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Introduction

Let R be a ring (unital, commutative), let M be a R-module and let f ∈ End(M)
be an endomorphism.

For k ≥ 0 we consider endomorphisms

Ak(f) ∈ End(M ⊗ Λk+1M)

defined linearly from Λkf with (co)-product operations of the exterior algebra.
For an explicit description of Ak(f) see (2). For A1(f) see 1.7.
If M is a locally free R-module of rank n, then An−1(f) yields the adjunct f#

of f . In short, this text is based on a simple observation: When the adjunct is
considered as element of

End(M ⊗ ΛnM)

rather than of End(M), there is no duality needed and the definition and proofs of
basic properties extend smoothly to arbitrary R-modules.

The resulting generalization of the standard relation det(f) = ff# = f#f to
the Ak(f) is formulated in Proposition 2. The proof is immediate from the definition
and the functoriality of the product and the co-product of the exterior algebra.
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2 MARKUS ROST

The Cayley-Hamilton theorem generalizes accordingly, see Corollary 5. Here we
follow the standard method of expanding Ak(f − t · 1M ) as polynomial in t.

Corollary 8 generalizes the standard expression of f# as a polynomial in f .
The proofs are formulated on a quite formal functorial level and worked out in

detail, even when a inspection of explicit formulas might appear simpler.

1. The endomorphisms Ak(f)

Let M be a R-module.

1.1. Notation for elements in the exterior algebra. Let K be a finite ordered
set. For an K-tuple

x ∈ MK

and a subset I of K of length r we use the notation

xI = xi1 ∧ · · · ∧ xir ∈ ΛrM

where i1 < · · · < ir are the elements of I.
For instance, if K = {0, 1, . . . , n}, then

xK = x0 ∧ · · · ∧ xn

= (−1)ixi ∧ xK\{i} = (−1)n−ixK\{i} ∧ xi

1.2. Multiplication and co-multiplication of the exterior algebra. For the
exterior algebra of M

ΛM =
⊕

k≥0

ΛkM

we denote by

µ : ΛM ⊗ ΛM → ΛM

δ : ΛM → ΛM ⊗̂ ΛM

its product and co-product and by

µm,n : Λ
mM ⊗ ΛnM → Λm+nM

δm,n : Λ
m+nM → ΛmM ⊗ ΛnM

the corresponding components.
The product µ is given by

µ(ω ⊗ η) = ω ∧ η

and the co-product δ is the R-algebra homomorphism to the graded tensor product
with

δ(x) = x⊗ 1 + 1⊗ x (x ∈ M)

Explicitly one has

δm,n(xK) =
∑

I⊂K, |I|=m

εIxI ⊗ xK\I (εIxI ∧ xK\I = xK)

with K = {1, . . . , n+m} and appropriate signs εI as indicated on the right.
Note that

µm,n ◦ δm,n =

(

m+ n

m

)
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The (co-)product is (co)-associative. We use the following notations:

µm,n,k = µm+n,k ◦ (µm,n ⊗ 1ΛkM ) = µm,n+k ◦ (1ΛmM ⊗ µn,k)

δm,n,k = (δm,n ⊗ 1ΛkM ) ◦ δm+n,k = (1ΛmM ⊗ δn,k) ◦ δm,n+k

Remark 1. If M is locally free of finite rank, the homomorphism δm,n is the “func-
torial dual” of µm,n. This means that with respect to the canonical isomorphisms
(ΛkM)∨ = Λk(M∨) the dual of δm,n is the homomorphism µm,n for the dual of M :

((δm,n)M )∨ = (µm,n)(M∨)

1.3. The operator Φ. Let

Φ: End(ΛkM) → End(M ⊗ Λk+1M)

Φ(ϕ) = (1M ⊗ µ1,k) ◦ (τ ⊗ ϕ) ◦ (1M ⊗ δ1,k)

where τ ∈ End(M ⊗M) is the switch involution. Thus

Φ(ϕ)(x ⊗ sL) =
k
∑

i=0

(−1)isi ⊗ x ∧ ϕ(sL\{i})

for x ∈ M and s ∈ ML, L = {0, . . . , k}.
Sometimes it is convenient to use the following variants. Let

Ψ: End(ΛkM) → Hom(M ⊗ Λk+1M,Λk+1M ⊗M)

Ψ(ϕ) = (µ1,k ⊗ 1M ) ◦ (1M ⊗ ϕ⊗ 1M ) ◦ (1M ⊗ δk,1)

and

Ψt : End(ΛkM) → Hom(Λk+1M ⊗M,M ⊗ Λk+1M)

Ψt(ϕ) = (1M ⊗ µk,1) ◦ (1M ⊗ ϕ⊗ 1M ) ◦ (δ1,k ⊗ 1M )

so that

Ψ(ϕ)(x⊗ sL) =

k
∑

i=0

(−1)k−ix ∧ ϕ(sL\{i})⊗ si

Ψt(ϕ)(sL ⊗ x) =

k
∑

i=0

(−1)isi ⊗ ϕ(sL\{i}) ∧ x

Then

σ ◦Ψ(ϕ) = Ψt(ϕ) ◦ σ = (−1)kΦ(ϕ)

where

σ : Λk+1M ⊗M → M ⊗ Λk+1M

is the switch.

1.4. The endomorphisms Pn. For n ≥ 1 let

Pn = Φ(1Λn−1M ) ∈ End(M ⊗ ΛnM)

Thus

(1) Pn(x⊗ sN ) =

n
∑

i=1

(−1)i−1si ⊗ x ∧ sN\{i}

for x ∈ M and s ∈ MN , N = {1, . . . , n}. We put P0 = 0.
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Let further Qn be the composite of

M ⊗ ΛnM
µ
−→ Λn+1M

δ
−→ M ⊗ ΛnM

that is,

Qn = δ1,n ◦ µ1,n ∈ End(M ⊗ ΛnM)

Obviously, if Λn+1M = 0, then Qn = 0.

Lemma 1. One has

Pn +Qn = 1M⊗ΛnM

In particular, if Λn+1M = 0, then Pn is the identity morphism.

Proof. This is a consequence of the basic axiom for graded bialgebras. Explicitly:

Qn(x⊗ sN ) = δ1,n(x ∧ sN ) = x⊗ sN +

n
∑

i=1

(−1)isi ⊗ x ∧ sN\{i}

�

Remark 2. Since µ1,n ◦ δ1,n = n+ 1 one has

Q2
n = (n+ 1)Qn

and

(Pn − 1)(Pn + n) = 0

Moreover

µ1,n ◦ Pn = −nµ1,n

1.5. The endomorphisms Ak(f). Let

f ∈ End(M)

be an endomorphism of M .
We define

Ak(f) = Φ(Λkf) ∈ End(M ⊗ Λk+1M)

Hence

(2) Ak(f)(x⊗ sL) =

k
∑

i=0

(−1)isi ⊗ x ∧ (Λkf)(sN\{i})

for x ∈ M and s ∈ ML, L = {0, . . . , k}.

Proposition 2. For n ≥ 1 one has

Pn ◦ (1M ⊗ Λnf) = (f ⊗ 1ΛnM ) ◦An−1(f)

(1M ⊗ Λnf) ◦ Pn = An−1(f) ◦ (f ⊗ 1ΛnM )

Proof. This follows quickly by inspection of the explicit expressions (1) and (2).
For a formal proof it is convenient consider instead of Pn and An−1(f) the endo-
morphisms

P ′
n = Ψ(1Λn−1M ) = (−1)n−1σ−1 ◦ Pn

= (µ1,n−1 ⊗ 1M ) ◦ (1M ⊗ δn−1,1)

A′
n−1(f) = Ψ(Λn−1f) = (−1)n−1σ−1 ◦An−1(f)

= (µ1,n−1 ⊗ 1M ) ◦ (1M ⊗ Λn−1f ⊗ 1M ) ◦ (1M ⊗ δn−1,1)
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respectively. Then the first claim follows from the functoriality of the co-product:

P ′
n ◦ (1M ⊗ Λnf) = (µ1,n−1 ⊗ 1M ) ◦ (1M ⊗ δn−1,1) ◦ (1M ⊗ Λnf)

= (µ1,n−1 ⊗ 1M ) ◦ (1M ⊗ Λn−1f ⊗ f) ◦ (1M ⊗ δn−1,1)

= (1ΛnM ⊗ f) ◦A′
n−1(f)

Similarly for the second claim:

(Λnf ⊗ 1M ) ◦ P ′
n = (Λnf ⊗ 1M ) ◦ (µ1,n−1 ⊗ 1M ) ◦ (1M ⊗ δn−1,1)

= (µ1,n−1 ⊗ 1M ) ◦ (f ⊗ Λn−1f ⊗ 1M ) ◦ (1M ⊗ δn−1,1)

= A′
n−1(f) ◦ (f ⊗ 1ΛnM )

�

1.6. The adjunct. To simplify notation, we consider f and Λnf as endomorphisms
of M ⊗ ΛnM by the action on the first resp. second factor.

Corollary 3. Suppose Λn+1M = 0. Then

Λnf = f ◦An−1(f) = An−1(f) ◦ f

in End(M ⊗ ΛnM).

Proof. Follows from Proposition 2 and Lemma 1. �

Suppose M is a locally free R-module of rank n. Then ΛnM is an invertible R-
module. A standard definition of the adjunct of f

f# ∈ End(M)

is to take the adjoint of

Λn−1f ∈ End(Λn−1M)

with respect to the non-degenerate pairing

M ⊗ Λn−1M
µ
−→ ΛnM

Hence f# is characterized by

(#) f#(x) ∧ η = x ∧ (Λn−1f)(η) (x ∈ M, η ∈ Λn−1M)

The basic property

(##) det(f) · 1M = ff# = f#f

follows then from

(f#f)(x) ∧ η = f(x) ∧ (Λn−1f)(η) = (Λnf)(x ∧ η)

and (f#)∨ = (f∨)#.

Lemma 4. If M is a locally free R-module of rank n, then

An−1(f) = f# ∈ End(M ⊗ ΛnM) = End(M)

Proof. It suffices to verify (#) with f# replaced by An−1(f). Instead of An−1(f)
we use again

A′
n−1(f) =

((

µ1,n−1 ◦ (1M ⊗ Λn−1f)
)

⊗ 1M
)

◦ (1M ⊗ δn−1,1)

(cf. proof of Proposition 2). Note the general rule

δn−1,1(ω) ∧ η = (−1)n−1η ⊗ ω (ω ∈ ΛnM, η ∈ Λn−1M)
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for locally free R-modules of rank n. Therefore

A′
n−1(f)(x⊗ ω) ∧ η = (−1)n−1

((

µ1,n−1 ◦ (1M ⊗ Λn−1f)
)

⊗ 1ΛnM

)

(x⊗ η ⊗ ω)

= (−1)n−1x ∧ (Λn−1f)(η)⊗ ω

which was to be shown. �

Remark 3. Lemma 4 follows also from Corollary 3, since f# is uniquely determined
by (##) as a functor on triples (R,M, f).

1.7. Example: The case n = 2. The general expression for A1(f) is

A1(f)(x⊗ s ∧ t) = s⊗ x ∧ f(t)− t⊗ x ∧ f(s)

It is easy to see that A1(f) and f ⊗ 1Λ2M do not commute in general. On other
hand suppose that M is locally free of rank 2. Then one gets indeed

(

fA1(f)
)

(x⊗ s ∧ t) = f(s)⊗ x ∧ f(t)− f(t)⊗ x ∧ f(s)

= x⊗ f(s) ∧ f(t)

= (x⊗ s ∧ t) det(f)

using x ∧ f(s) ∧ f(t) = 0 and
(

A1(f)f
)

(x⊗ s ∧ t) = s⊗ f(x) ∧ f(t)− t⊗ f(x) ∧ f(s)

= (s⊗ x ∧ t− t⊗ x ∧ s) det(f)

= (x⊗ s ∧ t) det(f)

using x ∧ s ∧ t = 0.

2. The Cayley-Hamilton theorem

In this section we exploit Proposition 2 using a standard method: Replace f by
f − t · 1M and take the coefficients of the resulting polynomials in t.

2.1. The endomorphisms Ln,k(f). Let

Θr : End(ΛkM) → End(Λk+rM)

Θr(ϕ) = µk,r ◦ (ϕ⊗ 1ΛrM ) ◦ δk,r

= µr,k ◦ (1ΛrM ⊗ ϕ) ◦ δr,k

and for f ∈ End(M) and 0 ≤ k ≤ n let

Ln,k(f) = Θn−k(Λ
kf) ∈ End(ΛnM)

Particular cases are

Ln,0(f) = 1ΛnM

Ln,n(f) = Λnf

Explicitly one has

(3) Ln,k(f)(xN ) =
∑

I⊂N, |I|=k

f I(1)(x1) ∧ · · · ∧ f I(n)(xn)

with N = {1, . . . , n} and

I(i) =

{

1 i ∈ I

0 i /∈ I
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It follows easily that

(4) Λn(f + t · 1M ) =

n
∑

k=0

Ln,k(f)t
n−k

in End(ΛnM)[t].
In particular, if M is locally free of rank n, the elements

Ln,k(f) ∈ End
(

ΛnM
)

= R

are the (unsigned) coefficients of the characteristic polynomial of f .

2.2. The Cayley-Hamilton theorem. Here is a general form of the Cayley-
Hamilton theorem.

Corollary 5. For any R-module M , any f ∈ End(M) and n ≥ 0 one has

n
∑

k=0

(−1)kfn−kPnLn,k(f) = 0

n
∑

k=0

(−1)kLn,k(f)Pnf
n−k = 0

in End(M ⊗ ΛnM)

Proof. Follows from Proposition 2 and the expansion (4) with a standard argument
used in proofs of the Cayley-Hamilton theorem. For instance, write the first relation
of Proposition 2 as

β(f) = fα(f)

Then

β(f − t) = (f − t)α(f − t)

gives
(

n
∑

k=0

fn−ktk

)

β(f − t) = (fn+1 − tn+1)α(f − t)

Comparing the coefficients of tn yields

n
∑

k=0

fn−kβk(f) = 0

with

β(f − t) =

n
∑

k=0

tn−kβk(f), α(f − t) =

n−1
∑

k=0

tn−1−kαk(f)

and

βk(f) = −αk(f) + fαk−1(f)

�
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Note that f and Ln,k(f) commute as they act separately on the factors of M ⊗
ΛnM . If Λn+1M = 0, then Pn = 1 and the two statements of Corollary 5 coincide.
In particular, one gets the classical Cayley-Hamilton theorem:

Corollary 6. If M is a locally free R-module of rank n, then
n
∑

k=0

(−1)kfn−kLn,k(f) = 0

in End(M ⊗ ΛnM) = End(M). �

Remark 4. Let us make the first relation of Corollary 5 in the case n = 2 explicit.
With

U = x⊗ s ∧ t

one has

P2(U) = s⊗ x ∧ t− t⊗ x ∧ s

L2,1(f)(U) = x⊗ (f(s) ∧ t+ s ∧ f(t))

and

f2P2L2,0(f)(U) = f2(s)⊗ x ∧ t− f2(t)⊗ x ∧ s

fP2L2,1(f)(U) = f2(s)⊗ x ∧ t− f(t)⊗ x ∧ f(s)

+ f(s)⊗ x ∧ f(t)− f2(t)⊗ x ∧ s

P2L2,2(f)(U) = f(s)⊗ x ∧ f(t)− f(t)⊗ x ∧ f(s)

The terms just cancel each other out. The same happens in general when expanding
the relations of Corollary 5 with the explicit expressions (1) and (3).

The significance of Corollary 5 comes from fact that in the formulation
n
∑

k=0

(−1)kfn−kLn,k(f) =
n
∑

k=0

(−1)kfn−kQnLn,k(f)

n
∑

k=0

(−1)kLn,k(f)f
n−k =

n
∑

k=0

(−1)kLn,k(f)Qnf
n−k

all terms on the right hand sides factor through Λn+1M .

3. The endomorphisms Ak,h(f)

Finally we consider the endomorphisms Ak,h(f) determined by the “t-expansion”
of Ak(f). They appear when computing PnLn,k(f), Ln,k(f)Pn and showed already
up in the proof of Corollary 5. We also compute QnAn−1,k(f), An−1,k(f)Qn.

3.1. The endomorphisms Ak,h(f). For 0 ≤ h ≤ k let

Ak,h(f) = Φ(Lk,h(f)) ∈ End(M ⊗ Λk+1M)

Note that

Ak,h(f) = (1M ⊗ µ1,h,k−h) ◦ (τ ⊗ Λhf ⊗ 1Λk−hM ) ◦ (1M ⊗ δ1,h,k−h)

and

(5) Ak,h(f) = (1M ⊗ µh+1,k−h) ◦ (Ah(f)⊗ 1Λk−hM ) ◦ (1M ⊗ δh+1,k−h)
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We understand Ak,h(f) = 0 for h < 0 or h > k.
Particular cases are

Ak,0(f) = Pk+1

Ak,k(f) = Ak(f)

From (4) it is clear that

(6) Ak(f + t · 1M ) =

k
∑

h=0

Ak,h(f)t
k−h

in End(M ⊗ Λk+1M)[t].

Lemma 7. For 0 ≤ k ≤ n one has

PnLn,k(f) = An−1,k(f) + fAn−1,k−1(f)

Ln,k(f)Pn = An−1,k(f) +An−1,k−1(f)f

Proof. Follows from Proposition 2 by replacing f with f + t ·1M and comparing the
coefficients in t. See also the relation at the end of the proof of Proposition 2. �

Corollary 8. For 0 ≤ k < n one has

An−1,k(f) =

k
∑

h=0

(−f)k−hPnLn,h(f) =

k
∑

h=0

Ln,h(f)Pn(−f)k−h

�

3.2. More relations. First we need a supplement for the endomorphisms Ln,k(f).

Lemma 9. One has

Ln,k(f + t · 1M ) =
k
∑

h=0

(

n− h

k − h

)

Ln,h(f)t
k−h

Proof. Follows from the definitions and

µh,k−h,n−k ◦ (Λ
hf ⊗ 1Λk−hM ⊗ 1Λn−kM ) ◦ δh,k−h,n−k =

(

n− h

k − h

)

µh,n−h ◦ (Λhf ⊗ 1Λn−hM ) ◦ δh,n−h

�

Lemma 9 yields the following generalization of (6).

Corollary 10. For 0 ≤ k ≤ m one has

Am,k(f + t · 1M ) =

k
∑

h=0

(

m− h

k − h

)

Am,h(f)t
k−h

�
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Lemma 11. For n ≥ 1 one has

PnAn−1(f) = Ln,n−1(f)− fAn−1,n−2(f)

An−1(f)Pn = Ln,n−1(f)−An−1,n−2(f)f

Proof. We prove only the first claim. One has

PnAn−1(f) = Ψt(1Λn−1) ◦Ψ(Λn−1f)

= (1⊗ µn−1,1) ◦ (Qn−1Λ
n−1f ⊗ 1) ◦ (1⊗ δn−1,1)

Since
Qn−1Λ

n−1f = Λn−1f − fAn−2(f)

by Proposition 2, one gets

PnAn−1(f) = Ln,n−1(f)− (f ⊗ 1) ◦ (1⊗ µn−1,1) ◦ (An−2(f)⊗ 1) ◦ (1⊗ δn−1,1)

The claim follows from (5). �

Lemma 11 generalizes as follows.

Corollary 12. For 0 ≤ k ≤ n− 1 one has

QnAn−1,k(f) = (n− k)[An−1,k(f) + fAn−1,k−1(f)− Ln,k(f)]

An−1,k(f)Qn = (n− k)[An−1,k(f) +An−1,k−1(f)f − Ln,k(f)]

Proof. Follows from Lemma 11, Lemma 9 and Corollary 10. �

Remark 5. Proposition 2 shows that

Pn(Λ
nf)Pn = fAn−1(f)Pn = PnAn−1(f)f

is divisible by f from the left and from the right. With Lemma 11 one can make
this more precise:

Pn(Λ
nf)Pn = fLn,n−1(f)− fAn−1,n−2(f)f

(f and Ln,n−1(f) commute).
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