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Let F be field of characteristic different from 2 and let D be a quaternion algebra over F .
The purpose of this paper is to show that the reduced norm Nrd : K2D → K2F is
injective. (for definition and properties of Nrd see [MS; § 6, § 7]). This result is essential
for the proof of Hilbert 90 for K3 for degree-two extensions in Milnor K-Theory of fields
([R1]). Our method of proof is in some sense similar to the proof of Hilbert 90 for K2

by Merkur’ev and Suslin. However the important role of Severi-Brauer varieties in the
work of Merkur’ev and Suslin has now to be played by a certain type of three-dimensional
nonsingular quadrics Xc, for which we show that H1(Xc,K3) = K2F . This result is
based on the computation of the K-Theory of nonsingular quadrics in [Sw] and the more
elementary determination of SK1(Xc) in [R2].

§ 0 The results
Let F be a field, Char F 6= 2. Every quaternion algebra over F is isomorphic to

D = D(a, b) = 〈A,B|A2 = a,B2 = b, AB = −BA〉

for some a, b ∈ F ∗.

Theorem 1
The reduced norm

Nrd : K2D→K2F

is injective.

Let det : D → F be the norm of D. In coordinates we have

det(x1 + x2A+ x3B + x4AB) = x2
1 − ax2

2 − bx2
3 + abx2

4

If D is trivial, i.e. D = M2(F ), then det is the usual determinant.

It is not difficult to prove Theorem 1 if det is surjective, see § 5. Therefore we study field
extensions which enlarge the image of det. To D and a fixed element x ∈ F ∗ we associate
a nonsingular three-dimensional quadric X = Xc as follows. Let q : D × F → F be the
quadratic form q(x, y) = det(x)− cy2, and define X ⊂ IP(D × F ) ' IP4 by q = 0. X is a
smooth irreducible variety over F . Its function field is denoted by F (X). The important
role of X in the proof of Theorem 1 relies on the fact that c ∈ det(D ⊗F F (X)).

∗ This is a TEXed version (Sept. 1996) of the original preprint.
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Theorem 2
The homomorphism

K2D→K2(D ⊗F F (X))

induced by inclusion is injective.

Let Ki(X) = Ki(X)0 ⊃ Ki(X)1 ⊃ K1(X)2 ⊃ Ki(X)3 be the filtration given by codimen-
sion of support. We put Ki(X)n/m = Ki(X)n/Ki(X)m for m ≥ n.

Theorem 3

For i = 0, 1, 2 there are natural isomorphisms

Ki(X)0/1 = KiF and Ki(X)1/2 = KiF.

Consider the sequence ⊕
v∈X

K3κ(v)
d→

⊕
v∈X(1)

K2κ(v)
d′→

⊕
v∈X(2)

K1κ(v)

given by the localization sequence in K-Theory [Q; § 5].

Theorem 4
There is a natural isomorphism

Ker d′/Im d = K2F.

§ 1 Preliminaries
For a splitting field L ofD, finite over F , there is a natural homomorphism θL : KiL→ KiD
by composing the transfer Ki(D⊗F L)→ KiD and the isomorphism KiL = Ki(M2(L)) =
Ki(D ⊗F L) (See [MS; § 1] for functorial properties). For the following proposition see
[MS; Theorem 5.2] or [RS; § 4].

Proposition 1.1.
For i = 0, 1, 2 the map

θ = (θL) :
⊕
L

KiL→KiD

is surjective. Here L runs over all splitting fields of D, finite over F .

Let Y be the Severi-Brauer variety associated to D and denote by F (Y ) its function field.
Y is isomorphic to the quadric in IP2 given by x2

1 − ax2
2 − bx2

3 = 0. The residue fields of
the points of Y are splitting fields of D. The K-Cohomology of Y was studied in [MS].
We need the following results.
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Proposition 1.2.
The following sequences are exact

(1.2.1) 0→K2F →K2F (Y )
d→
⊕
v∈Y (1)

K1κ(v)
θ→K1D→ 0

(1.2.2) K3F (Y )
d→
⊕
v∈Y (1)

K2κ(v)
θ→K2D→ 0

Here θ = (θκ(v)) as above. For (1.2.1) see also [So; Proposition 3]. (1.2.2) is a con-
sequence of (1.2.1), the long exact localization sequence for Y and the isomorphism
Ki(Y ) = KiF ⊕KiD ([Q; Theorem 4.1]).

Now let X = Xc = X(q) be the quadric defined in § 1. For the following analogue of the
exactness of the right part of (1.2.1) see [R2].

Proposition 1.3.
The sequence ⊕

v∈X(2)

K2κ(v)
d→

⊕
v∈X(3)

K1κ(v)
N→K1F

is exact.

Here N is induced by the usual norm for finite extensions.

For trivial D, X is isomorphic to the canonical quadric X̂ in IP4 defined by

x1x2 + x3x4 − x2
5 = 0.

Let Z ⊂ X̂ be the irreducible hyperplane section given by x1 = 0 and let vZ ∈ X̂
(1) be

the point corresponding to Z. The birational correspondence

φ : X̂ → IP3, [x1 : x2 : x3 : x4 : x5]→ [x1 : x3 : x4 : x5]

induces an isomorphism X̂ \ Z → IP3 \ {x1 = 0} = A
3. From this it is clear that

Pic(X̂) = ZZ, generated by a hyperplane section.

Proposition 1.4.:
The sequence

0→KiF →KiF (X̂)
d→

⊕
v∈X̂(1)

v 6=vZ

Ki−1κ(v)

is exact.

Proof
φ induces via X̂ ← X̂ \ Z ' A3 → IP3 an equivalence of the sequence in question with
the sequence

0→KiF →KiF (IPn)
d→

⊕
v∈(An)(1)

Ki−1κ(v)
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for n = 3. The exactness of this sequence is known for n = 1 and induction yields the
result.

Corollary 1.5.
The natural homomorphism

K2F →K2F (X)

is injective.

This follows from a result of Suslin, since F is algebraically closed in F (X). It can be
also derived from Proposition 1.2. and Proposition 1.4. and the commutative diagram����

K2F (Y )(X)K2F (Y )

K2F (X)K2F

since X is isomorphic to X̂ over F (Y ).

Let µ : KiF ⊗K0(X)→ Ki(X) be the multiplication in K-Theory. µ respects filtration,
i.e. µ(KiF ⊗K0(X)n) ⊂ Ki(X)n. Let C = C0(q) be the even part of the Clifford algebra
of q. For the following theorem see [Sw; Theorem 9.1].

Theorem 1.6.
There is a natural isomorphism

(u0, u1, u2, w) : (KiF )3 ⊕KiC→Ki(X).

The definition of w (= u′ in the notation of [Sw]) shows that the following diagram
commutes ��

w

��
1⊗w

Ki(X)KiF ⊗K0(X)

KiCKiF ⊗K0C

Moreover we have
ui(α) = µ(α, [OX(−i)]) for α ∈ KiF.

§ 2 Proof of Theorem 3

Lemma 2.1
C = M2(D)
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Proof
Let q′ = cx2

1− acx2
2− bcx2

3 + abcx2
4. Then q = x2

1− ax2
2− bx2

3 + abx2
4− cx2

5 is equivalent to
c(q′⊕ 〈−1〉). [Sw; Lemma 4.4 and Lemma 4.5] yields C = C0(q) = C0(q′⊕ 〈−1〉) = C(q′)
Hence

C = 〈e1, e2, e3, e4 | e2
1 = c, e2

2 = −ac, e2
3 = −bc, e2

4 = abc,

eiej + ejei = 0 for i 6= j〉.

= 〈f1, f2, g1, g2 | f 2
1 = a, f2

2 = b, g2
1 = 1, g2

2 = −abc;

f1f2 + f2f1 = 0, g1g2 + g2g1 = 0, [fi, gj] = 0〉

where f1 = e−1
1 e2, f2 = e−1

1 e3, g1 = (e2e3)−1e1e4, g2 = e−1
1 e2e3. Therefore C =

D(a, b)⊗D(1,−abc) ' D(a, b)⊗M2(F ). qed

Lemma 2.1 and Proposition 1.1 imply

Corollary 2.2
For i = 0, 1, 2 the map ⊕

L

Ki(C ⊗F L)→KiC

induced by transfer is surjective. Here L runs over all splitting fields of D, finite over F .

Lemma 2.3
Let i = 0, 1, 2. Then

i) Ki(X) = u1(KiF ) +Ki(X)1.

ii) Ki(X) = u0(KiF ) + u1(KiF ) +Ki(X)2.

Proof
Let γ = [OX ] − [OX(−1)] ∈ K0(X). Since γ is defined by a hyperplane section we have
γ ∈ K(X)1 and γ2 ∈ K(X)2. Hence

u0(α)− u1(α) = µ(α, γ) ∈ Ki(X)1

which shows ii) ⇒ i). For ii) first note

u0(α)− 2u1(α) + u2(α) = µ(α, γ2) ∈ Ki(X)2.

By Theorem 1.6 it remains to show that

(∗) w(KiC) ⊂ u0(KiF ) + u1(KiF ) +Ki(X)2

Since the transfer Ki(X ×F L)→ Ki(X) respects filtration, Corollary 2.2 shows that we
may assume D = M2F ; in particular we may assume that X is the canonical quadric X̂.

Let us first assume i = 0. The Gersten spectral sequence Ep,q
2 ⇒ K−p−q yields isomor-

phisms Ch0(X) = E0,0
2 = E0,0

∞ = K0(X)0/1 and Ch1(X) = E1,−1
2 = E1,−1

∞ = K0(X)1/2.
ThereforeK0(X) = [OX ]ZZ⊕K0(X)1 andK0(X)1 = γZZ⊕K0(X)2, since Ch1(X) = Pic(X)
is generated by a hyperplane section.
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Now let i be arbitrary. Let ε ∈ K0C be the unit of the ring K∗C = K∗D = K∗F and let
k, l ∈ ZZ such that

w(ε) = k[OX ] + l[OX(−1)] mod K0(X)2

Then, for α ∈ KiF = KiC :

w(α)= w(αε) = µ(α, w(ε))
= ku0(α) + lu1(α) + µ(α, w(ε)− k[OX ]− l[OX(−1)])
∈ u0(KiF ) + u1(KiF ) +Ki(X)2

This proves (*).

To prove Theorem 3 it remains to show that the sums in Lemma 2.3 are direct.

Proposition 2.4
Let i = 0, 1, 2. Then

i) u0(KiF ) ∩Ki(X)1 = 0

ii) ũ(KiF ) ∩Ki(X)2 = 0 where ũ = u0 − u1.

Let Y be the Severi-Brauer variety associated to D. To prove 2.4 we may replace F by
F (Y ), because KiF → KiF (Y ) is injective (Proposition 1.2). Then again D = M2(F )
and X = X̂.

Proof of i)
Ki(X)1 is the kernel of the natural map res : Ki(X)→ KiF (X). res◦ u0 : KiF → KiF (X)
is the homomorphism induced by inclusion, hence injective (Proposition 1.4). qed

Proof of ii)
We have to look closer to the Gersten spectral sequence. Let Mn be the category of
coherent OX-modules M with cod suppM ≥ n. Let Z ⊂ X = X̂ be the hyperplane
section as in § 1.

We have a commutative diagram� ·[OZ ]	 f
 j�
resF (Z)|F

�
g


�
⊕

v∈X(1)

Kiκ(v)KiF (Z) = Kiκ(vz)

Ki(M
1/M2)

Ki(M
0) = Ki(X)Ki(M

1)Ki(Z)KiF

Here f, j, g are the obvious maps. The composition of the maps in the upper row is just ũ.
Now suppose ũ(α) ∈ Ki(X)2 for some α ∈ KiF . Then

f(α · [OZ ]) ∈ Ker j + Im(Ki(M
2)→ Ki(M

1)) =

= Im(Ki+1(M0/M1)→Ki(M
1)) + Im(Ki(M

2)→Ki(M
1)),

6



hence
gf(α · [OZ ]) ∈ Im(Ki+1(M0/M1)→ Ki(M

1/M2)) = d(Ki+1F (X))

On the other hand gf(α · [OZ ]) ∈ Kiκ(vZ). Proposition 1.4. yields Kiκ(vZ) ∩
d(Ki+1F (X)) = 0 and therefore resF (Z)|F (α) = gf(α · [OZ ]) = 0. Since F (Z) is pure
transcendental over F , we have α = 0. qed

§ 3 Proof of Theorem 4

Consider the Gersten spectral sequence Ep,q
2 ⇒ K−p−q(X). By definition we have

Kerd′/Im d = E1,−3
2 and E3,−4

2 is the cokernel of the differential in Proposition 1.3. The
spectral sequence yields the complex

0→E1,−3
∞ →E1,−3

2 →E3,−4
2 →E3,−4

∞

which is exact with possible exception at E3,−4
2 . (Note that Ep,q

2 = 0 for p+ q > 0, p < 0
and p > dimX = 3). Since E1,−3

∞ = K2(X)1/2 = K2F by Theorem 3, it is enough to show
that E3,−4

2 →E3,−4
∞ = K1(X)3 is injective.

The inclusion X ⊂ IP4 induces the commutative diagram� dX� N�
dIP4

�
N

���
K1F

⊕
v∈(IP4)(4)

K1κ(v)
⊕

v∈(IP4)(3)

K2κ(v)

K1F
⊕

v∈X(3)

K1κ(v)
⊕

v∈X(2)

K2κ(v)

The upper row is exact by Proposition 1.3, hence coker dX → cokerdIP4 is injective. Now
the injectivity of E3,−4

2 → E3,−4
∞ follows from the diagram����

E4,−5
∞ (IP4) = K1(IP4)4cokerdIP4 = E4,−5

2 (IP4)

E3,−4
∞ (X) = K1(X)3cokerdX = E3,−4

2 (X)

and the fact that E2(IP4)→ E∞(IP4) is an isomorphism.
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§ 4 Proof of Theorem 2
Put Ȳ = Y ×F F (X), D̄ = D⊗F F (X), X̄ = X×F F (Y ). One has natural identifications
F (X̄) = F (Y ) = F (X × Y ).
Consider the commutative diagram�

dF

�
θ

���
dF (X)

�
θ̄

 !"#$%&'()
d′F

*
d′
F (Y )

+
d′′F

,
d′′
F (Y )

⊕
v∈X̄(2)

K1κ(v)
⊕

v∈X(2)

K1κ(v)0

⊕
v∈X̄(1)

K2κ(v)
⊕

v∈X(1)

K2κ(v)

0K2D̄
⊕

v∈Ȳ (1)

K2κ(v)K3F (X × Y )K3F (X)

0K2D
⊕

v∈Y (1)

K2κ(v)K3F (Y )

00

The differentials here are the differentials of spectral sequences for Y and Ȳ (horizon-
tal), X and X̄ (vertical) respectively. According to Theorem 4 and Proposition 1.2 the
homomorphism Ker d′′F/Im d′F → Ker dF (Y )/Im d′F (Y ) is injective. Since D ⊗F F (Y ) is

trivial, the vertical sequence associated to X̄ is exact at K3F (Y ) and K3F (X × Y ) by
Proposition 1.4. Moreover f = resF (X)|F is injective by Corollary 1.5.

Lemma 4.1
Let α ∈

⊕
v∈Y (1) K2κ(v) and β ∈ K3F (X × Y ) such that dF (X)(β) = f(α). Then there

exist γ ∈
⊕

v∈X(1) K2κ(v) such that resF (Y )|F (γ) = d′F (Y )(β).

Let us first assume the lemma is true. To prove Theorem 2, i.e. the injectivity of
coker dF → coker dF (X), we have to find for a given α as in Lemma 4.1 an element
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δ ∈ K3F (Y ) such that dF (δ) = α. This is done by a pure diagram chasing, using Lemma
4.1 and the above remarks.

Proof of Lemma 4.1
Let F ′|F be isomorphic to F (Y )|F . We consider the above diagram after the base ex-
tension F → F ′. D′ = D ⊗F F ′ is trivial, hence Y ′ = Y ×F F ′ ' IP1

F ′ . Therefore, over
F ′, both horizontal sequences are exact. Put α′ = resF ′|F (α) and β′ = resF ′|F (β). The
injectivity of K2F

′ → K2F
′(X) in the commutative diagram-./0

K2D̄
′ = K2F

′(X)K2D̄

K2D
′ = K2F

′K2D

yields θ′(α′) = 0. By exactness there is an element δ′ ∈ K3F
′(Y ) such that dF ′(δ

′) = α′.
Put β̃ = β′ − resF ′(X×Y )|F ′[Y )(δ

′). Since d′F ′(X)(β̃) = 0, we have β̃ ∈ K3F
′(X). Put

λ = resF ′(Y )|F (Y )(d
′
F (Y )(β)). Since λ = dF ′(Y )(β

′) = resF ′(Y )|F ′(d
′
F ′(β̃)) we have

λ ∈ resF ′(Y )|F (Y )(
⊕

v∈X̄(1)

K2κ(v)) ∩ resF ′(Y )|F ′(
⊕

v∈X′(1)

K2κ(v)).

Therefore
λ ∈

⊕
v∈X(1)

[resF ′(Y )|F (Y )(K2κ(vF (Y ))) ∩ resF ′(X)|F ′(K2κ(vF ′))]

Proposition 1.2 yields
λ ∈

⊕
v∈X(1)

resF ′(Y )|F (K2κ(v))

Now let γ be the unique element such that resF ′(Y )|F (γ) = λ. Then

resF ′(Y )|F (Y )(resF (X)|F (γ)− d′F (Y )(β)) = 0,

hence resF (Y )|F (γ) = d′F (Y )(β). qed

§ 5 Proof of Theorem 1
Let µ : K1F ⊗ K1D → K2D be the multiplication in K-Theory. For a splitting field L
of D, finite over F , the following diagram is commutative:
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1
1⊗θL

2
1⊗Nrd

3
θL

4
Nrd

56
µ

78
NL|F

K2FK1F ⊗K1F

K2DK1F ⊗K1D

K2LK1F ⊗K1L

µ is surjective ([RS; Theorem 4.3]).

Lemma 5.1
µ is a symbol, that is µ(1−Nrd(α), α) = 0 for α ∈ K1D, Nrd(α) 6= 1.

Proof
Let L ⊂ D be a maximal commutative subfield and let u ∈ L∗ such that α = θL(u).
Then Nrd(α) = NL|F (u), hence µ(1 − Nrd(α), α) = θL({1 − NL|F (u), u}). Let σ be the
generator of Gal(L|F ) = ZZ/2. By Skolem-Noether L→ D is equivariant with respect to
σ and an inner automorphism of D. Therefore θL◦ = σ = θL and the claim follows since
{1−NL|F (u), u} ∈ (1− σ)(K2L), see [Me, Lemma 4].

Lemma 5.2
If Nrd : K1D → K1F is surjective, then Nrd : K2D → K2F is an isomorphism.

Proof
Since K1D → K1F is always injective, we have K1D = K1F . Lemma 5.1 shows that
µ : K1F ⊗K1F → K2D induces an inverse K2F → K2D to Nrd.

Proof of Theorem 1
For c ∈ F ∗ let Xc be the quadric of § 0. Then c ∈ det(D ⊗F F (Xc)). Let F̂ be the
compositum of the fields F (Xc), c ∈ F

∗ and put F0 = F, F1 = F̂ , Fn+1 = F̂n, F̄ =
⋃
n≥0 Fn

and D̄ = D ⊗F F̄ . Then det : D̄ → F̄ is surjective and therefore the same is true for
Nrd : K1D̄ → K1F̄ . The composition of K2D → K2D̄ → K2F̄ is injective by Theorem 2
and Lemma 5.2; this clearly implies the injectivity of K2D → K2F . qed.
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