
NOTES ON THE DEGREE FORMULA

MARKUS ROST

The major aim of this text is to provide a proof of Remark 10.4 in [1]. I am
indebted to A. Suslin for helpful and encouraging comments.

1. The invariants ρi

Let p be a prime. We work over a ground field k of characteristic different from p.
Let G = µp.

Let X be a smooth variety over k, equidimensional of dimension d, together
with a G-action. Let Y ⊂ X be the fix-point subscheme. We assume that Y is
smooth (this is always the case, but I don’t know a reference at the moment). Let
U = X \ Y .

Let X = X/G be the quotient, let U ⊂ X be the image of U and let Y = X \U
with the reduced subscheme structure. Certainly U is smooth. Since char k 6= p,
the projection π : X → X induces an isomorphism Y → Y .

In the following we will identify Y with Y .
The morphism π′ = π|U : U → U is a µp-torsor. Let

α ∈ A0(U,K1/p)

be the corresponding unramified p-th power class (locally π′ is presented as R =
R[t]/(tp − f) for some regular function f , and α is then the p-th power class of f).
Let further L be the line bundle on U induced from π′ via the inclusion µp → Gm

and let
β ∈ CH1(U) = A1(U,K1)

be the first Chern class of L.
We define a series of classes ρi ∈ CHd−i(Y )/p by

ρi(X) = ρi = ∂UY (αβi−1)

where
∂UY : Ai−1(U,Ki/p)→ CHd−i(Y )/p

is the boundary map, cf. [2].

Proposition 1. (Degree formula) Let ϕ : X ′ → X be a morphism of smooth G-
varieties of the same dimension with X/G irreducible. Let Y , Y ′ be the G-fix-point
subschemes and let ψ = ϕ|Y ′ : Y ′ → Y . Then

ψ∗
(
ρi(X ′)

)
= (degϕ)ρi(X)

Proof. Let Z = ϕ−1(Y ). The restriction of α′ resp. β′ to (X ′ \ Z)/G is equal to
the pull back of α resp. β. Therefore

ϕ∗
(
ρi(X)

)
= i∗

(
ρi(X ′)

)
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where i : Z → X ′ is the inclusion. Thus

ϕ∗
(
ρi(X ′)

)
= ϕ∗

(
ϕ∗
(
ρi(X)

))
= (degϕ)ρi(X).

�

Remark 1. It is very likely that one can extend the considerations to not necessarily
smooth varieties. More generally one may consider also arbitrary branched cover-
ings X → X of degree p which are not necessarily cyclic. Everything should work in
arbitrary characteristic (this means essentially to establish the Steenrod operations
in all characteristics) . It would be interesting to understand the situation also for
arbitrary finite morphisms X → X.

2. The invariant ρ

Let us assume that Y is proper. We write I(Y ) for the image of the degree map
degY : CH0(Y )→ Z. We have then a degree map

d̃egY : CH0(Y )/p→ Z/pI(Y )

We define
ρ = d̃egY (ρd)

Note that the image of ρi in CHd−i(X)/p is trivial. Therefore, if X is proper,
then the image of ρ in Z/p is trivial.

3. The invariant η

In this section we assume that X is proper.
The degree map degX defines a degree map

degU : CH0(U) = CH0(X)/CH0(Y )→ Z/I(Y )

We define
η = deg(βd) ∈ Z/I(Y ).

Lemma 1. The image of η under the inclusion

Z/I(Y )
p−→ Z/pI(Y )

is equal to −ρ.

Proof. Suppose first that X is a proper smooth curve. Let f ∈ k(X)∗ be a function
representing α. Then

d(f) = pA+B

for a zero cycle A on X and a zero cycle B on Y . Since p
√
f is a section of the line

bundle L, on has
β = [A]

On the other hand
∂U
Y

(α) = [B]

by the very definition of ∂U
Y

. Since

0 = degX
(
d(f)

)
= pdegX(A) + degX(B)

one has

pdegX(β) = pdegX(A) = −degX(B) = −degY (B) = −degY
(
∂U
Y

(α)
)

This proves the claim for d = 1.
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For the general case one chooses a proper smooth 1-dimensional variety C and a
morphism f : C → X such that βd−1 ∈ CH1(U) is represented by the image of the
fundamental cycle of C. This way one easily reduces the problem to the case of a
curve. �

4. Relations with ηp

Let Y be a smooth proper equidimensional variety, let X = Y p and let G =
Z/p = µp act on X by cyclic permutations. We then have the invariant

η ∈ Z/I(Y )

as above. This class is denoted by ηp in [1].
The computation of ηp stated in Remark 10.4 in [1] will follow from Lemma 1

and the computations of the classes ρi below. The technical advantage of the more
general setting of the classes ρi is that one does not need to assume that X is
proper.

5. Reduction to the case of G-vector bundles

Lemma 2. Let V be the normal bundle of Y in X. Then

ρi(X) = ρi(V )

Proof. This follows easily by applying our construction to the deformation to the
normal cone. To be a bit more specific, let M → A1 be the deformation to the
normal cone of Y in X with fibre V over 0 ∈ A1 and fibre X otherwise. Consider
the class

ρi(M) ∈ CHd+1−i(Y ×A1)/p
It specializes to ρi(V ) at Y × {0} and to ρi(X) at Y × {1}. �

6. Preliminaries on Chern classes

Let R = Z/p[[c1, c2, . . .]] be the completed ring of mod p Chern classes.
For each r ∈ Z/p, r 6= 0 define the series

b[r] = 1 + b
[r]
1 + b

[r]
2 + · · · ∈ R

as follows. Write formally

1 + c1 + · · ·+ cn =
n∏
i=1

(1 + xi)

and then define

b[r] =
n∏
i=1

(1 + r−1xi) mod terms of degree > n

Remark 2. Note that b[1] = 1 + c1 + c2 + · · · .

Remark 3. Put
b =

∏
r

b[r]

Since

b =
n∏
i=1

(1 + xp−1
i )−1 mod terms of degree > n
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the series b lies in the subring of R of elements of degree divisible by p− 1. Thus b
is of the form

b = 1 + bp−1 + b2(p−1) + · · ·
with bn of degree n. The classes bk(p−1) are closely related to the Steenrod pow-
ers P 2k(p−1).

We have to consider also integral representatives of the b[r]. For each r ∈ Z/p,
r 6= 0 choose an integer r′ with r′r = 1 mod p. Then define

b̃[r] ∈ Z[[c1, c2, . . .]]

as follows. Write formally

1 + c1 + · · ·+ cn =
n∏
i=1

(1 + xi)

and then define

b̃[r] =
n∏
i=1

(1 + r′xi) mod terms of degree > n

7. The fundamental identity for the class β

Let X = V be a G-vector bundle of rank e over a smooth variety Y . We assume
that V G = 0 and identify Y with the zero section. Write

V =
⊕
r

Vr

for the decomposition of V into G-eigenspaces with G acting on Vr by (ζ, v) 7→ ζrv
with r ∈ Z/p, r 6= 0. Let q : U = (V \ 0)/G→ Y be the projection.

Note that the class
β ∈ CH1(U)

is p-torsion, since the line bundle L becomes trivial after pull back to U and since
U → U is of degree p.

Put
b̃(V ) =

∏
r

b̃[r](Vr) ∈ CH∗(Y )

and write
b̃(V ) = 1 + b̃1(V ) + b̃2(V ) + · · ·

with b̃i(V ) ∈ CHi(Y ). One has b̃e(V ) = Nce(V ) for some integer N with N mod p
not depending on the choices of the r′.

Further let
b(V ) = q∗

(
b̃(V )

)
∈ CH∗(U)

and write
b(V ) = 1 + b1(V ) + b2(V ) + · · ·

with bi(V ) = q∗
(
b̃i(V )

)
∈ CHi(U). Note that the vector bundle V admits a non-

vanishing section after pull back to U . Since U → U is of degree p, the Euler class
q∗
(
ce(V )

)
is p-torsion. Therefore the classes

βe, b1(V )βe−1, . . . , be(V )

do not depend on the choices of the r′.
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Theorem 1. One has

(1) βe + b1(V )βe−1 + · · ·+ be(V ) = 0

in CHe(U).

Proof. Consider first the case V = V1. Let U → P(V ) = (V \ 0)/Gm be the
projection. Then β ∈ CH1(U) is the pull back of the first Chern class ξ of the
tautological line bundle on P(V ) (up to a sign, about which I don’t care in this
exposition). Equation (1) follows then from the standard identity for ξ.

Consider next the case V = Vr. This case follows similarly as for r = 1. Let
U → P(V ) = (V \ 0)/Gm be the projection. Then β ∈ CH1(U) is r-times the pull
back of the first Chern class ξ of the tautological line bundle on P(V ). Equation (1)
follows then again from the standard identity for ξ.

For the general case one uses a standard Mayer-Vietoris argument. Write

b̃V (t) = te + b̃1(V )te−1 + · · ·+ b̃e(V ) ∈ CH∗(Y )[t]

and put

bV (t) = q∗(b̃V )(t) ∈ CH∗(U)[t]

We further write β = βV to indicate the dependence on the bundle V .
By induction we may suppose that there exists a decomposition

V = W1 ⊕W2

of G-vector bundles such that equation (1) holds for the bundles W1, W2. One has

b̃V (t) = b̃W1(t)b̃W2(t)

Consider the exact sequence

CH∗
(
(W1 \ 0)/G

) i∗−→ CH∗
(
(V \ 0)/G

) j∗−→ CH∗
(
(V \W1)/G

)
→ 0

of Chow groups induced from the closed immersion i : (W1 \ 0)/G→ (V \ 0)/G and
the open immersion j : (V \W1)/G→ (V \0)/G of its complement. The projection
s : (V \W1)/G→ (W2 \ 0)/G is a vector bundle. One has

j∗(βV ) = s∗(βW2)

Hence

j∗
(
q∗
(
b̃W2

)
(βV )

)
= s∗

(
bW2(βW2)

)
= 0

Therefore there exist T ∈ CH0
(
(W1 \ 0)/G

)
with

i∗(T ) = q∗
(
b̃W2

)
(βV )

Thus

bV (βV ) = q∗
(
b̃W1

)
(βV )q∗

(
b̃W2

)
(βV ) = q∗

(
b̃W1

)
(βV )i∗(T ) = i∗

(
i∗
(
q∗
(
b̃W1

)
(βV )

)
T
)

But i∗(βV ) = βW1 and therefore i∗
(
q∗
(
b̃W1

)
(βV )

)
= bW1(βW1) = 0.

�
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8. Computation of ρi

We are now ready to proceed similary as in [1, Section 5]. Let f = dimY , so
that d = dimX = f + e.

Lemma 3. One has

∂(αβh) =

{
0 for h < e− 1
u[Y ] for h = e− 1

for some u ∈ Z/p, u 6= 0.

Remark 4. The number u can be easily determined from the ranks of the bundles
Vr. We omit this.

Proof. One has ∂(αβh) ∈ CHf+e−(h+1)(Y ). Therefore ∂(αβh) = 0 for h < e − 1
by dimension reasons. For h = e− 1 we have ∂(αβh) ∈ CH0(Y ). This case follows
from the case when dimY = 0. We may therefore assume that Y = Spec k.

There exists a decomposition

V = W1 ⊕W2

of G-vector modules over k such that rankW2 = 1. Let r be the weight of W2 as a
G-module and choose r′ with rr′ = 1 mod p. The line bundle L over U = (V \0)/G
is given by (

(W1 ×W2) \ 0
)
×G A1 →

(
(W1 ×W2) \ 0

)
/G

It has the section
[w1, w2] 7→ [w1, w2, s(w2)r

′
]

where s is a trivialization of the 1-dimensional vector space W2. Hence

β = c1(L) = r′i∗([(W1 \ 0)/G])

By induction we are reduced to the case rankV = 1. In this case V = A1 and
U = (V \0)/G ' A1 \0 with α represented by tr where t is the standard coordinate
of A1 and where r is an integer representing the weight of V . Obviously

∂U0 (α) = r mod p

and the claim follows. �

By equation (1) we have

βe−1+i =
e−1∑
h=0

βe−1−hq∗
(
gi,h
)

with gi,h ∈ CHi+h(Y ). The gi,h are universal polynomials in the Chern classes of
the bundles Vr. One finds in particular

g0,0 + g1,0 + g2,0 + · · · = b̃(V )−1

One has by Lemma 3

ρe+i = ∂(αβe+i−1) = ∂(αβe−1)gi,0 = ugi,0 mod p

Thus we have computed

ρ = u deg(gdimY,0) ∈ Z/pI(Y )

in terms of characteristic numbers of the bundles Vr. It is easy to check that this
yields the description of ηp in Remark 10.4 in [1], perhaps up to a sign.
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