
NOTES ON FREE ALTERNATIVE ALGEBRAS
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Summary

We compute the free alternative algebra up to degree 4.

Introduction

Let R be a ground ring (associative, commutative and unital) and let V be a
R-module.

Consider the universal object for R-linear morphisms V → A to R-algebras
of some type. The algebra types to be considered are associative commutative,
associative non-commutative, non-associative, alternative, respectively. We assume
unitality. (The prefix “non-” stands for “not required”.)

In the first resp. second case the universal algebra is the symmetric resp. tensor
algebra of V :

S•V = R⊕ V ⊕ S2V ⊕ S3V ⊕ · · ·
T •V = R⊕ V ⊕ V ⊗2 ⊕ V ⊗3 ⊕ · · ·

Next consider the case of non-associative algebras.
If S is a set and V is the free R-module with basis S, the universal object is the

free R-algebra on S together with an extra term 1 · R since we assume unitality.
See Serre [6, Chap. IV, Free Lie Algebras, p. 18], Bourbaki [1, Chap. II, Algèbres
de Lie libre].

More generally, for any R-module V there exists the universal R-linear morphism
to (unital) non-associative R-algebras. (This is straightforward, but I don’t know
a reference.) The corresponding universal algebra looks as follows:

M•V = M0V ⊕M1V ⊕M2V ⊕M3V ⊕ · · ·
= R⊕ V ⊕ [V ⊗ V ]⊕M3V ⊕ · · ·

M3V = [(V ⊗ V )⊗ V ]⊕ [V ⊗ (V ⊗ V )]

M4V = [(V ⊗2 ⊗ V )⊗ V ]⊕ [(V ⊗ V ⊗2)⊗ V ]

⊕ [V ⊗ (V ⊗2 ⊗ V )]⊕ [V ⊗ (V ⊗ V ⊗2)]

⊕ [V ⊗2 ⊗ V ⊗2]

MnV = [V ⊗n]⊕Cn

where Cn is the number of parenthesized expressions of length n (the Catalan
number) with first values 1, 1, 2, 5, 14, 42. (The parentheses indicate the product
in M•, the square brackets are added for readability.)
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The summands of MnV (n ≥ 1) are parameterized by the elements of the free
magma X({∗}) on one element,

∗, ∗∗, (∗∗)∗, ∗(∗∗),
((∗∗)∗)∗, (∗(∗∗))∗, ∗((∗∗)∗), ∗(∗(∗∗)), (∗∗)(∗∗),

(((∗∗)∗)∗)∗, · · ·
and one has

MnV = Z[Xn]⊗ V ⊗n

where Xn is the subset of elements of length n of X({∗}).
Let

σ : X({∗})→
(
X({∗})

)op

be the op-involution, the unique magma homomorphism with ∗ 7→ ∗. It can be
described as a nested transpose. Examples are ∗(∗∗)↔ (∗∗)∗, ((∗∗)∗)∗ ↔ ∗(∗(∗∗)).

Extended by the identity maps on V ⊗n, it yields a module automorphism

σ : M•V →M•V

We call this map the paren involution (or is there another name in the literature?).
Thus the paren involution just permutes the Cn components of MnV .

The op-involution on M•,

ι : M•V → (M•V )op

is the algebra homomorphism defined by the universal property extending the iden-
tity on M1V = V . It commutes with σ and the composition τ = σ ◦ ι = ι ◦ σ acts
on Z[Xn] as identity and on V ⊗n by the transpose

τn : V ⊗n → V ⊗n

τn(x1 ⊗ · · · ⊗ xn) = xn ⊗ · · · ⊗ x1

(Passing to T •V , the paren involution becomes the identity and we are left with
the remark that the op-involution on T •V is given by the τn.)

Now we turn to alternative R-algebras. (A fitting reference for this text is [8,
Chap. 13, Free Alternative Algebras, p. 258]). It is easy to guess a construction of
the universal R-linear morphism V → A to (unital) alternative R-algebras. It is
given by the quotient

B•V = M•V / alternativity

of M•V by the alternative rules

(αα)β = α(αβ)

(αβ)β = α(ββ)

for α, β ∈M•V . If we add the linearized alternative rules

(αγ + γα)β = α(γβ) + γ(αβ)

(αβ)γ + (αγ)β = α(βγ + γβ)

we may assume that α, β, γ are homogeneous, that is α ∈ MaV , β ∈ M bV , γ ∈
M cV for some integers a, b, c ≥ 1. It is therefore clear that B•V inherits the grading
and there is a natural decomposition

B•V = B0V ⊕B1V ⊕B2V ⊕B3V ⊕B4V ⊕ · · ·
with each BnV a quotient of MnV .
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Evidently there are the obvious epimorphisms of R-algebras

M•V → B•V → T •V → S•V

given by the respective strengthenings of algebraic structures.
The algebra B•V inherits the paren involution, denoted by

σ : B• → B•

as well.
In the very first degrees there are the bijections

M≤1V = B≤1V = T≤1V = S≤1V

M≤2V = B≤2V = T≤2V

To compute further, let

M ′nV = ker(MnV → TnV )

B′nV = ker(BnV → TnV )

KnV = ker(MnV → BnV )

(KnV ⊂MnV is given by homogeneous alternativity rules).
In other words, there is the commutative exact diagram

0 0y y
KnV KnVy y

0 −−→ M ′nV −−→ MnV −−→ TnV −−→ 0y y ∥∥∥
0 −−→ B′nV −−→ BnV −−→ TnV −−→ 0y y

0 0

The submodule M ′nV of MnV is generated by the various n-linear expressions
involving an associator. For instance

M ′3V = V ⊗3 ⊂M3V = (V ⊗2 ⊗ V )⊕ (V ⊗ V ⊗2)

is generated by the associators

A(x, y, z) =
(
(xy)z,−x(yz)

)
Similarly, M ′4V is generated by expressions of the form A(x, y, z)t, A(xy, z, t), etc.
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Clearly KnV ⊂ M ′nV—after all, alternativity is a condition on the associator
(namely that it is alternating). The first non-trivial case is

K3V ⊂M ′3V = V ⊗3

which is generated by the 3-tensors xxy, xyy. It follows that B′3V = Λ3V and one
gets the commutative diagram

0 −−→ V ⊗3 −−→ M3V −−→ T 3V −−→ 0y y ∥∥∥
0 −−→ Λ3V −−→ B3V −−→ T 3V −−→ 0

This computation of B3V shows that there exists a not-associative alternative al-
gebra. Further, it encodes the definition of an alternative algebra A in the form
that the associator is alternating, i.e., a map

Λ3A→ A

Namely, if x1, x2, x3 are elements in A and B•V → A, V = 〈e1, e2, e3〉R is the
corresponding homomorphism, then

Λ3V ⊂ B3V → A

maps e1 ∧ e2 ∧ e3 to the associator (x1x2)x3 − x1(x2x3).

So far things were simple enough. What happens in higher degrees? The main
purpose of this text is to present a computation of B4V for locally free V .

As for degrees ≥ 5, we don’t know much. Is BnV a locally free R-module for
locally free R-modules V ? (This question reduces to the case R = Z, V = ZN .)

As for a computation of B5V : One has to look at a quotient of M5V = [V ⊗5]⊕14

and an ad hoc computation quickly gets tiring. It seems one should first write down
the chain complex of the 3-dimensional associahedron, if only to get all signs right.
See [4] (Notes on the associator, April 2024, [pdf]) for a related discussion.

In the following we assume that V is locally free. The letter V will often be
dropped from statements. In parts for brevity, but it should be noted anyway that
the functors M,B, T, S are polynomial functors, and the morphisms we consider
are morphisms of polynomial functors.

Here is the main result about B4:

Proposition. There is an isomorphism

Φ: B′4 →
(
T 1 ⊗ Λ3

)⊕2

Clearly, if rankV = 2, it follows that B′4V = 0. This is a reflection of Artin’s
theorem (an alternative algebra with 2 generators is associative).

For another illustration, let

δ : Λ4 → T 1 ⊗ Λ3

δ(v1 ∧ v2 ∧ v3 ∧ v4) =
∑
i

(−1)i−1vi ⊗ ∧v̂i

be the standard map and put

f = −Φ−1 ◦ (δ, δ) : Λ4 → B′4

https://www.math.uni-bielefeld.de/~rost/assoc.html#assoc1
https://www.math.uni-bielefeld.de/~rost/data/assoc1.pdf


NOTES ON FREE ALTERNATIVE ALGEBRAS 5

By the universality of B•V , it follows that for any alternative algebra A there is a
certain 4-alternating map

f : Λ4A→ A

This is the function f considered in Bruck and Kleinfeld 1951 [2, p. 880], see my text
[5, Corollary 4, p. 5] (Notes on associator identities, May 2024, [pdf]) for details.

https://www.math.uni-bielefeld.de/~rost/assoc.html#assoc4
https://www.math.uni-bielefeld.de/~rost/data/assoc4.pdf
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§1. The computation

1.1. The complex C•. The first step is to set up an exact sequence

(1) 0→ C2
R−→ C1

A−→ C0
ε−→ T 4 → 0

with the terms

T 4V = V ⊗4

C0V = M4V = [V ⊗4]⊕5

= [(V ⊗2 ⊗ V )⊗ V ]⊕ [(V ⊗ V ⊗2)⊗ V ]

⊕ [V ⊗ (V ⊗2 ⊗ V )]⊕ [V ⊗ (V ⊗ V ⊗2)]

⊕ [V ⊗2 ⊗ V ⊗2]

C1V = [V ⊗4]⊕5

= [V ⊗3 ⊗ V ]⊕ [V ⊗ V ⊗2 ⊗ V ]⊕ [V ⊗ V ⊗3]

⊕ [V ⊗ V ⊗ V ⊗2]⊕ [V ⊗2 ⊗ V ⊗ V ]

C2V = V ⊗4

Let C5 be the cyclic group of order 5 with generator ζ and consider the standard
exact sequence

(2) 0→ Z
∑

i ζ
i

−−−→ Z[C5]
1−ζ−−→ Z[C5]

ε−→ Z→ 0

of C5-modules.
The sequence (1) is defined exactly as (2) tensored (over Z) with T 4: If one takes

1, ζ, ζ2, ζ3, ζ4 as basis for Z[C5], then the maps in (1) have the same matrices as
the maps in (2), with respect to the indicated decompositions of C0 and C1. For
instance the map A : C1 → C2 is on the first component given by

[V ⊗3 ⊗ V ]→ [(V ⊗2 ⊗ V )⊗ V ]⊕ [(V ⊗ V ⊗2)⊗ V ]⊕ 0⊕ 0⊕ 0

(xyz)t 7→
(
((xy)z)t,−(x(yz))t, 0, 0, 0

)
Moreover, R is just the diagonal and ε is the sum.

See also [5, Lemma 1, p. 4] (Notes on associator identities, May 2024, [pdf]). The
sequence (2) is the augmented chain complex of the 2-dimensional associahedron
(the pentagon). However we do not refer here to associahedra, but have set up (1)
from scratch.

Since M ′4 = ker ε, we have a resolution

0→ C2
R−→ C1

A−→M ′4 → 0

In order to compute B′4 = M ′4/K4, we will describe a lift K̃4 (of an extension)
of K4 to C1.

1.2. The module X(V ). But first we need some further notations. There is the
exact sequence

0→ S3V → S2V ⊗ V ⊕ V ⊗ S2V → V ⊗3 → Λ3V → 0

where SkV =
(
V ⊗k

)Σk denotes the module of symmetric tensors.
Put

X(V ) = ker(V ⊗3 → Λ3V ) =
S2V ⊗ V ⊕ V ⊗ S2V

(i,−i)(S3V )

https://www.math.uni-bielefeld.de/~rost/assoc.html#assoc4
https://www.math.uni-bielefeld.de/~rost/data/assoc4.pdf
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1.3. The submodule K̃4V . Let

K̃4V ⊂ C1V

be the submodule generated by(
X(V )⊗ V, 0, 0, 0, 0

)(
0, 0, V ⊗X(V ), 0, 0

)(
0, x(yz)x, 0, 0, 0

)(
0, x(yz)t, 0, xt(yz), 0

)(
0, x(yz)t, 0, 0, (yz)xt

)
Observe that K̃4 contains the elements(

0, 0, 0, xx(yz), 0
)(

0, 0, 0, 0, (yz)xx
)(

0, 0, 0, xy(zt), (zt)yx
)

Using this, it not difficult to check that A maps K̃4 onto K4. Hint: Spelling out
the homogeneous alternativity rules of degree 4 yields an epimorphism

(X(V )⊗ V )⊕2 ⊕ (S2 ⊗ V ⊗2)⊕3 ⊕ (V ⊗4)⊕3 → K4

Now eliminate some redundant terms.
Hence there is an exact sequence

C2 ⊕ K̃4 → C1 → B′4 → 0

1.4. More notations. We abbreviate

P = T 1 ⊗ Λ3

Let

µ : P → Λ4

be the multiplication in the exterior algebra and let

p : T 4 → Λ4

p(x1x2x3x4) = x1 ∧ x2 ∧ x3 ∧ x4

be the projection.
Put

ρi, ρ̄ : T 4 → P

ρ1(x1x2x3x4) = +x1 ⊗ (x2 ∧ x3 ∧ x4)

ρ2(x1x2x3x4) = −x2 ⊗ (x1 ∧ x3 ∧ x4)

ρ3(x1x2x3x4) = +x3 ⊗ (x1 ∧ x2 ∧ x4)

ρ4(x1x2x3x4) = −x4 ⊗ (x1 ∧ x2 ∧ x3)

ρ̄ = ρ1 + ρ2 + ρ3 + ρ4

The signs ensure that the µ ◦ ρi are all equal to the projection p:

µ ◦ ρi = p (i = 1, 2, 3, 4)
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Moreover, ρ̄ is alternating and factors as

ρ̄ : T 4 p−→ Λ4 δ−→ P

where δ is the standard map (the natural inclusion via ΛnV ⊂ V ⊗n).

1.5. The map Φ. Define

Φ̂ : C1 → P ⊕ P

Φ̂ =

(
ρ4 ρ2 0− ρ̄ ρ3 ρ1

0 ρ3 ρ1−ρ̄ ρ4 ρ2

)
where the matrix notation corresponds to the definition of C1 above, copied here
for convenience:

C1V = [V ⊗3 ⊗ V ]⊕ [V ⊗ V ⊗2 ⊗ V ]⊕ [V ⊗ V ⊗3]

⊕ [V ⊗ V ⊗ V ⊗2]⊕ [V ⊗2 ⊗ V ⊗ V ]

Note that Φ̂ is an epimorphism (already the first 2 columns are epimorphic as
the ρi are epimorphisms).

Clearly Φ̂ vanishes on the image of C2 (the row sums are trivial).

It vanishes also on K̃4: Namely, ρ4 vanishes obviously on X ⊗ T 1 = ker ρ4.
Similarly, ρ1 vanishes on T 1 ⊗ X = ker ρ1. Hence ρ̄ = δµρ1 vanishes as well on
T 1 ⊗ X. Next note that ρ2, ρ3 are alternating in x1, x4 and so vanish on the
elements x(yz)x. Finally, the elements(

0, x(yz)t, 0, xt(yz), 0
)(

0, x(yz)t, 0, 0, (yz)xt
)

map to (
−y ⊗ xzt+ y ⊗ xzt
+z ⊗ xyt− z ⊗ xyt

)
= 0,

(
−y ⊗ xzt+ y ⊗ xzt
+z ⊗ xyt− z ⊗ xyt

)
= 0

respectively.

Hence Φ̂ factors through B′4, inducing an epimorphism

Φ: B′4 → P ⊕ P

Here is an explicit description of Φ in terms of the generators of M ′4 (the asso-
ciators):

A(x, y, z)t 7→
(
−t⊗ xyz

0

)
A(x, yz, t) 7→

(
−y ⊗ xzt
z ⊗ xyt

)
xA(y, z, t) 7→

(
−x⊗ yzt+ y ⊗ xzt− z ⊗ xyt+ t⊗ xyz

y ⊗ xzt− z ⊗ xyt+ t⊗ xyz

)
−A(x, y, zt) 7→

(
z ⊗ xyt
−t⊗ xyz

)
−A(xy, z, t) 7→

(
x⊗ yzt
−y ⊗ xzt

)
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1.6. Injectivity of Φ. One defines a left inverse to Φ. Consider

Ψ: P ⊕ P → B′4

(t⊗ xyz, 0) 7→ −A(x, y, z)t

(0, z ⊗ xyt) 7→ A(x, yz, t)−A(x, z, t)y

We first show that Ψ is well defined. For the first component this is obvious as A is
alternating. For the second component one needs additionally that the right hand
side vanishes for t = y:

A(x, yz, y) = A(x, z, y)y

This is a basic relation in alternative algebras and can be shown in one way or the
other. We refer here to [5, Corollary 5, (2.3), p. 5]. As mentioned there, it appears
in Zorn [9, p. 142] and was used by Moufang [3, p. 419] to derive what are called
the Moufang identities.

One finds Ψ ◦ Φ = id by the formulas just formulated.
It remains to show that Ψ is surjective. It catches the first 2 summands of C1.

The 3rd summand of C1 can be eliminated using R(C2) and the 4th and 5th sum-

mands can be reduced to the 2nd using K̃4.

Remark. In a future version of this text I might start out with Ψ (including a proof
that it is well defined) and then establish its inverse Φ.

§2. More considerations

2.1. A resolution of B′4. Consider

C1 = C1/K̃
4

There is the induced exact sequence

C2
R−→ C1 → B′4 → 0

One may compute the kernel of R. This needs some further work. In the end
one gets the following:

Let

η : T ⊗ S2 ⊗ T → T 4

η(x⊗ yy ⊗ t) = (xy + yx)(yt+ ty)− xyyt
= xyty + yxyt+ yxty

PropositionXL. There exists a natural exact sequence

0→ S4
(3,i)−−−→ S4 ⊕

(
T ⊗ S2 ⊗ T

) (i,−η)−−−−→

T 4 R
′

−→ (Λ3 ⊗ T 1)⊕ (T 1 ⊗ Λ2 ⊗ T 1)⊕ (T 1 ⊗ Λ3)

Φ′

−→
(
Λ3 ⊗ T 1

)
⊕
(
T 1 ⊗ Λ3

)
→ 0

with
B′4 = cokerR

′

On the way the following exact sequence is useful:

0→ S4 → S2 ⊗ S2 → T 1 ⊗ Λ2 ⊗ T 1 → (Λ3 ⊗ T 1)⊕ (T 1 ⊗ Λ3)→ Λ4 → 0

Here the components are the obvious maps, decorated with signs. Exactness follows
for instance from the exactness of the Koszul complexes (Si ⊗ ΛN−i)i for N ≤ 4.
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2.2. The Kleinfeld function. As for the Kleinfeld function

f : Λ4V → B′4V ⊂ B4V

f(x, z, y, t) = A(x, yz, t)−A(x, z, t)y − zA(x, y, t)

= A(x, z, [y, t]) +A([x, z], y, t)

see [5, Corollary 4, p. 5] and also [8, Chap. 7, Simple alternative algebras, p. 139]:
one finds indeed

Φ ◦ f = (0,−δ,−δ)

2.3. Endomorphisms. The endomorphism algebra of P = T 1 ⊗ Λ3 as a polyno-
mial functor over Z is

End(P ) = Z[α]/(α2 − 4α)

with α = δ ◦ µ.
An interesting involution of P⊕2 is

ω =

(
−α 1 + α

1− α α

)
∈ GL2

(
End(P )

)
= Aut(P ⊕ P )

It is related with the paren involution on B4.
One finds (τ is the switch involution)

ω ◦ Φ̂ = τ ◦ Φ̂′

with

Φ̂′ =

(
ρ4−ρ̄ ρ2 0 ρ3 ρ1

0− ρ̄ ρ3 ρ1 ρ4 ρ2

)
or

Φ̂′ − Φ̂ =

(
−ρ̄ 0 ρ̄ 0 0
−ρ̄ 0 ρ̄ 0 0

)

2.4. A variant of Φ. The formulas for Φ̂, Φ̂′ have an apparent asymmetry because
of the ρ̄-column (which is essentially the Kleinfeld function). As we have just seen,
using ω one can move the ρ̄-column to the other possible slot.

An alternative is the following: There is the split exact sequence

0→ P ⊕ P i−→ Λ4 ⊕ P ⊕ P π−→ Λ4 → 0

0→ P ⊕ P j←− Λ4 ⊕ P ⊕ P s←− Λ4 → 0

π(η, β, γ) = 3η + µ(β) + µ(γ)

s(η) =
(
−η, δ(η), 0

)
j(η, β, γ) =

(
β + δ(η),−γ

)
i(β, γ) =

(
µ(β − γ), β − δµ(β − γ),−γ

)
Note the factor 3 in the definition of π = (3, µ, µ).
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For the composition with Φ̂ one finds

i ◦ Φ̂ =

 p 0 −p 0 0
ρ4 − ρ̄ +ρ2 0 +ρ3 +ρ1

0 −ρ3 −ρ1 + ρ̄ −ρ4 −ρ2


which has a slightly more symmetric form (the extra term ρ̄ appears in both
columns).

Under this map, the paren involution corresponds to

(η, β, γ) 7→ (−η,−γ,−β)

Remark. The resulting exact sequence

0→ B′4
i◦Φ−−→ Λ4 ⊕ P ⊕ P (3,µ,µ)−−−−→ Λ4 → 0

has the shape of our first computation of B′4. It somehow appeared naturally.
After eliminating the Λ4-terms using the section s (and some sign changes) we

obtained the formula for Φ̂. The latter is perhaps a bit more transparent and seems
to be more convenient for proofs. However it breaks a symmetry caused by the
choice of the section s. The other obvious choice s(η) = (−η, 0, δ(η)) gives rise

to Φ̂′.

Remark. Finally let us note that

T 4 → B4

xyzt 7→ (xy)(zt)

is a section to B4 → T 4 which invariant under the paren involution.
This section is a particular feature in degree 4, as (∗∗)(∗∗) is the only fixed point

of the paren involution acting on X4.
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