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Abstract. We develop a generalization of the classical Chow groups in

order to have available some standard properties for homology theories: long

exact sequences, spectral sequences for �brations, homotopy invariance and

intersections. The basis for our constructions is Milnor's K-theory.
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320 Markus Rost

Summary

The paper considers generalities for localization complexes for varieties. Examples of

these complexes are given by the Gersten resolutions in various contexts, in particular

in K-theory and in �etale cohomology. The paper gives a general notion of coe�cient

systems for such complexes, the so called cycle modules. There are the corresponding

\complexes of cycles with coe�cients" and their homology groups, the \Chow groups

with coe�cients". For these some general constructions are developed: proper push-

forward, 
at pull-back, spectral sequences for �brations, homotopy invariance and

intersection theory.

If one specializes the material to the case of Milnor's K-theory as coe�cient

system, one obtains in particular an elementary development of intersections for the

classical Chow groups. This treatment is somewhat di�erent to former approaches.

The main tool is still the deformation to the normal cone. The major di�erence is

that homotopy invariance is not established alone for the Chow groups, but for the

\cycle complex with coe�cients in Milnor's K-Theory". This enables one to keep

control in �bered situations. The proof of associativity of intersections is based on a

doubled version of the deformation to the normal cone.

Conventions and Notations

We work over a ground �eld k and a base schemeB ! Spec k. The word scheme means

a localization of a separated scheme of �nite type over k. (This includes schemes of

�nite type over a �eld �nitely generated over k.) From Section 8 on all schemes are

of �nite type over a �eld. Moreover all schemes and morphisms are de�ned over B

(with exceptions in Section 14). The letter M stands from Section 3 on for a cycle

module. If not mentioned otherwise, it is de�ned over B (in Sections 3{5) or over X

(in Sections 7{13).

For x 2 X we denote by dim(x;X) the dimension of the closure fxg of x in X

and by codim(x;X) the dimension of the localization X

(x)

. The set of points of X of

dimension (resp. codimension) p is denoted by X

(p)

(resp. X

(p)

). We make free use

of some basic facts from commutative algebra and refer for this to (Hartshorne 1977;

Matsumura 1980) and, in particular, to (Fulton 1984, App. A, App. B).

In Sections 6, 8, 9, and 11{13 we use the special notation X

p

! Y for certain

maps between the cycle complexes. This is explained in (3.8).
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Chow Groups with Coefficients 321

Introduction

The classical Chow groups CH

p

(X) of p-dimensional cycles on a variety X may be

de�ned as the cokernel of the divisor map

a

x2X

(p+1)

�(x)

�

d

�!

a

x2X

(p)

Z.

Here X

(p)

is the set of points of X of dimension p and �(x) is the residue class �eld

of x. This paper studies complexes C

�

(X ;M) of the following type:

� � �

d

�!

a

x2X

(p+1)

M

�

�(x)

�

d

�!

a

x2X

(p)

M

�

�(x)

�

d

�!

a

x2X

(p�1)

M

�

�(x)

�

d

�! � � � .

Here M is what we call a cycle module. This is a functor F ! M(F ) on �elds to

abelian groups equipped with four structural data (the even ones: restriction and

corestriction; the odd ones: multiplication with K

1

and residue maps for discrete

valuations). Moreover there is imposed a list of certain rules and axioms. A particular

example of a cycle module is M = K

�

, given by Milnor's (or Quillen's) K-ring

K

�

F = Z� F

�

�K

2

F � � � � .

Other examples are provided by Galois cohomology, speci�cally

M(F ) =

a

n�0

H

n

(F ;D 
 �


n

r

)

with D a Galois module over a ground �eld k with char k prime to r.

The complex C

�

(X ;M) is called the chain complex of cycles on X and its ho-

mology groups A

p

(X ;M) are called the Chow groups of X (with coe�cients in M).

The Chow groups A

p

(X ;M) enclose various familiar objects. The classical Chow

group CH

p

(X) is a direct summand of A

p

(X ;K

�

). The E

2

-terms of the local-

global spectral sequences in �etale cohomology and in Quillen's K-theory are of type

A

p

(X ;M). For proper smooth X of dimension d the group A

d

(X ;M) is a birational

invariant|the \M -valued" analogue of unrami�ed Galois cohomology.

The paper develops some basic constructions for the cycle complexes

C

�

(X ;M) and the Chow groups A

�

(X ;M) for schemes X of �nite type over a �eld.

There are proper push-forward, 
at pull-back and homotopy invariance. Moreover

intersection theory is available: for regular imbeddings and morphisms to smooth

varieties there is a pull-back map. Finally for a morphism �: X ! Z there is a

spectral sequence

E

2

p;q

= A

p

(Z;A

q

[�;M ]) =) A

p+q

(X ;M).

Here the A

q

[�;M ] are certain cycle modules obtained from taking homology in the

�bers. All the mentioned functorial behavior extends for appropriate �ber diagrams

to the cycle modules A

q

[�;M ] and the spectral sequences.
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322 Markus Rost

The constructions are carried out on complex level in a pointwise manner.

The treatment has some parallels to a standard development of homology of CW-

complexes. This analogy should not be taken too serious, but may give a �rst impres-

sion about the sort of technicalities. In this picture our \cells" are just all points of

the variety in question. The patching data for the \cells" are given by the (geomet-

ric) valuations on the residue class �eld of one point having center in another point.

The appropriate local coe�cient systems are the cycle modules. However, the nature

of these coe�cient systems is more complicated than in topology. First of all, their

ground ring is provided by Milnor's K-theory of �elds. Moreover, besides the usual

functorial behavior, there is need for transfer maps (basically because one has to deal

with non algebraically closed �elds) and there are residue maps for valuations (to give

passage from one point of a variety to its specializations).

The material of this paper grew out from considerations concerning the bijectivity

of the norm residue homomorphism and Hilbert's Satz 90 for Milnor's K

n

. There the

computation of the Chow groups of certain norm varieties and quadrics plays an

important role. As a general technique (see also Karpenko and Merkurjev 1991) we

used a spectral sequence for morphisms �: X ! Z relating the Chow groups of the

total space to something like \the Chow groups of the base with coe�cients in the

Chow groups of the �bers"; moreover these spectral sequences should be compatible

with intersection operations. The goal of the paper was to present an appropriate

framework in a fairly direct manner.

With the remarks following, we have tried to draw the line of development of

the paper. In the discussion of intersection theory, we restrict for simplicity to typi-

cal situations and with Milnor's K-theory as coe�cient system, although the actual

treatment is more general.

Even if one is interested in classical Chow groups alone, one is led to consider

some more general versions of Chow groups. To start with a simple situation, let

Y � X be a closed subvariety. Then there is an exact sequence

CH

p

(Y )! CH

p

(X)! CH

p

(X n Y )! 0.

For concrete computations as well as for general considerations, there appears the

problem to extend this sequence to the left in a reasonable way by a sort of higher

variants of Chow groups. Similarly, let �: X ! Z be a morphism of varieties and

try to relate the Chow groups of X with the Chow groups of Z and of the �bers.

When working within the classical Chow groups alone, there will be no good answer

in general.

In this paper the approach to these problems is provided by Milnor's K-theory.

For a variety X one forms for n 2 Z the complex

}

C

�

(X ;n) with

C

p

(X ;n) =

a

x2X

(p)

K

n+p

�(x)

}

The complex of cycles with coe�cients in Milnor's K-theory to be considered later splits up as

a direct sum C

�

(X;K

�

) =

`

n

C

�

(X;n) according to the grading of Milnor's K-ring.
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Chow Groups with Coefficients 323

where K

n

F is Milnor's n-th K-group of a �eld F . The homology groups of the

complex C

�

(X ;n) are denoted by A

p

(X ;n). For n = �p � 0 it ends up with

� � �

d

�!

a

x2X

(p+2)

K

2

�(x)

d

�!

a

x2X

(p+1)

K

1

�(x)

d

�!

a

x2X

(p)

K

0

�(x) �! 0

and one has CH

p

(X) = A

p

(X ;�p).

Then for a subvariety Y � X there is a long exact sequence

� � � ! A

p+1

(X n Y ;n)! A

p

(Y ;n)! A

p

(X ;n)! A

p

(X n Y ;n)! � � � .

Moreover let �: X ! Z be a morphism. The �ltration of the set X

(p)

given by

the dimension of the image gives rise to a �ltration of the complex C

�

(X ;n). The

corresponding E

1

-spectral sequence looks like

(1) E

1

p;q

=

a

z2Z

(p)

A

q

(X

z

;n+ p) =) A

p+q

(X ;n)

with X

z

= X �

Z

Spec�(z).

A major problem in intersection theory is to produce for a regular imbedding

f : X

0

! X a pull-back map f

q

on the Chow groups having the geometric meaning of

intersecting cycles on X with X

0

. (For a general account on intersections we refer to

Fulton 1984)

These maps are in the actual context of type

f

q

: A

p

(X ;n)! A

p�d

(X

0

;n+ d)

with d = codim(f).

In the paper the maps f

q

are de�ned by �rst constructing homomorphisms of

complexes

I(f): C

�

(X ;n)! C

��d

(X

0

;n+ d)

and then passing to homology. In a �bered situation (that is f lies over some map

Z

0

! Z with appropriate smoothness conditions), the maps I(f) can be chosen

to respect the �ltrations, thereby inducing homomorphisms on the corresponding

spectral sequences.

As the reader might guess, the maps I(f) cannot be de�ned canonically in

terms of f . Namely, I(f) gives in particular a lift of the classical pull-back map

f

q

: CH

p

(X) ! CH

p�d

(X

0

) to the cycle groups. But if a cycle W on X does not

meet X

0

properly, there is in general no way to de�ne W \X

0

by a canonical cycle.

It may be surprising that one can handle with such pull-back maps I(f) on

complex level in a reasonable way. Therefore we will discuss here the nature of these

maps in some detail.

When working with the complexes C

�

(X ;n), it turns out that the necessary

constructions can be described in terms of four basic operations. These, called the

\four basic maps", are of the following type.
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324 Markus Rost

For a morphism f : X ! Y , there is a push-forward map

f

�

: C

p

(X ;n)! C

p

(Y ;n).

For a morphism g: X ! Y with �ber dimension s, there is a pull-back map

g

�

: C

p

(Y ;n)! C

p+s

(X ;n� s).

Moreover there is \multiplication with K

1

": for a global unit a on X , there is a

map

fag: C

p

(X ;n)! C

p

(X ;n+ 1)

given by pointwise multiplication with a(x) 2 �(x)

�

= K

1

�(x).

Finally for a closed immersion there is a canonical \boundary map"

@: C

p

(X n Y ;n)! C

p�1

(Y ;n).

All these maps are de�ned in a pointwise manner. If f is proper and g is 
at, the

maps f

�

and g

�

commute with the di�erentials of the complexes. One uses f

�

also

for open immersions f and g

�

also for closed immersions g (then f

�

and g

�

are just

the corresponding projections and don't commute with the di�erentials). The maps

fag and @ anti-commute with the di�erentials.

In fact, the four basic maps are enough to de�ne intersections on complex level:

by their very de�nition, the maps I(f) are sums of compositions of the four basic

maps. For the construction of the I(f), the �rst major tool is the deformation to the

normal cone. This yields a canonical \deformation map"

C

�

(X ;n)! C

�

(N ;n)

where N is the normal cone of f . The next step is to de�ne for a vector bundle

�: V ! X of dimension d a homotopy inverse

C

�

(V ;n)! C

��d

(X ;n+ d)

to the pull-back map �

�

. It is at this place where one needs some extra noncanonical

choices. The choice to be made is (at most) that of what we call a \coordination"

of �. This is a strati�cation of X together with bundle trivializations on the strata.

In the end there is a canonical procedure which starts from the choice of a co-

ordination of the normal bundle of f and yields a map I(f) as desired, de�ned in

terms of the four basic maps. Di�erent choices lead to homotopic maps I(f), with

the homotopies again expressible in terms of the four basic maps. In a �bered situ-

ation, one may arrange things to end up with �ltration preserving maps I(f). Once

having made the necessary choices, the construction is quite functorial. For example,

it is compatible with respect to base change and localization. In order to establish

functoriality (namely I(f �f

0

) should be homotopic to I(f

0

)� I(f), if necessary under

a �ltration preserving homotopy), we use a kind of doubled deformation space.
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Chow Groups with Coefficients 325

The viewpoint of the paper is to put the four basic maps in the center. In

particular the maps fag, @ are treated as if they were a kind of morphisms in their own

right, of equal rank as the more familiar push-forward and pull-back maps. This has

at least technical advantages. For example, in order to check various compatibilities

concerning the maps f

q

, it is very convenient to reduce to a separate treatment of the

four basic maps.

The reader may ask why we insist to stay on complex level although one is

interested mainly in the Chow groups. Over some range this is quite natural from the

material. However, the proof of homotopy invariance with respect to vector bundles

is much simpler for the Chow groups (using the spectral sequences) than for the cycle

complexes themselves (where one has to construct explicit homotopy inverses).

The major motive for keeping the complex level throughout was to keep control

on the �ltrations in �bered situations.

Besides this, we hope that our method is of some interest concerning questions

for correspondences between arbitrary varieties. To give an example let f :

e

X ! X

be a proper birational morphism with X smooth. Then there are pull-back maps

I(f): C

�

(X ;n)! C

�

(

e

X ;n)

similar to the I(f) above. The I(f) are unique up to homotopy and have the standard

push-forward map f

�

as left inverse. In particular, I(f) identi�es C

�

(X ;n) as a

subcomplex of C

�

(

e

X ;n). In the case of a blow up in a point x, the choice to be made

in the construction of I(f) is (at most) that of a system of parameters around x.

We think of the maps I(f) as a sort of generalized correspondences. One can make

this more precise in a further development which we call bivariant theory of cycles.

There the four basic maps �nd their place as morphisms of varieties in an appropriate

di�erential category and (the homotopy classes of) the maps I(f) appear rather as

morphisms in a category of varieties admitting products, than just as homomorphisms

of complexes (as in this paper).

The motive of introducing a general notion of coe�cient systems for cycles ap-

pears when looking at the spectral sequence (1). Its E

2

-terms are the homology

groups of complexes of type

� � �

d

�!

a

z2Z

(p)

A

q

(X

z

;n+ 1)

d

�!

a

z2Z

(p�1)

A

q

(X

z

;n)

d

�! � � � .

We interpret this by saying that the collection of functors (with n 2 Z)

A

q

[�;n]: F 7! A

q

(X �

Z

SpecF ;n),

de�ned on �elds F over Z, appear as new coe�cient systems. This process of creating

coe�cient systems may in fact be iterated.

Therefore it seems convenient to have available some appropriate general notion

of coe�cient systems. The class considered in this paper is provided by the notion

of what we call cycle modules. Its de�nition is formal and somewhat ad hoc. The

important thing for us is, that it contains standard functors like Milnor's (or Quillen's)

K-theory and Galois cohomology (as indicated above), that it is closed under processes

like M ! A

q

[�;M ] and that it allows intersection theory. Anyway it might be of at

least heuristic interest, that many general constructions (intersections, also the proof

of acyclicity for smooth local rings) can be based on pure formal properties|at least

if one starts from Milnor's K-theory of �elds.
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326 Markus Rost

Milnor's K-theory is the fundamental base of the whole paper. This was at �rst

suggested by our original problem, Hilbert's Satz 90 for Milnor's K

n

. Besides this,

Milnor's K-theory seems to give the minimal framework needed in order to express

the considerations on intersections discussed above. By the way, it seems likely that

the general method works also with Milnor's K-theory replaced by the Witt ring of

quadratic forms of �elds of characteristic di�erent from 2.

Milnor's K-theory has a simple de�nition in terms of generators and relations.

Despite this fact, it is by no means a simple and well understood functor. Already

to de�ne the norm homomorphisms takes some e�ort. An even more serious and in

general an unsolved problem is for example the computation of the torsion in Mil-

nor's K-groups. These problems are related with Hilbert's Satz 90 (Merkurjev and

Suslin 1982, 1986) and are part of a broader picture (Beilinson conjectures, motivic co-

homology). In this context there appear other and more general higher versions of the

classical Chow groups than the groups A

p

(X ;n) based on Milnor's K-theory, namely

motivic cohomology (Bloch's higher Chow groups and Suslin's singular homology) and

also K-cohomology (Bloch 1986; Quillen 1973; Suslin and Voevodsky 1996). Milnor's

K-theory forms a central part of motivic cohomology and of Quillen's K-theory. In

fact, in the smooth case there are natural maps from the motivic cohomology of X

to the groups A

�

(X ;n) and from A

�

(X ;n) to the K-cohomology of X , both of which

are isomorphisms in some low degrees. On the other hand, motivic cohomology and

Quillen's K-theory give rise to cycle modules in our sense. (In the case of Quillen's

K-theory this is made more precise in Sections 1, 2 and 5). These functors are def-

initely necessary for a full understanding of Milnor's K-theory. For the purpose of

this paper however, it turned out to be enough to rely on elementary properties of

Milnor's K-theory.

The paper may be roughly divided in four parts. In Sections 1{2 the notion

of cycle modules is de�ned. Here we have lent some weight to a discussion of the

axioms. In Sections 3{5 the cycle complexes, the Chow groups and their basic func-

torial behavior are established; Section 6 is a side remark concerning the acyclicity

of Gersten-type resolutions. Sections 7{8 treat the spectral sequences. Sections 9{14

are concerned with intersection theory.

I am indebted to Inge Meier for typesetting a �rst version of this paper.
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1. Cycle Premodules

Cycle premodules are roughly said functors on �elds which have transfer, are modules

over Milnor's K-theory, are equipped with residue maps for discrete valuations and

satisfy the \usual rules". The de�nition is quite formal. It forms the local dimension 1

part of the notion of cycle modules. A major di�erence to cycle modules is that cycle

premodules do not have to obey laws involving an in�nite number of valuations like

the sum formula for P

1

.

Cycle premodules are de�ned by a list of data and rules. These are just usual

properties, quite familiar to standard examples. Equivalently, one may de�ne cycle

premodules as the additive functors on a certain category which has an explicit de-

scription in terms of Milnor's K-theory and valuations (see Remark 1.10). This point

of view is perhaps more satisfying. It tells that our list of data and rules is in a sense

a complete list. However, it would take some e�ort to establish the composition rule

in the category and we omit therefore a detailed discussion. Moreover, in order to

establish certain functors as cycle premodules, it is more convenient to refer to the

explicit lists of properties.

The viewpoint of the four basic maps mentioned in the introduction would at

�rst lead to functors F ! M(F ), such that each M(F ) is a module over the tensor

algebra TF

�

. However, the existence of norm maps and the homotopy property leads

one to pass to modules over Milnor's K-ring (see Remark 2.7).

We �rst recall basic facts from Milnor's K-theory. Let F be a �eld. By de�nition

Milnor's K-ring (Milnor 1970) of F is

}

K

�

F = TF

�

=J

where F

�

is the multiplicative group of F , TF

�

is the tensor algebra of F

�

as abelian

group and J is the two-sided ideal of TF

�

generated by the set

f a
 b j a; b 2 F

�

; a+ b = 1 g.

The standard grading on TF

�

induces a grading

K

�

F =

a

n�0

K

n

F .

K

n

F is the n-th Milnor's K-group of F . By de�nition K

0

F = Z and K

1

F = F

�

.

The elements of K

n

F represented by tensors a

1


 � � � 
 a

n

, a

i

2 F

�

, are called

symbols and denoted by fa

1

; : : : ; a

n

g. The group law in K

n

F is written additively,

e.g., fabg = fag+ fbg. There are the rules fa;�ag = 0 and fa; bg+ fb; ag = 0, see

(Milnor 1970). In particular, K

�

F is an anti-commutative ring with respect to the

natural Z=2-grading.

For a homomorphism of �elds ': F ! E there is the ring homomorphism

'

�

: K

�

F ! K

�

E,

'

�

(fa

1

; : : : ; a

n

g) = f'(a

1

); : : : ; '(a

n

)g.

}

In the literature one often uses the notation K

M

�

F for Milnor's K-ring, while K

�

F stands for

Quillen's K-ring.
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If ' is �nite, there is the norm homomorphism

'

�

: K

�

E ! K

�

F:

'

�

preserves the Z-grading. Its component Z! Z in degree 0 is multiplication with

deg' = [E

:

F ]. In degree 1 it is the usual norm map N

'

: E

�

! F

�

for the �nite �eld

extensions. '

�

has been de�ned by Bass and Tate (1972) with respect to a choice of

generators of E over F ; it is in fact independent of such a choice (Kato 1980). For a

characterization of '

�

see the remark after Theorem 1.4.

For a valuation v: F

�

! Zwe denote by O

v

, m

v

, �(v) its ring, maximal ideal and

residue class �eld, respectively. For nontrivial v there is the residue homomorphism

@

v

: K

�

F ! K

�

�(v), see (Milnor 1970). @

v

is of degree �1. It has the characterizing

properties

@

v

(f�; u

1

; : : : ; u

n

g) = f�u

1

; : : : ; �u

n

g,

@

v

(fu

1

; : : : ; u

n

g) = 0

for a prime � of v and for v-units u

i

with residue classes �u

i

2 �(v)

�

. De�ne

s

�

v

: K

�

F ! K

�

�(v),

s

�

v

(x) = @

v

(f��g � x).

s

�

v

is a ring homomorphism and is characterized by

s

�

v

(fu

1

; : : : ; u

n

g) = f�u

1

; : : : ; �u

n

g,

s

�

v

(f�; u

1

; : : : ; u

n

g) = 0.

Rules between the maps '

�

, '

�

, @

v

and the multiplicative structure of K

�

are com-

prised below in Theorem 1.4.

Let B be a scheme over a �eld k (recall our conventions). In the following we

mean by a �eld over B a �eld F together with a morphism SpecF ! B such that F

is �nitely generated over k. By a valuation over B we mean a discrete valuation v

of rank 1 together with a morphism SpecO

v

! B such that v is of geometric type

over k. The latter means that O

v

is the localization of an integral domain of �nite

type over k in a regular point of codimension 1. Alternatively, valuations of geometric

type may be characterized by: k � O

v

, the quotient �eld F and the residue class �eld

�(v) are �nitely generated over k and tr:deg(F jk) = tr:deg(�(v)jk) + 1.

This geometric setting is convenient for our later purposes. We impose its re-

strictive conditions from the beginning in order to keep things straight. For some

purposes one may consider also arbitrary �elds and valuations (discrete, of rank 1

and eventually not equicharacteristic) over an arbitrary scheme B.

In the following, the letters ',  stand for homomorphisms of �elds over B and

all maps between various M(F ), M(E), : : : are understood as homomorphisms of

graded abelian groups.

(1.1) Definition. Let F(B) be the class of �elds over B. A cycle premodule M

consists of an object function M : F(B) ! A to the class of abelian groups together

with a Z=2-gradingM =M

0

�M

1

or a Z-gradingM =

`

n

M

n

and with the following

data D1{D4 and rules R1a{R3e.

Documenta Mathematica 1 (1996) 319{393



Chow Groups with Coefficients 329

D1: For each ': F ! E there is '

�

: M(F )!M(E) of degree 0.

D2: For each �nite ': F ! E there is '

�

: M(E)!M(F ) of degree 0.

D3: For each F the group M(F ) is equipped with a left K

�

F -module structure

denoted by x � � for x 2 K

�

F and � 2 M(F ). The product respects the

gradings: K

n

F �M

m

(F ) �M

n+m

(F ).

D4: For a valuation v on F there is @

v

: M(F )!M

�

�(v)

�

of degree �1.

For a prime � of v on F we put

s

�

v

: M(F )!M

�

�(v)

�

,

s

�

v

(�) = @

v

(f��g � �).

R1a: For ': F ! E,  : E ! L one has ( � ')

�

=  

�

� '

�

.

R1b: For �nite ': F ! E,  : E ! L one has ( � ')

�

= '

�

�  

�

.

R1c: Let ': F ! E,  : F ! L with ' �nite. Put R = L 


F

E. For p 2 SpecR

let '

p

: L ! R=p,  

p

: E ! R=p be the natural maps. Moreover let l

p

be the

length of the localized ring R

(p)

. Then

 

�

� '

�

=

X

p

l

p

� ('

p

)

�

� ( 

p

)

�

.

R2: For ': F ! E, x 2 K

�

F , y 2 K

�

E, � 2 M(F ), � 2 M(E) one has (with '

�nite in the projection formulae R2b and R2c):

R2a: '

�

(x � �) = '

�

(x) � '

�

(�),

R2b: '

�

�

'

�

(x) � �

�

= x � '

�

(�),

R2c: '

�

�

y � '

�

(�)

�

= '

�

(y) � �.

R3a: Let ': E ! F and let v be a valuation on F which restricts to a nontrivial

valuation w on E with rami�cation index e. Let �': �(w)! �(v) be the induced

map. Then

@

v

� '

�

= e � �'

�

� @

w

.

R3b: Let ': F ! E be �nite and let v be a valuation on F . For the extensions w

of v to E let '

w

: �(v)! �(w) be the induced maps. Then

@

v

� '

�

=

X

w

'

�

w

� @

w

.

R3c: Let ': E ! F and let v be a valuation on F which is trivial on E. Then

@

v

� '

�

= 0.

R3d: Let ', v be as in R3c, let �': E ! �(v) be the induced map and let � be a

prime of v. Then

s

�

v

� '

�

= �'

�

.

R3e: For a valuation v on F , a v-unit u and � 2M(F ) one has

@

v

(fug � �) = �f�ug � @

v

(�).

�
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The maps '

�

, '

�

are called the restriction and corestriction homomorphisms, respec-

tively. We use the notations '

�

= r

EjF

, '

�

= c

EjF

if there is no ambiguity.

Note that R2c with y = 1 2 K

0

E gives

R2d: For �nite ': F ! E one has

'

�

� '

�

= (deg') � id.

Moreover R1c implies

R2e: For �nite totally inseparable ': F ! E one has

'

�

� '

�

= (deg') � id.

We consider M(F ) also as a right K

�

F -module via

� � x = (�1)

nm

x � �

for x 2 K

n

F and � 2M

m

(F ).

The maps @

v

are called the residue homomorphisms and the maps s

�

v

are called the

specialization homomorphisms. It is easy to check that R3e implies

R3f: For a valuation v on F , x 2 K

n

F , � 2M(F ) and a prime � of v one has

@

v

(x � �) = @

v

(x) � s

�

v

(�) + (�1)

n

s

�

v

(x) � @

v

(�) + f�1g � @

v

(x) � @

v

(�),

s

�

v

(x � �) = s

�

v

(x) � s

�

v

(�).

If �

0

is another prime and u is the v-unit with �

0

= �u, then

s

�

0

v

(x) = s

�

v

(x) � f�ug � @(x).

From this and the rule R3c it follows in particular that the rule R3d holds for every

prime �.

More remarks concerning these formulae and the residue homomorphisms in general

are given below.

All relevant cycle premodules M known to us are Z-graded with M

n

= 0 for

n < 0. Within the general theory however there is need only for a Z=2-grading and

we will understand this case if not mentioned otherwise.

A morphism f : B

0

! B de�nes a transformation F(B

0

)! F(B) and the restric-

tion of a cycle premodule M over B to F(B

0

) is a cycle premodule over B

0

. It will

be sometimes denoted by f

�

M but mostly by M as well. If B = SpecR is a�ne, we

call a cycle premodule over B a cycle premodule over R. If R is a �eld, we speak of

a constant cycle premodule. The reference to the base B will be often dropped.

(1.2) Definition. A pairing M �M

0

!M

00

of cycle premodules over B is given by

bilinear maps for each F in F(B)

M(F )�M

0

(F )!M

00

(F ),

(�; �) 7! � � �

which respect the gradings and which have the properties P1{P3 stated below.

A ring structure on a cycle premodule M is a pairing M�M !M which induces

on each M(F ) an associative and anti-commutative ring structure.
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P1: For x 2 K

�

F , � 2M(F ), � 2M

0

(F ) one has

P1a: (x � �) � � = x � (� � �),

P1b: (� � x) � � = � � (x � �).

P2: For ': F ! E, � 2M(F ), � 2M(E), � 2M

0

(F ), � 2M

0

(E) one has (with '

�nite in P2b, P2c)

P2a: '

�

(� � �) = '

�

(�) � '

�

(�),

P2b: '

�

�

'

�

(�) � �

�

= � � '

�

(�),

P2c: '

�

�

� � '

�

(�)

�

= '

�

(�) � �.

P3: For a valuation v on F , � 2M

n

(F ), � 2M

0

(F ) and a prime � of v one has

@

v

(� � �) = @

v

(�) � s

�

v

(�) + (�1)

n

s

�

v

(�) � @

v

(�) + f�1g � @

v

(�) � @

v

(�).

�

Note that P3 implies

s

�

v

(� � �) = s

�

v

(�) � s

�

v

(�).

(1.3) Definition. A homomorphism !: M !M

0

of cycle premodules over B of even

resp. odd type is given by homomorphisms

!

F

: M(F )!M

0

(F )

which are even resp. odd and which satisfy (with the signs corresponding to even resp.

odd type)

(1) '

�

� !

F

= !

E

� '

�

,

(2) '

�

� !

E

= !

F

� '

�

,

(3) fag � !

F

(�) = �!

F

(fag � �) ,

(4) @

v

� !

F

= �!

�(v)

� @

v

.

A unit a on B provides a simple example of a homomorphism of odd type, namely

fag: M !M given by fag

F

(�) = fa

F

g � � where a

F

2 F

�

is the restriction of a.

The cycle premodules over B together with the notion of homomorphism of

De�nition 1.3 form an (Z=2-graded) abelian category.

(1.4) Theorem. Milnor's K-theory K

�

together with the data

'

�

, '

�

, multiplication, @

v

is a Z-graded cycle premodule over any �eld k. With its multiplication, K

�

is a cycle

premodule with ring structure. �

This statement is a compact form of results in (Bass and Tate 1972; Kato 1980;

Milnor 1970); we omit a detailed deduction.

Documenta Mathematica 1 (1996) 319{393



332 Markus Rost

Theorem 1.4 holds also in the setting of arbitrary �elds and valuations (discrete

of rank 1 and with a restriction in R3b, see Remark 1.8 below).

Given the rings K

�

F for each F in F(Spec k), the maps '

�

, '

�

and @

v

are

uniquely determined by R1b, R1c, P2, P3 and

(1) '

�

(1) = 1,

(2) '

�

(fag) = f'(a)g ;

(3) '

�

(1) = deg' � 1,

(4) '

�

(fag) =

�

N

�

'(a)

�	

,

(5) @

v

(1) = 0,

(6) @

v

(fag) = v(a),

(7) @

v

�

fa; bg

�

=

�

(�1)

v(a)v(b)

b

v(a)

a

�v(b)

mod m

v

	

.

Here v denotes a normalized valuation: v(�) = 1.

This statement is trivial for the maps '

�

and @

v

; for the uniqueness of the maps '

�

see in particular (Bass and Tate 1972, p. 40).

The multiplication maps of the K

�

F -module structures onM(F ) for each F give

rise to a pairing of cycle premodules

K

�

�M !M .

Here the axioms P1, P2, and P3 follow from D3, R2, and R3f.

In order to establish a cycle premodule it is convenient to use the following

reduction.

(1.5) Lemma. For the validity of R3d it su�ces (under presence of the other rules

of De�nition 1.1) to require R3d for the case E = �(v).

Proof : By R1a the rule R3d holds for E if it holds for some extension E

0

of E with

E

0

� O

v

. Moreover by R3a we may replace O

v

by any unrami�ed extension O

0

v

with

the same residue class �eld (we don't want to pass to the henselization limO

0

v

, since

our �elds should be �nitely generated over k). Now by lifting a transcendence base of

�(v) over E to O

v

we may assume that �(v) is �nite over E. Moreover we may assume

that E is algebraically closed in any O

0

v

as above. Then �(v) is totally inseparable

over E. Suppose p = charF > 0. We argue by induction on [�(v)

:

E]. Let a 2 E

�

such that E

1

= E(

p

p

a) is contained in �(v) but not in any O

0

v

. Then the extension v

1

of v to F

1

= F (

p

p

a) has rami�cation index p, has the same residue class �eld and

[�(v

1

)

:

E

1

] < [�(v)

:

E]. Using R2c, R3b, R3c and R3e it is now easy to see that R3d

holds for the pair (v; E) if it holds for the pair (v

1

; E

1

) (use the fact that the norm of

a prime for v

1

is a prime for v). �

The rest of this section will not be used later within the general theory. However

the following remarks may be of at least heuristic interest and we will refer to them

partially in later side-remarks.

(1.6) Remark. There is the following point of view concerning R3f. See also (Bass

and Tate 1972; Milnor 1970, remark at the end of p. 323).

For a valuation v: F

�

! Z let

K

�

(v) = K

�

F

�

f1 +m

v

g �K

�

F .
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Consider the ring homomorphisms

~p: K

�

F ! K

�

(v),

i: K

�

�(v)! K

�

(v)

given by projection resp. by the formula

i(f�u

1

; : : : ; �u

n

g) = ~p(fu

1

; : : : ; u

n

g)

for v-units u

i

. There is an exact sequence

0 �! K

�

�(v)

i

�! K

�

(v)

@

�! K

�

�(v) �! 0

with @

v

= @ � ~p. Any prime � gives rise to a section y 7! ~p(f�g) � i(y) of @.

We put

M(v) = K

�

(v)


K

�

�(v)

M

�

�(v)

�

.

Then there is an exact sequence

0 �!M

�

�(v)

�

i

�!M(v)

@

�!M

�

�(v)

�

�! 0,

and the splittings above give for every � a decomposition of K

�

�(v)-modules

M(v) =M

�

�(v)

�

�M

�

�(v)

�

.

We de�ne

p: M(F )!M(v),

p(�) = 1
 s

�

v

(�) + ~p(f�g)
 @

v

(�).

Note that p is independent of the choice of �. One has @

v

= (@ 
 1) � p.

Now R3f may be reformulated by saying that p is a module homomorphism over

the ring homomorphism ~p. Similarly one may understand P3 via pairings

M(v)


K

�

(v)

M

0

(v)!M

00

(v).

(1.7) Remark. A particular consequence of R3e is the fact that the subgroup

f1 +m

v

g �M(F )

is killed whenever one passes to M

�

�(v)

�

. This seems to be a reasonable condition

from a geometric point of view. However note that the continuous Steinberg symbol

K

2

Q ! Z=2 corresponding to the 2-adic valuation on Q (Milnor 1971, x 11) maps

f5; 2g to the nontrivial element.

(1.8) Remark. If one wants to consider arbitrary valuations (discrete and of rank 1),

one has to require in R3b that the integral closure of O

v

in E is �nite over O

v

. This

condition holds for geometric and for complete valuation rings, see (Serre 1968). By

looking at completions and using R1c and R3a one may then derive for arbitrary

valuations a formula

@

v

� '

�

=

X

w

l

w

� '

�

w

� @

w

with certain integers l

w

. This remark applies in particular to Milnor's K-theory.
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(1.9) Lemma. In the situation of R3a let � be a prime of v, let � be a prime of w

and let u be the v-unit with �

e

= �u. Then

s

�

v

� '

�

= �'

�

� s

�

w

� f�ug � �'

�

� @

w

.

Proof : First note that the validity of the statement does not depend on the choices

of � and � . Moreover, if E � K � F is an intermediate �eld, we may restrict to

consider the extensions KjE and F jK.

If F jE is unrami�ed (e = 1), we may take � = � and the claim follows from R2a

and R3a.

After lifting a transcendence base of �(v) over �(w) to O

v

we may therefore

assume that F is �nite over E.

If e = [F

:

E] (case of total rami�cation, see Serre 1968, Chap. I, x 6), we may

take � = �N

'

(��); then �u = 1 and the claim follows from R2c and R3b. We have

now already covered totally inseparable extensions.

For a separable �nite extension F jE, let LjE be a Galois extension containing F ,

�x some extension of v to L and let D(LjF ) � D(LjE) � Gal(LjE) be the decompo-

sition groups.

Then F

0

= L

D(LjF )

is unrami�ed over F with the same residue class �eld; by R3a

we are reduced to consider the extension F

0

jE. The �eld E

0

= L

D(LjE)

is contained

in F

0

; since it is unrami�ed over E, we know the claim for E

0

jE and we are reduced

to consider F

0

jE

0

. Let K = L

U

where

U = f g 2 Gal(LjE

0

) j g acts trivially on �(v) g

is the inertia group. Then KjE

0

is unrami�ed and F

0

jK is totally rami�ed. �

(1.10) Remark. The rules and Lemma 1.9 show that every composite of maps be-

tween various M(F ) given by the data D1{D4 is a sum of composites of the form

 

�

� (x � ) � '

�

� @

v

r

� � � � � @

v

1

� (y � ).

This kind of normal form for composites can be made more precise as follows. There

is a category

e

F with objects the class of arbitrary �elds and with morphism groups

Hom(F;E) =

a

v

a

H

K

�

H

b




K

�

�(v)

K

�

(v).

Here v runs through the valuations on F with value groups Z

r

with lexicographical

order and with r � 0. The groups K

�

(v) are de�ned exactly as above for r = 1.

Moreover H runs through those composites of �(v) and E which are �nite over E

(and

b


 denotes the graded tensor product).

Restricting to the class F(B) and to geometric higher rank valuations one ob-

tains a category

e

F(B). The cycle premodules over B may be then characterized as

the additive functors on

e

F(B). In this alternative de�nition all the rules including

Lemma 1.9 are hidden in the composition law of

e

F .
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(1.11) Remark. | Galois cohomology as cycle premodule. Any torsion �etale sheaf

on B (with the torsion prime to chark) gives rise via Galois cohomology to a cycle

premodule over B. For simplicity we restrict here to the case B = Spec k with k a

�eld and to �nite Galois modules over k. For generalities of Galois cohomology we

refer to (Serre 1968, 1994; Shatz 1972).

Let

�

k be a separable closure of k, let r be prime to chark, let �

r

�

�

k

�

be the group

of r-th roots of unity and let D be a �nite continous Gal(

�

kjk)-module of exponent r.

For a �eld F over k let

�

F be a separable closure containing

�

k. Then �

r

and D are

Gal(

�

F jF )-modules via Gal(

�

F jF )! Gal(

�

kjk). Put

e

H

�

(F ;D) =

a

n�0

H

n

(F ;D 
 �


n

r

).

Here we use for a �nite Galois module C the notation

H

n

(F ;C) = H

n

(Gal(

�

F jF );C) = lim

�!

H

n

(Gal(LjF );C)

where L runs through the �nite Galois subextensions of

�

F jF such that Gal(

�

F jL) acts

trivially on C.

e

H

�

(F ;Z=r) is a ring and

e

H

�

(F ;D) is a module over

e

H

�

(F ;Z=r) via cup products.

The object function H

�

[D] on F(k) given by H

�

[D](F ) =

e

H

�

(F ;D) is in a

natural way a Z-graded cycle premodule over k. This statement is just a collection

of well-known properties of Galois cohomology. In the following we restrict ourselves

to a description of the data D1{D4. The rules follow from standard properties of the

cohomology of �nite groups and from standard rami�cation theory.

D1 and D2: For ': F ! E let �':

�

F !

�

E be some extension over

�

k and let

~': Gal(

�

EjE) ! Gal(

�

F jF ) be the induced map. De�ne '

�

as the usual restriction

homomorphism induced from ~'. For �nite ' de�ne '

�

as the usual transfer homo-

morphism induced from ~' times the degree of inseparability [E

:

E \ �'(

�

F )] (cf. Serre

1992).

D3: The K

�

F -module structure on

e

H

�

(F ;D) is given by cup products and the

norm residue homomorphism

h

F

: K

�

F=rK

�

F !

e

H

�

(F ;Z=r).

h

F

is the Z-graded ring homomorphism which in degree 1 is given by the Kummer

isomorphism F

�

=(F

�

)

r

! H

1

(F ;�

r

). For the rule h

F

(fag)

�

h

F

(f1�ag) = 0 see for

example (Tate 1976) or Remark 2.7.

D4: Let E be the completion of F with respect to v. Then there is a natural

exact sequence

1! I ! Gal(

�

EjE)! Gal(��j�)! 1

where I is the inertia group. Put D

n

= D 
 �


n

r

and consider the corresponding

Hochschild-Serre spectral sequences

E

p;q

2

= H

p

(�;H

q

(I ;D

n

)) =) H

p+q

(E;D

n

).
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The cohomology of the inertia group I is given by H

0

(I ;D

n

) = D

n

, H

1

(I ;D

n

) =

Hom(�

r

; D

n

) = D

n�1

and H

q

(I ;D

n

) = 0 for q � 2 (Serre 1968, Chap. IV). Hence

the spectral sequences give rise to homomorphisms

~

@

v

: H

n

(E;D

n

)! H

n�1

(�;D

n�1

).

Composing with H

n

(F ;D

n

)! H

n

(E;D

n

) de�nes the desired maps

}

@

v

: H

n

[D](F )! H

n�1

[D](�).

(1.12) Remark. | Quillen's K-theory as cycle premodule. We denote by K

0

�

F =

`

n

K

0

n

F Quillen's K-ring of a �eld F . Hereby we understand the de�nition K

0

n

F =

�

n+1

�

BQMod(F )

�

of (Quillen 1973) with the product as de�ned in (Grayson 1978).

(Here Mod(F ) is the category of �nite dimensional F -modules. For generalities of

Quillen's K-theory see also Grayson 1976; Srinivas 1991.)

The object function F ! K

0

�

F de�nes a Z-graded cycle premodule with ring

structure over any �eld k. Its data are given as follows.

D1 and D2: One takes the pull-back map �'

�

resp. the push-forward map �'

�

of

(Quillen 1973, x 7) where �': SpecE ! SpecF is the morphism corresponding to '.

D3: One uses the natural homomorphism !: K

�

F ! K

0

�

F from Milnor's to

Quillen'sK-theory. To de�ne !, one may refer toK

0

n

F = �

n

(BGL(F )

+

) and the com-

putations �

1

(BGL(F )

+

) = H

1

(GL(F );Z) = K

1

F , �

2

(BGL(F )

+

) = H

2

(E(F );Z) =

K

2

F (Matsumoto's theorem, see Milnor 1971). Another possibility is to de�ne directly

a homomorphism !

1

: F

�

! K

0

1

F and then to check the rule !

1

(fag) �!

1

(f1� ag) = 0

using the arguments of Remark 2.7.

D4: One uses the connecting map of the long exact localization sequence for O

v

(Quillen 1973, x 7).

The veri�cation of the rules is omitted. It is a lengthy but straightforward exercise

to deduce them from (Grayson 1978; Quillen 1973).

}

According to the conventions made for the cup product and the spectral sequence, one may

have di�erent signs in the product rules for the di�erentials. This a�ects rule R3e, so if necessary,

one should replace @

v

by an appropriate sign (depending alone on n).
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2. Cycle Modules

In this section we de�ne the notion of a cycle module and derive important properties:

the homotopy property for A

1

and the sum formula for proper curves. Moreover we

give a simpli�cation of the axioms for a constant cycle module over a perfect �eld.

The axioms of a cycle module are basic for all further considerations. Therefore we

have included discussions on various related properties to a much larger extent than

is actually needed in the following sections.

Throughout the section,M denotes a cycle premodule over some scheme B (recall

our conventions).

For a scheme X over B we write M(x) = M

�

�(x)

�

for x 2 X . The generic

point of an irreducible scheme X is denoted by � or �

X

. If X is normal, then for

x 2 X

(1)

the local ring of X at x is a valuation ring; let @

x

: M(�

X

) ! M(x) be the

corresponding residue homomorphism.

For x, y 2 X we de�ne

@

x

y

: M(x)!M(y)

as follows. Let Z = fxg. If y 62 Z

(1)

, then @

x

y

= 0. Otherwise let

~

Z ! Z be the

normalization and put

(2.1.0) @

x

y

=

X

zjy

c

�(z)j�(y)

� @

z

with z running through the �nitely many points of

~

Z lying over y.

(2.1) Definition. A cycle module M over B is a cycle premodule M over B which

satis�es the following conditions (FD) and (C).

(FD): Finite support of divisors. Let X be a normal scheme and � 2M(�

X

).

Then @

x

(�) = 0 for all but �nitely many x 2 X

(1)

.

(C): Closedness. Let X be integral and local of dimension 2. Then

0 =

X

x2X

(1)

@

x

x

0

� @

�

x

: M(�

X

)!M(x

0

)

where �

X

is the generic and x

0

is the closed point of X .

Many remarks and de�nitions of Section 1 are understood accordingly for cycle mod-

ules. For example a homomorphism of cycle modules is a homomorphism of the

underlying cycle premodules.

Of course (C) has sense only under presence of (FD) which guarantees �niteness in

the sum. More generally, note that if (FD) holds, then for anyX , x 2 X and � 2M(x)

one has @

x

y

(�) = 0 for all but �nitely many y 2 X .

If X is integral and (FD) holds for X , we put

d = (@

�

x

)

x2X

(1)

: M(�

X

) �!

a

x2X

(1)

M(x).
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In the following, F denotes a �eld over B and A

1

F

= SpecF [u] is the a�ne line

over F with function �eld F (u). Proofs of Proposition 2.2 and Theorem 2.3 are given

after Remark 2.6.

(2.2) Proposition. Let M be a cycle module over B. Then the following properties

(H) and (RC) hold for all �elds F over B.

(H): Homotopy property for A

1

. The sequence

0 �!M(F )

r

�!M

�

F (u)

�

d

�!

a

x2A

1

F

(0)

M(x) �! 0

is an exact complex (with r = r

F (u)jF

).

(RC): Reciprocity for curves. Let X be a proper curve over F . Then

M(�

X

)

d

�!

a

x2X

(0)

M(x)

c

�!M(F )

is a complex: c � d = 0 (with c =

P

c

�(x)jF

).

The properties (FD), (C), (H), (RC) are all what we need in further sections. Axiom

(FD) enables one to write down the di�erentials d of the complexes C

�

(X ;M), axiom

(C) guarantees that d � d = 0, property (H) yields the homotopy invariance of the

Chow groups A

�

(X ;M) and �nally property (RC) is needed to establish proper push-

forward. For the material from Section 3 on the reader may take (H) and (RC) just

as additional axioms of cycle modules and skip without much harm everything after

Remark 2.6 below.

For another example of the fundamental role of axioms like (RC) in formal de�-

nitions of functors on �elds see also (Somekawa 1990).

For integral X we put

A

0

(X ;M) = kerd =

\

x2X

(1)

ker@

�

x

� M(�

X

).

One may think of A

0

(X ;M) as the group of \unrami�ed M -valued functions" on X .

(2.3) Theorem. Let M be a cycle premodule over a perfect �eld k. Then M is a

cycle module over k if and only if the following properties (FDL) and (WR) hold for

all �elds F over k.

(FDL): Finite support of divisors on the line. Let � 2 M

�

F (u)

�

. Then

@

v

(�) = 0 for all but �nitely many valuations v of F (u) over F .

(WR): Weak reciprocity. Let @

1

be the residue map for the valuation of

F (u)jF at in�nity. Then

@

1

�

A

0

(A

1

F

;M)

�

= 0.

One implication here is obvious from Proposition 2.2, since trivially (FD) ) (FDL)

and (RC) ) (WR). Conditions (FDL) and (WR) are comparatively weak: they deal

only with the a�ne line and involve no corestriction maps. For nonconstant cycle

modules (i.e., B is not the spectrum of a �eld) we don't know any similar simpli�cation

of the axioms (FD) and (C).
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Further properties of cycle modules are

(Co): Continuity. Let X be smooth and local and let Y ! X be the blow up

in the unique closed point x

0

. Then

A

0

(X ;M) � A

0

(Y ;M).

In other words, if v is the valuation corresponding to the exceptional �ber

over x

0

, then

@

v

�

A

0

(X ;M)

�

= 0.

(E): Evaluation. In the situation of (Co) there is a unique homomorphism

ev: A

0

(X ;M)!M(x

0

)

(\evaluation at x

0

") such that

r

�(v)j�(x

0

)

� ev = s

�

v

jA

0

(X ;M)

for any prime � of v.

The validity of these two properties will follow from the construction of the pull-back

maps f

q

: A

0

(X ;M) ! A

0

(Z;M) for morphisms f : Z ! X in Section 12. Namely,

the inclusion of (Co) is given by f

q

with f : Y ! X the blow up. Moreover in (E) one

has ev = f

q

with f : Spec�(x

0

)! X the inclusion. See also Remark 2.8 below.

(2.4) Remark. A basic example of a cycle module over any �eld k is Milnor's K-

ring K

�

. Axiom (FD) follows as for classical divisors. For (H) see (Milnor 1970). The

validity of (RC) for X = P

1

is intrinsic to the de�nition of the norm homomorphisms

in (Bass and Tate 1972). Kato (1986) has used (RC) to prove (C) by passing to

completions.

(2.5) Remark. The cycle premodules H

�

[D] and K

0

�

of Remarks 1.11 and 1.12 are

cycle modules. Axioms (FD) and (C) are contained in (Bloch and Ogus 1974) and in

(Quillen 1973, x 7, Sect. 5), respectively.

For H

�

[D] one may use here alternatively Theorem 2.3 and Tsen's Theorem as

follows (see also Serre 1992). (FDL) follows from the fact that every �nite exten-

sion of F (u) is rami�ed only in �nitely many places of F (u)jF . One has trivially

(H) ) (WR). If F is separably closed, then (H) follows from Tsen's Theorem (i.e.,

H

q

(F (u);�

r

) = 0 for q � 2; see for example Shatz 1972) and the Kummer isomor-

phism K

1

F (u)=r = H

1

(F (u);�

r

). To deduce (H) for arbitrary F one applies the

Hochschild-Serre spectral sequence for the extension

�

F (u)jF (u).

(2.6) Remark. Probably the considerations of this section (and of the whole paper)

may be developed in characteristic 6= 2 also for a version of cycle modules which

are modules over the Witt ring of quadratic forms instead over Milnor's K-ring. A

transferring would be not at all formal because the residue maps for the Witt ring

depend on choices of parameters.
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In the following proofs of Proposition 2.2 and Theorem 2.3 we use the notations

A

1

= SpecF [u], A

2

= SpecF [s; t] and Z = A

2

(<s;t>)

, the localization of A

2

at 0.

Moreover y, z 2 Z

(1)

� A

2(1)

denote the points with parameters s, t, respectively.

We proceed in several steps.

Step 1 : (FD) + (C) ) (WR). Given � 2 A

0

(A

1

;M) put

� = ftg � �(t=s) 2M

�

F (s; t)

�

or, more precisely, � = ftg � '

�

(�) with ': F (u) ! F (s; t), '(u) = t=s. Using R2

and R3 one �nds

@

x

(�) = 0 for x 2 Z

(1)

n fy; zg,

@

y

(�) = �ftg � r

�(y)jF

�

@

1

(�)

�

,

@

z

(�) = @

z

�

'

�

(fug � �) + fsg � '

�

(�)

�

= r

�(z)jF

� @

0

(fug � �)� fsg � r

�(z)jF

�

@

0

(�)

�

.

(C) and @

0

(�) = 0 give

0 =

X

x2Z

(1)

@

x

0

� @

x

(�) = @

y

0

� @

y

(�) = �@

1

(�). �

Step 2 : (FDL) + (WR) ) (H). Note that d � r = 0 by R3c. Moreover any special-

ization map for an F -rational point on P

1

is a left inverse to r by R3d.

Surjectivity of d: For a closed point x 2 A

1

let

�

x

: M(x)!M

�

F (u)

�

,

�

x

(�) = c

�(x)(u)jF (u)

�

fu� u(x)g � r

�(x)(u)j�(x)

(�)

�

and let

� =

X

x

�

x

:

a

x2A

1

(0)

M(x) �!M

�

F (u)

�

.

Then d �� = id by R3b{R3e.

Exactness at M(F (u)): Given � 2 A

0

(A

1

;M), put

� = ftg �

�

�(u+ t)� �(u)

�

2M(F (u)(t)).

More precisely: Let E = F (u), let i; ': E ! E(t) be the homomorphisms over F with

i(u) = u, '(u) = u+ t and put � = ftg �

�

'

�

(�)� i

�

(�)

�

.

We compute @

w

(�) for the valuations w of E(t) overE. One �nds easily @

w

(�) = 0

for w 6= 0,1. But also @

0

(�) = 0 by R3d, since the valuation at t = 0 restricts trivially

under i and ' and since the induced homomorphisms E ! �(0) coincide. Hence (WR)

tells @

1

(�) = 0. On the other hand one has

@

1

�

ftg � i

�

(�)

�

= ��,

@

1

�

ftg � '

�

(�)

�

= @

1

�

(ft=(u+ t)g+ fu+ tg) � '

�

(�)

�

= �ft=(u+ t)g � @

1

�

'

�

(�)

�

+ @

1

�

'

�

(fug � �)

�

= 0+ r

EjF

�

@

1

(fug � �)

�

by making particular use of R3d and R3e (note that t=(u + t) has residue class 1 2

�(1)). So

� = r

EjF

�

@

1

(fug � �)

�

2 r

EjF

�

M(F ))

�

. �
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Step 3 : (FD) + (H) ) (RC). There is a �nite morphism X ! P

1

over F . Using

this and R3b one reduces to the case X = P

1

. Then it su�ces to check

X

u2P

1

(0)

c

�(u)jF

� @

u

��

x

= 0

for �

x

as in Step 2. This equation follows from the computation d �� = id and

@

1

��

x

= �c

�(x)jF

,

a consequence of R3b and R3d. �

The proof of Proposition 2.2 is now complete. We next consider the nontrivial

implication of Theorem 2.3. We will refer at some places to Sections 3 and 4, but

only in a mild way. Note that (H) is available by Step 2.

Step 4 : (FDL) ) (FD) for X = A

n

. Let p

i

: A

n

! A

n�1

be the n standard pro-

jections. Then

A

n

(1)

�

[

i

p

�1

i

(�)

where � is the generic point of A

n�1

. (FD) follows from (FDL) applied to F = �(�). �

Step 5 : (FD) for X = A

2

+ (WR) ) (C) for X = Z. As in Step 2 we have

M(�

Z

) =M

�

F (s)

�

+

X

x2

�

A

1

F (s)

�

(0)

�

x

�

M(x)

�

with

�

x

(�) = c

�(x)(t)jF (s;t)

�

ft� t(x)g � r

�(x)(t)j�(x)

(�)

�

.

(C) holds obviously on M

�

F (s)

�

. Let us verify (C) on the image of �

x

for �xed x.

By d �� = id in Step 2 we are reduced to check

@

y

0

� @

y

��

x

= �@

x

0

.

Let v run through the valuations on �(x)(t) which restrict on F [s; t] to the valuation

with parameter s (and corresponding to y). Let �v be the restriction of v to �(x) and let

c(�v) 2 fxg be the center of �v. If c(�v) 6= 0, then t(x) is a �v-unit with residue t(c(�v)).

Suppose 0 2 fxg and let R

x

be the residue class ring of x localized at 0. The

valuations v with c(�v) = 0 restrict in a one-to-one manner to the valuations w of �(x)

with R

x

� O

w

. For these one has �v(t(x)) > 0 (since t(x) is nilpotent in R

x

=sR

x

).
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In the following, u runs through fxg \ fyg n f0g. One �nds

@

y

��

x

(�) =

X

v

c

�(v)j�(y)

� @

v

�

ft� t(x)g � r

�(x)(t)j�(x)

(�)

�

= �

X

v;c(�v)6=0

c

�(v)j�(y)

�

ft� t

�

c(�v)

�

g � r

�(v)j�(�v)

� @

�v

(�)

�

� ft(y)g �

X

v;c(�v)=0

c

�(v)j�(y)

� r

�(v)j�(�v)

� @

�v

(�)

= �

X

u

c

�(u)(t)j�(y)

�

ft� t(u)g � r

�(u)(t)j�(u)

� @

x

u

(�)

�

� ft(y)g � r

�(y)jF

� @

x

0

(�).

Since t(u) 6= 0 the sum vanishes under @

y

0

and we are done by R3d. �

Step 6 : Reduction of (C) to the case �(x

0

) � O

X

. Let X be as in (C) and

write X = SpecR. Lift a transcendence base of �(x

0

) over k to elements t

i

2 R

and put K = k(t

1

; : : : ; t

n

) � R. Then �(x

0

) is a �nite extension of K. Since k is

perfect, we may take here a transcendence base such that �(x

0

) is separable over K.

Let X

0

= SpecR 


K

�(x

0

), let u 2 X

0

be the canonical lift of x

0

and let X

00

be the

localization of X

0

in u. We assume that (FD) holds for X and X

00

. Consider the pull-

back along the 
at map X

00

! X , see Section 3. The induced map M(x

0

) ! M(u)

is injective, since x

0

and u have the same residue class �elds. An application of R3a

and R3b (see Proposition 4.6.2) shows that (C) holds for X if (C) holds for X

00

. �

We know now in particular that (C) holds for every localization of A

2

in some

closed point.

Step 7 : Proof of (FD). There exists a generically �nite separable rational map

X ! A

n

k

. All but �nitely many x 2 X

(1)

correspond to points of A

n(1)

. The argument

of Step 4 yields a reduction to a plane curve X over some �eld K. So consider the case

X = fxg for some x 2 A

2

(1)

. We may assume that X maps dominantly to SpecF [s]

so that �

x

as in Step 5 is de�ned. Put � = �

x

(�). We have @

x

(�) = �. Moreover

@

u

(�) 6= 0 only for �nitely many u (Step 4). The closure of u 6= x meets X only

in �nitely many points. Now, since (C) holds for every localization of A

2

, we have

@

�

w

(�) = 0 for all but �nitely many w 2 X

(1)

� A

2

(0)

. �

Step 8 : Proof of (C). By Step 6 we may assume that F = �(x

0

) is contained in O

X

.

Choose a closed (2-dimensional) subscheme Y � P

n

F

such that X is the localization

of Y in a (F -rational) point y. We consider the generic projection from P

n

F

to P

2

F

.

More precisely: let T be the Grassmannian of 3-codimensional linear subspaces of P

n

F

,

let E = F (T ), let H � P

n

E

be the tautological subspace and let �: P

n

E

nH ! P

2

E

be

a linear projection. Then H \ Y

E

= ? and � restricts to a proper map p: Y

E

! P

2

E

.

Let D = p

�1

�

p(y)

�

. Then D is the intersection of Y

E

with a generic 2-codimensional

linear subspace passing through y. Hence

D n fyg � Y

E

n Y .
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In particular D \ Y

(0)

= fyg. Now we consider 
at pull-back along the base change

q: Y

E

! Y followed by the push-forward along p, see Section 3. One �nds (see (1)

and (2) of Proposition 4.6) for � 2M(�

X

):

r

EjF

�

X

x2X

(1)

@

x

x

0

� @

�

x

(�)

�

=

X

u2U

(1)

@

u

p(u)

� @

u

�

p

�

� q

�

(�)

�

where U is the localization of P

2

E

in p(y). The right hand side vanishes by Step 5

and r

EjF

is injective since EjF is a rational extension. �

We conclude with some more considerations concerning the axioms of cycle mod-

ules. These have been included here more for illustration than for application. In

order not to be too tiring, we have taken here the freedom to be a bit vague about

our actual assumptions.

(2.7) Remark. In the datum D3 of cycle premodules there is hidden a strong rule,

namely the relation fa; 1�ag = 0 of Milnor'sK-theory. The main justi�cation within

this paper for using Milnor's K-theory is that it works well. Asking naively, one may

try to weaken D3 by requiring only the existence of bilinear pairings

K

1

F �M(F )!M(F );

�

fag; �

�

7! fag � �

and restricting to x 2 K

1

E, y 2 K

1

F in R2. Then M(F ) would be a TF

�

-module.

However, if one wants to develop a geometric theory, one is in the end led to

pass to modules over Milnor's K-theory. A reasoning for this is given by the following

little game. It refers in a mild way to the rules of cycle premodules and to a part of

the homotopy property (H).

Let � 2M(F ), let L be an over�eld of F , let u 2 L n f0; 1g and consider

�(u) = fug �

�

f1� ug � r

LjF

(�)

�

2M(L).

Our aim is to conclude �(u) = 0 for the case L = F . Assuming reasonable special-

ization maps, this follows from the generic case L = F (u) with u a variable. To treat

this case, our strategy is to argue that �(u) is unrami�ed on the whole a�ne line.

Then, by homotopy invariance, �(u) is constant. An extra argument �nally shows

�(u) = 0.

To be speci�c �rst a little calculation (which provides by the way already the

divisibility of �(u) referring only to the existence of norm maps and the projection

formula). Let L

0

= F (u

0

) be the function �eld in the variable u

0

and let L = F (u) � L

0

with u = u

0n

. Then 1� u = N

L

0

jL

(1� u

0

) and the projection formulae R2b and R2c

give

�(u) = fug �

�

fN

L

0

jL

(1� u

0

)g � r

LjF

(�)

�

= fug � c

L

0

jL

�

f1� u

0

g � r

L

0

jF

(�)

�

= c

L

0

jL

�

fu

0n

g �

�

f1� u

0

g � r

L

0

jF

(�)

�

�

= n � c

L

0

jL

�

�(u

0

)

�

.
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We want to conclude that @

v

�

�(u)

�

= 0 for all �nite places v of LjF . This is

quite natural to assume as long as u and 1 � u are v-units. For the place at u = 0

(and similarly at u = 1) one may argue as follows.

Let � = @

0

�

�(u)

�

2 M(F ) be the residue for the valuation of LjF at u = 0.

Similarly let �

0

= @

0

�

�(u

0

)

�

, now with respect to the valuation of L

0

jF at u

0

= 0. A

change of variables u ! u

0

shows � = �

0

. But the above computation and rule R3b

yields � = n � �

0

. Taking n = 2 gives � = 0.

Now (H) tells that �(u) comes from M(F ), that is �(u) = r

LjF

(�) for some

� 2 M(F ). Naturality with respect to the homomorphisms L ! L over F with

u! �u and u! u

2

gives

�(u) = �(�u) = �(u

2

).

On the other hand one has

�(u

2

) = 2�(u) + 2�(�u),

just by linearity. One concludes 3�(u) = 0. But then 3�(u

0

) = 0 as well and the above

computation for n = 3 tells �(u) = 0.

(2.8) Remark. As already mentioned, the properties (Co) and (E) of cycle modules

follow from the material in Section 12. The considerations there use the deformation

to the normal cone and homotopy inverses. But things simplify considerably if one

may pass to the limits X = Spec k[[t

1

; : : : ; t

n

]]. In the following we consider the

case X = Spec k[[s; t]], tacitly assuming that our cycle modules are de�ned on an

appropriate category of schemes. In fact we could have taken also more general

schemes as basis for our notions, say excellent schemes over a perfect �eld (however

one should then be careful with Theorem 2.3).

(C) ) (Co): Let E = F (u) and T = SpecE[[s; t]]. Given � 2 A

0

(X ;M) put

� = ft� usg � r

E((s;t))jF ((s;t))

(�) 2M(�

T

).

One may then calculate

X

z2T

(1)

@

z

0

� @

z

(�) = @

v

(�).

Hence @

v

(�) = 0 by (C).

(C) ) (E): By the last argument we may use (Co). It follows that for � 2 A

0

(X ;M)

the value of s

�

v

(�) is independent of the choice of the prime �. Since �(v) = F (t=s) is

rational, one is by (H) reduced to check

@

w

� s

�

v

(�) = 0

for all valuations w of F (t=s) over F except the one with w(t=s) = �1. Every w

de�nes a point in the exceptional �ber of the blow up Y ! X . One calculates for

the w in question

0 =

X

y2Y

(1)

@

y

w

� @

y

(fsg � �) = @

w

� @

v

(fsg � �).

Finally note s

�

v

(�) = @

v

(fsg � �) for the choice � = �s.
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(2.9) Remark. In the case of a constant cycle premodule one may derive (C) from

(Co) under presence of (FD). This tells that axiom (C) appears naturally in our

framework if we require the existence of pull-back maps f

q

. As in Remark 2.8 we

consider here the case X = Spec k[[s; t]].

(Co) ) (C): To derive (C) from (Co) for constant M and for X = Spec k[[s; t]]

one argues �rst similarly as for Step 5 above as follows. Let y be the point with

parameter s and de�ne for x 2 X

(1)

n fyg:

�

x

: M(x)!M(�

X

),

�

x

(�) = r

F ((s;t))jF ((s))(t)

� c

�(x)(t)jF ((s))(t)

�

ft� t(x)g � r

�(x)(t)j�(x)

(�)

�

.

As in Step 5 one has @

x

� �

x

= id and @

z

� �

x

= 0 for z 6= x, y; moreover one �nds

@

y

��

x

= �ftg � r

F ((t))jF

� @

x

0

. This shows that (C) holds on the image of the �

x

.

In order to verify (C) for ~� 2M(�

X

) we may arrange things such that @

y

(~�) = 0.

We are reduced to check (C) for

� = ~��

X

x 6=y

�

x

� @

x

(~�).

Using the above computations one �nds

@

x

(�) =

�

0 for x 6= y,

ftg � r

�(y)jF

(�) for x = y

for some � 2M(F ).

We must show � = 0. Put E = F (r) and|written in a somewhat sloppy form|

� = �(rs; rt) � �(s; t)� fs; rg � � 2M

�

E((s; t))

�

.

One computes � 2 A

0

(SpecE[[s; t]];M) and

@

v

(�) = �frg � � 2M

�

E(s=t)

�

.

(Co) gives frg � � = 0 in M

�

F (r; s=t)

�

. Applying appropriate specialization and

residue maps shows � = 0.
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3. The Four Basic Maps

The purpose of this section is to introduce the cycle complexes and all the types of

operations on them needed further on (except the cross products to be de�ned in

Section 14).

LetM be a cycle module over X , let N be a cycle module over Y and let U � X ,

V � Y be subsets. For a homomorphism

�:

a

x2U

M(x) �!

a

y2V

N(y)

we write �

x

y

: M(x)! N(y) for the components of �.

(3.1) Change of coefficients. Let !: M ! N be a homomorphism of cycle mod-

ules over X and let U � X be a subset. We put

!

#

:

a

x2U

M(x) �!

a

x2U

N(x)

where (!

#

)

x

x

= !

�(x)

and (!

#

)

x

y

= 0 for x 6= y.

(3.2) Cycle complexes. For a cycle module M over X and an integer p let

C

p

(X ;M) =

a

x2X

(p)

M(x).

We de�ne

d = d

X

: C

p

(X ;M)! C

p�1

(X ;M)

by d

x

y

= @

x

y

with @

x

y

as in (2.1.0). This de�nition has sense by axiom (FD).

(3.3) Lemma. d

X

� d

X

= 0.

Proof : One has to check (d � d)

x

z

= 0 for x 2 X

(p+1)

, z 2 X

(p�1)

. This is trivial

if z 62 fxg. Otherwise let Y be the localization of fxg in z. Since our schemes are

catenary, we have X

(p)

\ Y = Y

(1)

and dimY = 2. Now apply axiom (C) to Y . �

The complex C

�

(X ;M) = (C

p

(X ;M); d

X

)

p�0

is called the complex of cycles

on X with coe�cients in M .

When developing a theory of cycles, �rst natural questions are the following.

Given a proper morphism f : X ! Y , what is the push-forward map f

�

on cycles?

Or, given a 
at morphism g: Y ! X , what is the pull-back map g

�

on cycles? In

fact, we will de�ne such maps. However these questions are not our guiding point of

view. We rather �x schemes X , Y and numbers p, q and then ask: what is the class

of maps

C

p

(X ;M)! C

q

(Y ;M)
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which we should consider? Our answer is then motivated by what we want to do with

the complexes, namely developing intersection theory etc. This leads to the \four

basic maps" as de�ned in (3.4){(3.7).

The de�nitions of the basic maps \multiplication withK

1

" and \boundary maps"

in (3.6) and (3.7) are easy to understand. However our way of introducing push-

forward and pull-back maps as in (3.4) and (3.5) deserves some words of comment. It

turns out that these maps (denoted by f

�

and [A; g; s]) are sums of compositions of

maps of simpler type, namely push-forward maps f

�

for proper morphisms f , pull-back

maps g

�

for 
at morphisms g and the projections i

�

and inclusions j

�

corresponding

to closed (or open) subvarietes (see 3.10). This fact (which we will not prove) seems

to be however only of heuristic interest. In fact it would be a nuisance if we had to

consider at each step such a reduction of the language expressing the maps between

the cycle complexes.

(3.4) Push-forward. For a morphism f : X ! Y of schemes of �nite type over a

�eld we de�ne

f

�

: C

p

(X ;M)! C

p

(Y ;M)

as follows. If y = f(x) and if �(x) is �nite over �(y), then (f

�

)

x

y

= c

�(x)j�(y)

. Otherwise

(f

�

)

x

y

= 0.

(3.5) Pull-back. Our main interest is to de�ne the particular types of pull-back

maps as considered in (3.5.5) below. In our general de�nition in (3.5.3) we de�ne

pull-back maps C

p

(X ;M) ! C

q

(Y ;M) associated to any morphism g: Y ! X of

relative dimension � q � p. Moreover we use coherent sheaves A on Y as modi�ers

of the arising multiplicities. This construction gives great technical 
exibility and is

useful in Section 4.

(1) For a morphism g: Y ! X let

s(g) = max

�

dim(y; Y )� dim

�

g(y); X

�

j y 2 Y

	

.

Moreover let Y

x

= Y �

X

Spec �(x) for x 2 X .

Note that if x 2 X

(p)

, y 2 Y

(q)

, g(y) = x and s(g) � q � p, then necessarily

y 2 Y

(0)

x

.

(2) Let g: Y ! X be a morphism and let A be a coherent sheaf on Y . For x 2 X

and y 2 Y

(0)

x

we de�ne an integer

[A; g]

x

y

2 Z

as follows. The localization Y

x;(y)

of Y

x

in y is the spectrum of an artinian ring R

with only residue class �eld �(y). Let

~

A be the pull-back of A via Y

x;(y)

! Y

x

! Y

and de�ne [A; g]

x

y

= l

R

(

~

A) as the length of

~

A considered as R-module (for the notion

of length and further properties we refer to Fulton 1984, App. A).
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(3) Fix s 2 Z. Let g: Y ! X be a morphism with s(g) � s and let A be a coherent

sheaf on Y . We de�ne homomorphisms

[A; g; s]: C

p

(X ;M)! C

p+s

(Y ;M)

by

[A; g; s]

x

y

=

�

[A; g]

x

y

� r

�(y)j�(x)

if g(y) = x,

0 otherwise.

Here �(x) is considered as a sub�eld of �(y) via g.

(4) Let F be a �eld, let g: Y ! SpecF be a morphism and let

0! A

0

! A! A

00

! 0

be an exact sequence of coherent sheaves over Y . Then

[A

0

; g; s]� [A; g; s] + [A

00

; g; s] = 0.

This follows from the additivity of length with respect to short exact sequences.

(5) For some particularly interesting cases we use the following notations. Let F ! E

be a homomorphism of �elds, let X be of �nite type over F and let g: Y = X �

SpecF

SpecE ! X be the base change. Then we put g

�

= [O

Y

; g; 0].

A morphism g: Y ! X of schemes of �nite type over a �eld is said to have

(constant) relative dimension s if all �bers are either empty or equidimensional of

dimension s. In this case we write dim(g) = s and put

g

�

= [O

Y

; g; dim(g)].

Particular cases are here open and closed immersions (with s = 0).

(3.6) Multiplication with units. For global units a

1

, : : : , a

n

2 O

�

X

we de�ne

homomorphisms

fa

1

; : : : ; a

n

g: C

p

(X ;M)! C

p

(X ;M)

by

fa

1

; : : : ; a

n

g

x

y

(�) =

�

fa

1

(x); : : : ; a

n

(x)g � � for x = y,

0 otherwise.

This de�nition turns C

p

(X ;M) into a module over the tensor algebra of O

�

X

. If X is

de�ned over some �eld F , then C

p

(X ;M) becomes via F

�

� O

�

X

a module over K

�

F .

(3.7) Boundary maps. Let X be of �nite type over a �eld, let i: Y ! X be a closed

immersion and let j: U = X n Y ! X be the inclusion of the open complement. We

will refer to (Y; i;X; j; U) as a boundary triple and de�ne

@ = @

U

Y

: C

p

(U ;M)! C

p�1

(Y ;M)

by taking for @

x

y

the de�nition in (2.1.0) with respect to X . The map @

U

Y

is called the

boundary map associated to the boundary triple, or just the boundary map for the

closed immersion i: Y ! X .
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We conclude this section with a few notations and remarks concerning the four

basic maps.

(3.8) Generalized correspondences. We introduce the notation

�: X

p

! Y

to denote homomorphisms

�: C

�

(X ;M)! C

�

(Y ;M)

which are sums of composites of the four basic maps f

�

, g

�

, fag and @ for schemes of

�nite type over a �eld.

This notation is made for the sake of simpli�cation. It also stresses the fact that

we think of the maps in question rather as a sort of morphisms of varieties than just

maps of complexes associated to everyM . As mentioned in the introduction, this can

be made more precise in a further development. (The di�erential d

X

is not subject

to this notation convention|we rather think of d

X

as a part of the inner structure

of X . Similarly for homomorphisms induced by a change of coe�cients.)

(3.9) Gradings. The Z=2-gradings on M induces a Z=2-grading on C

�

(X ;M) by

C

p

(X ;M;n) =

a

x2X

(p)

M

n+p

(x)

with n 2 Z=2. Suppose �: X

p

! Y respects this grading in the sense that

�

�

C

�

(X ;M;n)

�

� C

�

(Y ;M;n+ r)

for some r 2 Z=2. In this case we write sgn(�) = (�1)

r

. One has sgn(f

�

) = sgn(g

�

) =

+1, sgn(fa

1

; : : : ; a

n

g) = (�1)

n

and sgn(@) = �1. Moreover we put

�(�) = d � �� sgn(�) � � � d.

Then

sgn

�

�(�)

�

= � sgn(�),

� � �(�) = 0;

�(� � �) = �(�) � � + sgn(�) � � � �(�).

All the maps � to be considered will respect the Z=2-grading. Moreover, if M is

Z-graded, then the � will respect the corresponding Z-gradings on the complexes.

Additionally they respect the natural Z-gradings given by dimension. So if M is

Z-graded, there is an underlying Z� Z-grading (see also Section 5). In the general

treatment however there is need only for the Z=2-grading.
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(3.10) Boundary triples. Let (Y; i;X; j; U) be a boundary triple. The set theoretic

union X

(p)

= Y

(p)

[ U

(p)

yields a natural decomposition

(3.10.1) C

p

(X ;M) = C

p

(Y ;M)� C

p

(U ;M)

of abelian groups. Here the complex C

�

(Y ;M) is a subcomplex of the complex

C

�

(X ;M) with C

�

(U ;M) as quotient complex. The maps i

�

, j

�

and i

�

, j

�

are the

corresponding inclusions and projections, respectively. In a formal way, the situation

is described by the following formulae:

@ = i

�

� d

X

� j

�

,

i

�

� i

�

= id

Y

, j

�

� j

�

= id

U

,

i

�

� j

�

= 0, j

�

� i

�

= 0,

i

�

� i

�

+ j

�

� j

�

= id

X

,

�(j

�

) = i

�

� @, �(i

�

) = �@ � j

�

,

@ = i

�

� �(j

�

) = ��(i

�

) � j

�

,

�(i

�

) = 0, �(j

�

) = 0, �(@) = 0.

Later on we will make free use of these simple rules, in particular in Sections 6

and 9. The canonical decomposition (3.10.1) is the source of our formal treatment of

intersection theory on complex level.

4. Compatibilities

In this section we establish the basic compatibilities for the maps considered in the

last section. All arguments are simple in nature or at least familiar to cycle theories.

They are basically of local nature. As usual the treatment of 
at pull-back causes

most of the technicalities.

Rules among the maps of (3.4){(3.7) are formulated in (4.1){(4.5). Proposi-

tion 4.6 is concerned with the compatibility with the di�erentials. The compatibilities

with change of coe�cients are obvious and we don't make a point of them here and

further.

(4.1) Proposition.

(1) For f : X ! Y , f

0

: Y ! Z as in (3.4) one has (f

0

� f)

�

= f

0

�

� f

�

.

(2) Let g: Y ! X and g

0

: Z ! Y be morphisms. Let s � s(g) and s

0

� s(g

0

)

and let A, A

0

be coherent sheaves on Y , Z, respectively, with A

0


at over Y . Then

s+ s

0

� s(g � g

0

) and

[g

0�

A


O

Z

A

0

; g � g

0

; s+ s

0

] = [A

0

; g

0

; s

0

] � [A; g; s].

In particular

(g � g

0

)

�

= g

0�

� g

�

for g, g

0

as in (3.5.5) with g

0


at.
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(3) Consider a pull-back diagram

U

g

0

�! Z

?

?

y

f

0

?

?

y

f

Y

g

�! X

with f and f

0

as in (3.4). Let s � s(g), s(g

0

) and let A be a coherent sheaf on Y .

Then

[A; g; s] � f

�

= f

0

�

� [f

0�

A; g

0

; s].

In particular

g

�

� f

�

= f

0

�

� g

0�

for g as in (3.5.5).

Proof : (1) is immediate from the de�nitions and R1a.

Proof of (2): The inequality is obvious. Let x 2 X , y 2 Y

x

, z 2 Z

y

with

dim(y; Y ) = dim(x;X) + s, dim(z; Z) = dim(y; Y ) + s

0

. We have to check

[g

0�

A


O

Z

A

0

; g � g

0

]

x

z

= [A

0

; g

0

]

y

z

� [A; g]

x

y

.

We may assume X = Spec�(x) and Y = SpecR with R as in (3.5.2). By devisage

using the 
atness of A

0

over R and (3.5.4) we may reduce to the case A = �(y). Now

the claim is trivial.

Proof of (3): Let � = [A; g; s] � f

�

� f

0

�

� [f

0�

A; g

0

; s]. We have to show �

z

y

= 0 for

z 2 Z

(p)

and y 2 Y

(p+s)

.

This obvious if f(z) 6= g(y). Otherwise let x = f(z) = g(y). Our assumptions

give dim(x;X) � dim(z; Z) and dim(x;X) � dim(y; Y )�s(g) � p; hence dim(x;X) =

dim(z; Z) = p and �(z) is �nite over �(x).

Let u 2 U

z

be a maximal point of the �ber over z. Our assumptions give

dim(u; U) � dim(y; Y ) = p + s and dim(u; U) � dim(z; Z) + s(g

0

) � p + s; hence

u 2 U

(p+s)

. This shows that �

z

y

remains unchanged if we replace X by Spec �(x), Z

by Spec�(z), Y by Y

x;(y)

= SpecR (see 3.5.2) and p, s by 0. Then f is �nite and 
at.

Hence f

0

is 
at and by devisage using (3.5.4) we may assume A = �(y) as R-module.

But then it su�ces to consider the case Y = Spec�(y) and the claim follows from

rule R1c. �

(4.2) Lemma. Let f : Y ! X be as in (3.4).

(1) If a is a unit on X, then

f

�

� ff

�

(a)g = fag � f

�

.

(2) Let f be �nite and 
at and let a be a unit on Y . Then

f

�

� fag � f

�

= f

~

f

�

(a)g.

Here

~

f

�

: O

�

Y

! O

�

X

is the standard transfer map.

Proof : (1) is immediate from R2b. For (2) we may assume X = SpecF with F a

�eld. Then for y 2 Y let l

y

be the length of O

y;Y

. By R2c we have

f

�

� fag � f

�

=

X

y

l

y

� c

�(y)jF

�

fa(y)g

�

and the claim follows. �
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(4.3) Lemma. Let a be a unit on X.

(1) For g: Y ! X as in (3.5.5) one has

g

�

� fag = fg

�

ag � g

�

.

(2) For a boundary triple (Y; i;X; j; U) one has

@

U

Y

� fj

�

(a)g = �fi

�

(a)g � @

U

Y

.

Proof : (1) follows from R2a and (2) from R2b and R3e. �

Let h: X ! X

0

be a morphism of schemes of �nite type over a �eld and let

Y

0

,! X

0

be a closed immersion. Consider the induced diagram given by U

0

= X

0

nY

0

and pull-back:

(4.4.0)

Y ,�! X  �- U

?

?

y

�

h

?

?

y

h

?

?

y

�

�

h

Y

0

,�! X

0

 �- U

0

(4.4) Proposition.

(1) If h is proper, then

�

h

�

� @

U

Y

= @

U

0

Y

0

�

�

�

h

�

.

(2) If h is 
at (of constant relative dimension), then

�

h

�

� @

U

0

Y

0

= @

U

Y

�

�

�

h

�

.

Proof : Immediate from Proposition 4.6.1 and 4.6.2 below. �

(4.5) Lemma. Let g: Y ! X be a smooth morphism of schemes of �nite type over a

�eld of constant �ber dimension 1, let �: X ! Y be a section to g and let t 2 O

Y

be

a global parameter de�ning the subscheme �(X). Moreover let ~g: Y n �(X) ! X be

the restriction of g and let @ be the boundary map associated to �. Then

@ � ~g

�

= 0 and @ � ftg � ~g

�

= (id

X

)

�

.

Proof : One reduces to X = SpecE and applies R3c and R3d. �

(4.6) Proposition.

(1) For proper f : X ! Y as in (3.4) one has

d

Y

� f

�

= f

�

� d

X

.

(2) Let g: Y ! X be a morphism and let A be a coherent sheaf on Y 
at over X.

Then

d

Y

� [A; g; s] = [A; g; s] � d

X

for s � s(g). In particular

g

�

� d

X

= d

Y

� g

�

for 
at g as in (3.5.5).
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(3) For a unit a on X one has

d

X

� fag = �fag � d

X

.

(4) For a boundary triple (Y; i;X; j; U) one has

d

Y

� @

U

Y

= �@

U

Y

� d

U

.

Proof : (3) follows as Lemma 4.3.2 and (4) follows from Lemma 3.3.

Proof of (1): Let �(f

�

) = d

Y

� f

�

� f

�

� d

X

. We have to show �(f

�

)

x

y

= 0 for

x 2 X

(p)

and y 2 Y

(p�1)

. Let z = f(x) and q = dim(z; Y ). If y 62 fzg, the claim is

obvious. If y = z, we �rst replace Y by Spec�(y) and then X by fxg. This is the

case of a proper curve over a �eld considered in (RC) of Section 2. If y 2 fzg and

y 6= z, we must have q = p and �(x) is �nite over �(z). We may assume Y = fzg and

X = fxg. Consider the diagram

~

X

g

�! X

?

?

y

~

f

?

?

y

f

~

Y

h

�! Y

where g and h are the normalizations. Let ~x 2

~

X and ~z 2

~

Y be the generic points

(lying over x and z, respectively). We have �(g

�

) jM(~x) = 0 by the very de�nition of

the di�erentials; similarly �(h

�

) jM(~z) = 0. This and 4.1.1 show

�(f

�

) � g

�

jM(~x) = (d

Y

� h

�

�

~

f

�

� f

�

� g

�

� d

~

X

) jM(~x)

= h

�

� �(

~

f

�

) jM(~x).

Since g

�

jM(~x) is an isomorphism onto M(x) we are reduced to show �(

~

f

�

)

~x

~y

= 0 for

~y 2

~

Y

(p�1)

. Let ~u 2

~

X be a point over ~y. We have ~u 2

~

X

(1)

. Now �(

~

f

�

)

~x

~y

= 0 follows

from rule R3b, the properness of

~

f and the fact that the local rings of ~y and of all

the preimages ~u are valuation rings.

Proof of (2): Let � = d

Y

� [A; g; s] � [A; g; s] � d

X

. We have to show �

x

y

= 0 for

x 2 X

(p)

, y 2 Y

(p+s�1)

. Put z = g(y). If z 62 fxg, the claim is obvious. If z = x, then

for u 2 Y

x

all valuations on �(u) with center y are trivial on �(x); the claim follows

from rule R3c. We are now reduced to the case z 2 fxg, z 6= x. Then z 2 X

(p�1)

since dim(z;X) � dim(y; Y ) � s = p � 1. We may assume X = fxg. Moreover

by Propositions 4.1.3 and 4.6.1 we may additionally assume that X is normal. Let

U =

�

u 2 Y

(0)

x

j y 2 fug

	

. Then

�

x

y

=

X

u2U

@

u

y

� [A; g; s]

x

u

� [A; g; s]

z

y

� @

x

z

.

We may replace X and Y by its localizations in z and y, respectively. Then X =

SpecR with R a valuation ring, Y = SpecS with S local of dimension � 1 and

U = Y

(1)

.
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In this case we have by de�nition

�

x

y

=

X

u2U

l

S

(u)

(A

(u)

) � @

u

y

� r

�(u)j�(x)

� l

S

(A=�A) � r

�(y)j�(z)

� @

x

z

where S

(u)

, A

(u)

are the localizations at u and where � is a prime element of R.

For u 2 U let

~

S

u

be the normalization of S=u. For a

~

S

u

-module H of �nite length

we de�ne

L

u

(H) =

X

w

l

~

S

(w)

(H

(w)

) � [�(w)

:

�(y)]

where w runs through the maximal prime ideals of

~

S

u

and where

~

S

(w)

resp. H

(w)

are

the localizations of

~

S

u

resp. H at w. We claim that L

u

(H) is the length of H as

S-module:

L

u

(H) = l

S

(H).

To prove this use devisage to reduce to the trivial case H = �(w) for some w.

Moreover we have

l

S

(

~

S

u

=�

~

S

u

) = l

S

(S=u+ �S).

This follows from the fact that the cokernel and the (trivial) kernel of S=u !

~

S

u

have �nite S-length and � is a nonzero divisor of S=u and

~

S

u

(see Fulton 1984,

Lemma A.2.4).

We have for �xed u:

@

u

y

� r

�(u)j�(x)

=

X

w

c

�(w)j�(y)

� @

u

w

� r

�(u)j�(x)

=

X

w

l

~

S

(w)

(

~

S

(w)

=�

~

S

(w)

) � c

�(w)j�(y)

� r

�(w)j�(z)

� @

x

z

= L

u

(

~

S

u

=�

~

S

u

) � r

�(y)j�(z)

� @

x

z

.

Here we used the de�nition of @

u

y

and R3a, R1b, R2d.

Putting things together one �nds that �

x

y

= 0 follows from

l

S

(A=�A) =

X

u2U

l

S

(u)

(A

(u)

) � l

S

(S=u+ �S).

This formula is exactly the formula of (Fulton 1984, Lemma A.2.7) because the map

A ! A, a 7! �a is injective by the 
atness of A over R. �
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5. Cycle Complexes and Chow Groups

This section contains notations and a few remarks and examples. In Section 3 we

have introduced for a cycle module M over X the complexes

C

p

(X ;M) =

a

x2X

(p)

M(x)

with di�erentials

d = d

X

: C

p

(X ;M)! C

p�1

(X ;M).

Sometimes it is convenient to use the codimension index instead of the dimension

index. We put

C

p

(X ;M) =

a

x2X

(p)

M(x)

and de�ne

d = d

X

: C

p

(X ;M)! C

p+1

(X ;M)

again by d

x

y

= @

x

y

with @

x

y

as in (2.1.0). Similar as in Lemma 3.3 one �nds d � d = 0.

The choice between the dimension and codimension index depends on the matter.

Our basic interest is in schemes X of �nite type over a �eld F . In this case the

dimension setting is in general appropriate, since then the dimension of a point x is

an absolute notion independent of the ambient space: dim(x;X) = tr:deg(�(x)jF ) .

If X is in addition equidimensional of dimension d, then X

(p)

= X

(d�p)

and

C

p

(X ;M) = C

d�p

(X ;M) . Then we will freely switch between the two notions if

it is convenient (in particular if we consider intersections in the smooth case). The

codimension setting will also be used for certain schemes not necessarily of �nite type

over a �eld, e.g., for spectra of local rings. In this case we understand the material of

Section 4 to be transferred from the dimension to the codimension setting via �nite

type models.

In practice, all M have a Z-grading and one likes to keep track on it. We put for

Z-gradedM

C

p

(X ;M;n) =

a

x2X

(p)

M

n+p

(x),

C

p

(X ;M;n) =

a

x2X

(p)

M

n�p

(x).

with n 2 Z. Then there are decompositions of complexes

C

�

(X ;M) =

a

n

C

�

(X ;M;n),

C

�

(X ;M) =

a

n

C

�

(X ;M;n).

(In the introduction we have used the notation C

�

(X ;n) = C

�

(X ;K

�

; n)).
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The Chow group of p-dimensional cycles with coe�cients in M is de�ned as the

p-th homology group of the complex C

�

(X ;M) and denoted by A

p

(X ;M). Similarly

we de�ne A

p

(X ;M), A

p

(X ;M;n) and A

p

(X ;M;n) according to the notations used

for the complexes.

The homomorphisms f

�

for proper f , g

�

for 
at g, fa

1

; : : : ; a

n

g, @

U

Y

and !

#

of

Section 3 (anti-)commute with the di�erentials (see Proposition 4.6). The induced

maps on the (co-)homology groups will be denoted by the same letters. The compat-

ibilities of (4.1){(4.5) carry over (for proper f , f

0

and 
at g).

It is obvious from (3.10) that for a boundary triple (Y; i;X; j; U) there is the long

exact sequence

� � �

@

�! A

p

(Y ;M)

i

�

�! A

p

(X ;M)

j

�

�! A

p

(U ;M)

@

�! A

p�1

(Y ;M)

i

�

�! � � � .

We conclude by mentioning a few examples. H

�

[D] and K

0

�

denote the cycle

modules given by Galois cohomology and Quillen's K-theory as considered in Sec-

tions 1{2.

(5.1) Remark. | Classical Chow groups. We understand here CH

p

(X) as the group

of p-cycles modulo rational equivalence as de�ned in (Fulton 1984, Sect. 1.3; denoted

by A

p

(X)). From this de�nition

}

it is obvious that

A

p

(X ;K

�

;�p) = CH

p

(X).

For the Chow group CH

p

(X) of p-codimensional cycles (for smooth irreducible X say)

our notations give

A

p

(X ;K

�

; p) = CH

p

(X).

(5.2) Remark. | Unrami�ed cohomology. For a proper smooth variety X over a

�eld k and a cycle module M over k, the group

A

0

(X ;M) �M

�

k(X)

�

is a birational invariant of the �eld extension k(X)jk (see Corollary 12.10). A well-

known example here is the unrami�ed Brauer group of k(X)jk. Its n-torsion subgroup

is in our notations given by A

0

(X ;H

�

[�


�1

n

]; 2).

(5.3) Remark. | Relations with local-global spectral sequences. In Quillen's K-

theory as well as in �etale cohomology there are spectral sequences given by codi-

mension of support (see Quillen 1973, Sect. 5; Bloch and Ogus 1974). The corre-

sponding E

1

-terms together with the d

1

-di�erentials may be identi�ed with the com-

plexes C

�

(X ;K

0

�

; n) and C

�

(X ;H

�

[D]; n). The corresponding E

2

-terms are of the

form E

p;q

2

= A

p

(X ;K

0

�

;�q) and E

p;q

2

= A

p

(X ;H

�

[D 
 �


�q

r

]; q), respectively (where

r �D = 0).

}

Namely the de�nition of CH

p

(X) mentioned in the �rst sentence of the introduction.
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(5.4) Remark. | The map from Milnor's to Quillen's K-theory. The natural ho-

momorphisms K

�

F ! K

0

�

F form a homomorphism of cycle modules. It is an isomor-

phism in degrees � 2. Moreover for a valuation v on F one has @

v

(K

3

F ) = @

v

(K

0

3

F ),

see (Merkurjev and Suslin 1987). It follows that the induced homomorphisms

A

p

(X ;K

�

; n)! A

p

(X ;K

0

�

; n)

are bijective for n+ p � 2.

6. Acyclicity for Smooth Local Rings

The following observations have been included to underpin the notion of cycle mod-

ules. They are not needed in further sections. M is a cycle module over a �eld k.

(6.1) Theorem. Let X be smooth and semi-local. Then

A

p

(X ;M) = 0 for p > 0.

This theorem is known in Quillen's K-theory (Quillen 1973, x 7, Theorem 5.11) and

in �etale cohomology (Bloch and Ogus 1974) and has been proved by O. Gabber for

Milnor'sK-theory. The main step in these proofs is sometimes called \Quillen's trick"

and carries over to cycle modules as well. Here we follow essentially this method but

with a simpli�cation due to I. Panin.

Let V be a vector space over k and let A (V ) be the associated a�ne space. For

a linear subspace W of V let

�

W

: A (V )! A (V=W ),

�

W

(v) = v +W

be the projection.

(6.2) Lemma. Let X � A (V ) be an equidimensional closed subvariety with dimX = d

and let Y � X be a closed subvariety with dimY < d. Moreover let S � Y be a �nite

subset such that X is smooth in S. Then for a generic (d � 1)-codimensional linear

subspace W of V the following conditions hold.

(1) The restriction

�

W

j Y : Y ! A (V=W )

is �nite.

(2) The restriction

�

W

jX : X ! A (V=W )

is locally around S smooth of relative dimension 1.
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Proof : (Panin) We extend the situation to the projective closure A (V ) � P(V � k)

with P(V ) � P(V � k) as hyperplane at in�nity. Let

��

W

: P(V � k) n P(W )! P(V=W � k),

��

W

([v; t]) = [v +W; t]

be the projection. ��

W

is an a�ne bundle over P(V=W � k) which extends the a�ne

bundle �

W

over A (V=W ).

Let Y � P(V � k) be the closure of Y and let Y

1

= Y \ P(V ). Then dim Y

1

<

d�1. Hence for generic (d�1)-codimensionalW we have Y

1

\P(W ) = ?. Therefore

there is the map

��

W

j Y : Y ! P(V=W � k):

This map is �nite since it is proper and since ��

W

is an a�ne bundle. This shows (1)

because �

W

j Y is the pull-back of ��

W

j Y along A (V ) � P(V � k).

For condition (2) one just needs to guarantee that �

W

maps for each s 2 S the

tangent space T

s

X � V of X in s epimorphically onto the tangent space V=W of

A (V=W ) in �

W

(s). This is again an open condition for W . �

This lemma is very close to (Quillen 1973, x 7, Lemma 5.12.) and su�ces for all

applications I know. The existence of such a space W is not clear over �nite ground

�elds and needs some extra discussion. However, if one is in the end interested in

(co-)homology groups, there is usually no problem with replacing the ground �eld k

by a rational extension k(t

1

; : : : ; t

r

). In this case one may take for W for example

the tautological subspace of V de�ned over the function �eld of the Grassmannian of

(d� 1)-codimensional subspaces of V . In our situation we refer here to the following

remark.

(6.3) Lemma. Let X be a variety over k and let g: X

k(t)

! X be the base change.

Then

g

�

: A

q

(X ;M)! A

q

(X

k(t)

;M)

is injective.

This lemma will be become obvious in the next section where we show that F !

A

q

(X

F

;M) is a cycle module. Then g

�

is just the restriction map r

k(t)jk

for this cycle

module and any specialization s

�

v

at a rational point of P

1

yields a left inverse. (What

one really uses here is Lemma 4.5 with Y = X � P

1

and Proposition 4.6.2.)

(6.4) Proposition. Let X be a smooth variety over a �eld and let Y � X be a closed

subscheme of codimension � 1. Then for any �nite subset S � Y there is an open

neighborhood X

0

of S in X such that the map

i

�

: A

�

(Y \X

0

;M)! A

�

(X

0

;M)

is the trivial map. Here i: Y \X

0

! X

0

is the inclusion.
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Proof : We may assume that X is a�ne. By Lemma 6.2 we �nd a diagram (at least

after replacing k by a rational extension)

Y

i

�! X

& .

A

with Y ! A �nite and with X ! A smooth of relative dimension 1 in S.

Put Z = Y �

A

X and consider the diagram

Z

g

.%

�

&

�

Y

i

��! X

where g and � are the projections and � is the diagonal. Note that � is �nite, g is

smooth of relative dimension 1 in S and that � is a section to g and a lift of the immer-

sion i. Moreover after a localization to an open subset X

0

� X containing S we may

assume that there is a global parameter t 2 O

Z

de�ning the closed subscheme �(Y ).

Let (Y; �; Z; j;Q) be the boundary triple given by � (with Q = Z n�(Y )) and let

~g: Q! Y be the restriction of g. Now consider the composite

H : Y

~g

�

p

�! Q

ftg

p

�! Q

j

�

p

�! Z

�

�

p

�! X .

One �nds

�(H) = �

�

� �

�

� @

Q

Y

� ftg � ~g

�

= �

�

� �

�

= i

�

by Lemma 4.5. Therefore i

�

is nullhomotopic. �

Proof of Theorem 6.1: We may assume that X is connected. Put d = dimX .

Consider pairs (U; S) where U is a smooth d-dimensional variety of �nite type over k

and S � U is a �nite subset such that X is the localization of U in S. Then

C

p

(X ;M) = lim

�!

(U;S)

C

p

(U ;M).

Moreover

C

p

(U ;M) = C

d�p

(U ;M) = lim

�!

Y

C

d�p

(Y ;M)

where Y runs over the closed p-codimensional subsets of U . Hence

A

p

(X ;M) = lim

�!

(U;S)

A

p

(U ;M) = lim

�!

(U;S)

lim

�!

Y

A

d�p

(Y ;M).

But Proposition 6.4 tells that A

d�p

(Y ;M) ! A

p

(U ;M) ! A

p

(U

0

;M) is the trivial

map for small enough U

0

� U . �
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In the smooth case we shea�fy cycle modules as follows. For a smooth variety X

letM

X

be the Zariski sheaf on X given by

M

X

(U) = A

0

(U ;M) �M(�

X

)

for open subsets U of X .

(6.5) Corollary. For a smooth variety X over k there are natural isomorphisms

A

p

(X ;M) = H

p

Zar

(X ;M

X

).

Proof : De�ne the Zariski sheaves C

p

on X by

C

p

(U) = C

p

(U ;M).

Then there is a complex of sheaves

0 �!M

X

�! C

0

d

�! C

1

d

�! � � � .

The complex is exact. This holds at M

X

and at C

0

by the very de�nitions. Theo-

rem 6.1 implies exactness at positive dimensions. The corollary follows, since the C

p

are 
asque. �

The resolution of M

X

considered in this proof has nice functorial properties.

Namely, we will de�ne for morphisms f : Y ! X maps of complexes (Section 12)

I(f): C

p

(X ;M)! C

p

(Y ;M)

and, under presence of a ring structure for M , a pairing of complexes (Section 14)

C

�

(X ;M)� C

�

(X ;M)! C

�

(X ;M).

These are functorial with respect to localizations. Therefore the isomorphisms of

Corollary 6.5 are compatible with pull-backs and with products.

The following example is a nice illustration of Corollary 6.5. Let X be smooth

and de�ne the Zariski sheaf K

n

on X by

K

n

(U) = A

0

(U ;K

�

; n) � K

n

k(X).

The sheaf K

n

has a comparatively simple de�nition: it just refers to the de�nition

of Milnor's K-groups for �elds and of the residue maps for valuations. Corollary 6.5

yields the following interpretation of the classical Chow groups on a smooth variety:

(6.6) CH

p

(X) = H

p

Zar

(X ;K

p

).

The same result holds with Milnor's K-theory replaced by Quillen's K-theory.

The corresponding sheaf K

0

n

coincides with the sheaf induced from the presheaf U !

K

Q

n

(U) where K

Q

n

(U) denotes the n-th Quillen's K-group of the category of vector

bundles on U . In this context (6.6) is known as Bloch's formula (see Quillen 1973,

Thm. 5.19; Grayson 1978).

Another special case of Corollary 6.5 for M = K

�

is

A

0

(X ;K

�

; n) = H

d

Zar

(X ;K

n+d

),

with d = dimX . This interpretation of the \Chow groups of zero cycles on X with

coe�cients in K

n

" was obtained already in (Kato 1986).
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7. The Cycle Modules A

q

[�;M ]

In this section we show that new cycle modules can be obtained from the Chow groups

of the �bers of a morphism. It was in fact this process of forming local coe�cient

systems for cycles which motivated the notion of cycle modules.

Let �: Q! B be a morphism of �nite type and let M be a cycle module over Q.

For �elds F over B let Q

F

= Q �

B

SpecF . We de�ne an object function A

q

[�;M ]

on F(B) by

A

q

[�;M ](F ) = A

q

(Q

F

;M).

Our aim is to show that A

q

[�;M ] is in a natural way a cycle module over B.

All the properties of cycle modules except axiom (C) hold already on complex

level, i.e., for the groups C

q

(Q

F

;M). It is appropriate to establish �rst the corre-

sponding object function as a cycle premodule.

So let

c

M be the object function on F(B) de�ned by

c

M(F ) = C

q

(Q

F

;M).

We �rst describe its data as a cycle premodule. These will be denoted by b'

�

, b'

�

,

b

@

v

,

br

EjF

, bc

EjF

, etc. in order to distinguish them from the data '

�

, '

�

, @

v

, etc. of M .

For a homomorphism of �elds ': F ! E let �': Q

E

! Q

F

be the induced mor-

phism. We de�ne the data D1 and D2 by

b'

�

= �'

�

: C

q

(Q

F

;M)! C

q

(Q

E

;M),

b'

�

= �'

�

: C

q

(Q

E

;M)! C

q

(Q

F

;M).

For D3 we take the K

�

F -module structure on C

q

(Q

F

;M) described in (3.6). To

establish D4 put

e

Q

v

= Q�

B

SpecO

v

. It has over SpecO

v

the generic �ber Q

F

and

the special �ber Q

�(v)

. De�ne

b

@

v

: C

q

(Q

F

;M)! C

q

(Q

�(v)

;M)

by (

b

@

v

)

x

y

= @

x

y

with @

x

y

as in (2.1.0) with respect to the scheme

e

Q

v

.

(7.1) Theorem. Together with these data,

c

M is a cycle premodule over B.

Proof : All the required properties follow from the rules and axioms for M and from

Section 4.

Below we consider R3a in detail. Here is a sketch for the other (less complicated)

cases:

for R1a use (4.1.2); for R1b use (4.1.1);

for R1c use (4.1.3) and a length consideration;

for R2a use (4.3.1); for R2b use (4.2.1); for R2c use R1c and R2c;

for R3b use (4.6.1); for R3c use R3c;

for R3d use (1.5) and R3d; for R3e use R2b and R3e.
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Proof of R3a: Let g

�

: Q

F

! Q

E

and g

0

: Q

�(v)

! Q

�(w)

be the projections. We

have to show that the following diagram is commutative:

C

q

(Q

F

;M)

b

@

v

�! C

q

(Q

�(v)

;M)

x

?

?

g

�

�

x

?

?

e�g

�

0

C

q

(Q

E

;M)

b

@

w

�! C

q

(Q

�(w)

;M).

We want to apply Proposition 4.6.2 to the projection g:

e

Q

v

!

e

Q

w

. The pull-back

of g along SpecE ! SpecO

w

is g

�

. Let

�g

0

:

�

Q

�(v)

=

e

Q

v

�

SpecO

w

Spec�(w)! Q

�(w)

be the pull-back of g along Spec�(w) ! SpecO

w

. Note that

�

Q

�(v)

and Q

�(v)

have

the same reductions and therefore the same cycle groups.

We claim �g

�

0

= e � g

�

0

. Let R = O

v




O

w

�(w). Note that g

0

, �g

0

are the pull-

backs along Q

�(w)

! Spec�(w) of the morphisms Spec�(v) ! Spec�(w), SpecR !

Spec�(w), respectively. The claim follows from e = l

R

(R) and a standard length

consideration.

It remains to show that the diagram commutes with e � g

�

0

replaced by �g

�

0

. This

follows (cum grano salis, see the following remark) from Proposition 4.6.2.

Remark. When applying here Proposition 4.6 in a formal way, there appears

an arti�cial problem caused by the fact that the dimension index does not behave

perfectly well for schemes over local rings like

e

Q

v

. However, note that to check a

commutativity like @

v

� g

�

�

= �g

�

0

� @

w

it su�ces to restrict to the components cor-

responding to points x 2 Q

E(q)

with fxg \

�

Q

�(w)

�

(q)

6= ? . For these points one

has x 2 (

e

Q

w

)

(q+1)

by the dimension inequality (Matsumura 1980, p. 85). A similar

remark applies to

e

Q

v

. Therefore the desired identity follows from d � g

�

= g

�

� d on

C

q+1

(

e

Q

w

;M). One may avoid these considerations by looking more closely to the

proof of Proposition 4.6. �

We have to relate the di�erentials for the cycle premodule

c

M to the di�erentials

for the cycle module M .

Let X ! B be a scheme over B and let

e

X = Q�

B

X . Then for x, y 2 X there

is the map

b

@

x

y

:

c

M(x)!

c

M(y)

according to (2.1.0). By de�nition this is a map

b

@

x

y

: C

q

(Q

�(x)

;M)! C

q

(Q

�(y)

;M)

between cycle groups with coe�cients in M .

(7.2) Proposition. Let ~x, ~y 2

e

X be points lying over x, y 2 X, respectively, and

suppose ~x 2

�

Q

�(x)

�

(q)

and ~y 2

�

Q

�(y)

�

(q)

. Denote by (

b

@

x

y

)

~x

~y

the component of

b

@

x

y

with

respect to ~x and ~y. Then

(

b

@

x

y

)

~x

~y

= @

~x

~y

: M(~x)!M(~y).
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Proof : We may assume ~y 2 f~xg

(1)

, since otherwise both sides are trivial. The dimen-

sion inequality (Matsumura 1980, p. 85) shows then y 2 fxg

(1)

. Let v run through

the valuations of �(x) with center y in X . Moreover let w run through the valuations

on �(~x) with center ~y in

~

X. The restriction of any w to �(x) is one of the valuations v.

Let ~w 2 Q

�(v)

be the center of w in

e

X �

X

SpecO

v

. Now the claim follows from

(

b

@

x

y

)

~x

~y

= (

X

v

bc

�(v)j�(y)

�

b

@

v

)

~x

~y

=

X

v

X

wjv

(bc

�(v)j�(y)

)

~w

~y

� (

b

@

v

)

~x

~w

=

X

v

X

wjv

c

�( ~w)j�(~y)

� c

�(w)j�( ~w)

� @

w

=

X

w

c

�(w)j�(~y)

� @

w

= @

~x

~y

. �

It follows from Proposition 4.6 that the data of the cycle premodules

c

M (for

various q) commute resp. anti-commute with the di�erentials of the complexes

C

�

(Q

F

;M). Passing to homology we obtain data D1{D4 for the object functions

A

q

[�;M ].

(7.3) Theorem. Together with these data, A

q

[�;M ] is a cycle module over B.

Proof : The rules for the data of the cycle premodule A

q

[�;M ] are immediate from

the rules for

c

M . Moreover axiom (FD) for M and Proposition 7.2 show that (FD)

holds for

c

M|consequently also for A

q

[�;M ]. It remains to verify axiom (C).

Consider the maps

}

C

q

(Q

�(�)

)

�

�! C

q�1

(Q

�(�)

)�

a

x2X

(1)

C

q

(Q

�(x)

)� C

q+1

(Q

�(x

0

)

)

�

�! C

q

(Q

�(x

0

)

)

de�ned by �

z

y

= @

z

y

with @

z

y

as in (2.1.0) with respect to the scheme Q�

B

X .

By Proposition 7.2 we are reduced to show � � � = 0. It su�ces to check

(� ��)

z

y

= 0 for z 2

�

Q

�(�)

�

(q)

and y 2

�

Q

�(x

0

)

�

(q)

with y 2 fzg

(2)

(here fzg is the

closure of z in

e

X). The dimension inequality (Matsumura 1980, p. 85) shows

Z

(1)

�

�

Q

�(�)

�

(q�1)

[

[

x

�

Q

�(x)

�

(q)

[

�

Q

�(x

0

)

�

(q+1)

with Z = fzg

(y)

. We are done by axiom (C) for M . �

In the following proposition we formulate some functorial properties of the con-

struction �! A

q

[�;M ]. Let

(7.4.0)

Y

h

�! X

�& .�

B

}

Here the indication of the cycle module M has been dropped.

Documenta Mathematica 1 (1996) 319{393



364 Markus Rost

be a commutative diagram with � and � of �nite type and let M be a cycle module

over X . For a �eld F over B let

h

F

: Y

F

! X

F

be the morphism induced by h.

(7.4) Proposition. The following transformations are homomorphisms of cycle

modules over B:

(1) For proper h let

[h

�

]: A

q

[�;M ]! A

q

[�;M ]

with [h

�

]

F

= (h

F

)

�

.

(2) For 
at h of relative dimension s let

[h

�

]: A

q

[�;M ]! A

q+s

[�;M ]

with [h

�

]

F

= [h

�

F

].

(3) For a global unit a on X let

[fag]: A

q

[�;M ]! A

q

[�;M ]

with [fag]

F

= fa jX

F

g.

(4) For a boundary triple (Y; i;X; j; U) let

[@] = [@

U

Y

]: A

q

[� � j;M ]! A

q�1

[� � i;M ]

with [@]

F

the boundary map for Y

F

! X

F

.

Proof : One has to check the compatibility with D1{D4. This follows for (1) from

(4.1.3), (4.1.1), (4.2.1) and (4.6.1); for (2) from (4.1.2), (4.1.3), (4.3.1) and (4.6.2);

for (3) from (4.2.1), (4.3.1), the anti-commutativity of K

�

and (4.6.3); for (4) from

(4.6.1), (4.6.2), (4.6.3) and (C). �

Let �: Q ! B be 
at and not necessarily of �nite type. One may then de�ne

cycle modules A

q

[�;M ] with

A

q

[�;M ](F ) = A

q

(Q

F

;M).

To establish these cycle modules one proceeds analogous to the A

q

[�;M ] above. Al-

ternatively one may reduce to the consideration of the A

q

[�;M ] as follows. If � is of

�nite type, one may assume that it is of constant dimension s. In this case one has

A

q

[�;M ] = A

s�q

[�;M ]. For the general case note that (at least locally with respect

to B) one has A

q

(Q

F

;M) = lim

�!

A

q

(Q

0

F

;M) where �

0

: Q

0

! B runs through the 
at

�nite type models of �.
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8. Fibrations

In this section we consider the spectral sequence associated to a morphism and formu-

late some basic functorial properties. A �rst application yields the homotopy property

for vector bundles.

From now on all schemes are assumed to be of �nite type over a �eld and M is

(with exceptions in Section 14) a cycle module over X .

For a morphism �: X ! X

0

we put

C

p;l

(�) =

a

x2X

(p;l)

M(x) � C

l

(X ;M)

where

X

(p;l)

=

�

x 2 X

(l)

j dim

�

�(x); X

0

�

� p

	

.

Then

� � � � C

p�1;�

(�) � C

p;�

(�) � � � � � C

�

(X ;M)

is a �nite �ltration of C

�

(X ;M) by subcomplexes. This �ltration has the subquotients

a

u2X

0

(p)

C

�

(X

�(u)

;M).

Let

�

E

n

p;q

(�)

�

n

be the associated spectral sequence (see e.g. Hilton and Stamm-

bach 1971). The di�erential for X restricts on C

�

(X

�(u)

;M) to the di�erential

for X

�(u)

. Therefore

E

1

p;q

(�) =

a

u2X

0

(p)

A

q

(X

�(u)

;M).

(8.1) Proposition. The di�erential d

1

p;q

of this spectral sequence equals the di�er-

ential d

X

0

for the cycle module A

q

[�;M ].

Proof : For u

0

2 X

0

(p)

, y

0

2 X

0

(p�1)

we have to check equality of the corresponding

components of d

1

p;q

and d

X

0

:

�

d

1

p;q

�

u

0

y

0

= (d

X

0

)

u

0

y

0

: A

q

(X

�(u

0

)

;M)! A

q

(X

�(y

0

)

;M).

The map (d

1

p;q

)

u

0

y

0

is by de�nition induced from the map

�: C

q

(X

�(u

0

)

;M)! C

q

(X

�(y

0

)

;M)

where �

u

y

= @

u

y

for u, y 2 X lying over u

0

, y

0

, respectively.

The claim follows from Proposition 7.2. �
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(8.2) Corollary. There is a convergent spectral sequence

E

2

p;q

(�) = A

p

(X

0

;A

q

[�;M ]) =) A

p+q

(X ;M).

If X

0

is equidimensional and � is 
at, then there is a convergent spectral sequence

E

p;q

2

(�) = A

p

(X

0

;A

q

[�;M ]) =) A

p+q

(X ;M). �

Here the second statement follows from the �rst by a formal switch to codimension

index. In this codimension setting one may drop the �nite type hypotheses.

(8.3) Remark. We will use the following dictions. Let �: X ! X

0

, �: Y ! Y

0

be

morphisms. Then �: X

p

! Y is called �ltration preserving (with respect to �, �) of

degree (r; t), if

�

�

C

p;l

(�)

�

� C

p+r;l+t

(�).

If �(�) = 0 (see Sec. 3 for the de�nition of �), then � is homomorphism of �ltered

complexes and induces maps (denoted by the same letter)

�: E

n

p;q

(�)! E

n

p+r;q+t�r

(�).

Two �ltration preserving maps �; �: X

p

! Y of degree (r; t) are called homotopic, � '

�, if there is a �ltration preserving H : X

p

! Y of degree (r + 1; t + 1) such that

� � � = �(H). If �(�) = �(�) = 0 and � ' �, then the induced maps on the E

2

-

terms coincide. If the homotopy H can be chosen of degree (r; t + 1), then already

the induced maps on the E

1

-terms coincide. This follows from a little calculation

working for arbitrary �ltered complexes.

Let

(8.4.0)

Y

f

�! X

?

?

y

�

?

?

y

�

Y

0

f

0

�! X

0

be a commutative diagram of morphisms. The following statement is trivial.

(8.4) Lemma.

(1) One has

f

�

�

C

p;l

(�)

�

� C

p;l

(�).

(2) Suppose f has relative dimension t and let s � s(f

0

), see (3.5.1). Then

f

�

�

C

p;l

(�)

�

� C

p+s;l+t

(�).

(3) If a is a unit on X, then

fag �

�

C

p;l

(�)

�

� C

p;l

(�).
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(4) Let (Y; i;X; j; U) be a boundary triple. Then

@

U

Y

�

C

p;l

(� � j)

�

� C

p;l�1

(� � i).

(5) For the diagram (4.4.0) one has

@

U

Y

�

C

p;l

(

�

�

h)

�

� C

p�1;l�1

(

�

h). �

Let

(8.5.0)

Y

^

f

�!

b

Y

�

f

�! X

?

?

y

�

?

?

y

�̂

?

?

y

�

Y

0

== Y

0

f

0

�! X

0

be the natural decomposition of diagram (8.4.0) with

b

Y = Y

0

�

X

0

X and f =

�

f �

^

f .

We call the diagram (8.4.0) a 
at square if

^

f and f

0

are 
at of some constant relative

dimensions. This holds then also for f .

We use the natural identi�cation

A

q

[�̂; (

�

f)

�

M ] = (f

0

)

�

A

q

[�;M ]

of cycle modules over Y

0

.

(8.5) Proposition.

(1) If f and f

0

are proper, then the map

f

�

: E

2

p;q

(�)! E

2

p;q

(�)

corresponding to (8.4.1) equals the composite

A

p

(Y

0

;A

q

[�;M ])

[

^

f

�

]

#

��! A

p

(Y

0

;A

q

[�;M ])

f

0

�

��! A

p

(X

0

;A

q

[�;M ]).

(2) Suppose the square (8.4.0) is 
at and put r = dim(f

0

), s = dim(

^

f). Then the map

f

�

: E

2

p;q

(�)! E

2

p+r;q+s

(�)

corresponding to (8.4.2) equals the composite

A

p

(X

0

;A

q

[�;M ])

(f

0

)

�

��! A

p+r

(Y

0

;A

q

[�;M ])

[

^

f

�

]

#

��! A

p+r

(Y

0

;A

q+s

[�;M ]).

(3) For a global unit a on X the map

fag: E

2

p;q

(�)! E

2

p;q

(�)

corresponding to (8.4.3) equals [fag]

#

.
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(4) The map

@: E

2

p;q

(� � j)! E

2

p;q�1

(� � i)

corresponding to (8.4.4) equals [@

U

Y

]

#

.

(5) The map

@: E

2

p;q

(

�

�

h)! E

2

p�1;q

(

�

h)

corresponding to (8.4.5) equals the map

@

U

0

Y

0

: A

p

(U

0

;A

q

[h;M ])! A

p�1

(Y

0

;A

q

[h;M ]).

Proof : (3) is trivial. (5) follows from Proposition 8.1. In (1) and (2) one may suppose

either f =

^

f or f =

�

f .

Proof of (1) for f =

^

f : Here X

0

= Y

0

and the map

f

�

: C

l

(Y ;M)! C

l

(X ;M)

is the family of maps

(f

�(u)

)

�

: C

q

(Y

�(u)

;M)! C

q

(X

�(u)

;M)

with u 2 X

0

(p)

and p+ q = l. On the other hand

[

^

f

�

]

#

: C

p

(X

0

;A

q

[�;M ])! C

p

(X

0

;A

q

[�;M ])

is componentwise induced by the maps (f

�(u)

)

�

.

Proof of (1) for f =

�

f : Here we have a pull-back diagram, Y = Y

0

�

X

0

X . We

consider the maps induced by

f

�

: C

l

(Y ;M)! C

l

(X ;M)

on the E

1

-terms. These are maps (with p+ q = l)

a

y

0

2Y

0

(p)

C

q

(X

�(y

0

)

;M) �!

a

x

0

2X

0

(p)

C

q

(X

�(x

0

)

;M).

Their components are the corestrictions c

�(y)j�(x)

with y 2

�

X

�(y

0

)

�

(q)

, y

0

2 Y

0

(p)

and

f(y) 2

�

X

�(x

0

)

�

(q)

, x

0

= f

0

(y

0

) 2 X

(p)

. Here �(y

0

) is necessarily �nite over �(x

0

), since

both �elds have the same transcendence degree. Therefore the maps on the E

1

-terms

are given by the maps

(f

0

y

0

)

�

: C

q

(X

�(y

0

)

;M)! C

q

(X

�(f

0

(y

0

))

;M)

with y

0

2 Y

0

(p)

such that �(y

0

)j�(f

0

(y

0

)) is �nite and where

f

0

y

0

: X

�(y

0

)

! X

�(f

0

(y

0

))

is the associated �nite morphism. On the other hand

f

0

�

: C

p

(Y

0

;A

q

[�;M ])! C

p

(X

0

;A

q

[�;M ])

is induced exactly by the maps f

0

y

0

.
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Proof of (2) for f =

^

f : One argues as for (1) and notes that

f

�

: C

l

(X ;M)! C

l+s

(Y ;M)

is the family of maps

(f

�(u)

)

�

: C

q

(X

�(u)

;M)! C

q+s

(Y

�(u)

;M)

with u 2 X

0

(p)

and p+ q = l.

Proof of (2) for f =

�

f : The map

f

�

: C

l

(X ;M)! C

l+r

(Y ;M)

is the family of maps

[O

Y

; f ]

x

y

� r

�(y)j�(x)

: M(x)!M(y)

with y 2 Y

(l+r)

, x 2 X

(l)

and f(y) = x.

The map

(f

0

)

�

: C

p

(X

0

;A

q

[�;M ])! C

p+r

(Y

0

;A

q

[�;M ])

is the family of maps induced by the maps

[O

Y

0

; f

0

]

x

0

y

0

� (f

0

y

0

)

�

: C

q

(X

�(x

0

)

;M)! C

q

(X

�(y

0

)

;M)

with y

0

2 Y

0

(p+r)

, x

0

2 X

0

(p)

, f

0

(y

0

) = x

0

and where f

0

y

0

: X

�(y

0

)

! X

�(x

0

)

is the natural

map. Moreover (f

0

y

0

)

�

is the family of maps

[O

X




O

X

0

�(y

0

); f

0

y

0

]

x

y

� r

�(x)j�(y)

: M(x)!M(y)

with y 2 Y

(p+q+r)

lying over x 2 X

(p+q)

and over y

0

.

The claim amounts to show for such points y

0

, x

0

, y, x the equality

l

�

(�(x) 


O

X

0

O

Y

0

)

(y)

�

= l

�

(�(x

0

)


O

X

0

O

Y

0

)

(y

0

)

�

� l

�

(�(x)


O

X

0

�(y

0

))

(y)

�

.

For this see (Fulton 1984, A.4.1).

Proof of (4): The map

@

U

Y

: C

l

(U ;M)! C

l�1

(Y ;M)

is on the subquotients of the �ltrations given by the family of maps

@

u

: C

q

(U

�(u)

;M)! C

q�1

(Y

�(u)

;M)

with u 2 X

0

(p)

, p+ q = l and where @

u

is the boundary map for the closed immersion

Y

�(u)

! X

�(u)

. On the other hand

[@

U

Y

]

#

: C

p

(X

0

;A

q

[� � j;M ])! C

p

(X

0

;A

q

[� � i;M ])

is componentwise induced by the maps @

u

. �
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By an a�ne bundle of dimension n we mean a bundle �: V ! X which is locally

on X isomorphic to X � A

n

! X with a�ne transition maps. (In applications we

are mainly interested in the special case of vector bundles.)

A �rst application of the spectral sequence is

(8.6) Proposition. Let �: V ! X be an a�ne bundle of dimension n. Then

�

�

: A

p

(X ;M)! A

p+n

(V ;M)

is bijective for all p. If X is equidimensional, then

�

�

: A

p

(X ;M)! A

p

(V ;M)

is bijective for all p.

Here again the second statement follows from the �rst and one may drop in the

codimension setting the �nite type hypothesis.

Proof : By Corollary 8.2 and Proposition 8.5.2 applied to Y

0

= X

0

= X , Y = V ,

f =

^

f = �, all we need to show is

A

q

[�;M ] = 0 for q 6= n

and that

[�

�

]: M = A

0

[id

X

;M ]! A

n

[�;M ]

is an isomorphism of cycle modules over X .

Therefore we are reduced to the case X = SpecF . Then V is a trivial bundle,

V = A

n

F

. For n = 1 the claim is (H) of Section 2. So we know Proposition 8.6 for

line bundles over an arbitrary base. But then the case V = A

n

F

follows by induction

on n. �
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9. Homotopy

We have just observed the homotopy property for a�ne bundles. In this section we

show that this fact can be made more precise on cycle level by means of a homotopy

inverse.

A homomorphism �: X

p

! Y with �(�) = 0 is called a strong homotopy equiva-

lence if there is r: Y

p

! X and H : Y

p

! Y such that

�(r) = 0,(9.0.1)

r � � = id,(9.0.2)

H � � = 0,(9.0.3)

�(H) = id� � � r.(9.0.4)

The pair (r;H) will be called h-data for �.

Let �: V ! X be an a�ne bundle. We will show that �

�

: X

p

! V is a strong

homotopy equivalence. A crucial point here is the treatment of the case V = X � A

1

.

The general case is then more or less clear in view of the decomposition of the cycle

complexes corresponding to boundary triples. We give here explicit formulas in order

to make clear compatibility with base change and �ltrations.

By a coordination � = (X

i

; �

i

) of an a�ne bundle �: V ! X of dimension n we

mean a sequence ? = X

0

� X

1

� � � � � X

k

= X of closed subsets of X together with

trivializations

�

i

: V j (X

i

nX

i�1

)! (X

i

nX

i�1

)� A

n

.

(We use the notation V j U = V �

W

U for U � W and a scheme V ! W over W ).

Coordinations clearly exist since X is noetherian. For a morphism f : Y ! X we

denote by f

�

� the induced coordination on the pull-back bundle f

�

V .

In the following we construct in several steps h-data

r(�): C

p

(V ;M)! C

p�n

(X ;M),

H(�): C

p

(V ;M)! C

p+1

(V ;M)

for �

�

depending on a coordination � .

(9.1) The case V = X � A

1

. h-data (r;H) for �

�

: X

p

! X � A

1

are given by the

composites

r: X�A

1

j

�

p

�! X�(A

1

nf0g)

f�1=tg

p

���! X�(A

1

nf0g)

@

1

p

�! X ,

H : X�A

1

p

�

2

p

�! X�(A

1

�A

1

n�)

fs�tg

p

���! X�(A

1

�A

1

n�)

p

1

�

p

�! X�A

1

.

Here t is the coordinate of A

1

= SpecZ[t] and s, t are the coordinates of A

1

� A

1

=

SpecZ[s]� SpecZ[t] . Moreover � = fs � t = 0g is the diagonal, j is the standard

inclusion, p

1

and p

2

are given by the standard projections and @

1

is induced by

X = X �1 � X � (P

1

n f0g) with open complement X � (A

1

n f0g).
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We have to verify for (r;H) the de�ning properties of h-data. (9.0.1) and (9.0.3)

are immediate and (9.0.2) follows from Lemma 4.5. To check (9.0.4) consider the

decomposition

(p

1

)

�

: X � (A

1

� A

1

n�)

q

�

p

�! X � A

1

� P

1

�p

1

�

p

�! X � A

1

where q is the inclusion and �p

1

is the projection. �p

1

is proper and therefore

�(H) = (�p

1

)

�

� �(q

�

) � fs� tg � p

�

2

.

Moreover

�(q

�

) = (i

�

)

�

� @

�

+ (i

1

)

�

� @

1

where i

�

: X��! X� A

1

�P

1

, i

1

: X� A

1

�1! X� A

1

�P

1

are the inclusions

and @

�

, @

1

are the boundary maps for X � � ! X � A

1

� A

1

, X � A

1

�1 !

X � (A

1

� P

1

n�) , respectively.

Since s� t is a parameter for � one �nds

(�p

1

)

�

� (i

�

)

�

� @

�

� fs� tg � p

�

2

= id

by Lemma 4.5.

Let W = A

1

� P

1

n (� [ A

1

� 0) . Moreover let ~p

2

be the restriction of p

2

to

U = X � (W n A

1

� 1) and let

~

@

1

be the boundary map corresponding to the

inclusion X � A

1

�1 ! X �W . Then

@

1

� fs� tg � p

�

2

=

~

@

1

� fs� tg � ~p

�

2

.

Since (s� t)=(�t) is a unit on W with constant value 1 on X � A

1

�1 one has

~

@

1

� fs� tg � ~p

�

2

=

~

@

1

� f�tg � ~p

�

2

.

The compatibility of the boundary maps with 
at pull-back now gives

(�p

1

)

�

� (i

1

)

�

� @

1

� fs� tg � p

�

2

= ��

�

� r.

Putting things together yields (9.0.4).

(9.2) The case V = X � A

n

. Let �

n

: X � A

n

! X be the projection and put

�

n

X

= �

�

n

: X

p

! X � A

n

. By induction on n we de�ne h-data (r

n

X

; H

n

X

) for �

n

X

.

Let Y = X � A

1

so that Y � A

n�1

= X � A

n

. Note that �

n

X

= �

n�1

Y

� �

�

where

�: Y ! X is the projection. Put

r

n

X

= r � r

n�1

Y

,

H

n

X

= H

n�1

Y

+ �

n�1

Y

�H � r

n�1

Y

.

Here (r;H) are the h-data for �

�

from (9.1); moreover, r

0

Y

= �

0

Y

= id

�

Y

and H

0

Y

= 0.

Documenta Mathematica 1 (1996) 319{393



Chow Groups with Coefficients 373

The properties (9.0.1) and (9.0.2) can be easily veri�ed. For (9.0.3) note that

H

n

X

� �

n

X

= H

n

X

� �

n�1

Y

� �

�

= (H

n�1

Y

� �

n�1

Y

) � �

�

+ �

n�1

Y

�H � (r

n�1

Y

� �

n

Y

) � �

�

= 0 + �

n�1

Y

� (H � �

�

) = 0.

Finally (9.0.4) follows from

�(H

n

X

) = �(H

n�1

Y

) + �

n�1

Y

� �(H) � r

n�1

Y

= 1� �

n�1

Y

� r

n�1

Y

+ �

n�1

Y

� (1� �

�

� r) � r

n�1

Y

= 1� �

n

X

� r

n

Y

.

(9.3) Glueing. Let �: V ! X be an a�ne bundle, let Y � X be closed, let

U = X n Y and put V

0

= V j Y , V

00

= V j U . For given h-data (r

0

; H

0

) for

(� j V

0

)

�

: Y

p

! V

0

and (r

00

; H

00

) for (� j V

00

)

�

: U

p

! V

00

we de�ne h-data (r;H) for

�

�

: X

p

! V by the formulae:

r =

�

r

0

�r

0

� @ �H

00

0 r

00

�

, H =

�

H

0

�H

0

� @ �H

00

0 H

00

�

.

Here the matrix notation refers to the natural decompositions

C

�

(X ;M) = C

�

(Y ;M)� C

�

(U ;M),

C

�

(V ;M) = C

�

(V

0

;M)� C

�

(V

00

;M).

Moreover @: V

00

p

! V

0

is the boundary map corresponding to V

0

� V . The veri�-

cation of (9.0.1){(9.0.4) is straightforward and omitted.

(9.4) The general case. Given a coordination � one uses iteratively the recipe of

(9.3) to construct h-data

�

r(�); H(�)

�

for �

�

.

It turns out that the glueing process of (9.3) is \associative" in the sense that

�

r(�); H(�)

�

does not depend on the ordering in which the di�erent pieces are glued

together. However, this is not at all important for us; one should just decide oneself

for some �xed standard ordering.

(9.5) Functoriality. The construction of

�

r(�); H(�)

�

is compatible with manip-

ulations on the base given by the four types of maps f

�

, g

�

, fag and @. We omit a

formulation, since this will be used only in the trivial case of open immersions g.

(9.6) Proposition.

(1) Let �: V ! X be an a�ne bundle of dimension n with coordination � and let

�: X ! X

0

be a morphism. Then

r(�)

�

C

p;l

(� � �)

�

� C

p;l�n

(�),

H(�)

�

C

p;l

(� � �)

�

� C

p;l+1

(�).
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(2) Let

V

�

�! X

?

?

y

�

?

?

y

�

V

0

�

0

�! X

0

be a pull-back diagram with �

0

an a�ne bundle of dimension n and let �

0

be a coor-

dination for �

0

. Then

r(�

�

�

0

)

�

C

p;l

(�)

�

� C

p�n;l�n

(�),

H(�

�

�

0

)

�

C

p;l

(�)

�

� C

p+1;l+1

(�).

Proof : This is straightforward (but nevertheless tedious) by following the construc-

tions. �

In order to de�ne h-data as above one needs less than the choice of a coordination.

For example, in (9.2) one refers alone to trivializations of the one-dimensional bundles

X � A

m+1

! X � A

m

.

We have not tried to describe the precise amount of information of a coordination

needed in order to perform the above construction.

10. Deformation to the Normal Cone

This section describes three general constructions associated to closed imbeddings:

the normal cone, the deformation space and the double deformation space.

For the general role of the deformation space in intersection theory, we refer to

(Fulton 1984). The double deformation space will be our tool to verify associativity

of the intersection operations.

We �rst �x notations and describe some signi�cant properties. Explicit descrip-

tions are given in (10.3){(10.5) below.

Let Z ! Y ! X be closed imbeddings.

The normal cone to Y in X is denoted by N = N

Y

X = N(X;Y ). There is the

projectionN

Y

X ! Y and the inclusion Y ! N

Y

X . If Y ! X is a regular imbedding,

then N

Y

X is a vector bundle over Y with the inclusion as zero section.

The deformation space D = D(X;Y ) is a scheme over X � A

1

. It is 
at over A

1

.

Over A

1

n f0g � A

1

one has

D j (A

1

n f0g) = X � (A

1

n f0g).

Furthermore the projection D j f0g ! X�f0g factors through Y ! X�f0g and one

has

D j f0g = N

Y

X
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as schemes over Y . (Our D is in Fulton 1984, Chap. 5 denoted by M

0

; moreover we

have taken 0 instead of 1 as the basepoint of the special �ber.)

The double deformation space D = D(X;Y; Z) is a scheme over X � A

2

. It is


at over A

2

and one has the following canonical identi�cations of schemes over A

2

,

assuming in (10.0.3){(10.0.5) that Z ! Y ! X are regular imbeddings.

D j A

1

� (A

1

n f0g) = D(X;Y )� (A

1

n f0g),(10.0.1)

D j (A

1

n f0g)� A

1

= (A

1

n f0g)�D(X;Z),(10.0.2)

D j A

1

� f0g = D(N

Z

X;N

Z

Y ),(10.0.3)

D j f0g � A

1

= D(N

Y

X;N

Y

X j Z).(10.0.4)

Moreover the projection D j f(0; 0)g ! X � f(0; 0)g factors through Z ! X and one

has

(10.0.5) D j f(0; 0)g = N(N

Z

X;N

Z

Y ) = N(N

Y

X;N

Y

X j Z)

as schemes over Z.

There is a more symmetric but less general version of the double deformation

space. Namely, let Y , Y

0

be closed subschemes of X and let Z be the intersection

of Y and Y

0

, i.e., Z = Y �

X

Y

0

. Then there is a double deformation space

e

D =

e

D(X ;Y; Y

0

) ! X � A

2

relating (in the transversal case) all �ve inclusions induced

from Z � Y; Y

0

� X . The deformation space

e

D is 
at over A

2

and symmetric with

respect to a simultaneous interchange of Y , Y

0

and of the factors of A

2

= A

1

� A

1

.

Suppose that Y and Y

0

meet transversally. Then

e

D j (A

1

n f0g)� A

1

= D(X;Y )� A

1

,

e

D j f0g � A

1

= D(N

Y

X;N

Y

X j Z).

Moreover one has

e

D j L = D(X;Z) for any line L � A

2

through the origin as long as

L is di�erent from the two axes.

In the case Z = Y �

X

Y

0

, the space D(X;Y; Z) is the pull-back of the space

e

D(X ;Y; Y

0

) along the a�ne blow up A

2

! A

2

, (t; s)! (ts; s). We don't need

e

D, but

we have included below its de�nition, since it might be a bit simpler to understand

than D.

We have to recall facts from local algebra. Remark 10.1 is a special version of

the local criterion of 
atness (Matsumura 1980, (20.G), p. 152). Remark 10.2 may be

deduced by considering locally regular sequences for J containing regular sequences

for I (see Serre 1957). For a compact account of other facts needed in the following

we refer to (Fulton 1984, App. A, App. B).

(10.1) Remark. A morphism U ! V � A

1

is 
at if and only if the morphisms

U �

A

1

(A

1

n f0g)! V � (A

1

n f0g) , U �

A

1

f0g ! V � f0g and U ! A

1

are 
at. �
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(10.2) Remark. If Z ! Y and Y ! X are regular imbeddings, then Z ! X is a

regular imbedding. If X is a�ne, and if X = SpecA and I � J � A are the ideals

corresponding to Y and Z, respectively, then

I

n

J

m

\ J

m+n+1

= I

n

J

m+1

,(1)

I

n

J

m

\ I

n+1

= I

n+1

J

m�1

.(2)

Here we understand n, m 2 Z with I

n

= J

n

= A for n � 0. �

We next give the de�nitions of N , D, D and

e

D for a�ne X . From the naturality

of the a�ne constructions it will be obvious that they extend to global ones.

We keep the notations of Remark 10.2. Moreover we use the coordinates A

1

=

Spec k[t] and A

2

= Spec k[t; s]. The indices n, m always run in Z.

(10.3) The normal cone. N = N

Y

X is de�ned as the spectrum of the ring

O

N

=

a

n

I

n

=I

n+1

.

O

N

is a ring over O

Y

= A=I and projection to the degree zero summand gives a

homomorphism O

N

! O

Y

.

(10.4) The deformation space. D = D(X;Y ) is de�ned as the spectrum of the

subring

O

D

=

X

n

I

n

� t

�n

� A[t; t

�1

].

O

D

is a �nitely generated ring over A[t] (with generators x

i

t

�1

if x

i

are generators

of I). After inverting t one has

O

D

[t

�1

] = A[t; t

�1

].

Since t is not a zero divisor, it follows that O

D

is 
at over k[t]. Moreover

O

D

= t � O

D

=

a

n

I

n

=I

n+1

= O

N

.

For later purposes we are very precise about this identi�cation: for x 2 I

n

the residue

of x � t

�n

mod I

n+1

� t

�n

corresponds to (�1)

n

x mod I

n+1

. (This sign convention

will avoid some other signs later on.)

(10.5) The double deformation space. D = D(X;Y; Z) is the spectrum of the

subring

O

D

=

X

n;m

I

n

J

m�n

� t

�n

s

�m

� A[t; s; t

�1

; s

�1

].

O

D

is �nitely generated over A[s; t]. After inverting s or t one has (with D

0

=

D(X;Z))

O

D

[s

�1

] =

X

n;m

I

n

� t

�n

s

�m

= O

D

[s; s

�1

],

O

D

[t

�1

] =

X

n;m

J

m

� t

�n

s

�m

= O

D

0

[t; t

�1

].
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This shows (10.0.1) and (10.0.2). For (10.0.3) note �rst

O

D

= s � O

D

=

a

n;m

[I

n

J

m�n

=I

n

J

m�n+1

] � t

�n

s

�m

.

In order to make clear the ring structures (in particular as ring over k[t; s]) we keep

here the terms t

�n

s

�m

, having now merely the meaning of symbols.

Moreover N

Z

X and N

Z

Y are the spectra of

R =

a

m

[J

m

=J

m+1

] � s

�m

,

R

0

=

a

m

[(J

m

+ I)=(J

m+1

+ I)] � s

�m

,

The projection R! R

0

yields an inclusion N

Z

Y ! N

Z

X .

Let

e

I = ker(R! R

0

). By Remark 10.2.2 one has J

m

\I � I �J

m�1

and therefore

e

I =

a

m

[(I � J

m�1

+ J

m+1

)=J

m+1

] � s

�m

and

e

I

n

=

a

m

[(I

n

� J

m�n

+ J

m+1

)=J

m+1

] � s

�m

.

Hence D(N

Z

X;N

Z

Y ) is the spectrum of

a

n

e

I

n

=

a

n;m

[(I

n

� J

m�n

+ J

m+1

)=J

m+1

] � t

�n

s

�m

.

(10.0.3) follows now from Remark 10.2.1.

For (10.0.4) note �rst

O

D

= t � O

D

=

a

n;m

[I

n

J

m�n

=I

n+1

J

m�n�1

] � t

�n

s

�m

.

For the ring of N

Y

X we write now

O

N

=

a

n

[I

n

=I

n+1

] � u

�n

.

Let

e

J � O

N

be the ideal corresponding to the closed subscheme N

Y

X jZ. Its powers

are

e

J

m

=

a

n

[(J

m

I

n

+ I

n+1

)=I

n+1

] � u

�n

.

Hence D(N

Y

Z;N

Y

X j Z) is the spectrum of

R

00

=

a

n;m

[(J

m

I

n

+ I

n+1

)=I

n+1

] � u

�n

s

�m

.

De�ne

': O

D

= t � O

D

! R

00

,

(x mod I

n+1

J

m�n�1

) � t

�n

s

�m

! (x mod I

n+1

) � u

�n

s

�m+n

.

It is easy to see that ' is a surjective ring homomorphism over k[s]. Moreover '

is injective by Remark 10.2.1. The map ' gives the identi�cation of (10.0.4). Now

(10.0.5) is obvious. The 
atness over A

2

(not needed in the following) may be deduced

from Remark 10.1.
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(10.6) The double deformation space

e

D. We just give the de�nition. Let I

0

� A

be the ideal corresponding to Y

0

! X . One puts

O

e

D

=

X

n;m

I

n

I

0m

� v

�n

s

�m

� A[v; s; v

�1

; s

�1

].

One may handle with

e

D similar as with D in (10.5). In the transversal case one has

O

D

= O

e

D




k[v;s]

k[t; s]

where k[v; s] � k[t; s] via v ! ts, s! s and with J = I + I

0

.

11. The Basic Construction

For a closed immersion i: Y ! X we de�ne

J(i) = J(X;Y ): X

p

! N

Y

X

as the composite of

X

�

�

p

�! X � (A

1

n f0g)

ftg

p

�! X � (A

1

n f0g)

@

p

�! N

Y

X .

Here �: X � (A

1

n f0g)! X is the projection, A

1

= Spec k[t] and @ is the boundary

map for N

Y

X ! D(X;Y ). One has �

�

J(X;Y )

�

= 0 so that J(X;Y ) is a homomor-

phism of complexes C

�

(X ;M)! C

�

(N

Y

X ;M) .

IfM = K

�

, then the restriction of J(X;Y ) to the classical cycle groups coincides

with the specialization homomorphisms � of (Fulton 1984, Chap. 5.2); this may be

deduced from the description of � in (Fulton 1984, Prop. 5.2) via Cartier divisors.

As for classical cycles, one may think of J(X;Y ) as the pull-back along tubular

neighborhoods followed by a linearization process. In the following we have collected

the remarks on J(X;Y ) which are needed in further sections. We have not tried to

give a detailed geometrical description.

The construction of J(X;Y ) is local in the sense that

J(U; Y \ U) � j

�

= ~|

�

� J(X;Y )

where j: U ! X is an open immersion and ~|: N

Y

X j (Y \U)! N

Y

X is the induced

inclusion.

(11.1) Lemma. Let �: Y ! N

Y

X be the inclusion. Then

J(X;Y ) � i

�

= �

�

.

Proof : The statement follows from Lemma 4.5 and the fact that the closure of Y �

(A

1

n f0g) in D(X;Y ) is Y � A

1

. �
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Let X be normal, y 2 X

(1)

and Y = fyg. Moreover let F and E be the function

�elds ofX andN

Y

X , respectively. We want to compute the codimension 0 component

J

0

: M(F )!M(E)

of J(X;Y ). The problem is purely local in y. Let v be the valuation on F corre-

sponding to y and let � = �(y) = �(v). Moreover let m be the ideal of y, let � 2 m

be a prime and let �� 2 m=m

2

be its image. The normal cone N

Y

X is the spectrum of

�[��] =

a

n

m

n

=m

n+1

and one has E = �(��).

The following lemma shows that there is a factorization

J

0

: M(F )

p

!M(v)!M(E)

where p is from Remark 1.6.

(11.2) Lemma.

J

0

= r

Ej�

� s

�

v

+ f��g � r

Ej�

� @

v

.

Proof : We may suppose X = SpecA and that the ideal I corresponding to y is

generated by �. Then D(X;Y ) is the spectrum of

A[t; �t

�1

] � A[t; t

�1

].

By de�nition we have

J

0

= @

w

� ftg � r

F (t)jF

where w is the valuation on F (t) corresponding to the principal ideal t � A[t; �t

�1

].

Note that E = �(w) and that �� is the residue of the w-unit ��t

�1

(by the sign

convention in 10.4). The claim follows now from

@

w

� ftg � r

F (t)jF

(�) = @

w

� f��g � r

F (t)jF

(�)� @

w

� f��t

�1

g � r

F (t)jF

(�)

= @

w

� r

F (t)jF

(f��g � �) + f��g � @

w

� r

F (t)jF

(�)

and the fact that w restricts on F to v. �

The preceding remarks yield a complete description of J(X;Y ) for smooth

curves X .

The rest of the section contains a series of technical lemmata.

(11.3) Lemma. Let Y ! X be a closed immersion, let g: V ! X be 
at (of constant

relative dimension) and let

N(g): N(V; Y �

X

V ) = N(X;Y )�

X

V ! N(X;Y )

be the projection. Then

J(V; Y �

X

V ) � g

�

= N(g)

�

� J(X;Y ).

Proof : This follows from the 
atness of D(V; Y �

X

V )! D(X;Y ). �
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(11.4) Lemma. Let U ! V be a closed immersion and let p: V !W be 
at. Suppose

that the composite

q: N

U

V ! U ! V !W

is 
at of the same relative dimension as p. Then

J(V; U) � p

�

= q

�

: W

p

! N

U

V .

Proof : Let �: W � (A

1

n f0g)!W be the projection and let f be the composite

f : D(V; U) �! V � A

1

p�id

��!W � A

1

.

Then, by de�nition,

J(V; U) � p

�

= @ � ftg �

�

f j V � (A

1

n f0g)

�

�

� �

�

.

Now f is 
at by Remark 10.1 and f jN

U

V = q. Hence

J(V; U) � p

�

= q

�

� @

0

� ftg � �

�

where @

0

is the boundary map corresponding toW�f0g ,!W�A

1

. But @

0

�ftg��

�

=

id by Lemma 4.5. �

(11.5) Lemma. Let U ! V be a regular imbedding, let p: V ! W be smooth of con-

stant relative dimension and suppose p � i is a regular imbedding. Then the projection

q: N

U

V ! N

U

W

is an epimorphism of vector bundles and

J(V; U) � p

�

= q

�

� J(W;U).

Proof : Use the 
atness of D(V; U)! D(W;U). �

(11.6) Lemma. Let �: T ! T

0

be a morphism, let T

0

1

; T

0

2

� T

0

be closed subschemes

and let T

i

= T �

T

0

T

0

i

for i = 1; 2.

Put T

3

= T n (T

1

[T

2

) , T

0

= T

1

\T

2

,

e

T

1

= T

1

nT

0

,

e

T

2

= T

2

nT

0

and let @

3

1

, @

1

0

,

@

3

2

, @

2

0

be the boundary maps for the closed immersions

e

T

1

! T n T

2

, T

0

! T

1

,

e

T

2

! T n T

1

, T

0

! T

2

,

respectively. Then

0 ' @

1

0

� @

3

1

+ @

2

0

� @

3

2

: T

3

p

! T

0

under a �ltration preserving homotopy of degree (�1;�1).

Documenta Mathematica 1 (1996) 319{393



Chow Groups with Coefficients 381

Proof : Corresponding to the set theoretic decomposition of T we have

C

�

(T ;M) = C

�

(T

0

;M)� C

�

(

e

T

1

;M)� C

�

(

e

T

2

;M)� C

�

(T

3

;M).

Let

@

3

0

: T

3

p

! T

0

be the corresponding component of d

T

. Then d

T

� d

T

= 0 gives

�(@

3

0

) + @

1

0

� @

3

1

+ @

2

0

� @

3

2

= 0.

Hence � @

3

0

is a homotopy as required. �

Let T = D = D(X;Y; Z) , T

1

= D j(f0g�A

1

) , T

2

= D j(A

1

�f0g) . We keep the

notations of Lemma 11.6. Then T

3

= X� (A

1

nf0g)� (A

1

n0) and T

0

= D j f(0; 0)g .

Let �: T

3

! X be the projection and let t, s be the coordinates of A

2

(as in (10.5),

so that T

1

= ft = 0g , T

2

= fs = 0g ).

(11.7) Lemma. Let Z ! Y ! X be regular imbeddings. Then

@

1

0

� @

3

1

� ft; sg � �

�

= J(N

Y

X;N

Y

X j Z) � J(X;Y ),

@

2

0

� @

3

2

� fs; tg � �

�

= J(N

Z

X;N

Z

Y ) � J(X;Z).

Proof : Let

�

i

: X � (A

1

n f0g)� (A

1

n f0g)! X � (A

1

n f0g), �

i

: X � (A

1

n f0g)! X

be the projections with

�

1

(x; t; s) = (x; s), �

1

(x; s) = x,

�

2

(x; t; s) = (x; t), �

2

(x; t) = x.

One �nds (using in particular Lemma 11.3):

@

1

0

� @

3

1

� ft; sg � �

�

= @

1

0

� fsg � @

3

1

� ftg � �

�

1

� �

1�

= @

1

0

� fsg � J

�

X � (A

1

n 0);Y � (A

1

n f0g)

�

� �

1�

= @

1

0

� fsg �

�

N

Y

X � (A

1

n f0g)! N

Y

X

�

�

� J(X;Y )

= J(N

Y

X;N

Y

X j Z) � J(X;Y ),

@

2

0

� @

3

2

� fs; tg � �

�

= @

2

0

� ftg � @

2

1

� fsg � �

�

2

� �

2�

= @

2

0

� ftg � J

�

X � (A

1

n f0g); Z � (A

1

n f0g)

�

� �

2�

= @

2

0

� ftg �

�

N

Z

X � (A

1

n f0g)! N

Z

X

�

�

� J(X;Z)

= J(N

Z

X;N

Z

Y ) � J(X;Z). �
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12. The Pull-back Map

In this section we de�ne the pull-back maps for morphisms to smooth varieties. Some

properties are formulated, in particular the functoriality of the spectral sequences.

We conclude with applications and discussions concerning birational questions. The

proofs of Theorems 12.1 and 12.7 are given in the next section.

In the following all schemesX , Y , X

0

, : : : are 
at overB of some constant relative

dimension denoted by dim

B

X , : : : . All products Y �X , Y

0

�X

0

, : : : are taken over B

and cycle modules will be induced via projection to the second factor (projection to

the �rst factor does not exist for us). We use the notations T

S

X = N

X

(X �

S

X) and

TX = T

B

X . We are primarily interested in the case B = Spec k, but we don't have

to pay much for considering arbitrary B. M is a cycle module over X .

Let X be smooth over B. Then TX is a vector bundle on X . For a morphism

f : Y ! X let

f : Y

i

�! Y �X

p

�! X

be the factorization with i(y) =

�

y; f(y)

�

and p(y; x) = x. Then i is a regular

imbedding and N

Y

(Y �X) = f

�

TX .

We choose a coordination � on TX and de�ne

I(f) = I(f ; �) = r(f

�

�) � J(Y �X;Y ) � p

�

: X

p

! Y .

Note that the construction is local in the sense that for an open immersion j: U ! X

one has

I(

~

f ; j

�

�) � j

�

= ~|

�

� I(f ; �)

where

~

f : f

�1

(U)! U is the restriction of f and ~|: f

�1

(U)! Y is the inclusion.

One has �

�

I(f)

�

= 0 and

I(f)

�

C

p

(X ;M)

�

� C

p+r

(Y ;M)

where r = dim

B

Y � dim

B

X . If B is equidimensional, then

I(f)

�

C

p

(X ;M)

�

� C

p

(Y ;M).

We de�ne

f

q

: A

p

(X ;M)! A

p+r

(Y ;M)

and

f

q

: A

p

(X ;M)! A

p

(Y ;M)

as the induced maps on (co-)homology. f

q

does not depend on the choice of � . One

has the following properties.

(12.1) Theorem. For g: Z ! Y and f : Y ! X with X and Y smooth over B one

has (f � g)

q

= g

q

� f

q

.

For the proof see the next section.
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(12.2) Proposition. If f is 
at, then I(f) = f

�

.

Proof : It su�ces to show

J(Y �X;Y ) � p

�

= �

�

� f

�

where �: f

�

TX ! Y is the projection. For this apply Lemma 11.4 with U = Y ,

V = Y �X and W = X . �

(12.3) Proposition. If i: Y ! X is a regular imbedding and X is smooth over B,

then I(i) is homotopic to r � J(i) where r is any retraction to Y

p

! N

Y

X.

Proof : Apply Lemma 11.5 with U = Y , V = Y �X and W = X . �

The following corollary applied to the blow up at x

0

implies (together with The-

orem 12.1) property (E) of Section 2.

(12.4) Corollary. Let X be smooth over B = Spec k, let x 2 X

(p)

and let

i

x

: fxg ! X

be the inclusion. Moreover let �

1

, : : : , �

p

be any regular sequence at x and let

v

1

, : : : , v

p

be the induced sequence of valuations with the fraction �elds k(X),

�(v

1

), : : : , �(v

p�1

) and with the (residue classes of ) �

1

, : : : , �

p

as primes. Then

i

q

x

: A

0

(X ;M)! A

0

(fxg;M)

is the restriction of

s

�

p

v

p

� � � � � s

�

1

v

1

: M

�

k(X)

�

!M

�

�(x)

�

.

Proof : Let X = X

0

� X

1

� � � � � X

p

be the sequence of smooth schemes locally

around x with X

i

de�ned by h�

1

; : : : ; �

i

i. Using Theorem 12.1 one reduces to p = 1.

This case follows from Proposition 12.3 and Lemma 11.2. �

(12.5) Proposition. (Projection formula.) Consider a pull-back square

Y

�

f

�! X

?

?

y

~

h

?

?

y

h

Y

f

�! X

with h smooth and proper and with X smooth over B. Then

~

h

�

�

�

f

q

= f

q

� h

�

.
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Proof : One considers the diagram

Y �! Y �X �! X










?

?

y

^

h










Y �! Y �X �! X

?

?

y

�

h

?

?

y

?

?

y

h

Y �! Y �X �! X .

Here the bottom diagram is the pull-back along h and

^

h =

~

h � id

X

. We have three

maps X

p

! Y : the �rst is constructed along D(Y �X;Y ) and is given by pull-back

to Y � X and specialization to Y followed by push-forward; the second goes along

D(Y �X;Y ) and is given by pull-back to Y �X and specialization to Y followed by

push-forward; the third goes along D(Y �X;Y ) and is given by push-forward, pull-

back to Y �X and specialization to Y . The �rst two may be related using Lemma 11.5

(with U = Y , V = Y �X , and W = Y �X), the last two by the compatibility of the

constructions with proper push-forward. �

Consider the triangle (7.4.0) and assume that � is smooth and � is 
at. De�ne

[h=B]: A

p

[�;M ]! A

p

[�;M ]

by [h=B]

F

= (h

F

)

q

. Here we understand B = SpecF in the de�nition of (h

F

)

q

.

(12.6) Proposition. [h=B] is a homomorphism of cycle modules over B.

Proof : We apply Proposition 7.4. Since the projection �: N(Y � X;Y ) ! Y is a

vector bundle we know that

[�

�

]: A

q

[�]! A

q

[� � �]

is an isomorphism of cycle modules. Moreover

[�

�

] � [h=B] = [@] � [ftg] � [p

�

]

where p: Y � X � (A

1

n f0g) ! X is the projection and @ is the boundary for

N(Y �X;Y )! D(Y �X;Y ) . �

(12.7) Theorem. Consider the square (8.4.0) and its decomposition (8.5.0). Suppose

that B is equidimensional, � is 
at, � is smooth and X

0

(hence also X) is smooth

over B. Then the spectral sequences

E

p;q

2

(�) = A

p

(X

0

;A

q

[�;M ]) =) A

p+q

(X ;M),

E

p;q

2

(�) = A

p

(Y

0

;A

q

[�;M ]) =) A

p+q

(Y ;M)

commute with the maps

A

p

(X

0

;A

q

[�;M ])

(f

0

)

q

��! A

p

(Y

0

;A

q

[�;M ])

[

^

f=Y

0

]

#

����! A

p

(Y

0

;A

q

[�;M ]),

f

q

: A

p

(X ;M)! A

p

(Y ;M).

For the proof see the next section. Switching to dimension indices this theorem holds

without the equidimensionality assumption on B.
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For the rest of the section we assume B = Spec k.

(12.8) Lemma. Let X be smooth, let Y be integral, let f : Y ! X be a dominant

morphism and let ': k(X) ! k(Y ) be the induced homomorphism of the function

�elds. Then

I(f) jM

�

k(X)

�

= '

�

: M

�

k(X)

�

!M

�

k(Y )

�

.

Proof : After replacing Y by an open subset we may assume that f is 
at. The claim

follows from Proposition 12.2. �

(12.9) Lemma. Assume in (12.8) additionally that f is proper and that ' is an iso-

morphism. Then f

�

� I(f) = id.

Proof : Let

�

f : D(Y �X;Y )! D(X �X;X)

be the proper map induced from f . There is the commutative diagram

X

p

�! Y �X � (A

1

n f0g)

@�ftg

p

���! f

�

TX

r(f

�

�)

p

���! Y

p

?

?

y

=

p

?

?

y

~

f

�

p

?

?

y

^

f

�

p

?

?

y

f

�

X

p

�! X �X � (A

1

n f0g)

@�ftg

p

���! TX

r(�)

p

���! X

where

~

f ,

^

f are the restrictions of

�

f . The diagram shows f

�

� I(f) = I(id). But

I(id) = id by Proposition 12.2. �

Lemma 12.9 shows in particular that for any blow up Y ! X the complex

C

�

(X ;M) is a direct summand of C

�

(Y ;M). This splitting via I(f) depends alone

on the choice of a coordination of TX near the singular locus and is unique up to

homotopy.

(12.10) Corollary. Let X be a proper smooth variety over k and let M be a cycle

module over k. Then the group A

0

(X ;M) is a birational invariant of X.

Proof : If X

1

, X

2

are proper and birational isomorphic there exist a proper Y and

birational morphisms Y ! X

i

(take for Y the closure in X

1

� X

2

of a common

open subset of the X

i

). Then as subgroups of M(�

X

i

) = M(�

Y

) one has the trivial

inclusions A

0

(Y ;M) � A

0

(X

i

;M) ; Lemma 12.8 shows A

0

(X

i

;M) � A

0

(Y ;M) . �

For an illustration let X be a smooth and proper variety over k with function

�eld F . Then for any geometric valuation v on F (of rank 1) there is a birational

morphism f : Y ! X such that v has center y in Y

(1)

with �(v) = �(y). The map I(f)

yields a formula

(12.11) @

v

=

X

x2X

(1)

�

x

v

� @

x

where

�

x

v

: M

�

�(x)

�

!M

�

�(v)

�

equals the component I(f)

x

y

.
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This formula is a sort of higher dimensional analogue of the sum formula for

one-dimensional function �elds. It has the following properties:

| it is local, that is x runs only through X

(1)

(z)

where z is the center of v in X (in

other words: �

x

v

= 0 for x 62 X

(1)

(z)

).

| it is not unique, but depends only on the choice of a coordination of the tangent

bundle of X restricted to X

(z)

.

| it is universal in the sense that the �

x

v

can be written as sums of compositions of the

data of cycle modules, independent ofM . This is quite obvious from the construction

of I(f). One can make this more precise by interpreting the �

x

v

as morphisms in the

category

e

F of Remark 1.10. In this way the category

e

F appears as the natural place

for the coe�cients �

x

y

of formulas like (12.11).

Exercise: Describe the �

x

v

for dimX = 2 and v the valuation corresponding to the

exceptional �ber of the blow up in a closed point (see Remark 2.8).

Birational invariants like A

0

(X ;M) have been considered in various contexts

like �etale cohomology and K-theory, see (Colliot-Th�el�ene 1992) for a survey. The

advantage of the method of proof of Corollary 12.10 lies in its general and essentially

simple nature (after having established the functors in question as cycle modules);

moreover the formula (12.11) makes things perhaps more enlightening. A similar

method works probably for functors related with the Witt ring of quadratic forms.

To mention a particular example, let �: Z ! Spec k be proper and let M

(resp. N) be the Z-graded cycle module over k given as the cokernel (resp. image) of

[�

�

]: A

0

[�;K

�

]! A

0

[id

Speck

;K

�

] = K

�

.

By Corollary 12.10 the group A

0

(X ;M; 1) (which is a subquotient of k(X)

�

) is a

birational invariant for proper smooth X over k. The proof of this fact was the main

aim of (Rost 1990). There it was achieved by a di�erent method using the triviality of

A

1

(

e

X ;N; 1) for smooth local

e

X (proved in this paper in more generality in Section 6).
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13. Intersection Theory for Fibrations

The purpose of this section is to prove Theorems 12.1 and 12.7. We de�ne pull-back

maps on complex level for regular imbeddings and for morphisms to smooth varieties

in �bered situations. Moreover we establish functoriality of the constructions. Most

of the work has been done already in Sections 7{11.

Consider a commutative square

(�)

Y

f

�! X

?

?

y

�

?

?

y

�

Y

0

f

0

�! X

0

.

The square � is called a regular imbedding, if f and f

0

are regular imbeddings of

some constant codimensions and if the induced map

p: N

Y

X ! �

�

N

Y

0

X

0

is an epimorphism of vector bundles over Y . The kernel bundle of p is denoted by N

�

.

We consider p also as vector bundle and identify it with q

�

N

�

where q: �

�

N

Y

0

X

0

! Y

is the projection.

Let � be a regular imbedding and let ~� and ~�

0

be coordinations of N

�

! Y and

of N

Y

0

X

0

! Y

0

, respectively. We de�ne

J(�): X

p

! Y

by

J(�) = J(�; ~� ; ~�

0

) = r(�

�

~�

0

) � r(q

�

~�) � J(X;Y ).

The following is clear from Sections 8{9. One has �

�

J(�)

�

= 0 and

J(�)

�

C

p;l

(�)

�

� C

p+s;l+t

(�)

with s = � codim(f

0

) and t = � codim(f). Moreover the homotopy class of J(�)

(with respect to the degree (s; t)) does not depend on the choice of ~� and ~�

0

.

In the de�nition of J(�) we wanted to be as canonical as possible. If one is

interested only in the homotopy class, one may put J(�) = r � J(X;Y ) for any

�ltration preserving retraction r to N

Y

X ! X (\�ltration preserving" means always

with respect to the natural degrees).

Next consider a diagram

(13.1.0)

Z

f

1

�! Y

f

2

�! X

?

?

y

�

?

?

y

�

?

?

y

�

Z

0

f

0

1

�! Y

0

f

0

2

�! X

0

.

We denote the left square by �

1

, the right square by �

2

and the composed square

by �

3

.
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(13.1) Theorem. If �

1

and �

2

are regular imbeddings, then �

3

is a regular imbed-

ding and

J(�

1

) � J(�

2

) ' J(�

3

)

under a �ltration preserving homotopy.

Proof : The �rst statement is straightforward. In the following deduction of the second

statement the letters r

i

stand for some �ltration preserving retractions. We make use

of Lemma 11.3 for the homotopy (1), of Lemmata 11.6 and 11.7 for the homotopy (2)

and of Lemma 11.4 for the equality (3).

J(�

1

) � J(�

2

) ' r

1

� J(Y; Z) � r

2

� J(X;Y )

' r

3

�

�

N(N

Y

X;N

Y

X j Z)! N(Y; Z)

�

�

� J(Y; Z) � r

2

� J(X;Y )

(1)

' r

3

� J(N

Y

X;N

Y

X j Z) � (N(Y;X)! Y )

�

� r

2

� J(X;Y )

' r

3

� J(N

Y

X;N

Y

X j Z) � J(X;Y )

(2)

' r

3

� J(N

Z

X;N

Z

Y ) � J(X;Z)

' r

3

� J(N

Z

X;N

Z

Y ) � (N

Z

X ! Z)

�

� r

4

� J(X;Z)

(3)

= r

3

�

�

N(N

Z

X;N

Z

Y )! Z

�

�

� r

4

� J(X;Z)

' r

5

� J(X;Z)

' J(�

3

). �

The square � is called admissible if � is 
at, � is smooth and X

0

is smooth

over B. Consider the diagram

Y

i

�! Y �X

�

�! X

?

?

y

�

?

?

y

?

?

y

�

Y

0

i

0

�! Y

0

�X

0

�

0

�! X

0

and denote the left square by �

i

and the right square by �

p

. If � is admissible, then

�

i

is a regular imbedding and �

p

is a 
at square (see (8.5.0)). Moreover the normal

bundles of i and i

0

are given by f

�

TX and f

0�

TX

0

, respectively, and N

�

i

is given

by f

�

T

X

0

X .

Let � be admissible and let � and �

0

be coordinations of T

X

0

X and TX

0

, respec-

tively. We de�ne

I(�): X

p

! Y

by

I(�) = I(�; �; �

0

) = J(�

i

; f

�

�; f

0�

�

0

) � p

�

.

One has �

�

I(�)

�

= 0 and

I(�)

�

C

p;l

(�)

�

� C

p+s;l+t

(�)

with s = dim

B

Y

0

� dim

B

X

0

and t = dim

B

Y � dim

B

X . Moreover the homotopy

class of I(�) (with respect to the degree (s; t)) does not depend on the choice of �

and �

0

.
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(13.2) Theorem. If in (13.1.0) the squares �

1

and �

2

are admissible, then the

square �

3

is admissible and

I(�

3

)

�

=

I(�

1

) � I(�

2

)

under a �ltration preserving homotopy.

Proof : The �rst statement is trivial. For the second we consider the diagrams

Z

i

1

�! Z � Y

i

4

�! (Z � Y )�X

?

?

y

p

1

?

?

y

p

4

Y

i

2

�! Y �X

?

?

y

p

2

X ,

Z

i

3

�! Z �X

i

5

�! (Z � Y )�X

p

5

�! X .

The regular imbeddings i

j

lie over accordingly de�ned regular imbeddings i

0

j

; the

corresponding squares are denoted by �

j

.

The �

j

are regular imbeddings. An application of Lemma 11.3 and Theorem 13.1

shows that (by noting i

4

� i

1

= i

5

� i

3

and p

2

� p

4

= p

5

)

I(�

1

) � I(�

2

) ' J(�

3

) � J(�

5

) � p

�

5

.

By de�nition we have

I(�

3

) ' J(�

3

) � (p

5

� i

5

)

�

.

Finally Lemma 11.4 shows

J(�

5

) � p

�

5

= (p

5

� i

5

)

�

. �

Theorem 13.2 implies Theorem 12.1 by passing to homology. For a proof of

Theorem 12.7 we consider six squares with the top arrows

Y

i

1

�! Y �

X

0

X

i

2

�! Y �X

?

?

y

p

1

?

?

y

p

2

Y

0

�

X

0

X

i

3

�! Y

0

�X

p

3

�! X

lying over the bottom arrows

Y

0

== Y

0

i

0

�! Y

0

�X

0



















Y

0

i

0

�! Y

0

�X

0

p

0

�! X

0

.
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Let �

j

be the square corresponding to i

j

for j = 1; 2; 3. The �

j

are regular imbed-

dings. The map f

q

is induced from I(�). By the de�nition of I(�) and Theorem 13.1

we have

I(�) ' J(�

1

) � J(�

2

) � p

�

2

� p

�

3

.

Lemma 11.3 shows that

J(�

2

) � p

�

2

' p

�

1

� J(�

3

).

Therefore f

q

is the composition of the maps induced by J(�

1

) � p

�

1

and by J(�

3

) � p

�

3

.

Next note that p

1

�i

1

=

^

f . An application of Proposition 8.5 shows that J(�

1

)�

p

�

1

induces on the E

2

-terms the map [

^

f=Y

0

]

#

. Finally note that p

0

� i

0

= f

0

and that

the squares under i

3

and p

3

are pull-back squares. An application of Proposition 8.5

shows that J(�

3

) � p

�

3

induces on the E

2

-terms the map (f

0

)

q

. �

14. Products

In this section M is a cycle module over B and N is a cycle module over k. We

assume that either N = K

�

or thatM = N is a cycle module with ring structure over

B = Spec k. So in any case we are given a pairing N �M ! M of cycle modules

over B.

The restriction to these special cases are made for simpli�cation. For example,

in forming intersections of cycles with coe�cients in a cycle module M with ring

structure, one needs to know that its pairing factors through a cycle module over

B�B. However, the existence of a corresponding appropriate notion of tensor product

of cycle modules is not clear to me (and a settling of this question would lead to far here

anyway). The problem could be avoided in the following by assuming the necessary

factorizations, but this is somewhat tiring.

(14.1) Cross products. Let Y be a scheme over k and let Z be a scheme over B

(all of �nite type over k). We de�ne the cross product

� : C

p

(Y ;N)� C

q

(Z;M)! C

p+q

(Y � Z;M)

as follows. For y 2 Y let Z

y

= Spec�(y)�Z, let �

y

: Z

y

! Z be the projection and let

i

y

: Z

y

! Y � Z be the inclusion. For z 2 Z we understand similarly Y

z

; �

z

: Y

z

! Y

and i

z

: Y

z

! Y � Z. We give the following two equivalent de�nitions:

�� � =

X

y2Y

(p)

(i

y

)

�

�

�

y

� �

�

y

(�)

�

,

�� � =

X

z2Z

(q)

(i

z

)

�

�

�

�

z

(�) � �

z

�

.

Here �

y

2 N(y) is the y-component of � and the product is understood after pointwise

restriction of �

y

. The map

(i

y

)

�

: C

q

(Z

y

;M)! C

p+q

(Y � Z;M)
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is the inclusion corresponding to Z

y(q)

� (Y � Z)

(p+q)

. Similarly we understand

�

z

2M(z) and

(i

z

)

�

: C

p

(Y

z

;M)! C

p+q

(Y � Z;M).

To check equality of the two de�nitions consider the u-components for u 2 Y �Z. Let

y, z be the images of u under the projections Y �Z ! Y , Z and let R = �(y)


k

�(z).

Then the u-components are either trivial or u is a minimal prime of R. In the latter

case the u-components are given by

(�� �)

u

= r

�(u)j�(y)

(�

y

) � r

�(u)j�(z)

(�

z

) � l

R

(R

(u)

).

(14.2) Associativity. Additionally let X be of �nite type over k and let � 2

C

r

(X ;N). Then

� � (�� �) = (� � �)� �.

For a proof consider the u-components for u 2 X � Y � Z. Let x, y, z be the

images of u in X , Y , Z, respectively, and let R = �(x) 


k

�(y) 


k

�(z). Then the

u-components are either trivial or u is a minimal prime of R. In the latter case it

follows from standard rules for length that the u-components are given by

(� � �� �)

u

= r

�(u)j�(x)

(�

x

) � r

�(u)j�(y)

(�

y

) � r

�(u)j�(z)

(�

z

) � l

R

(R

(u)

).

(14.3) Commutativity. SupposeM = N is a cycle module with ring structure over

B = Spec k. Let � : Y �Z ! Z�Y be the interchange of factors. For � 2 C

p

(Y ;M;n)

and � 2 C

q

(Z;M;m) one has

�

�

(�� �) = (�1)

nm

� � � 2 C

p+q

(Z � Y ;M;n+m).

This is immediate from the de�nitions.

(14.4) Chain rule. For � 2 C

p

(Y ;N;n) and � 2 C

q

(Z;M;m) one has

d(�� �) = d(�)� �+ (�1)

n

�� d(�).

For a proof we may assume � 2 M(y), � 2 M(z) for some y 2 Y

(p)

and z 2 Z

(q)

.

Consider for u 2 Y � Z the u-components of the three terms. If one of them is

nontrivial, we must have dim(u; Y �Z) = p+ q�1 and the images y

0

, z

0

of u must be

in the closures of y, z, respectively. Dimension reasons show y

0

= y or z

0

= z. Now the

claim follows from one of the two de�nitions of the cross product and Proposition 4.6.2.

(14.5) Compatibility. The cross product is compatible with the four basic types

of maps f

�

, g

�

, fag and @ acting on one of the two factors. This follows from the

compatibility with 
at pull-back and De�nition 1.3. We omit a detailed formulation.

We conclude with a consideration of the intersection pairing for cycles on a

smooth variety. Let X be smooth over k and let � be a coordination of TX . We

de�ne

I

X

: C

�

(X ;N)� C

�

(X ;M)! C

�

(X ;M),

I

X

(�; �) =

�

r(�) � J(X �X;X)

�

(�� �).

By (14.4) this is a pairing of complexes. Let

�

: A

�

(X ;N)�A

�

(X ;M)! A

�

(X ;M)

be the induced pairing.
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The next theorem follows from the preceding remarks and in particular from

Theorem 12.1. It holds accordingly on chain level up to homotopy.

(14.6) Theorem. If M = N is a cycle module with ring structure over B = Spec k,

the pairing

�

turns A

�

(X ;M) into an anti-commutative associative ring. If N = K

�

,

the pairing

�

turns A

�

(X ;M) into a module over A

�

(X ;K

�

). �

We have de�ned in particular a ring structure on the classical Chow groups

CH

�

(X) =

a

p

A

p

(X ;K

�

; p)

of a smooth variety. This ring structure coincides with the classical one. This

may be deduced from the remark at the beginning of Section 11 and (Fulton 1984,

Chaps. 5, 6, 8).

References

Bass, H., Tate, J. (1972): The Milnor ring of a global �eld, in: Algebraic K-Theory II|

\Classical" Algebraic K-Theory and Connections with Arithmetic, Proceedings,

Battelle Institute 1972, Lecture Notes in Math. 342 (1972) 349{446

Bloch, S. (1986): Algebraic cycles and higher algebraic K-theory, Adv. Math. 61

(1986) 267{304

Bloch, S., Ogus, A. (1974): Gersten's conjecture and the homology of schemes, Ann.

scient.

�

Ec. Norm. Sup. 7 (1974) 181{202

Colliot-Th�el�ene, J-L. (1992): Birational invariants, purity and the Gersten conjecture,

K-Theory and algebraic geometry: connections with quadratic forms and division

algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math., 58, Part 1, 1{64,

Amer. Math. Soc., Providence, RI, 1995

Fulton, W. (1984): Intersection Theory, Ergebnisse der Mathematik und ihrer

Grenzgebiete, Springer, 1984

Grayson, D. (1976): Higher Algebraic K-Theory II, in: Algebraic K-Theory, Evanston

1976, Lecture Notes in Math. 551 (1976) 217{240

Grayson, D. (1978): Products in K-Theory and Intersecting Algebraic Cycles, Invent.

Math. 47 (1978) 71{83

Hartshorne, R. (1977): Algebraic Geometry, Graduate Texts in Mathematics, Sprin-

ger, 1977

Hilton, P. J., Stammbach, U. (1971): A Course in Homological Algebra, Graduate

Texts in Mathematics, Springer, 1971

Karpenko, N. A., Merkurjev, A. S. (1991): Chowgroups of projective quadrics,

Leningrad Math. J. 2 No.3 (1991)

Kato, K. (1980): A generalization of local class �eld theory by using K-groups II, J.

Fac. of Sc., Univ. of Tokyo 1A 27 (1980) 603{683

Documenta Mathematica 1 (1996) 319{393



Chow Groups with Coefficients 393

Kato, K. (1986): Milnor K-theory and the Chowgroup of zero cycles, in: Applications

of Algebraic K-Theory to Algebraic Geometry and Number Theory, Part I,

Proceedings, Contemp. Math. 55 (1986) 241{253

Matsumura, H. (1980): Commutative Algebra, Second Edition, Math. Lecture Note

Series, Benjamin/Cummings, Reading, 1980

Merkurjev, A. S., Suslin, A. A. (1982): K-cohomology of Severi-Brauer varieties and

the norm residue homomorphism, Izv. Akad. Nauk SSSR 46 (1982) 1011{1046 [engl.

transl. in: Math. USSR Izv. 21 (1983) 307{340]

Merkurjev, A. S., Suslin, A. A. (1986): On the norm residue homomorphism of degree

three, preprint, LOMI, 1986 [also: Math. USSR Izv. 36 (1991) 541{565]

Merkurjev, A. S., Suslin, A. A. (1987): On the K

3

for a �eld, preprint, LOMI (1987)

[also: Math. USSR Izv. 36 (1991) 541{565]

Milnor, J. (1970): Algebraic K-theory and quadratic forms, Invent. Math. 9 (1970)

318{344

Milnor, J. (1971): Introduction to Algebraic K-Theory, Annals of Math. Studies 72,

Princeton Univ. Press, 1971

Quillen, D. (1973): Higher algebraic K-Theory, in: Algebraic K-Theory I|Higher K-

Theories, Proceedings, Battelle Institute 1972, Lecture Notes in Math. 341 (1973)

77{139

Rost, M. (1990): Durch Normengruppen de�nierte birationale Invarianten, C. R.

Acad. Sci. Paris 310 S�erie I (1990) 189{192

Serre, J-P. (1957): Alg�ebre locale � Multiplicit�es, 1957/58, Lecture Notes in Math. 11

(1975)

Serre, J-P. (1968): Corps Locaux, Hermann, Paris, 1968

Serre, J-P. (1992): R�esum�e de cours 1991-1992, Annuaire du Coll�ege de France (1992)

105{113 [reproduced in: Serre 1994]

Serre, J-P. (1994): Cohomologie Galoisienne, cinqui�eme �edition, Lecture Notes in

Math. 5 (1994)

Shatz, S. (1972): Pro�nite groups, arithmetic and geometry, Annals of Math. Studies

67, Princeton Univ. Press, 1972

Somekawa, M. (1990): On Milnor K-groups attached to Semi-Abelian Varieties, K-

Theory 4 no.2 (1990) 105{119

Srinivas, V. (1991): Algebraic K-Theory, Progress in Math. 90 (1991)

Suslin, A. A., Voevodsky, V. (1996): Singular homology of abstract algebraic varieties,

Invent. Math. 123 (1996) 61{94

Tate, J. (1976): Relations between K

2

and Galois Cohomology, Invent. Math. 36

(1976) 257{274

Fakult�at f�ur Mathematik

Universit�at Regensburg

D-93040 Regensburg

Germany

markus.rost@rphs1.physik.uni-regensburg.de

Documenta Mathematica 1 (1996) 319{393



394

Documenta Mathematica 1 (1996)


