NOTES ON FREE ALTERNATIVE ALGEBRAS
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Summary

We compute the free alternative algebra up to degree 4.

Introduction

Let R be a ground ring (associative, commutative and unital) and let V' be a
R-module.

Consider the universal object for R-linear morphisms V' — A to R-algebras
of some type. The algebra types to be considered are associative commutative,
associative non-commutative, non-associative, alternative, respectively. We assume
unitality. (The prefix “non-" stands for “not required”.)

In the first resp. second case the universal algebra is the symmetric resp. tensor
algebra of V:

SV=RaVaS’VesSVae.--.
TV=RaVaVZapV®g...

Next consider the case of non-associative algebras.

If S is a set and V is the free R-module with basis S, the universal object is the
free R-algebra on S together with an extra term 1- R since we assume unitality.
See Serre [6, Chap. IV, Free Lie Algebras, p. 18], Bourbaki [1, Chap. II, Algebres
de Lie libre].

More generally, for any R-module V' there exists the universal R-linear morphism
to (unital) non-associative R-algebras. (This is straightforward, but I don’t know
a reference.) The corresponding universal algebra looks as follows:

MV =MVoeMVeoMVeMVE..-
=RoVeoVeV]ieMVe---
MV =[(VeV)eaV]e[Ve(VeV)
MYV =[(V2eV)eV]e[(VeV®?) V]
VeV V)]e[Ve (Ve V®?)
® [V 0 V&?
M"YV = [V®n]€BCn

where C,, is the number of parenthesized expressions of length n (the Catalan
number) with first values 1,1,2,5,14,42. (The parentheses indicate the product
in M*®, the square brackets are added for readability.)
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The summands of MV (n > 1) are parameterized by the elements of the free
magma X ({x}) on one element,

and one has
M"YV =Z[X,) @ Ve
where X, is the subset of elements of length n of X ({x}).

Let
op
o: X({x}) = (X({+}))

be the op-involution, the unique magma homomorphism with * +— *. It can be
described as a nested transpose. Examples are #(xx) <> (%)%, ((3)%)% > s (x(x)).

Extended by the identity maps on V®", it yields a module automorphism

o: M*V - M*V

We call this map the paren involution (or is there another name in the literature?).

Thus the paren involution just permutes the C,, components of M™V.
The op-involution on M*,

t: M°V — (M°*V)°P
is the algebra homomorphism defined by the universal property extending the iden-

tity on MV = V. It commutes with o and the composition 7 = ¢ 01 = 1 0 o acts
on Z[X,] as identity and on V®™ by the transpose

T VO 5 en
(1@ ®@p) =2, Q- @11

(Passing to TV, the paren involution becomes the identity and we are left with
the remark that the op-involution on T*V is given by the 7,.)

Now we turn to alternative R-algebras. (A fitting reference for this text is [8,
Chap. 13, Free Alternative Algebras, p.258]). It is easy to guess a construction of
the universal R-linear morphism V' — A to (unital) alternative R-algebras. It is
given by the quotient

B*V = M*V / alternativity
of M*V by the alternative rules
() = a(ap)
(aB)B = a(BB)
for a, 8 € M*V. If we add the linearized alternative rules
(ay +7a)B = a(yB) +v(aB)
(@B)y + (ay)B = a(By +B)
we may assume that o, 3,7 are homogeneous, that is « € MV, B € MV, v €

M<V for some integers a, b, ¢ > 1. It is therefore clear that B®*V inherits the grading
and there is a natural decomposition

BV=BVeB'Va&BVa&BVaeB'Vae. ..
with each B"V a quotient of M™V .
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Evidently there are the obvious epimorphisms of R-algebras
M®V — BV =TV — S*V

given by the respective strengthenings of algebraic structures.
The algebra B*®V inherits the paren involution, denoted by

o: B* — B*

as well.
In the very first degrees there are the bijections

M=V = BSlV = 75V = §<tv
M=*V = B=*V =T=*V
To compute further, let

M™V = ker(M™V — T"V)

B™V = ker(B"V — T"V)

K"V =ker(M"V — B"V)
(K™V C M™V is given by homogeneous alternativity rules).

In other words, there is the commutative exact diagram

0 0

0 — M™"W — M"V — TV — 0

0 — B™W — B"W — T"V — 0

0 0

The submodule MV of M™V is generated by the various n-linear expressions
involving an associator. For instance

MPV =V C MV = (Ve V)e (Ve V)
is generated by the associators
A(z,y,2) = ((ay)z, —2(y2))

Similarly, M’*V is generated by expressions of the form A(x,y, 2)t, A(zy, 2,t), etc.
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Clearly K"V C M'™V—after all, alternativity is a condition on the associator
(namely that it is alternating). The first non-trivial case is
KV C MPV =V®3
which is generated by the 3-tensors zxy, zyy. It follows that B’V = A3V and one

gets the commutative diagram
0 — VS — M3V — T3V — 0

b

0 — AW — BW — T3%W — 0

This computation of B3V shows that there exists a not-associative alternative al-
gebra. Further, it encodes the definition of an alternative algebra A in the form
that the associator is alternating, i.e., a map

AA = A
Namely, if x1, 9,23 are elements in A and B*V — A, V = (e1,eq,e3)r is the
corresponding homomorphism, then
AV C B — A

maps e1 A ex A ez to the associator (z1x9)xs — x1(z223).

So far things were simple enough. What happens in higher degrees? The main
purpose of this text is to present a computation of B*V for locally free V.

As for degrees > 5, we don’t know much. Is B™V a locally free R-module for
locally free R-modules V? (This question reduces to the case R = Z, V = Z" )

As for a computation of B5V: One has to look at a quotient of M5V = [V®5]®14
and an ad hoc computation quickly gets tiring. It seems one should first write down

the chain complex of the 3-dimensional associahedron, if only to get all signs right.
See [4] (Notes on the associator, April 2024, [pdf]) for a related discussion.

In the following we assume that V is locally free. The letter V will often be
dropped from statements. In parts for brevity, but it should be noted anyway that
the functors M, B,T, S are polynomial functors, and the morphisms we consider
are morphisms of polynomial functors.

Here is the main result about B*:
Proposition. There is an isomorphism

®: B* - (T' @ A%

Clearly, if rank V' = 2, it follows that B4V = 0. This is a reflection of Artin’s
theorem (an alternative algebra with 2 generators is associative).
For another illustration, let

§: A5 T e AP
5("01 N (%) A\ V3 AN U4) = Z(*l)iil’vi X /\’ZZ
be the standard map and put
f=-®"10(66): A* - B


https://www.math.uni-bielefeld.de/~rost/assoc.html#assoc1
https://www.math.uni-bielefeld.de/~rost/data/assoc1.pdf
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By the universality of B*V, it follows that for any alternative algebra A there is a
certain 4-alternating map

f:A*A = A
This is the function f considered in Bruck and Kleinfeld 1951 [2, p. 880], see my text
[5, Corollary 4, p.5] (Notes on associator identities, May 2024, [pdf]) for details.


https://www.math.uni-bielefeld.de/~rost/assoc.html#assoc4
https://www.math.uni-bielefeld.de/~rost/data/assoc4.pdf
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§1. The computation
1.1. The complex C,. The first step is to set up an exact sequence
(1) 0GB BCST >0
with the terms
TV = v
CoV = MV = [V&®5
= (V2o V)eV]e (Ve Ve V]
Ve (VeeV)ae[Ve (Ve V)
o [VE o Ve
C1V = [V&®
=V®8eV]eVeV®eV]e VeV
VVeV®] e[V V V]
CoV = Vet

Let C5 be the cyclic group of order 5 with generator ¢ and consider the standard
exact sequence

¢

(2) 0> 2Z Z[Cs] =5 Z[05) S Z — 0

of Cs-modules.

The sequence (1) is defined exactly as (2) tensored (over Z) with T#: If one takes
1,¢,¢2,¢3,¢* as basis for Z[Cs], then the maps in (1) have the same matrices as
the maps in (2), with respect to the indicated decompositions of Cy and Cy. For
instance the map A: C; — (s is on the first component given by

VB3 eV] = [(V*2eV)aV]e[(VeV®H)eV]e0a0a0

(zyz)t = (((zy)2)t, —(2(y2))t, 0,0,0)
Moreover, R is just the diagonal and ¢ is the sum.

See also [5, Lemma 1, p. 4] (Notes on associator identities, May 2024, [pdf]). The
sequence (2) is the augmented chain complex of the 2-dimensional associahedron
(the pentagon). However we do not refer here to associahedra, but have set up (1)
from scratch.

Since M'* = kere, we have a resolution

00 oS Mo
In order to compute B = M'*/K*, we will describe a lift K* (of an extension)
of K* to Cj.
1.2. The module X (V). But first we need some further notations. There is the
exact sequence
0= S5V 5 SVRVeVeShV Ve 5 AV -0

where S,V = (V®k)2k denotes the module of symmetric tensors.

Put

SV OVEV® S,V
X(V)=ker(VE2 > AV) = =25 ey



https://www.math.uni-bielefeld.de/~rost/assoc.html#assoc4
https://www.math.uni-bielefeld.de/~rost/data/assoc4.pdf
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1.3. The submodule K*V. Let
KW cov
be the submodule generated by
(X(V)®V,0,0,0,0)
(0, 0,V&X(V),0, O)
(O, x(yz)z, 0,0, O)
(0, z(y2)t, 0, xt(yz),0)
(0, z(y2)t, 0,0, (yz)xt)
Observe that K4 contains the elements
(0, 0,0, zx(yz), O)
(0, 0,0,0, (yz)mx)
(0, 0,0, zy(zt), (zt)ym)

Using this, it not difficult to check that A maps K* onto K*. Hint: Spelling out
the homogeneous alternativity rules of degree 4 yields an epimorphism

(X(V)@V)P2 @ (S, @ VE2)P3 ¢ (VEH)®3 5 Kk

Now eliminate some redundant terms.
Hence there is an exact sequence

CodK*—=Cy— B*—=0

1.4. More notations. We abbreviate

P=T'"®A®

Let
p: P — A*

be the multiplication in the exterior algebra and let
p: T* — A*

p(z120w324) = T3 ATo AX3 ATy
be the projection.
Put
pi,p: T*— P
p1(T1T0w3T4 +21 ® (x2 Ay A Xy
P2

( ) = )
( )= —22® (X1 Axgz Axyg)
p3(r1T22374) = +23 @ (T1 A T3 A 14)
( ) = ( )

T1T2X3T4

Pa(T1T2x3T4 —T4 @ (1 N2 N\ T3
p=p1+p2+p3+pa
The signs ensure that the p o p; are all equal to the projection p:

nop;=p (22132a3,4)
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Moreover, p is alternating and factors as
5T LAt S P
where 4 is the standard map (the natural inclusion via A"V C V&),

1.5. The map ®. Define

$:C, PP
3 <P4 p2 0—p p3 Pl)
0 p3s p1—p ps p2
where the matrix notation corresponds to the definition of C; above, copied here
for convenience:
OV =V®eVieVeV®?2eV]eVe V|
oVeVeV® e[V eV eV

Note that ® is an epimorphism (already the first 2 columns are epimorphic as
the p; are epimorphisms).

Clearly ® vanishes on the image of Cj (the row sums are trivial).

It vanishes also on K*: Namely, ps vanishes obviously on X ® T = ker py4.
Similarly, p; vanishes on T' ® X = ker p;. Hence p = §up; vanishes as well on
T' ® X. Next note that ps, p3 are alternating in x;,z4 and so vanish on the
elements z(yz)z. Finally, the elements

(O, x(y2)t, 0, xt(yz), O)
(0, 2(y2)t,0,0, (y2)at)

map to

—yQrzt+yQz2t —0 —yQrzt+yYQx2t
+z@ayt —zQ@ayt ) +2 @ xyt — 2 @ Yt

respectively.
Hence ® factors through B’4, inducing an epimorphism

o:B* 5 PaoP

Here is an explicit description of ® in terms of the generators of M’* (the asso-
ciators):

A(z,y,2)t — (_t (X())xyz)

— Tz QuUzt+yQ@x2t —2Qayt +1Q TY2
xA(y,z,t)»—)( YyRrzt — 2z @ xyt +t @ xyz
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1.6. Injectivity of ®. One defines a left inverse to ®. Consider
v:PoP—B*
(t @ zyz,0) — —A(z,y, 2)t
0,z ®@ ayt) — A(x,yz,t) — Az, 2, 1)y

We first show that ¥ is well defined. For the first component this is obvious as A is
alternating. For the second component one needs additionally that the right hand
side vanishes for t = y:
Az, yz,y) = Az, 2,9)y

This is a basic relation in alternative algebras and can be shown in one way or the
other. We refer here to [5, Corollary 5, (2.3), p.5]. As mentioned there, it appears
in Zorn [9, p.142] and was used by Moufang [3, p.419] to derive what are called
the Moufang identities.

One finds ¥ o & = id by the formulas just formulated.

It remains to show that W is surjective. It catches the first 2 summands of Cj.
The 3rd summand of C can be eliminated using R(C2) and the 4th and 5th sum-
mands can be reduced to the 2nd using K*.

Remark. In a future version of this text I might start out with ¥ (including a proof
that it is well defined) and then establish its inverse ®.

§2. More considerations
2.1. A resolution of B’*. Consider
C,=Cy/K*
There is the induced exact sequence
CQ £> 61 — Bl4 — 0

One may compute the kernel of R. This needs some further work. In the end
one gets the following:
Let

N T®RS@T — T
n(z®yy®t) = (zy +yz)(yt + ty) — zyyt
= zyty + yryt + yxty
PropositionXL. There ezists a natural exact sequence
08 2% 5@ (T®S®T) Loz,
T &, NTHe (T'e AT e (T @ A?)
(BT @ (T' @ A%) -0

with _
B = coker R

On the way the following exact sequence is useful:
058 =508 T'oANaT - (AMBTHe (T'eA?) - A* =0

Here the components are the obvious maps, decorated with signs. Exactness follows
for instance from the exactness of the Koszul complexes (S; @ AN~%); for N < 4.
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2.2. The Kleinfeld function. As for the Kleinfeld function
f: AV — BV c BV
f(1'7 z,Y, t) = A(xv Yz, t) - A((E, Z, t)y - ZA(xa Y, t)
= A(l‘, Z, [y7 t]) + A([x, Z], Y, t)

see [5, Corollary 4, p.5] and also [8, Chap. 7, Simple alternative algebras, p.139]:
one finds indeed

Do f=(0,—0,-9)

2.3. Endomorphisms. The endomorphism algebra of P = T' ® A? as a polyno-
mial functor over Z is

End(P) = Z[a]/(a® — 4a)
with o = o .

An interesting involution of P®? is

w= <1__aa 1 Z O‘) € GLy(End(P)) = Aut(P & P)

It is related with the paren involution on B*.
One finds (7 is the switch involution)

wod=r710d
with

3 — pa—p p2 0 p3 p1
0—p p3s p1 ps p2

0 0
0 0

2.4. A variant of ®. The formulas for ff), ®' have an apparent asymmetry because
of the p-column (which is essentially the Kleinfeld function). As we have just seen,
using w one can move the p-column to the other possible slot.

An alternative is the following: There is the split exact sequence

or

i

\

)

\
ah
EeTiaeY
o o
EsTiaeY

0PaPLAMaPaP S A =0
0 PoPLAMoPaPEA SO

w(n, B,7) = 3n+ u(B) + u(y)
s(n) = (—n,6(n),0)
i, B,7) = (B+d(n), —)
i(B,7) = (B =), 8—=0u(B =), —7)

Note the factor 3 in the definition of m = (3, u, ).
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For the composition with ® one finds

R p 0 —p 0 0
io®=|ps—p +p2 0 +p3  +p
0 —p3 —p1+p —ps —p2
which has a slightly more symmetric form (the extra term p appears in both

columns).
Under this map, the paren involution corresponds to

(77, Ba ’7) = (_777 - _ﬁ)

Remark. The resulting exact sequence
0 B4 % At pgp B89zt g

has the shape of our first computation of B"4. It somehow appeared naturally.

After eliminating the A-terms using the section s (and some sign changes) we
obtained the formula for ®. The latter is perhaps a bit more transparent and seems
to be more convenient for proofs. However it breaks a symmetry caused by the
choice of the section s. The other obvious choice s() = (—n,0,d(n)) gives rise
to @',
Remark. Finally let us note that

T — B*
zyzt — (xy)(z2t)

is a section to B* — T* which invariant under the paren involution.
This section is a particular feature in degree 4, as (xx)(*x) is the only fixed point
of the paren involution acting on Xj.
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