
NOTES ON THE ASSOCIATOR

MARKUS ROST

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
§1. A relation for associators . . . . . . . . . . . . . . . . . . . 3
§2. More general relations for the associator? . . . . . . . . . . . . 3
§3. Higher relations for the associator? . . . . . . . . . . . . . . 4

3.1. Notes and references . . . . . . . . . . . . . . . . . . 5
§4. Questions and Remarks . . . . . . . . . . . . . . . . . . . 6
§5. Further notes and remarks (December 2024) . . . . . . . . . . 7

5.1. An A∞ question . . . . . . . . . . . . . . . . . . . . 7
5.2. Dictionaries . . . . . . . . . . . . . . . . . . . . . . 7
5.3. Lee subdivision . . . . . . . . . . . . . . . . . . . . . 8
5.4. Loday realization . . . . . . . . . . . . . . . . . . . . 8

§6. Optimistic announcement . . . . . . . . . . . . . . . . . . . 9
6.0.1. On graph complexes . . . . . . . . . . . . . . . . . . . . 12

6.1. A decomposition into paths (chains) . . . . . . . . . . . 13
6.2. The homotopy . . . . . . . . . . . . . . . . . . . . . 15
6.3. Further ideas . . . . . . . . . . . . . . . . . . . . . 16

§7. Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 17
§8. The diagram from Tamari’s thesis . . . . . . . . . . . . . . . 29
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Date: April/May/December 2024; July 8, 2025.

1



2 MARKUS ROST

Preface

You are looking at the text “Notes on the associator” [pdf].

The original purpose of these notes was to request references on the 5-term
relation for associators and its relation with the associahedron.

Quickly I got a hint to the field of alternative algebras. Here the 5-term relation
appears in many papers as a trivial preliminary.

Concerning the chain complex of the associahedron I had a hard time: So many
papers, overwhelming!

After some time I figured out myself how to write down the chain complex of
the associahedron and prove its acyclicity, see Section §6.

The crucial step was to find a way to control the signs in the differential of the
complex. I first tried with parenthesized expressions, but gave up. With unrooted
plane trees however, things became simpler and I had the chain complex in my
hands. After some (lengthy) explicit computations in low degrees, I found the
pretty short description of the contracting chain homotopy.

But then there should be a corresponding way to establish the associahedron as
contractible CW -complex.

And it does: The associahedron is not a polytope! It’s a cube.
See §7 for my beautiful drawings of the associahedron on a cube. (Move some

vertices out a little if you insist on a true associahedral polytope.)
Somewhat later (February 2025) I realized that my cube presentation of the

associahedron is exactly the “Tamari polytope” in Loday 2012 [17, p. 75]. Some
cube drawings and diagrams can be found here:

• Jean-Louis Loday/ Images (archived home page): Polytope de Stasheff (as-
sociahedron) de dimension 4, version cubique (mars 2002)
• Loday 2011 [16, 5 Appendix 1: Drawing a Stasheff polytope on a cube,

pp. 288–289]
• Loday 2012 [17, 8.3 Realizing of the associahedron, p. 75]
• Saneblidze-Umble 2004 [27, p. 400]
• Saneblidze-Umble 2024 [28, p. 148]

The first 4 sections stem essentially from April 2024 and, after adding refer-
ences for alternative algebras, May 2024. The sections starting with §5 have been
added since December 2024. In §6 we actually prove something. §7 contains the
cubical description of the 3-dimensional and to some extent of the 4-dimensional
associahedron. §8 has a TEX version of the original Tamari diagram.

At the moment I am in a process of digesting things. At some point I might try
to write some kind of exposition, but who knows.

http://www.math.uni-bielefeld.de/~rost/assoc.html#assoc1
https://www.math.uni-bielefeld.de/~rost/data/assoc1.pdf
https://web.archive.org/web/20110823075214/http://www-irma.u-strasbg.fr/~loday/
https://web.archive.org/web/20110823083401/http://www-irma.u-strasbg.fr/~loday/Images.html
https://web.archive.org/web/20060223091835/http://www-irma.u-strasbg.fr/~loday/dessinK4.jpg
https://web.archive.org/web/20060223091835/http://www-irma.u-strasbg.fr/~loday/dessinK4.jpg
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§1. A relation for associators

Let

µ : M ⊗M →M

µ(x, y) = xy

be a bilinear product on some R-module M . For µ there are no assumptions on
associativity, commutativity or unitality (but the base ring R has these properties).

Let

( , , ) : M⊗3 →M

(x, y, z) = (xy)z − x(yz)

denote the associator of the algebra (M,µ).
There is the following 5-term relation

x(y, z, t) + (x, y, z)t = (xy, z, t)− (x, yz, t) + (x, y, zt)(∗)

It follows easily by expanding the associator expressions (this is spelled out in [26,
Proof of Lemma 1]).

Relation (∗) plays a basic role in texts on alternative algebras. It appears in Zorn
1931 [43, (2), p. 125] where it is called “Viereridentität” and used to prove Artin’s
theorem on alternative algebras. Other places are Schafer 1961 [29, (12), p. 10]1,
Schafer 1966 [30, (2.4), p. 13] (with 3 other applications), Kurosh 1965 (1962) [12,
(3), p. 244], Bourbaki 1970 [2, Lemme 1, (2), p. A III.173], Bourbaki 1974 (1970)
[3, Lemma 1, (2), p. 612] (thanks to J.-P. Tignol for the hint), Zhevlakov et al. 1982
(1978) [42, Chap. 7, (5), p. 136], Garibaldi-Petersson-Racine 2024 [8, 7.5, (2), p. 44].

Our first application of (∗) was related with parametrization of algebras. The
relation can also be used to establish the associativity of the multiplication in the
free product of groups. (To give details would lead to far here.)

§2. More general relations for the associator?

I got aware of relation (∗) many years ago.
Since then I was wondering occasionally whether there are more relations for the

associator, valid for any M with product µ.
Only recently I realized that the question is closely related to monoidal categories

(see for instance Mac Lane 1998 (1971) [20]). In this context the 5-term relation (∗)
(and its proof) appears in the form of the pentagon axiom.

In fact, a closer look at Mac Lane 1963 [19, Theorem 3.1, p. 33] reveals that the
5-term relation (∗) is the main relation for the associator (in this context).

There are further relations which stem from expanding 2 associators. In the
simplest case, a parenthesized expression like

(a, b, c) . . . (x, y, z)

yields the 4-term relation

(ab)c . . . (x, y, z)− a(bc) . . . (x, y, z) = (a, b, c) . . . (xy)z − (a, b, c) . . . x(yz)

1[29] are lecture notes by Schafer from 1961 with the same title as the 1966 book [30]. On
gutenberg.com there are scans, the page with the relation is p0012.png.

https://www.gutenberg.org/files/25156/25156-page-images/
https://www.gutenberg.org/files/25156/25156-page-images/p0012.png
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The 2 associators could also be nested, like

(. . . (x, y, z) . . . , b, c), (a, . . . (x, y, z) . . . , c), (a, b, . . . (x, y, z) . . .)

giving rise to further 4-term relations.
The 4-term relations are sort of obvious and less sophisticated than the 5-term

relation (∗). In the context of monoidal categories the 4-term relations are hidden
in the setup.

§3. Higher relations for the associator?

Once the question for general relations for the associator is settled, one may ask
for higher relations, that is, relations among the relations etc.

An answer is provided by the exactness of the chain complex of the associahedron.

The vertices (0-cells) of the n-dimensional associahedron Tn are the parenthe-
sized expressions in n+ 2 variables x1, . . . , xn+2 ∈M (each of which appears once
and in the given order, as in (∗)). The edges (1-cells) are given by associators ap-
pearing in nested ways, the 2-cells correspond to relations among these associators,
etc.

The associahedron T2 (labeled M3 in the picture) is a pentagon with its 2-cell
representing the 5-term relation.

The associahedron T3 (labeledM4) has as faces besides pentagons some quadri-
laterals, each of which representing a 4-term relation.

The chain complex of the associahedron can be described in a combinatorial
manner using less and less parenthesized expressions as free generators (this is not
the place to give details). The crucial fact then is that this chain complex is the
chain complex of a polytope (namely the associahedron). Thus the chain complex is
acyclic and we know all general higher relations for the associator (in this context).
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3.1. Notes and references. The image above of Tamari’s associahedron has been
taken from Stasheff 2012 [37, p. 46] in the Tamari memorial Festschrift 2012 [22].
See also Loday 2012 [17, 8 Realizing of the associahedron, p. 74] in the same book.

There seem to be hundreds of millions of related papers, I downloaded tens of
thousands of them but read (almost) none. Nevertheless, here are a few further
references I want to mention:

Cayley 1891 [5] (always a pleasure to refer to Caley).

Tamari 1951 [39]: Tamari’s thesis contains the image above.
Tamari 1954 [40]: Article with the same title. Doesn’t have the drawing.

Stasheff 1963 [35].

Mac Lane 1963 [19], Joyal-Street 1993 [10].

Stasheff 1970 [34], Boardman-Vogt 1973 [1].

Lee 1989 [13], Gelfand-Kapranov-Zelevinsky 1994 [9, Ch. 7].

Shnider-Sternberg 1993 [33], Stasheff 1997 [36], Markl-Shnider-Stasheff 2002 [21].

Loday 2004 [15], Postnikov 2009 [25].

Leinster 2004 [14], Loday-Vallette 2012 [18].

Tamari memorial Festschrift 2012 [22].

Ceballos-Santos-Ziegler 2015 [7], Pilaud-Santos-Ziegler 2023 [23].
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§4. Questions and Remarks

• In spite of the (hopefully correct) discussion of the associahedron above, I
haven’t much understood about it. I don’t have a grasp yet on the associ-
ahedral chain complex, despite the many papers on it.

For monoidal/associahedral people:
What is your answer to the question on general (higher) relations for

the associator tensor ( , , ) : M⊗3 →M associated to multiplication tensors
M⊗2 →M?

What is the genuine way to pin down the associahedral chain complex
and settle its acyclicity? (Or at least: what is the state of the art?)
• A first problem is actually to formulate precise questions for relations for

the associator tensor. We discussed here the relations among particular
parenthesized expressions. One may think of other expressions involving
associators. However instead of wildly speculating, one should probably
rather look for concrete problems where associators are involved.
• What about relations for associators in some specific cases? I am thinking

here of the cases where M is a locally free R-module of some fixed finite
rank n.

I am pretty sure that the cases n = 2, 3 are worthwhile to look at (the
cases n ≥ 4 might get very complicated).

One should include here the unital cases, then of rank 3, 4.
This touches the question of parametrizing algebras of finite rank. The

set of equations for a multiplication tensor given by associativity is really
a non-trivial one. It is long known that for associative, commutative and
unital algebras of higher rank the etale algebras are not dense (the cor-
responding Hilbert scheme is not irreducible). See e.g. Poonen 2007 [24,
Remark 1.2, p. 818].
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§5. Further notes and remarks (December 2024)

The previous part stems essentially from April/May 2024. Here are newer notes.

5.1. An A∞ question. Meanwhile I looked somewhat into the book Loday-Vallette
2012 “Algebraic operads” [18], in particular near [18, 9.2.5 The Associahedron
(Stasheff Polytope), p. 340]. Proposition 9.2.3 identifies chain complexes

(A∞)n = C•(Kn−2)

and just before that it is argued that C•(Kn) is acyclic, since Kn is contractible.
Am I correct to understand that this is the state-of-the-art argument for the

acyclicity? I had hoped that there is purely operadic argument. (Not that I know
what an operad is.)

Dear reader: Please comment.

5.2. Dictionaries. One dictionary is

• Non-crossing diagonals in (simple) polygons.
• Finite trees together with, for each vertex P , a cyclic order on the set of

edges starting at P .

I like to call such trees “vertex cyclic trees”. They are just ribbon graphs which
happen to be a tree. After adding the ribbons, one gets planar trees (unrooted).

The basic translation is to associate to a polygon fully triangulated by diagonals
the tree with vertices the 2-cells and segments and with edges the diagonals and
segments (this is not the place to give more details, but see Gelfand-Kapranov-
Zelevinsky [9, Ch. 7. Triangulations and Secondary Polytopes, 3B, pp. 237ff.]).

Under this translation the leaves of an unrooted planar tree correspond to the
segments of the polygon and the points of the polygon correspond to neighbored
pair of leaves (which in turn define a path in the tree).

Another dictionary is

• Planar rooted trees.
• Partially parenthesized words, or “multi-magma monomials”, as I like to

call them. These are the elements of the set M defined as follows:

M1 = {∗}

Mn =
∐

1≤ik<n;
∑

k ik=n

∏
k

Mik

M =
∐
n≥1

Mn

If one restricts to binary planar rooted trees one gets “magma monomials” or
non-associative words: The elements of the free magma on one element ∗, cf. [32,
p. 18] (obtained by restricting k to a 2-element set in the definition of M above).

(Again, this is not the place to give more details.)
The language of multi-magmas makes the phrase “partially parenthesized words”

precise in a formal way.
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5.3. Lee subdivision. One of earliest proofs that the combinatorial associahedron
is a polytope seems to be in Lee [13]. For each dimension a certain triangulation of
the sphere (obtained by an explicit series of stellar subdivisions of ∂∆n) is identified
with the dual of the associahedron (minus the big cell).

The recipe itself is really simple.
Not only that: [13] has also a “symmetrical realization”. It preserves the full

automorphism group of a polygon (the Dieder group). In terms of planar trees
this means roughly that no root has to be chosen. (Disclosure: I haven’t yet
worked through the details of that and of Gelfand-Kapranov-Zelevinsky [9, Ch. 7.
Triangulations and Secondary Polytopes, pp. 214].)

I think the latter changes the point of view: The basic objects are the ones
from the first dictionary above (diagonals in a polygon, unrooted planar trees). For
the Stasheff polytope and things like the 5-term relations, multi-magmas, etc. one
chooses then a root (an edge resp. point).

5.4. Loday realization. The Loday realization [15] yields the associahedron as
intersection of half spaces in a very particular and beautiful way.

However I had some difficulties finding my way through [15]. A particular wor-
risome spot for me is [15, 2.5. Recollection on the Stasheff polytope, p. 271]:

It is shown by J. Stasheff and S. Shnider in [36] Appendix, that the
Stasheff polytope can be obtained from the standard simplex by
truncating along the hyperplanes corresponding to the admissible
shuffles.

Maybe I am blind, but I just couldn’t find this in [36, Appendix B].
The functions ck Loday uses do not satisfy the conditions formulated in [36,

Appendix B] (with basic example ck = 3k). The do however satisfy something like

c(I1) + c(I2) < c(I1 ∪ I2) + c(I1 ∩ I2)

which was enough for me to establish the Loday realization by myself.
I am confused since one finds the same reference in other papers by other authors.

Dear reader: Can you help me with this?

At the moment, the only complete reference for the Loday realization I know of
would be via Postnikov 2009 [25, Corollary 8.2, p. 1051-1052] (something I haven’t
worked through yet).
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§6. Optimistic announcement

Maybe recently (November 2024) I could resolve my original worries:

(1) Pre-Theorem. For n ≥ 0 (actually n ≥ −1) there is a complex of the form

C(n)i =
⊕

Γ∈Xn,i

LΓ

with differential

d : C(n)i → C(n)i−1

Here Xn,i is the set of planar trees (unrooted) with given n + 3 leaves (they are
same for all trees) and n+1− i inner nodes. Moreover the LΓ are free cyclic groups
(so LΓ ' Z, but not canonically). The components LΓ → LΓ′ of the differential d
are an isomorphism (to be described below) if Γ is obtained from Γ′ by contracting
an inner edge and else trivial.

One may think of the LΓ ' Z as a coefficient system. Their purpose is to get
the signs right in the definition of the differential so that dd = 0.

A toy model is the chain complex of ∆n which can be described as

Λ•ZN =
⊕
I⊂N

Λ|I|ZI

Here N = {0, . . . , n} and the differential is given by omitting an element from a
subset. A compact way to describe this differential is as composition

Λ•ZN
δ−→ Λ1ZN ⊗ Λ•ZN

ε⊗id−−−→ Λ•ZN

The groups LΓ are defined as

LΓ = Λ|V |ZV ⊗ Λ|E|ZE

where V is the set of vertices and E is the set of (oriented) edges of the tree. (We
use the definition of a graph as in Serre 1980 (1977, 1968) [31], with the edges
coming in pairs.)

The differential d is defined as follows: the inverse LΓ′ → LΓ of a nonzero
component of the differential is given by

P ∧Q ∧ α⊗ (x ∧ x) ∧ β
→

PQ ∧ α⊗ β

where x is the edge of Γ′ to be contracted, with x starting at P and ending at Q,
with x the reversed edge, and with PQ the combined vertex of Γ. Note that the
first expression is invariant under exchanging P with Q (and so x with x). Moreover
α, β represent the remaining vertices and edges of Γ′ resp. their images in Γ. For
the second expression one may instead choose generally α ∧ PQ ⊗ β which would
result in a global sign change (−1)i on C(n)i.
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(6.1) Lemma. For Γ ∈ Xn,0, the group LΓ is canonically isomorphic to Z.

Proof : For i = 0 there are n+ 1 inner nodes Qk, all with valency 3, and 2(2n+ 3)
oriented edges. There is the canonical term (independent of the order of the Qk)

Q0 ∧ · · · ∧Qn ⊗ (x0,1 ∧ x0,2 ∧ x0,3) ∧ · · · ∧ (xn,1 ∧ xn,2 ∧ xn,3)

where xk,1, xk,2, xk,3 are the cyclically ordered edges starting in Qk.
Another canonical term is given by the leaves (the nodes with valency 1):

P1 ∧ · · · ∧ Pn+3 ⊗ x1 ∧ · · · ∧ xn+3

where the xi are the leave edges with start point Pi. The product of the two
canonical terms is a basis of LΓ.

(The same argument works for any Γ with all nodes of odd valency since y1 ∧
· · · ∧ y2h+1 is invariant under a cyclic shift of indices. An example is the pentagon
corolla in X2,2.)

�

Extend the complex C(n) by

C(n)0
d0−→ C(n)−1 → 0

where C(n)−1 = Z and d0 is componentwise the isomorphism from Lemma (6.1).
The resulting complex is called the augmented complex and denoted by C ′(n).

(2) Pre-Theorem. The augmented complex C ′(n) is chain homotopy equivalent
to 0:

After choosing a root for the planar trees, there is a contracting homotopy,

H : C ′(n)i → C ′(n)i+1

with

Hd+ dH = id

Here H|C(n)−1 sends 1 to the “first” rooted planar binary tree Γ0. That is
the tree with parenthetical expression ((· · · ((∗∗)∗)∗) · · ·)∗)∗, obtained by iterated
multiplication of ∗ from the right.

Sketch of proof of dd = 0: Let me sketch a proof of dd = 0 (actually for the dual
of d). One has to look at two edges x, x′ to be contracted and compare the results
for the different orders of contractions.

If x, x′ are disjoint, say x is P → Q and x′ is P ′ → Q′, one gets (first contract x,
then x′)

P ∧Q ∧ P ′ ∧Q′ ∧ α⊗ (x ∧ x) ∧ (x′ ∧ x′) ∧ β
→
PQ ∧ P ′ ∧Q′ ∧ α⊗ (x′ ∧ x′) ∧ β

= P ′ ∧Q′ ∧ PQ ∧ α⊗ (x′ ∧ x′) ∧ β
→
P ′Q′ ∧ PQ ∧ α⊗ β
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and (first contract x′, then x)

P ∧Q ∧ P ′ ∧Q′ ∧ α⊗ (x ∧ x) ∧ (x′ ∧ x′) ∧ β
= P ′ ∧Q′ ∧ P ∧Q ∧ α⊗ (x′ ∧ x′) ∧ (x ∧ x) ∧ β
→
P ′Q′ ∧ P ∧Q ∧ α⊗ (x ∧ x) ∧ β

= P ∧Q ∧ P ′Q′ ∧ α⊗ (x ∧ x) ∧ β
→
PQ ∧ P ′Q′ ∧ α⊗ β

The two resulting expressions cancel.
Suppose the edges x, x′ meet, say x is P → Q and x′ is Q→ R. Then one gets

(first contract x, then x′)

P ∧Q ∧R ∧ α⊗ (x ∧ x) ∧ (x′ ∧ x′) ∧ β
→
PQ ∧R ∧ α⊗ (x′ ∧ x′) ∧ β
→
PQR ∧ α⊗ β

and (first contract x′, then x)

P ∧Q ∧R ∧ α⊗ (x ∧ x) ∧ (x′ ∧ x′) ∧ β
= Q ∧R ∧ P ∧ α⊗ (x′ ∧ x′) ∧ (x ∧ x) ∧ β
→
QR ∧ P ∧ α⊗ (x ∧ x) ∧ β

x is now P → QR, so we have to change the order of points:

= − P ∧QR ∧ α⊗ (x ∧ x) ∧ β
→
− PQR ∧ α⊗ β

Again the two resulting expressions cancel.
�
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6.0.1. On graph complexes. Soon after having typed the preceding lines, I
found some references.

First let me mention that LΓ appears more or less at the very end of Loday-
Vallette 2012 [18, Handling Signs in Graph Complexes, p. 607]. (As for dd = 0,
there is a reference to Burgunder 2010 [4], but I couldn’t find that there.)

Let Γ be a finite graph, with set of vertices V and with set of oriented edges E.
Let F = { {x, x} | x ∈ E } be the set of unoriented edges. Consider the complex of
free abelian groups

0→ Z[F ]
[x] 7→x+x−−−−−−→ Z[E]

x 7→t(x)−o(x)−−−−−−−−→ Z[V ]→ 0

Its homology isH1(Γ,Z), H0(Γ,Z), since Z[E]/Z[F ]→ Z[V ] is the chain complex
of the graph Γ. If Γ is connected, then H0(Γ,Z) = Z and (by the theory of
elimination) one gets an identification of determinant line bundles:

LΓ = L′Γ

where

LΓ = Λ|V |Z[V ]⊗ Λ|E|Z[E]

L′Γ = Λ|F |Z[F ]⊗ ΛmaxH1(Γ,Z)

(Note that a free cyclic group is canonically isomorphic to its Z-dual.)
The coefficient system L′Γ appears in Kontsevich 1993 [11, p. 175].
We have just identified the two approaches LΓ, L′Γ to define “graph complexes”.
Note that the proof of dd = 0 becomes a triviality when working with Kontse-

vich’s L′Γ. Namely, to check what happens with L′Γ under a contraction Γ→ Γ/x,
one doesn’t really have to look at the vertices and for two contractions there is
no need for the case distinction whether the 2 edges are disjoint or not (as for LΓ

above).
On the other hand, LΓ is useful for the proof of Lemma (6.1).
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6.1. A decomposition into paths (chains).
Language: By a proper path in a graph we mean a path without self-crossings.

In other words: A proper path is a directed subgraph isomorphic to a subdivided
interval. It is also an injective morphism of an abstract path Pathn (Serre [31,
p. 14]) to the graph. In a tree, a proper path is a geodesic, Serre [31, Proposition 8,
p. 18].

More language: A rooted planar tree is a planar tree without vertices of valency 2
and with one vertex of valency 1 selected, called the root. In a rooted planar tree,
the output-valency of a vertex (different from the root) is its valency minus 1.
Moreover, the root node is the vertex just next to the root.

A key observation is: If the root node has output-valency ≥ 3, then the tree
“de-contracts” to exactly 2 trees with root node of output-valency 2 (the root node
is “binary”).

In terms of parenthetical expressions: Putting a pair of parenthesis into

α1 · · ·αr (r ≥ 3)

yields
α1(α2 · · ·αr), (α1 · · ·αr−1)αr

as only binary words, with the others of the form

α1 · · · (· · ·) · · ·αr, α1 · · · α̃k · · ·αr
involving at least 3 factors on top level.

Fix an ordered (n+ 3)-element set Z and let R = R(Z) ∈ Z be its first element.
A Z-tree is a rooted planar tree with root R and Z its (automatically) ordered set
of leaves.

Let Ωn = Ω(Z) be the oriented graph with vertices resp. oriented edges the
Z-trees with root node of output-valency 2 resp. ≥ 3. Moreover, an edge α1 · · ·αr
(r ≥ 3) starts in the binary word α1(α2 · · ·αr) and ends in the binary word
(α1 · · ·αr−1)αr.

Consider a binary word αβ. If α is composed, say α = α1 · · ·αk (k ≥ 2), then
αβ ends the edge α1 · · ·αkβ. Similarly, if β is composed, β = β1 · · ·βk (k ≥ 2),
then αβ starts the edge αβ1 · · ·βk.

It follows that Ωn decomposes into directed proper paths, starting from terms ∗β
and ending in terms α∗, where ∗ denotes the “atom” (representing a rooted tree
with 1 non-root leaf).

(6.2) Definition. Let Γ be a Z-tree with output-valency 2 of the root node.
The (immediate) chain of Γ is the directed subpath of Ω(Z) from Γ to Γ′∗ (with

Γ′ a Z ′-tree, Z ′ = Z \ {last element}).
The full chain of Γ is the immediate chain of Γ followed by the immediate chain

of Γ′, followed by the immediate chain of Γ′′, etc., down to ∗∗ ∈ X0,0.

Note that consecutive elements in a chain are connected by a unique tree with
output-valency 3 of the root node.

The longest chains are related with root shift : Suppose Z = (1, . . . ,m) and let Γ
be a Z-tree. Then Γ is also a Z[−1]-tree with Z[−1] = (m, 1, . . . ,m− 1) (the next
leave to the right of the root is the new root). The unique order preserving map
Z[−1]→ Z (here: k 7→ k + 1 mod m) yields a new Z-tree Γ′ (the tree with shifted
root). It turns out that the chain from ∗Γ ends in Γ′∗ (this is a not too difficult
exercise).
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For Γ ∈ Xn,0 the full chain is the “canonical directed path” in Mac Lane 1963
[19, p. 34], obtained “by moving an outermost parenthesis toward the front”.

See §7 for illustrations.

One somehow recognizes C(n) itself as a homotopy from ∗C(n− 1) to C(n− 1)∗
(with respect to a tree rotation). By induction it follows that C(n) is contractible.

These considerations explain the basic reason why the following simple definition
of the chain homotopy H works out.
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6.2. The homotopy. One defines H inductively like this:

H
(
(α)∗

)
= H(α)∗

H(α1 · · ·αr) = 0 r ≥ 3

H
(
α1(α2 · · ·αr)− (α1 · · ·αr−1)αr

)
= α1 · · ·αr r ≥ 3

or rather more precisely and correctly,

H
(
d(α1 · · ·αr)

)
= α1 · · ·αr r ≥ 3

For the latter note that d(α1 · · ·αr) is a sum of

±α1(α2 · · ·αr), ±(α1 · · ·αr−1)αr

and elements β1 · · ·βs (s ≥ 3) which vanish under H.
Further, Hd+ dH = id follows by looking at the generators

(α)∗(6.3)

α1 · · ·αr r ≥ 3(6.4)

d(α1 · · ·αr) r ≥ 3(6.5)

Proof : First note that the elements (6.3)–(6.5) are indeed generators: The ele-
ments (6.5) are modulo the elements (6.4) differences of binary words. These form
chains from an arbitrary binary word down to an element in (6.3) (called above the
immediate chain).

Now let us check Hd+ dH = id on an element β in (6.3)–(6.5):
If β = (α)∗ is from (6.3), use induction on n.
If β = α1 · · ·αr is from (6.4), one finds

(6.6) Hd(β) + dH(β) = β + 0

by the very definition of H.
If β = d(γ), γ = α1 · · ·αr is from (6.5), one finds

Hdd(γ) + dHd(γ) = 0 + d(γ − dH(γ)) = 0 + β − 0

using (6.6) for γ.
�

Simple enough!

At the beginning I was suspicious, as the proof looks too simple. However, I
think the picture about the graphs Ωn makes the situation transparent: There is
a natural filtration on the complex C(n) whose graded terms are direct sums of
chain complexes of subdivided intervals and these define a homotopy retraction
from C(n) to C(n− 1) (graded versions).

Further, I did not expect such a simplicity and found the construction of H via
hard explicit work for small n.

I am also wondering now whether the basic argument has been used elsewhere.
Comments are welcome!

I plan to write the details in a forthcoming text.
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6.3. Further ideas.

• Define the n-dimensional associahedron as a topological space Yn.
If one thinks about it, the idea of chains leads almost immediately to

the construction: Once Yn is build, construct Yn+1 = Yn × [0, 1] realizing
the homotopy between Yn and a root shift of Yn (which is the same space,
only the references to trees are changed).

One takes the CW -complex

Yn = [0, 1]n

(the standard cube) together with a (special kind of) cellular subdivision
along the chains of the graphs Ωm.

The 0-cells are given by an obvious embedding

Xn,0 → Yn = [0, 1]n

Then the i-cells are the convex hulls of their 0-cells in the boundary (deter-
mined via full de-contractions of trees). A particular feature is that every
i-cell is itself a cuboid (the convex hull of 2i points), with the boundary
itself subdivided into cuboidal cells.

See (and enjoy) §7 for illustrations.
• After choosing a root, trivialize the coefficient system LΓ (select appropriate

isomorphisms LΓ = Z).
Then get a general formula like

d(α1 · · ·αr) =

r∑
i=1

(−1)?α1 · · · d(α1) · · ·αr +
∑
I

∂I(α1, . . . , αr)

Here the first sum corresponds to de-contractions away from the root node,
the second sum corresponds to de-contractions at the root node.

The signs in the first sum should be easy to figure out. The second sum
should be given by the following formula

∂(mn) = −
∑

n=p+q+r
k=p+1+r
k,q≥2

(−1)p+qrmk ◦ (id⊗p ⊗mq ⊗ id⊗r)

in Loday-Vallette 2012 [18, 9.2.4 The Operad A∞, p. 339].
• Recover coherence for monoidal categories. We refer to the (partial) dia-

gram for the 4-dimensional associahedron Y4 on page 22 in §7. If we have
a simple loop in the 1-skeleton of Yn and it leaves Yn−1∗ somewhere, then
it must walk a rung in one of the ladders. But two neighbored rungs in
the same ladder span a quadrangle (as for a normal ladder) or a pentagon
(in a pretty dangerous ladder). In any case one may shorten the loop by a
simple homotopy along a 2-cell (quadrangle or pentagon). Repeating this,
we may arrange that the loop is in Yn−1 and we are done by induction.

Note that this recipe reflects precisely the arguments in Mac Lane [19].

Here one does not need the full cube Yn, just its 2-skeleton Y
(2)
n , which

can be easily build from scratch. As by-result one gets π1(Y
(2)
n ) = 1.

• Identify the complex C(n) with the chain complex of a polytope realization.
For example take the Loday realization or the Lee subdivision. Also for the
unrooted case, taking a “symmetrical” realization.
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§7. Diagrams

Here are the longest chains in the graphs Ωn for n = 1, 2, 3.

•(••)
•••

(••)•

•(•(••))
••(••)

(••)(••)

(••)••
((••)•)•

•(•(•(••)))
••(•(••))

(••)(•(••))

(••)•(••)

((••)•)(••)

((••)•)••
(((••)•)•)•

The graph Ω1 consists of just 1 chain.

The graph Ω2 decomposes into 1 chain of length 2 and 2 chains of length 1. In
the next diagram, the vertices of Ω2 are the 5 points together with the 2 vertical
segments. The edges of Ω2 establish a homotopy between ∗Ω′1 on the left (note the
root shift) and Ω1∗ on the right. One recognizes a pentagon, with the 2-cell given
by the arrow between the 2 vertical segments.

1(2(34))
12(34) (12)(34) (12)34

((12)3)4

1(234)
1234

(123)4

1((23)4)
1(23)4

(1(23))4

[blank space for better formatting of next page]
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The graph Ω3 decomposes into 11 chains (11=number of cells in the pentagon).
The vertices and edges of the graph Ω3 make up the cells (faces of any dimension)

of the 3-dimensional associahedron.
In the following P indicates a pentagon, Q a quadrilateral, C the corolla (the

3-cell).
One path is

P :1(2345)
C:12345

P :(1234)5

Its vertices correspond in the associahedron to 2 disjoint pentagons, its edge to the
3-cell. After removing these from the associahedron, there remains a cylinder.

The remaining 10 chains of the graph Ω3 are depicted in the next diagram.
Here the top chain (of length 1) is repeated on the bottom. The dotted lines are

irrelevant for the graph itself. However they indicate 1-cells in the associahedron.
The red arrows between them correspond to 2-cells. These are the remaining 4
pentagons for P -arrows and the 3 disjoint quadrilaterals for Q-arrows. After iden-
tifying the top line with the bottom line, one recognizes the cylinder. The vertical
sides describe the removed “caps” of the cylinder: the pentagons ∗Ω′2, Ω2∗.

1(2(34))5

P :12(34)5

12((34)5) (12)(34)5

Q:12(345) (12)(345) P :(12)345

12(3(45)) (12)3(45) ((12)3)45

P :123(45) (123)(45) Q:(123)45

1(23)(45) (1(23))45

P :1(23)45

1((23)4)5

Q:1(234)5

1(2(34))5

(12)(3(45))

(12)((34)5)

(1(23))(45)

((12)3)(45)

(12(34))5

((12)34)5

((123)4)5

(1(23)4)5

(1(234))5

(1(2(34)))5

((12)(34))5

(((12)3)4)5

((1(23))4)5

(1((23)4))5

(1(2(34)))5

1(2(34)5)

1(2(345))

1(23(45))

1((23)45)

1((234)5)

1((2(34))5)

1(2((34)5))

1(2(3(45)))

1((23)(45))

1(((23)4)5)

1((2(34))5)

It can be that simple. Why would one ever want to draw a polytopal realization?
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Here is a minimalistic 3d image of the 3-dimensional associahedron. Only the
chains of length ≥ 2 are indicated. One recognizes the 3 disjoint quadrangles.

The next image shows additionally for each vertex of the associahedron its full
chain down to X0,0. These are the “canonical directed path” in Mac Lane 1963 [19,
p. 34], obtained “by moving an outermost parenthesis toward the front”.

The chain homotopy is a combination of following simple geometric homotopies.
First contract the cuboid to the rear pentagon, then contract that to its right side,
and finally contract that upwards to X0,0 (or rather perform these simultaneously).
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Same picture with captions appended.

1((2(34))5) −−→ (1(2(34)))5

| ↘

1(2((34)5)) −−→ (12)((34)5) −−→ ((12)(34))5

| | ↘

1(2(3(45))) −−→ (12)(3(45)) −−→ ((12)3)(45) −−→ (((12)3)4)5

| � ↗

1((23)(45)) −−→ (1(23))(45) −−→ ((1(23))4)5

| ↗

1(((23)4)5) −−→ (1((23)4))5

| |

1((2(34))5) −−→ (1(2(34)))5

The top line is duplicated on the bottom to show the left side of the cube (a
quadrangle).
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Same as previous page, but with the captions taken from Tamari’s drawing (page 4).

1210 −−→ 2110

| ↘

1120 −−→ 2020 −−→ 3010

| | ↘

1111 −−→ 2011 −−→ 3001 −−→ 4000

| � ↗

1201 −−→ 2101 −−→ 3100

| ↗

1300 −−→ 2200

| |

1210 −−→ 2110

The top line is duplicated on the bottom to show the right quadrangle in Tamari’s
drawing.
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Partial image of the 4-dimensional cubical associahedron I.

Only 2 chains in the 4th dimension are drawn, the longest chain and a neighbor:

1(2(3(4(56)))) −−→ (12)(3(4(56))) −−→ ((12)3)(4(56)) −−→ (((12)3)4)(56) −−→ ((((12)3)4)5)6

| | | ↗

1(2(3((45)6))) −−→ (12)(3((45)6)) −−→ ((12)3)((45)6) −−→ (((12)3)(45))6
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Partial image of the 4-dimensional cubical associahedron II.

Here 3 chains in the 4th dimension are drawn, the longest chain and 2 neighbors:

1(2((34)(56))) −−→ (12)((34)(56)) −−→ ((12)(34))(56) −−→ (((12)(34))5)6

| | � ↘

1(2(3(4(56)))) −−→ (12)(3(4(56))) −−→ ((12)3)(4(56)) −−→ (((12)3)4)(56) −−→ ((((12)3)4)5)6

| | | ↗

1(2(3((45)6))) −−→ (12)(3((45)6)) −−→ ((12)3)((45)6) −−→ (((12)3)(45))6
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Here are the ladders from the longest chain to its 3 neighbors.
The first ladder is depicted on pages 22, 23, the second ladder on page 23, the

3rd ladder you have to draw yourself (oh no, now there is page 25).
Note that all ladders are dangerous (the side rails don’t match), but at different

spots with each giving rise to a pentagon.

Ladder 1:

1(2(3(4(56)))) −−→ (12)(3(4(56))) −−→ ((12)3)(4(56)) −−→ (((12)3)4)(56) −−→ ((((12)3)4)5)6

| | | ↗

1(2(3((45)6))) −−→ (12)(3((45)6)) −−→ ((12)3)((45)6) −−→ (((12)3)(45))6

Ladder 2:

1(2(3(4(56)))) −−→ (12)(3(4(56))) −−→ ((12)3)(4(56)) −−→ (((12)3)4)(56) −−→ ((((12)3)4)5)6

| | � ↗

1(2((34)(56))) −−→ (12)((34)(56)) −−→ ((12)(34))(56) −−→ (((12)(34))5)6

Ladder 3:

1(2(3(4(56)))) −−→ (12)(3(4(56))) −−→ ((12)3)(4(56)) −−→ (((12)3)4)(56) −−→ ((((12)3)4)5)6

| � � ↗

1((23)(4(56))) −−→ (1(23))(4(56)) −−→ ((1(23))4)(56) −−→ (((1(23))4)5)6
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Partial image of the 4-dimensional cubical associahedron III.
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Partial image of the 4-dimensional cubical associahedron IV.

(with all 42 points and contracting arrows)
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Partial image of the 4-dimensional cubical associahedron V.

Finally, here is one with all 42 points and 84 edges (June 2025).
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Here are captions for the maximal path with no direction change (the straight
line with the 5 red vertices) and for the path with 4 directions (starting in the gray
opposite corner of the upper cube):

•
1

(•
2

(•
3

(•
4

(••)
4

)
3

)
2

)
1

→ •
1

(
2

(
3

(
4

(••)
4

•)
3

•)
2

•)
1

→
1

(••)
1 2

(•
3

(•
4

(••)
4

)
3

)
2

→
1

(•
2

(
3

(
4

(••)
4

•)
3

•)
2

)
1

• →
2

(
1

(••)
1

•)
2 3

(•
4

(••)
4

)
3

→
1

(
2

(•
3

(
4

(••)
4

•)
3

)
2

•)
1

• →
3

(
2

(
1

(••)
1

•)
2

•)
3 4

(••)
4

→
1

(
2

(
3

(•
4

(••)
4

)
3

•)
2

•)
1

• →
4

(
3

(
2

(
1

(••)
1

•)
2

•)
3

•)
4

•
1

(
2

(
3

(
4

(••)
4

•)
3

•)
2

•)
1

•
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§8. The diagram from Tamari’s thesis

A TEX/TikZ diagram after Fig. 1 in Tamari’s thesis [39, p. 12] (see page 4):

- § 1 - - 12 -

A02 : a(bc) (ab)c

M2

11 20

M3

201

300

210

111

120

3010

1201

2020 2110

2011 2200

1111 1300

4000

2101

3001 3100

1120
1210

M4

1- ab
11- a(bc)
20- (ab)c

111- a(b(cd))
120- a((bc)d)
201- (ab)(cd)
210- (a(bc))d
300- ((ab)c)d
1111-a(b(c(de)))
1120-a(b((cd)e))
1201-a((bc)(de))
2011-(ab)(c(de))
2020-(ab)((cd)e)
. . . . . . . .

Fig. 1

Scans of the original diagram can be found here: Loday 2012 [17, p. 74], Stasheff
2012 [37, p. 46] (both in the Tamari memorial Festschrift 2012 [22]) and Stasheff
2019 [38, p. 94] (arXiv:1809.02526v2 [math.QA], p. 4).

https://arxiv.org/abs/1809.02526v2
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The following colored variant has reversed arrows and perspective. It illustrates
the strong deformation retractions

M4 →M3 →M2 →M1

The embeddings (written above as ∗Mk ⊂Mk+1)

M1 →M2 →M3 →M4

are given by prepending 1 to the labels. The green/red/blue arrows indicate the
homotopies. In terms of the cubical view, these retract the cuboid linearly to a
side.

- § 1 - - 12 -

A02 : a(bc) (ab)c

M2

11 20

M3

201

300

210

111

120

3010

1201

2020 2110

2011 2200

1111 1300

4000

2101

3001 3100

1120
1210

M4

1- ab
11- a(bc)
20- (ab)c

111- a(b(cd))
120- a((bc)d)
201- (ab)(cd)
210- (a(bc))d
300- ((ab)c)d
1111-a(b(c(de)))
1120-a(b((cd)e))
1201-a((bc)(de))
2011-(ab)(c(de))
2020-(ab)((cd)e)
. . . . . . . .

Fig. 1
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The next variant shows the duals. The dual (of the boundary) of the associa-
hedron is a simplicial complex build from non-crossing polygon diagonals. It is a
triangulation of the sphere. See [13].

- § 1 - - 12 -

A02 : a(bc) (ab)c

M′
2

11 20

M′
3

201

300

210

111

120
M′

4

1- ab
11- a(bc)
20- (ab)c
111- a(b(cd))
120- a((bc)d)
201- (ab)(cd)
210- (a(bc))d
300- ((ab)c)d

1111-a(b(c(de)))
1120-a(b((cd)e))
1201-a((bc)(de))
2011-(ab)(c(de))
2020-(ab)((cd)e)
. . . . . . . .

Fig. 1
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