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INTRODUCTION

Let R be a ring (unital, commutative), let M be a R-module and let f € End(M)
be an endomorphism.
For k > 0 we consider endomorphisms

Ar(f) € End(M @ A*+10r)

defined linearly from A*f with (co)-product operations of the exterior algebra.

For an explicit description of Ag(f) see (2). For A;(f) see 1.7.

If M is a locally free R-module of rank n, then A,_;(f) yields the adjunct f#
of f. In short, this text is based on a simple observation: When the adjunct is
considered as element of

End(M ® A"M)
rather than of End(M), there is no duality needed and the definition and proofs of
basic properties extend smoothly to arbitrary R-modules.

The resulting generalization of the standard relation det(f) = ff# = f#f to
the Ay (f) is formulated in Proposition 2. The proof is immediate from the definition
and the functoriality of the product and the co-product of the exterior algebra.
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The Cayley-Hamilton theorem generalizes accordingly, see Corollary 5. Here we
follow the standard method of expanding A (f —t-157) as polynomial in ¢.

Corollary 8 generalizes the standard expression of f# as a polynomial in f.

The proofs are formulated on a quite formal functorial level and worked out in
detail, even when a inspection of explicit formulas might appear simpler.

1. THE ENDOMORPHISMS Ay (f)

Let M be a R-module.

1.1. Notation for elements in the exterior algebra. Let K be a finite ordered
set. For an K-tuple
re MK

and a subset I of K of length r we use the notation
Ty =xi N ANy, e N"M

where 77 < --- < 4, are the elements of I.
For instance, if K = {0,1,...,n}, then

T =Tg N NIy
= (—1)i$i NTg\{i} = (—1)”71.,%1(\{1-} N x;

1.2. Multiplication and co-multiplication of the exterior algebra. For the
exterior algebra of M
AM =P AkM
k>0
we denote by

w: AM @ AM — AM
§: AM — AM & AM
its product and co-product and by
Pt AM @ A" M — AT M
S AMTM — A™M @ A" M
the corresponding components.
The product p is given by
ww@n) =wAn
and the co-product ¢ is the R-algebra homomorphism to the graded tensor product
with
d(r)=z@l+1lex (x e M)
Explicitly one has

Smn(er)= Y. emr®@ziyg  (E1w Argyg = TK)
ICK, |I|=m

with K = {1,...,n 4+ m} and appropriate signs ¢; as indicated on the right.

Note that
(m + n)
Hm,n © 6m,n -
m
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The (co-)product is (co)-associative. We use the following notations:

fim,nk = Hmtnk © (Bmn @ 1akar) = gtk © (Lamar @ pank)

Sk = Om,n @ Lpkar) © Omank = (Lamar @ O k) © Omntk
Remark 1. If M is locally free of finite rank, the homomorphism 6,, 5 is the “func-
torial dual” of i, . This means that with respect to the canonical isomorphisms
(ARM)Y = A*¥(MV) the dual of 8y, , is the homomorphism pi, ,, for the dual of M:

(o) nr)" = (fm,n) (1)
1.3. The operator ®. Let
®: End(A*M) — End(M @ A*1 M)
P(p) = (Im @ p1) o (T@ @) o (1 ® 01,k)
where 7 € End(M ® M) is the switch involution. Thus
k

P(p)(z@sL) = Z(—l)isi @z A p(sp\(i})

forz € M and s € M*, L ={0,...,k}.
Sometimes it is convenient to use the following variants. Let

¥U: End(A*M) — Hom(M @ AF M, AM M @ M)
V() = (1, ® 1) o (I @@ 1ar)o (1 @ 0p,1)

and
T End(AFM) — Hom(A* M @ M, M @ A1 M)
U p) = (I @pr1)o (I @@ 1) o (01,6 @ 1ar)
so that
k .
V(o) (x®sr) =Y (D" "z Ap(spyy) @ s
i=0
k .
V(o) (sp @x) =D (—1)'si ® p(sp\giy) A
=0
Then
o0 U(p) =T (p)oo = (-1)"d(p)
where

o AP Mo M- Mo A M

is the switch.

1.4. The endomorphisms P,. For n > 1 let
P, =®(1pn—1p) € End(M @ A" M)
Thus

n

(1) Pa(z@sy) = (=1)"'si @2 A sy

i=1
forx € M and s € MY, N ={1,...,n}. We put P, = 0.
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Let further @Q,, be the composite of
M @AM 2 A S M@ APM
that is,
Qn = 61,71 O Ul,n S EDd(M X AnM)
Obviously, if A"*1M =0, then Q,, = 0.
Lemma 1. One has

P+ Qn =1yuganm
In particular, if A"TIM =0, then P, is the identity morphism.

Proof. This is a consequence of the basic axiom for graded bialgebras. Explicitly:

Qn(r®@sN) =01a(TAsN) =@ sy + Z(—l)isi QX A SN\{i}

i=1

Remark 2. Since py 5 0 91, = n+ 1 one has

Q= (n+1)Qn
and
(Pn—1)(Py+n)=0
Moreover

Hin o Pp = —nu1,
1.5. The endomorphisms A (f). Let

f € End(M)
be an endomorphism of M.
We define
Ar(f) = ®(AFf) € End(M @ A*1 M)
Hence
k
(2) Ap(f)(z ®sL) = Z(*l)isi ®x A (A f)(sngiy)

i=0

forz € M and s € M*, L ={0,...,k}.

Proposition 2. Forn > 1 one has
Poo(lpyy @A) = (f @ 1anpr) 0 Ap—1(f)
(v @ A" f)o Py = An_1(f) o (f ® 1ann)

Proof. This follows quickly by inspection of the explicit expressions (1) and (2).
For a formal proof it is convenient consider instead of P, and A,_1(f) the endo-
morphisms

Py =U(lan1p) = (-1)" 1l o Py
= (1,n-1Q@1p) o (Iy @ Op—1,1)
A () =9A ) = ()" o o A (f)
= (i1 @) oIy @A f @ 1) 0 (Iag @ 0p_1.1)
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respectively. Then the first claim follows from the functoriality of the co-product:
Plo(lyy @A"f) = (p1n—1®@1pr) o (Ips @ 6p—1,1) 0 (1ar @ A f)
= (-1 ®@1a) o (lyy @A™ f @ f) o (1ar ® 61,1)
= (Iarnm ® f) o Ay, (f)
Similarly for the second claim:
(A"f@1y)o P, =(A"f® 1) o (-1 ®1n)o (Iar @6p—11)
= (-1 ®1la) o (FOA" f @ 1) o (1 ® 6p1,1)
= AL _1(f)o(f@1anm)
O

1.6. The adjunct. To simplify notation, we consider f and A" f as endomorphisms
of M ® A™M by the action on the first resp. second factor.

Corollary 3. Suppose A"T'M = 0. Then
AN'f=FfodAna(f)=Ana(f)of
in End(M @ A"M).
Proof. Follows from Proposition 2 and Lemma 1. O

Suppose M is a locally free R-module of rank n. Then A™M is an invertible R-
module. A standard definition of the adjunct of f

f# € End(M)
is to take the adjoint of
A" f € End(A" M)
with respect to the non-degenerate pairing
M@ A" 'M 5 A" M
Hence f# is characterized by

(#) @) Ap=a AN )0 (we M, neAIM)
The basic property
(##) det(f) -1y = ff* = f*f

follows then from
(f#F)(@) An = flz) A A1) () = (A" F)(@ An)
and (f#)¥ = (£V)*%.
Lemma 4. If M is a locally free R-module of rank n, then
An_1(f) = f* € End(M ® A"M) = End(M)

Proof. Tt suffices to verify (#) with f# replaced by A, _1(f). Instead of A, _1(f)
we use again

A, 4 (f) = ((Hl,nfl o(1n ®An71f)) ® 1M) o1y ® Op—1,1)
(cf. proof of Proposition 2). Note the general rule
dn—1,1(w) An = (—1)n7177 Quw (we AN"M, ne A"
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for locally free R-modules of rank n. Therefore
A _(Heow)An=(=1)""((t1p-101y @A f)) @ Lanym) (2@ n @ w)
= ()"l AAT () @w

which was to be shown. O

Remark 3. Lemma 4 follows also from Corollary 3, since f# is uniquely determined
by (##) as a functor on triples (R, M, f).

1.7. Example: The case n = 2. The general expression for A;(f) is
Ai(filz@sAt)=s@z A f(t) —t@x A f(s)

It is easy to see that A;(f) and f ® 1x23; do not commute in general. On other
hand suppose that M is locally free of rank 2. Then one gets indeed

(fA(D)@@sAt)=f(s)@aAf(t)— f(t) @a A f(s)
— 2 f(s) A (1)
= (z ® s At)det(f)
using x A f(s) A f(t) =0 and
(D)) @@ sAt) =5 f(@) A ) —t® f() A ()
=(s@zAt—t®xAs)det(f)
= (z ® s At)det(f)
using x As At =0.

2. THE CAYLEY-HAMILTON THEOREM

In this section we exploit Proposition 2 using a standard method: Replace f by
f —1t- 15 and take the coefficients of the resulting polynomials in .

2.1. The endomorphisms L, ;(f). Let
©,: End(A*M) — End(A*"M)
©,(¢) = ptk,r 0 (0 @ 1arar) 0 Opr
=y © (Iarm @ @) 0 r i
and for f € End(M) and 0 < k < n let
Lk (f) = ©n_k(A"f) € End(A"M)

Particular cases are

Lno(f) =1annm
Explicitly one has
(3) Lop(Han) = Y FO)n-n ()
ICN, |I|=k

with N ={1,...,n} and
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It follows easily that

(4) A (f+t-1y) = Log(f)t"*

k=0

n

in End(A™M)[t].
In particular, if M is locally free of rank n, the elements

Lo x(f) € End(A"M) = R

are the (unsigned) coefficients of the characteristic polynomial of f.

2.2. The Cayley-Hamilton theorem. Here is a general form of the Cayley-
Hamilton theorem.

Corollary 5. For any R-module M, any f € End(M) and n > 0 one has

(71>kfn7kPnLn,k(f) =0

ol
o

M=

(1) Ly u(H)Puf™ % =0

b
Il
=]

in End(M ® A"M)

Proof. Follows from Proposition 2 and the expansion (4) with a standard argument
used in proofs of the Cayley-Hamilton theorem. For instance, write the first relation
of Proposition 2 as

B(f) = fa(f)
Then

Blf =t)=(f —talf —1)

gives
(Z f""“t’“) B(f—t) = (" =" a(f — 1)
k=0

Comparing the coefficients of " yields

n

S TEB(f) =0

k=0
with
n n—1
BUfF =) =D 1" FB(f),  alf =)= " (/)
k=0 k=0
and

Be(f) = —ar(f) + fon—1(f)
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Note that f and L, x(f) commute as they act separately on the factors of M ®
A"M. If A"T1M =0, then P, = 1 and the two statements of Corollary 5 coincide.
In particular, one gets the classical Cayley-Hamilton theorem:

Corollary 6. If M is a locally free R-module of rank n, then

n

D (DR L () =0

k=0
in End(M ® A"M) = End(M). O

Remark 4. Let us make the first relation of Corollary 5 in the case n = 2 explicit.
With

U=z®sAt
one has
PBU)=s@zAt—t@xAs
Loa(f)(U) =z @ (f(s) ANt +sA f(1))
and
fPPLao(f)U) = f2(s)@x At — f2(t) @x A s

fPLaa(F)(U) = f2(s) @ x At — f(t) @ x A f(5)
+f&)@zAft)— A @xAs
PyLao(f)(U) = f(s) @x A f(t) = f(t) @z A f(s)
The terms just cancel each other out. The same happens in general when expanding

the relations of Corollary 5 with the explicit expressions (1) and (3).
The significance of Corollary 5 comes from fact that in the formulation

S DR L () =Y (DR R Qu L k()
k=0 k=0
S DL k(O =D () Lk (/) Quf™
k=0 k=0

all terms on the right hand sides factor through A" M.

3. THE ENDOMORPHISMS Ay 1, (f)

Finally we consider the endomorphisms Ay, 1, (f) determined by the “t-expansion”
of Ar(f). They appear when computing P, Ly, 1(f), Ln. ik (f) P, and showed already
up in the proof of Corollary 5. We also compute QnAn—1.%(f), An—1,k(f)@n-

3.1. The endomorphisms Ay ;(f). For 0 < h < k let
Apn(f) = D(Lin(f)) € End(M @ AFF1 M)
Note that
An(f) = (1 @ pang—n) o (T @ A" f @ 1pi-nng) © (Ing @ Oy pe—n)
and

(5) Apn(f) = (Iar @ pngik—n) © (Ap(f) @ Lar—npr) © (Ins @ Oy k—n)
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We understand Ay p(f) =0 for h <0 or h > k.
Particular cases are

Apo(f) = Pea
Ap(f) = Ar(f)

From (4) it is clear that

k
(6) A(f+t-Ta) =D Agn(H)EF"
h=0

in End(M ® AMTIM)][].

Lemma 7. For 0 <k <n one has
PnLn,k(f) - Anfl,k(f) + fAnfl,kfl(f)
Lok(f)Pn=An156(f)+An_16-1(f)f

Proof. Follows from Proposition 2 by replacing f with f+t-15; and comparing the
coefficients in ¢t. See also the relation at the end of the proof of Proposition 2. [

Corollary 8. For 0 < k <n one has

k k

A k() =D (D" Pl n(f) = D Lun(F)Pal(= )"

h=0 h=0
([l

3.2. More relations. First we need a supplement for the endomorphisms Ly, 5 (f).
Lemma 9. One has

Ln,k(f +t- 1M) = Z (Z : Z) Ln,h(f)tk_h

h=0
Proof. Follows from the definitions and
fihk—hn—k © (A" f @ Lpyx—nps @ Lan—sps) 0 Oh hmhn—k =
(Z ~ Z) pnn—n © (A" f @ Lnn-npr) © Opnn
O
Lemma 9 yields the following generalization of (6).

Corollary 10. For 0 < k < m one has

k
At 10 =3 (12 ) Al
h=0
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Lemma 11. For n > 1 one has
PoAn_1(f) = Lnn-1(f) = fAn—1n—2(f)
An—l(f)Pn = Ln,n—l(f) - An—l,n—2(f)f
Proof. We prove only the first claim. One has
PoAn—1(f) = ¥ (1an-1) 0 U(A"1S)
= (1® pn-1,1) 0 (Qu1 A" 1 f@1) 0 (1®dn-1,1)
Since
Quoa A" f = AT — FAL ()
by Proposition 2, one gets
PrAn1(f) = Lan-1(f) = (f®1) o (1@ pn-11) © (An—2(f) ®1) 0 (1 ® 0p—1,1)
The claim follows from (5). O
Lemma 11 generalizes as follows.
Corollary 12. For 0 <k <n —1 one has
QnAn-1k(f) = (n = F)[An—1,1(f) + fAn-16-1(f) = Lk (f)]
An1k(f)@n = (n = k) [An—1,6(f) + An—1k-1(f)f = Lnk(f)]
Proof. Follows from Lemma 11, Lemma 9 and Corollary 10. (|

Remark 5. Proposition 2 shows that

is divisible by f from the left and from the right. With Lemma 11 one can make
this more precise:

Pn(Anf)Pn = an,n—l(f) - fAn—l,n—Q(f)f
(f and Ly, —1(f) commute).
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