Injectivity of $K_2D \rightarrow K_2F$ for quaternion algebras

by Markus Rost

Regensburg, May 1986*

Let F be field of characteristic different from 2 and let D be a quaternion algebra over F. The purpose of this paper is to show that the reduced norm Nrd : $K_2D \rightarrow K_2F$ is injective. (for definition and properties of Nrd see [MS; § 6, § 7]). This result is essential for the proof of Hilbert 90 for K_3 for degree-two extensions in Milnor K-Theory of fields ([R1]). Our method of proof is in some sense similar to the proof of Hilbert 90 for K_2 by Merkur'ev and Suslin. However the important role of Severi-Brauer varieties in the work of Merkur'ev and Suslin has now to be played by a certain type of three-dimensional nonsingular quadrics X_c , for which we show that $H^1(X_c, \mathcal{K}_3) = K_2F$. This result is based on the computation of the K-Theory of nonsingular quadrics in [Sw] and the more elementary determination of $SK_1(X_c)$ in [R2].

$\S 0$ The results

Let F be a field, Char $F \neq 2$. Every quaternion algebra over F is isomorphic to

$$D = D(a, b) = \langle A, B | A^2 = a, B^2 = b, AB = -BA \rangle$$

for some $a, b \in F^*$.

Theorem 1

The reduced norm

Nrd:
$$K_2D \to K_2F$$

is injective.

Let det : $D \to F$ be the norm of D. In coordinates we have

$$\det(x_1 + x_2A + x_3B + x_4AB) = x_1^2 - ax_2^2 - bx_3^2 + abx_4^2$$

If D is trivial, i.e. $D = M_2(F)$, then det is the usual determinant.

It is not difficult to prove Theorem 1 if det is surjective, see §5. Therefore we study field extensions which enlarge the image of det. To D and a fixed element $x \in F^*$ we associate a nonsingular three-dimensional quadric $X = X_c$ as follows. Let $q : D \times F \to F$ be the quadratic form $q(x, y) = \det(x) - cy^2$, and define $X \subset \mathbb{P}(D \times F) \simeq \mathbb{P}^4$ by q = 0. X is a smooth irreducible variety over F. Its function field is denoted by F(X). The important role of X in the proof of Theorem 1 relies on the fact that $c \in \det(D \otimes_F F(X))$.

^{*} This is a T_EXed version (Sept. 1996) of the original preprint.

Theorem 2

The homomorphism

$$K_2D \to K_2(D \otimes_F F(X))$$

induced by inclusion is injective.

Let $K_i(X) = K_i(X)^0 \supset K_i(X)^1 \supset K_1(X)^2 \supset K_i(X)^3$ be the filtration given by codimension of support. We put $K_i(X)^{n/m} = K_i(X)^n/K_i(X)^m$ for $m \ge n$.

Theorem 3

For i = 0, 1, 2 there are natural isomorphisms

$$K_i(X)^{0/1} = K_i F$$
 and $K_i(X)^{1/2} = K_i F$.

Consider the sequence

$$\bigoplus_{v \in X} K_3 \kappa(v) \xrightarrow{d} \bigoplus_{v \in X^{(1)}} K_2 \kappa(v) \xrightarrow{d'} \bigoplus_{v \in X^{(2)}} K_1 \kappa(v)$$

given by the localization sequence in K-Theory [Q; \S 5].

Theorem 4

There is a natural isomorphism

$$\operatorname{Ker} d'/\operatorname{Im} d = K_2 F.$$

§1 Preliminaries

For a splitting field L of D, finite over F, there is a natural homomorphism $\theta_L : K_i L \to K_i D$ by composing the transfer $K_i(D \otimes_F L) \to K_i D$ and the isomorphism $K_i L = K_i(M_2(L)) = K_i(D \otimes_F L)$ (See [MS; §1] for functorial properties). For the following proposition see [MS; Theorem 5.2] or [RS; §4].

Proposition 1.1.

For i = 0, 1, 2 the map

$$\theta = (\theta_L) : \bigoplus_L K_i L \to K_i D$$

is surjective. Here L runs over all splitting fields of D, finite over F.

Let Y be the Severi-Brauer variety associated to D and denote by F(Y) its function field. Y is isomorphic to the quadric in \mathbb{P}^2 given by $x_1^2 - ax_2^2 - bx_3^2 = 0$. The residue fields of the points of Y are splitting fields of D. The K-Cohomology of Y was studied in [MS]. We need the following results.

Proposition 1.2.

The following sequences are exact

(1.2.1)
$$0 \to K_2 F \to K_2 F(Y) \xrightarrow{d} \bigoplus_{v \in Y^{(1)}} K_1 \kappa(v) \xrightarrow{\theta} K_1 D \to 0$$

(1.2.2)
$$K_3F(Y) \xrightarrow{d} \bigoplus_{v \in Y^{(1)}} K_2\kappa(v) \xrightarrow{\theta} K_2D \to 0$$

Here $\theta = (\theta_{\kappa(v)})$ as above. For (1.2.1) see also [So; Proposition 3]. (1.2.2) is a consequence of (1.2.1), the long exact localization sequence for Y and the isomorphism $K_i(Y) = K_i F \oplus K_i D$ ([Q; Theorem 4.1]).

Now let $X = X_c = X(q)$ be the quadric defined in §1. For the following analogue of the exactness of the right part of (1.2.1) see [R2].

Proposition 1.3.

The sequence

$$\bigoplus_{v \in X^{(2)}} K_2 \kappa(v) \xrightarrow{d} \bigoplus_{v \in X^{(3)}} K_1 \kappa(v) \xrightarrow{\mathcal{N}} K_1 F$$

is exact.

Here \mathcal{N} is induced by the usual norm for finite extensions.

For trivial D, X is isomorphic to the canonical quadric \hat{X} in \mathbb{P}^4 defined by

$$x_1x_2 + x_3x_4 - x_5^2 = 0.$$

Let $Z \subset \hat{X}$ be the irreducible hyperplane section given by $x_1 = 0$ and let $v_Z \in \hat{X}^{(1)}$ be the point corresponding to Z. The birational correspondence

$$\phi: \hat{X} \to \mathbb{P}^3, \quad [x_1: x_2: x_3: x_4: x_5] \to [x_1: x_3: x_4: x_5]$$

induces an isomorphism $\hat{X} \setminus Z \to \mathbb{P}^3 \setminus \{x_1 = 0\} = \mathbb{A}^3$. From this it is clear that $\operatorname{Pic}(\hat{X}) = \mathbb{Z}$, generated by a hyperplane section.

Proposition 1.4.:

The sequence

$$0 \to K_i F \to K_i F(\hat{X}) \xrightarrow{d} \bigoplus_{\substack{v \in \hat{X}^{(1)} \\ v \neq v_Z}} K_{i-1} \kappa(v)$$

is exact.

Proof

 ϕ induces via $\hat{X} \leftarrow \hat{X} \setminus Z \simeq \mathbb{A}^3 \to \mathbb{P}^3$ an equivalence of the sequence in question with the sequence

$$0 \to K_i F \to K_i F(\mathbb{P}^n) \xrightarrow{d} \bigoplus_{v \in (\mathbb{A}^n)^{(1)}} K_{i-1} \kappa(v)$$

for n = 3. The exactness of this sequence is known for n = 1 and induction yields the result.

Corollary 1.5.

The natural homomorphism

$$K_2F \to K_2F(X)$$

is injective.

This follows from a result of Suslin, since F is algebraically closed in F(X). It can be also derived from Proposition 1.2. and Proposition 1.4. and the commutative diagram

since X is isomorphic to \hat{X} over F(Y).

Let $\mu: K_i F \otimes K_0(X) \to K_i(X)$ be the multiplication in K-Theory. μ respects filtration, i.e. $\mu(K_i F \otimes K_0(X)^n) \subset K_i(X)^n$. Let $C = C_0(q)$ be the even part of the Clifford algebra of q. For the following theorem see [Sw; Theorem 9.1].

Theorem 1.6.

There is a natural isomorphism

$$(u_0, u_1, u_2, w) : (K_i F)^3 \oplus K_i C \to K_i(X).$$

The definition of w (= u' in the notation of [Sw]) shows that the following diagram commutes

Moreover we have

$$u_i(\alpha) = \mu(\alpha, [O_X(-i)]) \text{ for } \alpha \in K_i F.$$

§2 Proof of Theorem 3

Lemma 2.1

$$C = M_2(D)$$

Proof

Let $q' = cx_1^2 - acx_2^2 - bcx_3^2 + abcx_4^2$. Then $q = x_1^2 - ax_2^2 - bx_3^2 + abx_4^2 - cx_5^2$ is equivalent to $c(q' \oplus \langle -1 \rangle)$. [Sw; Lemma 4.4 and Lemma 4.5] yields $C = C_0(q) = C_0(q' \oplus \langle -1 \rangle) = C(q')$ Hence

$$C = \langle e_1, e_2, e_3, e_4 \mid e_1^2 = c, e_2^2 = -ac, e_3^2 = -bc, e_4^2 = abc,$$
$$e_i e_j + e_j e_i = 0 \quad \text{for} \quad i \neq j \rangle.$$
$$= \langle f_1, f_2, g_1, g_2 \mid f_1^2 = a, f_2^2 = b, g_1^2 = 1, g_2^2 = -abc;$$
$$f_1 f_2 + f_2 f_1 = 0, g_1 g_2 + g_2 g_1 = 0, [f_i, g_j] = 0 \rangle$$

where $f_1 = e_1^{-1}e_2, f_2 = e_1^{-1}e_3, g_1 = (e_2e_3)^{-1}e_1e_4, g_2 = e_1^{-1}e_2e_3$. Therefore $C = D(a,b) \otimes D(1,-abc) \simeq D(a,b) \otimes M_2(F)$. qed

Lemma 2.1 and Proposition 1.1 imply

Corollary 2.2

For i = 0, 1, 2 the map

$$\bigoplus_{L} K_i(C \otimes_F L) \to K_iC$$

induced by transfer is surjective. Here L runs over all splitting fields of D, finite over F.

Lemma 2.3

Let
$$i = 0, 1, 2$$
. Then
i) $K_i(X) = u_1(K_iF) + K_i(X)^1$.
ii) $K_i(X) = u_0(K_iF) + u_1(K_iF) + K_i(X)^2$.

Proof

Let $\gamma = [O_X] - [O_X(-1)] \in K_0(X)$. Since γ is defined by a hyperplane section we have $\gamma \in K(X)^1$ and $\gamma^2 \in K(X)^2$. Hence

$$u_0(\alpha) - u_1(\alpha) = \mu(\alpha, \gamma) \in K_i(X)^1$$

which shows ii) \Rightarrow i). For ii) first note

$$u_0(\alpha) - 2u_1(\alpha) + u_2(\alpha) = \mu(\alpha, \gamma^2) \in K_i(X)^2.$$

By Theorem 1.6 it remains to show that

(*)
$$\underline{w(K_iC)} \subset u_0(K_iF) + u_1(K_iF) + K_i(X)^2$$

Since the transfer $K_i(X \times_F L) \to K_i(X)$ respects filtration, Corollary 2.2 shows that we may assume $D = M_2 F$; in particular we may assume that X is the canonical quadric \hat{X} .

Let us first assume i = 0. The Gersten spectral sequence $E_2^{p,q} \Rightarrow K_{-p-q}$ yields isomorphisms $\operatorname{Ch}^0(X) = E_2^{0,0} = E_{\infty}^{0,0} = K_0(X)^{0/1}$ and $\operatorname{Ch}^1(X) = E_2^{1,-1} = E_{\infty}^{1,-1} = K_0(X)^{1/2}$. Therefore $K_0(X) = [O_X] \mathbb{Z} \oplus K_0(X)^1$ and $K_0(X)^1 = \gamma \mathbb{Z} \oplus K_0(X)^2$, since $\operatorname{Ch}^1(X) = \operatorname{Pic}(X)$ is generated by a hyperplane section. Now let *i* be arbitrary. Let $\varepsilon \in K_0C$ be the unit of the ring $K_*C = K_*D = K_*F$ and let $k, l \in \mathbb{Z}$ such that

$$w(\varepsilon) = k[\mathcal{O}_X] + l[\mathcal{O}_X(-1)] \mod K_0(X)^2$$

Then, for $\alpha \in K_i F = K_i C$:

$$w(\alpha) = w(\alpha \varepsilon) = \mu(\alpha, w(\varepsilon))$$

= $ku_0(\alpha) + lu_1(\alpha) + \mu(\alpha, w(\varepsilon) - k[O_X] - l[O_X(-1)])$
 $\in u_0(K_iF) + u_1(K_iF) + K_i(X)^2$

This proves (*).

To prove Theorem 3 it remains to show that the sums in Lemma 2.3 are direct.

Proposition 2.4

Let i = 0, 1, 2. Then i) $u_0(K_iF) \cap K_i(X)^1 = 0$ ii) $\tilde{u}(K_iF) \cap K_i(X)^2 = 0$ where $\tilde{u} = u_0 - u_1$.

Let Y be the Severi-Brauer variety associated to D. To prove 2.4 we may replace F by F(Y), because $K_iF \to K_iF(Y)$ is injective (Proposition 1.2). Then again $D = M_2(F)$ and $X = \hat{X}$.

Proof of i)

 $K_i(X)^1$ is the kernel of the natural map res : $K_i(X) \to K_iF(X)$. reso $u_0 : K_iF \to K_iF(X)$ is the homomorphism induced by inclusion, hence injective (Proposition 1.4). qed

Proof of ii)

We have to look closer to the Gersten spectral sequence. Let \mathfrak{M}^n be the category of coherent O_X -modules M with $\operatorname{cod} \operatorname{supp} M \ge n$. Let $Z \subset X = \hat{X}$ be the hyperplane section as in § 1.

We have a commutative diagram

$$K_{i}F \xrightarrow{\cdot[\mathcal{O}_{Z}]} K_{i}(Z) \xrightarrow{f} K_{i}(\mathfrak{M}^{1}) \xrightarrow{j} K_{i}(\mathfrak{M}^{0}) = K_{i}(X)$$

$$\downarrow^{g}$$

$$\downarrow^{\operatorname{res}_{F(Z)|F}} K_{i}(\mathfrak{M}^{1}/\mathfrak{M}^{2})$$

$$\parallel$$

$$K_{i}F(Z) = K_{i}\kappa(v_{z}) \xleftarrow{} \bigoplus_{v \in X^{(1)}} K_{i}\kappa(v)$$

Here f, j, g are the obvious maps. The composition of the maps in the upper row is just \tilde{u} . Now suppose $\tilde{u}(\alpha) \in K_i(X)^2$ for some $\alpha \in K_iF$. Then

$$f(\alpha \cdot [\mathcal{O}_Z]) \in \operatorname{Ker} j + \operatorname{Im}(K_i(\mathfrak{M}^2) \to K_i(\mathfrak{M}^1)) =$$
$$= \operatorname{Im}(K_{i+1}(\mathfrak{M}^0/\mathfrak{M}^1) \to K_i(\mathfrak{M}^1)) + \operatorname{Im}(K_i(\mathfrak{M}^2) \to K_i(\mathfrak{M}^1)),$$

hence

$$gf(\alpha \cdot [\mathcal{O}_Z]) \in \mathrm{Im}(K_{i+1}(\mathfrak{M}^0/\mathfrak{M}^1) \to K_i(\mathfrak{M}^1/\mathfrak{M}^2)) = d(K_{i+1}F(X))$$

On the other hand $gf(\alpha \cdot [O_Z]) \in K_i \kappa(v_Z)$. Proposition 1.4. yields $K_i \kappa(v_Z) \cap d(K_{i+1}F(X)) = 0$ and therefore $\operatorname{res}_{F(Z)|F}(\alpha) = gf(\alpha \cdot [O_Z]) = 0$. Since F(Z) is pure transcendental over F, we have $\alpha = 0$. qed

§3 Proof of Theorem 4

Consider the Gersten spectral sequence $E_2^{p,q} \Rightarrow K_{-p-q}(X)$. By definition we have $\operatorname{Ker} d'/\operatorname{Im} d = E_2^{1,-3}$ and $E_2^{3,-4}$ is the cokernel of the differential in Proposition 1.3. The spectral sequence yields the complex

$$0 \longrightarrow E_\infty^{1,-3} \longrightarrow E_2^{1,-3} \longrightarrow E_2^{3,-4} \longrightarrow E_\infty^{3,-4}$$

which is exact with possible exception at $E_2^{3,-4}$. (Note that $E_2^{p,q} = 0$ for p+q > 0, p < 0and $p > \dim X = 3$). Since $E_{\infty}^{1,-3} = K_2(X)^{1/2} = K_2F$ by Theorem 3, it is enough to show that $E_2^{3,-4} \to E_{\infty}^{3,-4} = K_1(X)^3$ is injective.

The inclusion $X \subset \mathbb{P}^4$ induces the commutative diagram

$$\begin{array}{c} \bigoplus_{v \in X^{(2)}} K_2 \kappa(v) \xrightarrow{d_X} \bigoplus_{v \in X^{(3)}} K_1 \kappa(v) \xrightarrow{\mathcal{N}} K_1 F \\ & & \downarrow \\ & & \downarrow \\ \bigoplus_{v \in (\mathbb{P}^4)^{(3)}} K_2 \kappa(v) \xrightarrow{d_{\mathbb{P}^4}} \bigoplus_{v \in (\mathbb{P}^4)^{(4)}} K_1 \kappa(v) \xrightarrow{\mathcal{N}} K_1 F \end{array}$$

The upper row is exact by Proposition 1.3, hence coker $d_X \to \operatorname{coker} d_{\mathbb{P}^4}$ is injective. Now the injectivity of $E_2^{3,-4} \to E_{\infty}^{3,-4}$ follows from the diagram

and the fact that $E_2(\mathbb{P}^4) \to E_{\infty}(\mathbb{P}^4)$ is an isomorphism.

$\S 4$ Proof of Theorem 2

Put $\overline{Y} = Y \times_F F(X)$, $\overline{D} = D \otimes_F F(X)$, $\overline{X} = X \times_F F(Y)$. One has natural identifications $F(\overline{X}) = F(Y) = F(X \times Y)$. Consider the commutative diagram

Consider the commutative diagram

The differentials here are the differentials of spectral sequences for Y and \overline{Y} (horizontal), X and \overline{X} (vertical) respectively. According to Theorem 4 and Proposition 1.2 the homomorphism Ker $d''_F/\text{Im} d'_F \to \text{Ker} d_{F(Y)}/\text{Im} d'_{F(Y)}$ is injective. Since $D \otimes_F F(Y)$ is trivial, the vertical sequence associated to \overline{X} is exact at $K_3F(Y)$ and $K_3F(X \times Y)$ by Proposition 1.4. Moreover $f = \text{res}_{F(X)|F}$ is injective by Corollary 1.5.

Lemma 4.1

Let $\alpha \in \bigoplus_{v \in Y^{(1)}} K_2 \kappa(v)$ and $\beta \in K_3 F(X \times Y)$ such that $d_{F(X)}(\beta) = f(\alpha)$. Then there exist $\gamma \in \bigoplus_{v \in X^{(1)}} K_2 \kappa(v)$ such that $\operatorname{res}_{F(Y)|F}(\gamma) = d'_{F(Y)(\beta)}$.

Let us first assume the lemma is true. To prove Theorem 2, i.e. the injectivity of coker $d_F \to \text{coker } d_{F(X)}$, we have to find for a given α as in Lemma 4.1 an element

 $\delta \in K_3F(Y)$ such that $d_F(\delta) = \alpha$. This is done by a pure diagram chasing, using Lemma 4.1 and the above remarks.

Proof of Lemma 4.1

Let F'|F be isomorphic to F(Y)|F. We consider the above diagram after the base extension $F \to F'$. $D' = D \otimes_F F'$ is trivial, hence $Y' = Y \times_F F' \simeq \mathbb{P}^1_{F'}$. Therefore, over F', both horizontal sequences are exact. Put $\alpha' = \operatorname{res}_{F'|F}(\alpha)$ and $\beta' = \operatorname{res}_{F'|F}(\beta)$. The injectivity of $K_2F' \to K_2F'(X)$ in the commutative diagram

yields $\theta'(\alpha') = 0$. By exactness there is an element $\delta' \in K_3 F'(Y)$ such that $d_{F'}(\delta') = \alpha'$. Put $\tilde{\beta} = \beta' - \operatorname{res}_{F'(X \times Y)|F'[Y)}(\delta')$. Since $d'_{F'(X)}(\tilde{\beta}) = 0$, we have $\tilde{\beta} \in K_3 F'(X)$. Put $\lambda = \operatorname{res}_{F'(Y)|F(Y)}(d'_{F(Y)}(\beta))$. Since $\lambda = d_{F'(Y)}(\beta') = \operatorname{res}_{F'(Y)|F'}(d'_{F'}(\tilde{\beta}))$ we have

$$\lambda \in \operatorname{res}_{F'(Y)|F(Y)}(\bigoplus_{v \in \bar{X}^{(1)}} K_2\kappa(v)) \cap \operatorname{res}_{F'(Y)|F'}(\bigoplus_{v \in X'^{(1)}} K_2\kappa(v)).$$

Therefore

$$\lambda \in \bigoplus_{v \in X^{(1)}} [\operatorname{res}_{F'(Y)|F(Y)}(K_2\kappa(v_{F(Y)})) \cap \operatorname{res}_{F'(X)|F'}(K_2\kappa(v_{F'}))]$$

Proposition 1.2 yields

$$\lambda \in \bigoplus_{v \in X^{(1)}} \operatorname{res}_{F'(Y)|F}(K_2\kappa(v))$$

Now let γ be the unique element such that $\operatorname{res}_{F'(Y)|F}(\gamma) = \lambda$. Then

$$\operatorname{res}_{F'(Y)|F(Y)}(\operatorname{res}_{F(X)|F}(\gamma) - d'_{F(Y)}(\beta)) = 0,$$

hence $\operatorname{res}_{F(Y)|F}(\gamma) = d'_{F(Y)}(\beta).$

§ 5 Proof of Theorem 1

Let $\mu : K_1F \otimes K_1D \to K_2D$ be the multiplication in K-Theory. For a splitting field L of D, finite over F, the following diagram is commutative:

qed

 μ is surjective ([RS; Theorem 4.3]).

Lemma 5.1

 μ is a symbol, that is $\mu(1 - Nrd(\alpha), \alpha) = 0$ for $\alpha \in K_1D$, $Nrd(\alpha) \neq 1$.

Proof

Let $L \subset D$ be a maximal commutative subfield and let $u \in L^*$ such that $\alpha = \theta_L(u)$. Then $\operatorname{Nrd}(\alpha) = N_{L|F}(u)$, hence $\mu(1 - \operatorname{Nrd}(\alpha), \alpha) = \theta_L(\{1 - N_{L|F}(u), u\})$. Let σ be the generator of $\operatorname{Gal}(L|F) = \mathbb{Z}/2$. By Skolem-Noether $L \to D$ is equivariant with respect to σ and an inner automorphism of D. Therefore $\theta_L \circ = \sigma = \theta_L$ and the claim follows since $\{1 - N_{L|F}(u), u\} \in (1 - \sigma)(K_2L)$, see [Me, Lemma 4].

Lemma 5.2

If Nrd : $K_1D \to K_1F$ is surjective, then Nrd : $K_2D \to K_2F$ is an isomorphism.

Proof

Since $K_1D \to K_1F$ is always injective, we have $K_1D = K_1F$. Lemma 5.1 shows that $\mu: K_1F \otimes K_1F \to K_2D$ induces an inverse $K_2F \to K_2D$ to Nrd.

Proof of Theorem 1

For $c \in F^*$ let X_c be the quadric of § 0. Then $c \in \det(D \otimes_F F(X_c))$. Let \hat{F} be the compositum of the fields $F(X_c), c \in F^*$ and put $F_0 = F, F_1 = \hat{F}, F_{n+1} = \hat{F}_n, \bar{F} = \bigcup_{n \ge 0} F_n$ and $\bar{D} = D \otimes_F \bar{F}$. Then det $: \bar{D} \to \bar{F}$ is surjective and therefore the same is true for Nrd $: K_1\bar{D} \to K_1\bar{F}$. The composition of $K_2D \to K_2\bar{D} \to K_2\bar{F}$ is injective by Theorem 2 and Lemma 5.2; this clearly implies the injectivity of $K_2D \to K_2F$. qed.

Bibliography

- [Me] Merkur'ev, A.S.: K_2 of fields and the Brauer group, Proceedings of the Boulder Conference on K-Theory, 1983.
- [MS] Merkur'ev, A.S.; Suslin, A.A.: *K*-Cohomology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSR 46, 1982, 1011-1046.
- [Q] Quillen, D.: Algebraic K-Theory I, Springer, Lecture Notes in Mathematics 341, (1973), 85-147.

- [R1] Rost, M.: Hilbert 90 for K_3 for degree-two extensions; in preparation.
- [R2] Rost, M.: SK_1 of some nonsingular quadrics; in preparation.
- [RS] Rehmann, U:; Stuhler, U: On K_2 of finite dimensional division algebras over arithmetical fields, Inv. Math. **50**, 75-90, (1978).
- [So] Soulé, C.: K_2 et le Groupe de Brauer, Sem. Bourbaki, 1982/83, Nr. 601, 79-93.
- [Sw] Swan, R.G.: K-Theory of quadric hypersurfaces, Annals of Math., 122 (1985), 113-153.

Fakultät für Mathematik Universität Regensburg Universitätsstr. 31 D-93040 Regensburg