

Let X be a scheme. The Frobenius on the Witt vectors induces a mor-
phism F': W,(X) — W,11(X). Let U C X be an open subset. By reduction
to the affine case one shows that the following diagram is cartesian:

Wo(U) —"— Wyt (U)

l l (A.1)

F

Wn(X) — n+1(X)

This shows that the morphism F': W,,1(X) — W, (X) is finite iff X admits
an open covering by affine schemes Spec R;, such that each ring R; is finite.
In this case we say that the scheme X is F-finite.
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Proposition A.4 Let R be a F-finite noetherian ring. Then W, 11(R) is a
noetherian ring for each number n > 0.

Proof: Since w,, : W,,;1(R) — R is a finite ring homomorphism and since R
is noetherian we see easily that Ry, is a noetherian W, (R)-module. We
consider the exact sequence:

0 — Rpw,) = Whni1(R) — Wo(R) — 0
This shows the proposition by induction on n. Q.E.D.

Proposition A.5 Let R be an F-finite ring, and S be a finitely generated
R-algebra. Then for each number n the W, (R)-algebra W, (S) is finitely

generated.

Proof: It is enough to prove our proposition in the case of a polynomial
algebra in one variable S = R[T']. We consider the morphism W,, 1 (R)[X] —
Wie1(R[T]) which maps X to the Teichmiiller representative [T']. We have
to prove that this last homomorphism is of finite type. We will see that this
homomorphism is even finite.

Let us consider the exact sequence:

0 — R[T)pw) = Wit (R[T]) — W (R[T]) — 0

By induction it is enough to prove that R[Tw,] is a finitely generated module
over W,,+1(R)[X]. But this module is obtained form the homomorphism:

Wi (R)[X] — R[X] — R[T]

where the first morphism is induced by w,, and the second is the R-algebra
homomorphism which maps X to TP". Since both morphisms are finite we
are done. Q.E.D.

From the last proposition we deduce the global version:

Proposition A.6 Let T be an F-finite scheme. If X — T is a morphism of
finite type then X is F-finite. The morphism W,(X) — W, (T) is of finite
type. If T is noetherian then W, (X) and W,,(T') are noetherian.

Corollary A.7 Let T be an F-finite scheme. If X — T s a proper mor-
phism then the morphism W, (X) — W,(T) is proper.

96



Proof: We assume the corollary for n and show it for n + 1. Consider the
commutative diagram:

Wo(X) U W, (X) —— W (X)

l l (A.2)

W, (T)UW,(T) —— W, (T)

The horizontal arrows are induced by F' on the first summand and by
the restriction on the second summand. These morphisms are finite by the
proposition. It follows from the induction that the diagonal in the diagram
above is proper. The arrow W,,;1(X) — W,,1(T) is separated by proposition
A.1. Therefore it suffices to show that the upper horizontal arrow in the
diagram is surjective. For this we may restrict ourself to the case where
X = Spec R is affine. Then it suffices to show that the kernel of the following
map is nilpotent for n > 1:

Wi (R) T2 W(R) x W, (R)

But this kernel consists of elements V"[a] with @ € R and pa = 0. It is clear
that the product of two of these elements is zero. Q.E.D.

Next we find conditions which ensure that the functor W,,(X) takes étale
morphisms to étale morphisms. We begin with the case where the prime p
is nilpotent.

Proposition A.8 Let R be a ring such that p is nilpotent in R. Let R — S
be an étale morphism. Then for each number n the morphism of Witt rings
W, (R) — W,(S) is étale. For m < n the natural restriction map W,(S) —
W, (S) induces an isomorphism:

Wi (S) @w,(r) Wi(R) = Wi (S5) (A.3)
In particular we obtain isomorphisms:
WoL(S) QW (R) VmWn_m(R) >~ VmWn_m(S)

Proof: Take any elements uy,...u,, which generate S as an R-algebra.
We denote by t; = [u;] € W(S) their Teichmiiller representatives.
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Lemma A.9
W(S)=W(R)[ts,...t,]

More precisely any element of V"W (S) may be written as a polynomial in
t, ..., t, with coefficients in V"W (R).

Proof: We show that
S =R, ... ul (A.4)

Since p is nilpotent we may restrict by the lemma of Nakayama to the case
where pR = 0. One considers the relative Frobenius over R:

R ®propr S — S (A.5)

This is known to be an isomorphism. Indeed, the morphism of affine schemes
induced by (A.5) this is obviously radical and surjective. On the other hand
both sides of (A.5) are étale over R, and therefore the morphism is also étale.
Hence we have an isomorphism by EGA IV 17.9.1. From the isomorphism
(A.5) we conclude (A.4) in the case pR = 0.

Let us consider an element V"¢ € W(S), and denote by & = wq(€) its
first Witt component. By (A.4) we may write:

77LI
éU = E CL[Up )
I

where the sum goes over multiindices I = (i1, ...,%,) and a; € R. Hence
E= la] "t € YW(S)
I
If we apply V™ to the last equation we obtain
Ve Z ym [al]tl _ VmH?7
I

for some n € W(S). From this the lemma follows by an easy induction.
Q.E.D.
We continue with the proof of the proposition. The lemma shows that
W, (R) — W, (S) is of finite type and that the isomorphism (A.3) holds.
We want to think in terms of schemes. We set Y = Spec S, X = Spec R,
W,(Y) = Spec W, (5), and W,(X) = Spec W,(R). For m < n the Witt

polynomials w,,, define morphisms:
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wm 1Y — Wo(Y)

These maps are radical and surjective, and the homoeomorphism induced on
the underlying spaces is independent of m.

Next we verify that the morphism W, (Y) — W, (X) is unramified. Since
wp : X — W, (X) is a nilimmersion we may lift the étale scheme Y over X
to an étale scheme Z,, over W, (X). Consider the commutative diagram:

Y —_— Z,

«] |

W, (Y) —— W, (X)
Applying the infinitesimal criterion for étale to the étale morphism 7, —
W, (X) we obtain an arrow W,,(Y') — Z,,. We set Z,, = Spec C,, and consider
the comorphism C,, — W,,(S) of W,,(R)-algebras. Since the composite with
Wy is surjective we find that

Cp+ Is = W,(S)

where C,, denotes the image of C,, in W,(S). By the lemma we know that
Is = IzgW,(S). Hence the lemma of Nakayama shows that C, = W,(S).
Hence W, (Y) — Z, is a closed immersion which shows that W, (Y) —
W, (X) is unramified.

Now we show that the following diagram is a fibre product:

Y s W, (Y)

l l

X s Wh(X)

Indeed, consider the fibre product 7" and the canonical morphism Y — T.
Since T' is unramified over X, by what we have shown, and since Y is étale
over X by assumption, the morphism Y — T is étale (compare EGA IV
17.7.10, 17.1.4.) On the other hand this morphism is radical and surjective.
Therefore we conclude Y = T as desired.

Let Ipp1 = VTHWl(S) C W,(S). This is an ideal, which is isomorphic
to S considered as a W,,(S) via w,,_;. Therefore the cartesian diagram above
just says that we have an isomorphism:

I -1 @w,r) Wn(S) = Isn
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On the other hand we have already remarked that Ip, 1W,(S) = Ip,1.
Therefore by the local criterion for flatness we deduce that W,,(R) — W,,(S)
is flat if W,,_1(R) — W,_1(S) is flat. The proposition follows by induction.
Q.E.D.

Corollary A.10 Let p be nilpotent in R. If R — S s an unramified ho-
momorphism then for each n > 0 the homomorphism W,(R) — W,(S) is
unramified too.

Proof: This is clear if R — S is surjective or étale. The general case follows
from [EGA] IV 18.4.7. Q.E.D.

Corollary A.11 With the assumptions of proposition A.8 the homomor-
phism F : W, 11(S) — W, (S) induces an isomorphism of W, (R)-algebras:

Proof: We see that the left hand side of (A.6) is étale over W, (R) if we
tensor the étale morphism W, 11 (R) — W,11(S) by ®w, ., (r),rWn(R). Hence
the morphism (A.6) is étale since it is a morphism of étale W), (R)-algebras.

On the other hand we have a commutative diagram:

Woi1(S) Qw,y(r),r Wa(R) — W,L(95)
| ! (A7)
S/pS @r/pr,Frob R/DR — S/pS

The vertical arrows are induced by wy. They are surjective with nilpotent
kernel. Since the arrow below is an isomorphism by (A.5) we conclude that
(A.6) induces a morphism of affine schemes which is radical and surjective.
Since we know that this morphism is étale it is an isomorphism. Q.E.D.

Corollary A.12 With the assumption of proposition A.8 let R be an R-
algebra. We set 8" = S ®r R'. Then we have a canonical isomorphism for
each number n:

W,(S) W, (R) Wn(R/) — W, (S") (A.8)
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Proof: Again the canonical map (A.8) is étale, since both sides are étale
over W, (R'). Using the commutative diagram:

Wi (S) ©w,r) Wa(R') — Wa(5')

| l (A.9)
S X R R/ o S/
We conclude as in the proof of the last corollary. Q.E.D.

Corollary A.13 With the assumption of proposition A.8 let a C R be an
tdeal. Then we have for each number n natural isomorphisms:

Wo(S) @w,(ry Wn(R/a) = W,(S/aS)
Wa(S) @w,r) Wa(a) = W,(al)

Proof: The first isomorphism is a special case of the second. Since W,,(5)
is flat over W, (R) the first isomorphism implies the second. Q.E.D.

We want to remove the condition that p is nilpotent in proposition A.8.
Instead we introduce the condition F-finite:

(A.10)

Proposition A.14 Let R be an F-finite ring, and let S be an étale R-
algebra. Then W, (S) is étale over W,,(R) for each number n.

For the proof we need a form of the local criterion of flatness (|[BAC] chapt.III
§5, théoreme 1):

Lemma A.15 Let A — B be a homomorphism of noetherian rings. Let a €
A be an element, such that the homomorphism obtained by localization A, —
B, is flat. Assume moreover that for each number n the homomorphism
Ala™A — B/a™B is flat.

Then the homomorphism A — B s flat.

Proof: Consider the multiplicatively closed system U = 1+ aB of B. Then
the image of Spec By — Spec B contains V(a) C Spec B. We set C' =
B, x By. This is a faithfully flat B-algebra. Hence it is enough to show that
A — (C is flat, i.e. we must show that A — By and A — B, are flat. This
is clear for the last arrow.

It remains to be shown that A — By is flat. By loc.cit. chapt III
85 proposition 2 By is an ideally separated A-module with respect to a.
Therefore théoreme 1 loc.cit. says that it is enough to verify that A/a"A —
By /a"By is flat for all numbers n > 1. But because of the isomorphism
By/a"By = B/a™B this is true by assumption. Q.E.D.
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Corollary A.16 Let A — B be a homomorphism of finite type of noetherian
rings. Let a € A be an element, such that the homomorphism obtained by
localization A, — B, is étale. Assume moreover that for each number n the
homomorphism A/a"A — B/a"B is étale.

Then the homomorphism A — B is étale.

Proof: We have to show that A — B is unramified, i.e. Q}B/A = 0. By
assumption QF /4 1s @ B-module of finite type. Since the module of Kahler
differentials commutes with base change we have (Qj / 1o =0 and Q} /4 ®a
AfaA = 0. We conclude that Qp,, = 0. Q.E.D.

Proof of proposition A.14: We apply the last corollary to the homo-
morphism W,,(R) — W,(S). We take for a the Teichmiiller representative
[p] € W,,(R). We have to prove that the following ring homomorphisms are
étale:

Wi (R)p) — Wa(S)p) (A.11)
Wa(R)/Ip]"Wi(R) — Wi (S)/[p]"Wa(S) (A.12)

We have isomorphisms:
Wn(R)[p} = Wn(Rp) =Ry x...xR, (A.13)

The last isomorphism is provided by the Witt polynomials. Since the same
holds for S we see that (A.11) is étale.

It remains to be shown that (A.12) is étale for each number m. Obviously
we have the following inclusions:

W, (p™" ' R) C p"W,(R)

We set ¢ = p™" . Then we find isomorphisms:

Wa(R)/[p]"Wn(R) = (Wn(R)/Wa(p°R))/[p]™ (Wn(R)/ W (p“R))
= Wa(R/p°R)/[p]"Wn(R/p°R) A
14

Since the same holds for S the arrow (A.12) may be indentified with:
W (R/p°R)[[p]" Wa(R/p°R) — Wi (S/p°S)/[p]" Wa(S/p"S5)

But this is étale because by proposition A.8 W,(R/p°R) — W, (S/p°S) is
étale. Q.E.D.
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Corollary A.17 Let R be an F'-finite ring, and let S be an unramified R-
algebra. Then W, (S) is unramified over W, (R) for each number n.

This follows in the same way as corollary A.10.

Corollary A.18 Let R — S be an étale morphism of F-finite rings. Then
we have the following natural isomorphisms for arbitrary numbers n > m >
1:

Wi (S) @w,r) Wim(R) — — Wn(S)

Wii1(S) @w, 1 (r),r Wa(R) —  W,(S)

Moreover let R' be an R-algebra. Then we have the natural isomorphism:

(A.15)

If a is an ideal in R we have the isomorphism:

Proof: If in the notation of lemma A.15 A, — B, and A/a™A — B/a™B
are injective then A — B is injective. This is a consequence of Krull’s
intersection theorem [BAC]. If we assume that A — B is finite the same
statement holds for injective replaced by surjective.

Let us begin with the first homomorphism of (A.15). We have a canonical
surjection:

Wi (S) @w,(r) Wim(R) — Wi(S5)

We apply our starting remark to a = [p]. If we localize the surjection by [p]
it becomes an isomorphism by equation (A.13). If we consider the morphism
modulo [p|™ we obtain an isomorphism using (A.14) and proposition A.8.

The next homomorphism of (A.15) is by assumption finite. Therefore it
suffices to show that it becomes an isomorphism if we localize by [p], and if
we consider it modulo [p™]. We conclude as above using corollary A.11.

We show now that the canonical homomorphism (A.16) is an isomor-
phism. Let us first consider the case where p is nilpotent in R’. In this case
it follows from corollary A.12 that the homomorphism (A.16) is surjective.
Therefore we need only to verify that the homomorphism is injective modulo
p™, which can be done as above.

We use induction and assume that our assertion is true for n. We set
S" = S ®gr R'. By the case where p is nilpotent in R’ it is enough to prove
that for some m the group W, 1(p™S’) is in the image of the homomorphism:

Woi1(S) Owaty Wa (B) = Wi (5). (A.18)
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We consider the commutative diagramm (with tensor products taken over

W, (R):

Wo(S) @ Wy (p"R') —— W,o(5) @ Wy (R') —— W,(S) @ W, (R'/p"R')

| | |

Wa(p™S') — Wa(5) — Wa(S'/p™S")
(A.19)
Note that the first row is a short exact sequence because W, (.5) is étale over
W, (R). We have shown that the right vertical arrow is an isomorphism, and
assume it by induction for the middle one. Hence the left vertical arrow is
an isomorphism.

Now we consider an arbitrary £ € W,,,1(p™S’). We want to show that it
is in the image of (A.18). Let £ € W, (p™)(S") be its residue class. By the
last diagram ¢ is the image of an element 7 € W,(S) ®@w,,(ry W, (p™ R'). This
element we lift to n € Wy41(S) @w,,1(r) Wat1 (R'). Then the image & of 7
by (A.18) is in W,41(p™S’). On the other hand p = £ — & map to zero in
W, (p™S’). Hence p = V" [p™s'] for some s’ € S’. We have to show that for
some fixed m expressions of the form V" [p™s'] are in the image of (A.18).
But this is an immediate consequence of the equation in W,,;(S"):

s = ().

Taking m = n this proves the surjectivity of (A.18). The injectivity is done as
usual by considering the morphism modulo powers of [p], and by considering
the localization with respect to p. This proves the isomorphism (A.16).
The isomorphism (A.17) is a formal consequence (compare corollary (A.13).
Q.E.D.
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