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Preface

This text should be considered as private notes, made public only to
have a reference for discussions on the subject.

The technical ad hoc computations of Section 8 are obsolete; the
computation of c(X) can be done in a much simpler way.

Date: September–November, 2006.
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1. No Introduction

Looking for an introduction? See Remark 2.5.

2. Definitions and a brief introduction

Let p be a prime and let k be a field with char k 6= p.
Moreover let n ≥ 2. We are going to discuss some part of the proof

of the Bloch-Kato conjecture in weight n in [11].
For simplicity we will assume throughout char k = 0 and µp ⊂ k.

Moreover for p = 2 we will often assume that −1 is a square.
Let B be a smooth variety over k and let X → B be a smooth

morphism. We denote by X (X/B) the simplicial scheme

X (X/B) : X ←← X ×B X
←←← X ×B X ×B X · · ·

For the following we refer to [11, Proof of Lemma 6.5].

Lemma 2.1. Assume the Bloch-Kato conjecture holds in weights ≤
n− 1. Then for any smooth simplicial scheme X the sequence

0→ Hn,n−1(X ,Z/p)→ Hn
et(X , µ⊗(n−1)

p )→ H0
(
X , Hn

et(µ
⊗(n−1)
p )

)
is exact. Here the first map is given by changing from Nisnevich to etale
topology and the second map is induced from the associated spectral
sequence. �

Corollary 2.2. Assume the Bloch-Kato conjecture holds in weights ≤
n− 1. Let X → B be as above and surjective. Then there is a natural
exact sequence

Hn,n−1
(
X (X/B),Z/p

)
⊂ Hn

et(B, µ
⊗(n−1)
p )→

∐
α

Hn
et

(
k(Xα), µ⊗(n−1)

p

)
where the Xα are the components of X.

Proof. Since X → B has sections on an etale covering of B, it follows
that

X (X/B)→ X (B/B)

induces an isomorphism of the etale topological types. Hence X (X/B)
and B have the same etale cohomology.

Moreover,

H0(X , F ) ⊂ H0(X0, F ) = H0(X,F ) ⊂
∐
α

H0
(
k(Xα), F

)
as in [11, Proof of Lemma 6.5].

Now Lemma 2.1 yields the stated exact sequence. �
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The Milnor operations

Qi : H
r,s(−,Z/p)→ Hr+2pi−1,s+pi−1(−,Z/p)

are defined by Q0 = Bockstein and Qi+1 = [P pi
, Qi] where

P h : Hr,s(−,Z/p)→ Hr+2h(p−1),s+h(p−1)(−,Z/p)
are the Steenrod operations in motivic cohomology (we assume that
−1 is a square if p = 2). Let further

Q̃0 : Hr,s(−,Z/p)→ Hr+1,s(−,Z)

be the integral valued Bockstein.
Let

δ ∈ Hn,n−1
(
X (X/B),Z/p

)
be an element. As in [11, (5.2)], we consider the element

µ = µ(δ) = Q̂(δ) ∈ H2b+1,b
(
X (X/B),Z

)
where

Q̂ = Q̃0 ◦Q1 ◦ · · · ◦Qn−2

and

b =
pn−1 − 1

p− 1
Let

∆X/B : X (X/X)→ X (X/B)

be the diagonal map. We consider the induced maps

∆∗
X/B : Hr,s

(
X (X/B)

)
→ Hr,s

(
X (X/X)

)
= Hr,s(X)

and their kernels

Hr,s
(
X (X/B)

)[1]
= ker ∆∗

X/B ⊂ Hr,s
(
X (X/B)

)
The natural filtration on the simplicial scheme X (X/B) yields then
maps

Hr,s
(
X (X/B)

)[1] proj−−→ H1(X/B,Hr−1,s)

where H1(X/B,F ) is an abbreviation for the homology of the complex

F (X)
π∗0−π∗1−−−−→ F (X ×B X)

π∗0−π∗1+π∗2−−−−−−→ F (X ×B X ×B X)

Note that H2b+1,b(Y,Z) = 0 and H2b,b(Y,Z) = CHb(Y ) (the classical
Chow group) for any smooth variety Y . Therefore we get a map

H2b+1,b
(
X (X/B),Z

) proj−−→ H1(X/B,CHb)

We put
ρ = ρ(δ) = proj

(
µ(δ)

)
∈ H1(X/B,CHb)
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Remark 2.3. We are particularly interested in the following situation.
Let

u ∈ Hn
et(k, µ

⊗(n−1)
p )

be a symbol and letX be a smooth splitting variety of u, i. e., uk(X) = 0.
By Corollary 2.2 with B = Spec k we can identify u with an element

δ ∈ Hn,n−1
(
X (X/k),Z/p

)
as above and by the preceding discussion we get eventually an element

ρ ∈ H1(X/k,CHb)

We call ρ the basic correspondence of the splitting variety X of the
symbol u.

Example 2.4. Let n = 2 and take for X the Severi-Brauer variety
associated with u. Then b = 1 and dimX = p− 1.

There is a standard class

ρ̃ ∈ CH1(X2) = Pic(X2)

It is represented by the line bundle

HomA(π∗0I, π
∗
1I)

onX. Here A is the central simple algebra of degree p associated with u
and I is the tautological sheaf on X = SB(A) (the geometric points
of X are the right ideals of A of rank p). It is easy to see that ρ̃ is in
the kernel of

Pic(X2)
π∗0−π∗1+π∗2−−−−−−→ Pic(X3)

One finds that ρ is represented by ρ̃ (up to sign).

Remark 2.5. Let us return to the general case with B = Spec k and
X proper and irreducible. Consider a representative

ρ̃ ∈ CHb(X2)

of ρ. Let
θ = ρ̃p−1 ∈ CHd(X2)

with d = b(p− 1) = pn−1 − 1. Assume further that dimX = d and let

c(X) = c(X, u) = (π0)∗(θ) ∈ CH0(X) = Z

be the push forward of θ under the first projection (the other projection
will also do the job).

I am pretty sure that (modulo p and up to sign) the number c(X)
coincides with the number “c” appearing in [11, Lemma 5.15]. The non-
triviality of “c” is crucial in [11]. Voevodsky uses [11, Theorem 3.8] in
order to show that sd(X)/p 6= 0 mod p implies c 6= 0 mod p. The
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proof of [11, Theorem 3.8] relies on [11, Lemma 2.2, Lemma 2.3]. How-
ever proofs of [11, Lemma 2.2, Lemma 2.3] are unfortunately not avail-
able.

The aim of this text is to find a smooth proper splitting variety X
of u of dimension d such that

c(X) 6= 0 mod p

This will be based on our construction of splitting varieties “with good
characteristic number”.

I haven’t actually worked out a proof that c(X) agrees essentially
with Voevodsky’s “c”, because that is not really necessary anymore.

Instead I plan to prove in a sequel1 that if c(X) 6= 0 mod p, then X
splits off a certain motive M (cf. Proposition 5.9, Section 7) which is
very likely isomorphic to Voevodsky’s motive Mp−1 constructed from
the class µ in [11]. It will also turn out that c(X) mod p does not de-
pend on the choice of ρ̃ provided that u is nonzero (cf. Corollary 5.8).
In the forthcoming text we will use only classical methods for corre-
spondences.

Given that motive M , one may use it to prove Bloch-Kato in a
similar way as the motive of a Pfister quadric was used for the Milnor
conjecture in [9]. One shows first that one has an “exact quadrangle”
(with X = X (X/k))

M(X ){pb} →M{b} ρp−2

−−→M →M(X )

which means more precisely that there are exact triangles

M(X ){d} →M → D →M(X ){d}[1]

C →M →M(X )→ C[1]

and an isomorphism

D{b} ' C

(The object D is very likely isomorphic to Voevodsky’s motive Mp−2

in [11].) One may then prove [11, Lemma 6.13] in the same way as in
[11], but now using the quadrangle in place of Voevodsky’s motives Mi.
This reduces Bloch-Kato to the injectivity of

H2d+1,d+1(M,Z(p))→ H1,1(k,Z(p))

This follows from my results on the injectivity of the norm map on zero
cycles with K1-coefficients.

1This is meanwhile included in this text.
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Remark 2.6. By the way, for n = 1 there is a well known analogous
“quadrangle”: A (nonzero) element u ∈ H1

et(k,Z/p) is a cyclic field
extension of k of degree p. Let

G = Z/p = 〈 t | tp 〉

be its Galois group. Then there is the exact sequence of G-modules

0→ Z→ Z[G]→ Z[G]→ Z→ 0

where the middle map is multiplication with 1− t.
The G-module Z has infinite cohomological dimension, while the G-

module Z[G] has cohomological dimension 0. This reflects the general
situation: The motive M(X ) has unbounded nontrivial motivic coho-
mology, while M is a direct summand of a finite-dimensional variety.

See also [11, Proof of Lemma 3.7] and [11, Example 5.6].

3. Expressing c(X)

In [6, Section 6] we considered a specific form (R,L, γ) of degree p
which we will also use in this text. See also [7].

Given elements a1, . . . , an−1 ∈ k×, let

v = (a1) · · · (an−1) ∈ Hn−1
et (k, µ⊗(n−1)

p )

We have constructed in [6]:

(1) A smooth proper cellular variety R with dimR = pn−1 − p.
(2) Forms (R,L, γ), (R,L′i, γ

′
i), i = 1, . . . , n− 2, of degree p on line

bundles L, L′i over R.
(3) Let R0 ⊂ R be the singular locus of the forms γ, γ′i and let

B = R \ R0. Moreover let (γ), (γ′i) ∈ H1
et(B, µp) be the classes

of the corresponding forms.
Then for any x ∈ R0 one has

vκ(x) = 0

in Hn−1
et

(
κ(x), µ

⊗(n−1)
p

)
.

Moreover, one has

vk(B) =
(
(γ)(γ′1) · · · (γ′n−2)

)
k(B)

in Hn−1
et

(
k(B), µ

⊗(n−1)
p

)
.

Given such data, let

A =

p−1⊕
i=0

L⊗i
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be the (commutative) OR-algebra of rank p associated to the form
(R,L, γ), let

NA : A→ OR

be its norm form, and let A(A) be the associated scheme (a bundle of
affine spaces over R).

Now let an ∈ k× and let

u = v ∪ (an) = (a1) · · · (an) ∈ Hn
et(k, µ

⊗n
p )

Furthermore let
X̂ ⊂ P(A⊕OR)

be the subscheme defined by the equation

NA(x) = ant
p for [x, t] ∈ P(A⊕OR)

Let further A′ = A|B be the restriction to B. Note that A′ is a sepa-
rable OB-algebra of rank p. Let

U ⊂ A(A′)

be the subscheme defined by the equation

NA(x) = an for x ∈ A(A′)

Then π : U → B is a torsor over the norm-1 torus of the algebra A′/B.
Let L = k[z]/(zp − an).

Lemma 3.1. Suppose that u 6= 0. There exists a smooth completion X
of U such that:

For x ∈ X \ U one has
vκ(x) = 0

Moreover, for any closed point x ∈ (X \ U)× SpecL one has

[κ(x) : L] ∈ pZ
Proof. For X we may take any resolution of singularities of X̂. It
suffices to check the claimed properties for X = X̂.

Let x ∈ X̂ \ U . If x lies over R0, then vκ(x) = 0 by (3). If x lies
over B, then x = [y, 0] with [y] ∈ P(A′) and NA(y) = 0. But then
Aπ(x) has zero divisors and is therefore split. Thus

(
γ
(
π(x)

))
= 0 and

vκ(x) = 0 by (3).
For the second claim it suffices to have

vL 6= 0 ∈ Hn−1
et (L, µ⊗(n−1)

p )

This follows from

NL/k

(
vL ∪ (z)

)
= v ∪ (an) = u 6= 0

(Recall that p 6= 2. If p = 2 this argument works also if −1 is a
square.) �
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Our aim is to express c(X) mod p in terms of the Chern classes of
the line bundles L, L′i.

Let ζ ∈ k be a primitive p-th root of 1. For

α ∈ H i
et(−, µ⊗j

p ) = H i
et(−, µ⊗j−1

p )⊗ µp

we write α/ζ for the element of H i
et(−, µ⊗j−1

p ) with α = α/ζ ⊗ ζ.
For the element

u/ζ = (a1) · · · (an)/ζ ∈ Hn
et(k, µ

⊗(n−1)
p )

we have u/ζ = δ with

δ ∈ Hn,n−1
(
X (X/k),Z/p

)
as above. (The notation δ is introduced for clarity.) Let also

ρ ∈ H1(X/k,CHb)

be as above and let

ρ′ ∈ H1(U/k,CHb)

be its image.
We will use the following morphisms:

b0 : Spec k → B

is some rational point. Moreover let

j : B × SpecL→ U ⊂ A(A′)

j = z · 1A

where z ∈ L, zp = an. In particular we have the L-point

h = j ◦ (b0 × idL) : SpecL→ U

of U .
The morphism

idU × h : U × SpecL→ U × U
and its induced map

(idU × h)∗ : CHb(U × U)→ CHb(U × SpecL)

yields a map

h̄ : H1(U/k,CHb)→ CHb(U × SpecL)/ resL/k

(
CHb(U)

)
Let

ρ′′ = h̄(ρ′)

and let

ρ̃′′ ∈ CHb(U × SpecL)
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be a representative of ρ′′. Put

c(ρ̃′′) = deg
(
ρ̃′′p−1

)
∈ Z/p

Note here that the degree map over L

deg : CH0(U × SpecL)→ Z/p

is well defined by Lemma 3.1.
Note that c(X) is given by c(ρ̃′′). Hence our aim is to conclude

c(ρ̃′′) 6= 0. (Say, for some representative ρ̃′′ of ρ′′. One can however
show that c(ρ̃′′) depends only on ρ′′).

Consider the morphism

f : U × SpecL→ U × U × U
f(u, λ) =

(
u, j(b0, λ), j(π(u), λ)

)
Let

ρ̃′ ∈ CHb(U × U)

be a representative of ρ′.
Then

(π2 ◦ f)∗(ρ̃′) ∈ CHb(U × SpecL)

is obviously a representative of ρ′′.
Let us consider

(π0 ◦ f)∗(ρ̃′) ∈ CHb(U × SpecL)

The morphism

π0 ◦ f : U × SpecL→ U × U
(u, λ) 7→

(
j(b0, λ), j(π(u), λ)

)
factors through U×SpecL→ B×SpecL. Since B is an open subvariety
of a cellular variety, the restriction map

resL/k : CH∗(B)→ CH∗(B × SpecL)

is surjective. Thus

(π0 ◦ f)∗(ρ̃′) ∈ resL/k

(
CHb(U)

)
(The actual computation of c(X) later on will provide another argu-
ment avoiding the reference to the cellularity of R).

Finally let us consider

(π1 ◦ f)∗(ρ̃′) ∈ CHb(U × SpecL)

The morphism π1 ◦ f factors through

f̂ : U × SpecL→ U ×B U ⊂ U × U
(u, λ) 7→

(
u, j(π(u), λ)

)
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On the other hand we have

(π∗0 − π∗1 + π∗2)(ρ̃
′) = 0

We conclude: Let

δB ∈ Hn,n−1
(
X (U/B),Z/p

)
be the image of δ, let

ρB = proj
(
Q̂(δB)

)
∈ H1(U/B,CHb)

and let
ρ̃B ∈ CHb(U ×B U)

be a representative of ρB. Then

f̂ ∗(ρ̃B) ∈ CHb(U × SpecL)

is a representative of ρ′′.
It follows that all we need to compute c(X) is the image δB of δ.

We have in Hn
et(B, µ

⊗(n−1)
p ):

(u/ζ)B = (a1) · · · (an)/ζ = u1 ∪ (an)± u2 ∪ (γ′1) · · · (γ′n−2)

where

u1 =
(
(a1) · · · (an−1)− (γ1)(γ

′
1) · · · (γ′n−2)

)
/ζ ∈ Hn−1

et (B, µ⊗(n−2)
p )

u2 = (γ)/ζ ∪ (an) ∈ H2
et(B, µp)

Lemma 3.2. One has
π∗(u2) = 0

in H2
et(U, µp).

Proof. Let q : B̃ = SpecA→ B be the etale covering of degree p corre-
sponding to (γ)/ζ ∈ H1

et(B,Z/p). Then q∗(γ) = 0 and(
(γ) ∪ (an)

)
U

= (γ)U ∪ (NA(x)) = q∗
(
q∗(γ)U ∪ (x)

)
= 0

�

It follows that u2 vanishes over k(U). By Corollary 2.2, u2 lies in the
subgroup

H2,1
(
X (U/B),Z/p

)
⊂ H2

et(B, µp)

If we map this to

H2,1
(
X (U/U),Z/p

)
⊂ H2

et(U, µp)

it follows by Lemma 3.2 that u2 = δ2 with

δ2 ∈ H2,1
(
X (U/B),Z/p

)[1]

Let
ρ2 = proj(δ2) ∈ H1

(
U/B,H1,1(−,Z/p)

)
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The element u1 vanishes in the generic point of B. Hence u1 = δ1
with

δ1 ∈ Hn−1,n−2
(
X (B/B),Z/p

)
⊂ Hn−1

et (B, µ⊗(n−2)
p )

Let
δB ∈ Hn,n−1

(
X (U/B),Z/p

)
⊂ Hn

et(B, µ
⊗(n−1)
p )

be the element corresponding to (u/ζ)B.
Then

δB = (δ1)X (U/B) ∪ (an)± δ2 ∪ (γ′1) · · · (γ′n−2)

in Hn,n−1
(
X (U/B),Z/p

)
, with (an), (γ′i) considered as elements of

H1,1(−,Z/p).
We have

Q̂(δ1) ∈ H2b,b−1
(
X (B/B),Z

)
= 0

and therefore
Q̂

(
(δ1)X (U/B) ∪ (an)

)
= 0

Hence (up to sign)

ρB = proj
(
Q̂(δB)

)
= proj

(
Q̂

(
δ2 ∪ (γ′1) · · · (γ′n−2)

))
= Q̂

(
proj

(
δ2 ∪ (γ′1) · · · (γ′n−2)

))
= Q̂

(
ρ2 ∪ (γ′1) · · · (γ′n−2)

)
Let

ρ̃2 ∈ H1,1(U ×B U,Z/p)

be a representative of ρ2 and let

ω = f̂ ∗(ρ̃2) ∈ H1,1(U × SpecL,Z/p)

It follows that

Q̂
(
ω ∪ (γ′1) · · · (γ′n−2)

)
∈ CHb(U × SpecL)

is a representative of ρ′′. Hence all we have to show is that

deg
((
Q̂

(
ω ∪ (γ′1) · · · (γ′n−2)

))p−1
)
6= 0

Note that U × SpecL = T × SpecL, where T is the norm-1 torus of
the algebra A′/B. One has

T = RA′/B(Gm)/Gm

and the norm map
N : RA′/B(Gm)→ Gm

yields a canonical class

α ∈ H1,1(T,Z/p) = H1
et(T, µp)
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Lemma 3.3. One has (up to sign)

ω = resL/k(α) mod resL/k

(
H1,1(U,Z/p)

)
Proof. Well, what else can it be?

Seriously: This is a not so difficult exercise, but I haven’t found a nice
way yet to write things down. Note that this is a very general statement
for the torus T and T -torsor U associated to a smooth variety B and
classes (A′/B) ∈ H1

et(B,Z/p) and (an) ∈ H1
et(k, µp). �

Corollary 3.4. In particular we have

c(X) = deg
((
Q̂

(
α ∪ (γ′1) · · · (γ′n−2)

))p−1
)

mod p

Here α ∈ H1,1(T,Z/p), (γ′i) ∈ H1,1(B,Z/p), Q̂ operates as map

Q̂ : Hn−1,n−1
(
T,Z/p

)
→ H2b,b

(
T,Z

)
= CHb(T )

and

deg : CH0(T )→ Z/p

is the degree map (well defined because v 6= 0). �

Hence eventually the proof of c(X) 6= 0 resorts to an explicit com-
putation for very concrete classes. The complexity of this computation
is similar to the one of δ(L) 6= 0 mod p in [6]. I have no doubts2 that
indeed c(X) 6= 0 and have checked this in some cases, for instance for
n = 3.

Remark 3.5. For n = 3, the variety T is very close to SL1(A) where A
is a central simple algebra of degree p. In fact, there should be a mor-
phism T → SL1(A) of degree prime to p. I believe that my computa-
tions will show that for a certain standard element u ∈ CHp+1(SL1(A))
one has deg(up−1) 6= 0 mod p. (The degree mod p is well defined, if A
is non-division.)

4. A computation for the Qi

For a start, let me formulate a general computation for Q̂ (with the
index n shifted by 1). In the following X can be any smooth variety.
Let

Q[n] = Qn−1 ◦ · · · ◦Q1 ◦Q0

Note that for

α ∈ H1,1(X,Z/p) = H1
et(X,µp)

2The computations for all n have been meanwhile included in this text. See
Section 8.
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the element

Q̃0(α) ∈ H2,1(X,Z) = Pic(X) = CH1(X)

is just the first Chern class of the line bundle associated to α under

H1
et(X,µp)→ H1

et(X,Gm)

We will use standard properties of the Steenrod operations, see [8].
Let α ∈ H1,1(X,Z/p) and β ∈ H2,1(X,Z/p). One has Q2

i = 0, the Qi

anti-commute and are derivations in the Z/2-graded sense (with α odd
and β even). Moreover one has

P h(α) = 0 (h ≥ 1)

P 1(β) = βp

P h(β) = 0 (h > 1)

and the total Steenrod operation

P • = P 0 + P 1 + P 2 + · · ·
is multiplicative.

Lemma 4.1. Let αi ∈ H1,1(X,Z/p) (i = 1, . . . , n) and let βi =
Q0(αi). Then

Q[n](α1 · · ·αn) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

(βσ(i))
pi−1

mod p

in CHb(X)⊗ Z/p with

b =
pn − 1

p− 1

Proof. This is an exercise using the standard properties of the Steenrod
operations mentioned above. �

5. Generalities for special correspondences

Let

b =
pn − 1

p− 1
Let X be a smooth proper irreducible variety of dimension

d = b(p− 1) = pn − 1

Let
ρ ∈ CHb(X2)

and let
c(ρ) = (π0)∗(ρ

p−1) ∈ CH0(X) = Z
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Recall the complex

CHb(X)
π∗0−π∗1−−−−→ CHb(X2)

π∗0−π∗1+π∗2−−−−−−→ CHb(X3)

whose homology we have denoted by H1(X/B,CHb).

Definition 5.1. ρ is called a special correspondence if

(π∗0 − π∗1 + π∗2)(ρ) = 0(1)

c(ρ) 6= 0 mod p(2)

As we have seen before, special correspondences appear naturally
for splitting varieties of symbols. So what can we do with such corre-
spondences? In this section we derive some first properties of special
correspondences.

Let h : SpecL → X be an L-point of X where L/k is a field exten-
sion. We write XL = X × SpecL. Let

H = (idX × h)∗(ρ) ∈ CHb(XL)

Then
c(ρ) = degXL/L(Hp−1)

Lemma 5.2. One has

ρL = H ×X −X ×H
in CHb(X2

L)

Proof. Just pull back the cocycle condition (1) under

idX × idX × h : X ×X × SpecL→ X ×X ×X
�

Let
ρj ∈ CHjb(X2)

be the j-th power of ρ in the Chow ring of X. Considering ρj as an ele-
ment of End(X) = CH∗(X2) in the category of Chow correspondences,
we get a map

(ρj)∗ : CHr(X)→ CHr−(p−1−j)b(X)

(ρj)∗(α) = (π0)∗
(
π∗0(α)ρj

)
Definition 5.3. Let 0 ≤ h ≤ p − 1. For α ∈ CHbh(X) we define its
ρ-degree dρ(α) ∈ Z by

dρ(α) · [X] = (ρp−1−h)∗(α)

in CH0(X) = [X]Z.
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For h = 0 we simply have

dρ([X]) = c(ρ)

by definition.

Lemma 5.4. For α ∈ CHbh(X) one has

dρ(α) = degXL/L(αLH
p−1−h)

Proof. One has

(ρp−1−h)∗(α)L = (ρp−1−h
L )∗(αL)

= (π0)∗
(
(αL ×X)(H ×X −X ×H)p−1−h

)
= deg(αLH

p−1−h)H0

�

Lemma 5.5. For α ∈ CHbh(X) and p− 1− h ≤ j ≤ p− 1 one has

(ρj)∗(α)L ∈ Z×
(p) · dρ(α)Hj+h−(p−1)

Proof. One has

(ρj)∗(α)L = (ρj
L)∗(αL)

= (π0)∗
(
(αL ×X)(H ×X −X ×H)j

)
=

(
j

p− 1− h

)
deg(αLH

p−1−h)Hj+h−(p−1)

�

For α ∈ CHbh(X) with 1 ≤ h ≤ p − 1 the element (ρp−h)∗(α) is in
CHb(X). Thus

Ω(α) = α
(
(ρp−h)∗(α)

)p−1−h

is a zero cycle.

Lemma 5.6.

deg
(
Ω(α)

)
∈ Z×

(p) · dρ(α)p−h

Proof. Over L we have by Lemma 5.5

Ω(α)L = αL

(
udρ(α)H

)p−1−h

for some u ∈ Z×
(p). Taking degrees yields the claim (see Lemma 5.4). �

Let

I(X) = deg
(
CH0(X)

)
⊂ Z
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Corollary 5.7. Suppose I(X) ⊂ pZ. Then for any α ∈ CHbh(X) with
1 ≤ h ≤ p− 1 one has

dρ(α) ∈ pZ

Proof. By assumption p divides deg
(
Ω(α)

)
. By Lemma 5.6 it follows

that p divides some power of dρ(α). Since p is prime, the claim follows.
�

Corollary 5.8. Suppose I(X) ⊂ pZ. Let α ∈ CHb(X) and let

ρ′ = ρ+ (π∗0 − π∗1)(α)

Then
c(ρ′) = c(ρ) mod p

Proof. Just compute over L and use Lemma 5.4 and Corollary 5.7. �

Proposition 5.9. Let ρ be a special correspondence. Then there exists
a projector π ∈ End(X)⊗ Z(p) such that

(1) πL = c(ρ)−1ρp−1
L mod pCHd(X2

L)⊗ Z(p)

(2) For M = (X, π) one has

M ⊗X =

p−1⊕
i=0

Z(p){bi} ⊗X

in the category of Chow motives over Z(p).

Proof. [See Section 7 for another way.]
Only a brief sketch for p = 2: After replacing ρ by ρc(ρ)−1 we may

assume c(ρ) = 1. Let

π′ = ρ−X × (π0)∗(ρ
2)

Over L this is a projector, because

π′L = H ×X +X ×H
Since L can be any residue class field of X, it follows by nilpotence (see
[5, Proposition 1]) that there is a projector π with π′L = πL.

For general p one proceeds similarly, starting from ρp−1 ∈ CHd(X2).
�

6. Existence of generic splitting varieties

See also [11, Theorem 7.3].
Let

u ∈ Hn
et(k, µ

⊗(n−1)
p )

be a symbol and let Z be a not necessarily connected scheme over k
such that uκ(z) = 0 for all z ∈ Z. We call such a scheme a splitting
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scheme of u. A smooth splitting scheme is nothing else than a disjoint
union of smooth splitting varieties. We will assume smoothness in the
following.

As discussed in Section 2, there is a natural element

ρ = ρZ ∈ H1(Z/k,CHb)

with

b =
pn−1 − 1

p− 1

This element is functorial in Z. Namely, if f : Z ′ → Z is a morphism,
then

ρZ′ = f ∗(ρZ)

We are particularly interested in the following situation: Let X be
a smooth irreducible proper splitting variety of u of dimension d =
b(p − 1) = pn−1 − 1 and let Y be any smooth irreducible splitting
variety of u. Let

Z = X ∪ Y (disjoint union)

We have

CHb(Z2) = CHb(X2)⊕ CHb(X × Y )⊕ CHb(Y ×X)⊕ CHb(Y 2)

Let E = k(Y ) be the function field of Y . The projection maps

CHb(Z2)→ CHb(X × Y )→ CHb(XE)

(with XE = X × SpecE) induce a map

ΨX,E : H1(Z/k,CHb)→ CHb(XE)/CHb(X)E

(since b > 0 one has CHb(SpecE) = 0). Let

ρX,E = ΨX,E(ρZ) ∈ CHb(XE)/CHb(X)E

Note that ρX,E is functorial in X and E.
Choose a representative

ρ̃X,E ∈ CHb(XE)

of ρX,E, let

θX,E = (ρ̃X,E)p−1 ∈ CHd(XE)

and let
c(X,E) = degXE/E(θX,E) mod p ∈ Z/p

Lemma 6.1. Assume I(X) ⊂ pZ. Then

c(X,E) = c(X) mod p

In particular, c(X,E) does not depend on E or Y at all.
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Proof. Let L = k(X) and K = k(X × Y ). By functoriality we have

ρX,E → ρX,K ← ρX,L

under
CHb(XE)

CHb(X)E

→ CHb(XK)

CHb(X)K

← CHb(XL)

CHb(X)L

It follows that for any representatives

ρ̃X,E ∈ CHb(XE), ρ̃X,L ∈ CHb(XL)

there exists α ∈ CHb(X) with

(ρ̃X,E)K = (ρ̃X,L)K + αK

in CHb(XK).
We next look at ρX,L. Since for

Z = X ∪X (disjoint union)

the simplicial schemes X (Z/k) and X (X/k) have the same cohomology,
the element ρX,L equals the image of

ρ = ρX ∈ H1(X/k,CHb)

in
CHb(XL)

CHb(X)L

Hence

c(X) = degXL/L

(
(ρ̃X,L)p−1

)
By Corollary 5.8 we have

c(X) = degXL/L

(
(ρ̃X,L + αL)p−1

)
Hence

c(X) = degXK/K

((
(ρ̃X,E)K

)p−1)
= degXE/E

(
(ρ̃X,E)p−1

)
�

Corollary 6.2. Assume that I(X) ⊂ pZ and that c(X) 6= 0 (mod p).
Then X is a p-generic splitting variety of u.

Proof. Let E = k(Y ) be any splitting field of u. Then

θX,E ∈ CHd(XE)

is a zero cycle of degree prime to p. �
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The core of the argument is entirely due to Voevodsky. On [11,
page 37] he defines X = X (Y/k), where Y is the union of all splitting
varieties up to isomorphism and draws the conclusion in [11, Theo-
rem 7.3].

It is amusing to consider the case n = 2. In this case ρ can be defined
easily with the classical relation between the kernel of H2(k,Gm) →
H2

(
k(X),Gm

)
and Pic(X). Taking for X the Severi-Brauer variety of

dimension p− 1, one may then check by inspection (see Example 2.4)
that c(X) 6= 0 (mod p). Corollary 6.2 shows then the p-genericity of
the Severi-Brauer variety, without using much of the theory of central
simple algebras.

7. Generalities for special correspondences II

7.1. Preliminary Definitions. Let X be a smooth variety over a
field k.

For n ≥ 0 and 0 ≤ i ≤ n let

πi : X
n+1 → Xn

πi(x0, . . . , xn) = (x0, . . . , xi−1, xi+1 . . . , xn)

Then we have complexes

(7.1.1) · · · −→ CHr(Xn)
δn−→ CHr(Xn+1)

δn+1−−→ CHr(Xn+2) −→ · · ·

with

δn =
n∑

i=0

(−1)iπ∗i

Here CHr(Z) is the classical Chow group of r-codimensional cycles.
We put

Zn(X/k,CHb) = ker δn+1

Hn(X/k,CHb) = ker δn+1/ im δn

We will use the following notations: Let I be an index set. For i ∈ I
let Xi = X be a copy of X and let XI =

∏
iXi. We will sometimes

understand

Xn+1 = X0 × · · · ×Xn

where the Xi are copies of X.
For a sequence i1, . . . , in in I let

π̂i1,...,in : XI → Xn

π̂i1,...,in

(
(xi)i∈I

)
= (xi1 , . . . , xin)
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For u ∈ CH∗(Xn) we write

u[i1,...,in] = π̂∗i1,...,in(u) ∈ CH∗(XI)

7.2. Symmetry of special correspondences. We assume that X is
proper of dimension d = b(p− 1).

Let ρ ∈ CHb(X2) be a special correspondence. Let τ be the exchange
involution.

Lemma 7.1. τ ∗(ρ) = −ρ

Proof. We have
ρ[1,2] − ρ[0,2] + ρ[0,1] = 0

in CHb(X3) by the cocycle condition. Pulling back with the diagonals
X2 → X3, (x, y) 7→ (x, x, y), (x, y, x) yields

ρ[0,1] − ρ[0,1] + ρ[0,0] = 0, ρ[1,0] − ρ[0,0] + ρ[0,1] = 0

which gives
ρ[0,0] = 0, ρ[1,0] + ρ[0,1] = 0

�

7.3. Construction of the motive for p = 2. I first used nilpotence
to get the projector, see the proof of Proposition 5.9. Meanwhile I
noticed that there is a much more direct argument.

For an illustration, we first consider the case p = 2. Then b = d.
We assume c(ρ) = 1. Let

β = −(π0)∗(ρ
2) ∈ CH0(X)

Then

βL = −(π0)∗
(
(H0 −H1)

2
)

= −(π0)∗(−2H0H1) = 2H

and therefore
deg(β) = 2

Lemma 7.2.

ρ ◦ ρ = −ρ+ β ×X
ρ ◦ ρ ◦ ρ = ρ

Proof. One has by Lemma 7.1:

(π1)∗(ρ) = (π0 ◦ τ)∗(ρ) = −(π0)∗(ρ) = −c(ρ)[X] = −[X]

One has in CHd(X0 ×X2) with

π1 : X0 ×X1 ×X2 → X0 ×X2

(x0, x1, x2)→ (x0, x2)
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and Xi = X:

(ρ ◦ ρ)[0,2] = (π1)∗(ρ[0,1]ρ[1,2])

= (π1)∗
(
ρ[0,1](ρ[0,2] − ρ[0,1])

)
= (π1)∗(ρ[0,1])ρ[0,2] − (π1)∗

(
(ρ[0,1])

2
)

= −ρ[0,2] + β[0]

This proves the first claim. For the second claim note that

(β ×X) ◦ ρ = β ×X

for any β. Thus

ρ ◦ ρ ◦ ρ = −ρ ◦ ρ+ (β ×X) ◦ ρ = ρ− β ×X + β ×X = ρ

�

Corollary 7.3. ρ ◦ ρ is a projector. �

Note that

(ρ ◦ ρ)L = H ×X +X ×H
so ρ ◦ ρ is the desired projector.

7.4. Correspondences generated by ρ. We work over Z(p).
In this section we show that the correspondences in CH∗(Xn) gener-

ated by a special correspondence ρ ∈ CHb(X2) via products, (simpli-
cial) pull backs and push forwards form for every n a free Z(p)-module.
It is denoted by Rn.

We consider similarly the correspondences in CH∗(Xn
L) generated by

H ∈ CHb(XL) (where ρL = H × X − X × H). The resulting ring is
denoted by Sn.

It turns out that the natural map Rn → Sn is injective. This way,
identities for correspondences for X generated by ρ can be easily veri-
fied by passing to L.

The rings Rn → Sn are independent of the weight of the symbol. In
fact, one has

Rn = CH∗(Xn), Sn = CH∗((Pp−1)n
)

where X is a nonsplit Severi-Brauer variety of dimension p− 1.
The following discussion is simple in nature, but a bit tedious and

tiring. Voevodsky’s framework of motives over simplicial schemes indi-
cates that there should be simpler organization and explanation.

For i = 0, . . . , p− 1 let

β′i = (π0)∗(ρ
p−1+i) ∈ CHbi(X)
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Then

(β′i)L = (π0)∗
(
(H0 −H1)

p−1+i
)

= c(ρ)

(
p− 1 + i

i

)
(−1)iH i

Note that for 1 ≤ i ≤ p− 1 one has(
p− 1 + i

i

)
∈ pZ×

(p)

We put for 1 ≤ i ≤ p− 1

βi = c(ρ)−1(−1)i p(
p−1+i

i

)β′i ∈ CHbi(X)⊗ Z(p)

so that

(βi)L = pH i

We put

β0 = c(ρ)−1β′0 = [X]

Let

ε = c(ρ)−1βp−1 ∈ CHd(X)⊗ Z(p)

The zero cycle ε has degree p.
For i = 0, . . . , p− 1 let

αi = (ρi)∗(ε) ∈ CHbi(X)

Note that

(αi)L = pH i

In particular α0 = p[X].

Lemma 7.4. In the Chow ring CH∗(X) one has

αiαj = pαi+j

Proof. Note that ε[1]ε[2]ρ[1,2] = 0 by dimension reasons. Hence

(αiαj)[0] = (π1,2)∗(ε[1]ε[2]ρ
i
[0,1]ρ

j
[0,2])

= (π1,2)∗(ε[1]ε[2]ρ
i
[0,1]ρ

j
[0,1])

= α0αi+j

�

Lemma 7.5. For i = 0, . . . , p−1, the element αi is in the Z(p)-module
generated by the elements

βjβi−j, 0 ≤ j ≤ i



ON THE BASIC CORRESPONDENCE OF A SPLITTING VARIETY 23

Proof. For a certain unit u ∈ Z×
(p) one has

u(αi)[0] = (π1,2)∗(ρ
i
[0,1]ρ

2p−2
[1,2] )

= (π1,2)∗
(
ρi

[0,1](ρ[0,1] + ρ[0,2])
2p−2

)
=

∑
j+k=2p−2

(
2p− 2

j

)
(π1)∗(ρ

i+j
[0,1])(π2)∗(ρ

k
[0,2])

�

Corollary 7.6. For i = 1, . . . , p− 1 one has αi = βi.

Proof. Note that

(αi)L = pH i = (βi)L

Since H is not a torsion element, it suffices to show that αi = uβi for
some u ∈ Z(p).

We proceed by induction on i. Suppose αj = βj for 1 ≤ j < i.
By Lemma 7.5, αi is a linear combination of β0βi = βi and two-fold
products βjβi−j with 1 ≤ j < i. By induction we have αj = βj, and by
Lemma 7.4, we have βjβi−j = pαi. Hence αi is a linear combination of
βi and pαi. �

For n ≥ 1 let

Sn = Z(p)[H1, . . . , Hn] ⊂ CH∗(Xn
L)⊗ Z(p)

be the subring generated by the Hi = H[i]. The ring Sn has the pre-
sentation

Z(p)[H1, . . . , Hn]/(Hp
1 , . . . , H

p
n)

In particular, it is free of rank pn.
We define

Rn ⊂ CH∗(Xn)⊗ Z(p)

as the submodule generated by the monomials

(βi)[1]ρ
h2

[1,2] · · · ρ
hn

[1,n]

with 0 ≤ i ≤ p− 1, 0 ≤ hk ≤ p− 1, k = 2, . . . , n.
The image of Rn in CH∗(Xn

L)⊗ Z(p) is the subring

Z(p)[H2 −H1, . . . , Hn −H1] + pSn ⊂ Sn

(note that (Hi −H1)
p = 0 mod p). It is easy to see that the specified

monomials form a Z(p)-basis of Rn. Furthermore, Rn → Sn is injective.

Lemma 7.7. Rn contains the elements (βi)[k] for k = 1, . . . , n.
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Proof. We have

(β′i)[2] − (β′i)[1] = (π0)∗(ρ
p−1+i
[0,2] − ρ

p−1+i
[0,1] )

= (π0)∗
(
(ρ[0,1] + ρ[1,2])

p−1+i − ρp−1+i
[0,1]

)
=

p−1+i∑
k=1

(
p− 1 + i

k

)
(π0)∗(ρ

p−1+i−k
[0,1] )ρk

[1,2]

=
i∑

k=1

(
p− 1 + i

k

)
(β′i−k)[1]ρ

k
[1,2]

�

Lemma 7.8.
pc(ρ)ρ = (π∗0 − π∗1)(β′1)

Proof. Just specialize the previous computations to the case i = 1. �

Corollary 7.9. For any [ρ] ∈ H1(X/k,CHb) one has

pc(ρ)[ρ] = 0

�

Lemma 7.10. R2 contains the element ρp
[1,2].

Proof. This is the most tricky part.
Note that ρ2p−1 = 0 by dimension reasons. We have

c(ρ)ρp
[1,2] = (π0)∗(ρ

p−1
[0,2]ρ

p
[1,2])

= (π0)∗
(
ρp−1

[0,2](ρ[0,2] − ρ[0,1])
p
)

= (−1)p(π0)∗(ρ
p−1
[0,2]ρ

p
[0,1]) + pΩ

= (−1)p(π0)∗
(
(ρ[0,1] + ρ[1,2])

p−1ρp
[0,1]

)
+ pΩ

=

p−2∑
i=0

ui(β
′
i+1)[1]ρ

p−1−i
[1,2] + pΩ

Here ui ∈ Z and Ω is a linear combination of the elements

γi = (π0)∗(ρ
p−1+i
[0,2] ρp−i

[0,1])

with i = 1, . . . , p− 1.
Hence it suffices to show

pγi ∈ R2

The element ε is a zero cycle of degree p. Since we work over Z(p),
we may assume that k has no extensions of degree prime to p. Hence
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we may assume that there exists a field L with [L : k] = p and a
point SpecL → X. (The following use of the field L of degree p may
and should be replaced by a more formal discussion using the cycle ε
directly.)

Then

p(γi)[1,2] = NL/k

((
(γi)[1,2]

)
L

)
= NL/k

(
(π0)∗

(
(H0 −H2)

p−1+i(H0 −H1)
p−i

))
Since i ≥ 1 and Hp = 0, the element p(γi)[1,2] is a linear combination
of the elements

pNL/k(H
k
1H

p−k
2 )

with k = 1, . . . , p− 1. We have(
(βk)[1]ρ

p−k
[1,2]

)
L

= pHk
1 (H1 −H2)

p−k

Since Hp = 0, these elements generate the same module as the elements

pHk
1H

p−k
2

Therefore the element p(γi)[1,2] is a linear combination of the elements

p(βk)[1]ρ
p−k
[1,2]

But those elements are obviously in R2. �

We summarize:

Corollary 7.11. Rn is the ring generated over Z(p) by (βi)[k], (αi)[k],
ρ[k,l] with 1 ≤ k, l ≤ n and 0 ≤ i ≤ p− 1. �

Corollary 7.12. The family of subrings Rn ⊂ CH∗(Xn) is closed un-
der external products CH∗(Xn)× CH∗(Xm)→ CH∗(Xn+m). It is also
closed under pull backs and push forwards along any simplicial mor-
phism Xn → Xm. �

Let

Πρ = c(ρ)−1

p−1∑
i=0

H i
0H

p−1−i
1 ∈ S2 ⊂ CH∗(X2

L)

One has Πρ ∈ CHd(X2
L) = End(XL). Since c(ρ) = deg(Hp−1), it is

easy to see that Πρ is an idempotent when considered as an element
of End(XL).

Note that
(ρp−1

[0,1])L = Πρ mod pS2

Hence Πρ ∈ R2 ⊂ CH∗(X2). In fact, one has Πρ ∈ CHd(X2) =
End(X).
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It is also an idempotent of End(X), since R2 → S2 is injective and
the Rn are closed under composition operations.

Definition 7.13. The element Πρ ∈ Rn is called the projector of ρ.
The Chow motive

M = Mρ = (X,Πρ)

is called the motive of ρ.

Proposition 7.14. One has

X ⊗M =

p−1⊕
i=0

X ⊗ Z(p){bi}

in the category of Chow motives over Z(p).

Proof. Let f : Y → X be a morphism. For 0 ≤ i ≤ p− 1 let

ϕi : CHh(Y )→ CHh+bi(Y ×X)

ϕi(α) = f ∗(α)(f × idX)∗(ρi)

Φ =

p−1∑
i=0

ϕi :

p−1⊕
i=0

CHh−bi(Y )→ CHh(Y ×X)

and

ψi : CHh+bi(Y ×X)→ CHh(Y )

ψi(β) = (πX)∗
(
β(f × idX)∗(ρp−1−i)

)
Ψ =

p−1∑
i=0

ψi : CHh(Y ×X)→
p−1⊕
i=0

CHh−bi(Y )

Then for α ∈ CHh(Y ) one has

(ψj ◦ ϕi)(α) = (πX)∗(αY ρ
p−1−j+i
Y,X )

= αf ∗
(
(π1)∗(ρ

p−1−j+i
[0,1] )

)
Hence Ψ ◦ Φ is a triangular matrix with invertible elements on the
diagonal, and therefore an isomorphism.

Note that (idY × Πρ) ◦ Φ = Φ. It remains to show that

Φ:

p−1⊕
i=0

CHh−bi(Y )→ CHh(Y ×Mρ)

is surjective. The projection Y ×Mρ → Y induces a spectral sequence
(see [4])

Er,s
2 = Ar(Y,As(Mρ)) =⇒ Ar+s(Y ×Mρ)
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Since CHs((Mρ)L) = H iZ(p) for s = bi and CHs((Mρ)L) = 0 otherwise,
the claim follows. �

8. Computing c(X)

In the following we refer to the notations in [6]. All Chow groups
are understood with coefficients Z/p.

8.1. Recalling the Ri. See [6, Section 6, p. 15–16]. We switch from
the index n in [6] to m, to avoid conflicts below.

Given forms (S,Hi, αi), i = 1, . . . , m, we defined forms

(Ri/Ri+1, Ji, γi), (Ri/Ri+1, J
′
i , γ

′
i)

We write R = R1 and assume S = Spec k. Then we have a sequence of
bundles

R = R1 → R2 → · · · → Rm = S = Spec k

with relative dimensions dim(Ri/Ri+1) = pi+1 − pi. Thus

dimR = pm − p = p(pm−1 − 1)

Remark 8.1. The extension R( p
√
γ1)/R is a model for the extension

Y p/CpY for a norm variety Y of the symbol {α1, . . . , αm}, where
CpY = (Y p)/(Z/p) is the p-th cyclic symmetric product of Y .

We denote:

si = c1(Ji) ∈ CH1(Ri) ⊂ CH1(R)

ti = c1(J
′
i) ∈ CH1(Ri) ⊂ CH1(R)

We have by definition

Ri/Ri+1 = Cp = Cp(α1, . . . , αi, γi+1)

8.2. Recalling the Cr. See [6, Section 5, p. 10]. We fix the index i
above and put n = i+ 1.

Let us recall some parts of the definition of Cp. We have:

Cr = Cr(α1, . . . , αn−1, β) = (Sr/Sr−1, Lr, βr), r ≥ −1.

With the notations from [6] we have a sequence of bundles

Ri = Cp = Sp → Sp−1 → · · · → S0 = S ′ = Ri+1

with relative dimensions dimSr/Sr−1 = pn−1 − pn−2.

Remark 8.2. Sr/Sr−1 parameterizes one of the semi-elementary moves
in subsymbols. One uses p moves of the given type, which are in total
parameterized by Sp/S0 = Ri/Ri+1. In particular,

dim(Ri/Ri+1) = p(pn−1 − pn−2) = p(pi − pi−1)
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as mentioned before (recall n = i+ 1).

In [6, Proof of Theorem 5.2, p. 13] we defined certain elements

xr = c1(Lr)
pi−1 ∈ CHpi−1

(Sr), r ≥ −1

zr = c1(K
′
n−1,r)

pi−1 ∈ CHpi−1

(Sr), r ≥ 1

subject to the relations

x−1 = 0

x0 = c1(L)pi−1 ∈ CHpi−1

(S ′)

xr = xr−2 + zr, r ≥ 1

zp
r = zrx

p−1
r−1

Here L = Ji+1 is the line bundle for γi+1. Hence

x0 = spi−1

i+1

We have xr, zr ∈ CHpi−1

(Sr). Moreover

(8.2.1) (Sr → Sr−1)∗(z
i
r) =

{
0 for i = 0, . . . , p− 2

1 for i = p− 1

We have to sharpen some computations for the rings Rr(a, b) of [6,
Section 5].

Lemma 8.3. One has

xp2−1
r = xp−1

r

in Rr(0, 1).

Proof. By [6, Corollary 5.5] one has

zp2

r+1 = zp
r+1

in Rr+1(0, 1). Since zp
r+1 = zr+1x

p−1
r we have

zr+1x
p2−1
r = zr+1x

p−1
r

Since Rr+1(0, 1) is the free Rr(0, 1)-module with basis zi
r+1, 0 ≤ i ≤

p− 1, the claim follows. �

Remark 8.4. This proof of Lemma 8.3 is a bit strange since one uses
the ring Rr+1(a, b) to get an identity for Rr(a, b).

Alternatively, one may argue withinRr(a, b) as follows. By [6, Propo-
sition 5.4], the ring Rr(a, b) is isomorphic to a product of rings of the
form

Kk = Fp[v1, . . . , vk]/(v
p
1, . . . , v

p
k), k ≥ 0.
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An element u ∈ Kk can be written as u = a + v with a ∈ Fp and
vp = 0. Then

up2−1 = (a+ v)p(p−1)up−1 = ap−1up−1

If u is a unit, then a 6= 0 and ap−1 = 1. Thus, if u is a unit, or if u = 0,
we have

up2−1 = up−1

One may now inspect the isomorphisms

Rr(a, b) '
∏
i∈Fp

Rr−1(b, ib+ a)

(for b 6= 0) resp.

Rr(a, 0) ' Fp[z1]/(z
p
1)⊗Rr−1(0, 1)

from the proof of [6, Proposition 5.4] to see that xr will in each com-
ponent either go to 0 or to unit · xr−1. This way the claim follows by
induction on r.

Remark 8.5. Meanwhile I found a much much simpler way to prove [6,
Corollary 5.5] and Lemma 8.3.

Namely one has

xp
rxr−1 − xrx

p
r−1 = 0(8.2.2)

p∑
i=0

(xp−1
r )i(xp−1

r−1)
p−i = 1(8.2.3)

in Rr(0, 1).

Proof of (8.2.2). Let

f(x, y) = xp − xyp−1, g(x, y) = yf(x, y) = xpy − xyp

Then

f(xr, xr−1) = (zr + xr−2)
p − (zr + xr−2)x

p−1
r−1

= (zrx
p−1
r−1 + xp

r−2)− (zr + xr−2)x
p−1
r−1

= xp
r−2 − xr−2x

p−1
r−1 = f(xr−2, xr−1)

Hence

g(xr, xr−1) = g(xr−2, xr−1) = −g(xr−1, xr−2)

and

±g(xr, xr−1) = g(x0, x−1) = g(1, 0) = 0

�
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Proof of (8.2.3). Let

h(x, y) =

p∑
i=0

(xp−1)i(yp−1)p−i

Then
h(x, y) = f(x, y)p−1 + y(p−1)p

Hence, by the above,

h(xr, xr−1) = h(xr−2, xr−1) = h(xr−1, xr−2) = · · · = h(1, 0) = 1

�

One finds now

xp−1
r = xp−1

r h(xr, xr−1)

= xp2−1
r + xp−1

r f(xr−1, xr)
p−1

= xp2−1
r + g(xr−1, xr)

p−1 = xp2−1
r

Moreover one has
up2

= up

for all u ∈ Rr(0, 1), because this holds for all the ring generators xs

of Rr(0, 1) over Fp.

The ring R′ is the homogeneous variant Rp(0, x0) of Rp(0, 1), see the
lines before [6, Corollary 5.7].

Corollary 8.6. One has

xp2−1
r = xp−1

r xp2−p
0

in R′. �

Lemma 8.7. Let πi : Ri → Ri+1 be the projection. Then for h, k ≥ 0
one has

(πi)∗(x
(p−1)k
p−1 x(p−1)h

p ) =

{
0 if h = 0 or k + h < p

x
(p−1)(k+h−p)
0 else

Proof. If h = 0 or k + h < p, the claim follows by dimension reasons.
Otherwise we may by Corollary 8.6 reduce to the case h ≤ p. As in
the proof of [6, Lemma 5.3], one sees then that

x(p−1)h
p

has the same leading term as

x(p−1)
p x

(p−1)(h−1)
p−1

We may therefore assume h = 1.
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Again by Corollary 8.6 reduce to the case k ≤ p. And again as in
the proof of [6, Lemma 5.3], one sees then that

x(p−1)
p x

(p−1)k
p−1

has the same leading term as

x(p−1)
p x

(p−1)
p−1 x

(p−1)(k−1)
p−2

Iterating this, we end up with

x(p−1)
p x

(p−1)
p−1 · · ·x

(p−1)
1 x

(p−1)(k+1−p)
0

This proves the claim. �

8.3. The final computation. By Corollary 3.4 we want to compute
the number

c = deg
((
Q̂

(
(γ′1) · · · (γ′m−1) ∪ α

))p−1
)

mod p

Here T → B ⊂ R is the norm-1 torus defined by the form (R1, J1, γ1)
and α ∈ H1,1(T,Z/p) is its standard class.

The torus T → B is an open subscheme of the projective bundle
P(A)→ R. Let

w ∈ CH1
(
P(A)

)
be the first Chern class of the tautological line bundle. Then

CH∗(P(A)
)

= CH∗(R)[w]/(wp − wsp−1
1 )

One finds
Q0(α) = w|T

in CH1(T ).
By Lemma 4.1 we have (mod p)

c =
( ∑

σ∈Sm

sgn(σ)
m∏

i=1

(βσ(i))
pi−1

)p−1

in CH0

(
P(A)

)
= Z with β1 = t1, . . . , βm−1 = tm−1 and βm = w. From

wp = wsp−1
1

we get

c = wp−1
( ∑

σ∈Sm

ϕσ

)p−1

where
ϕσ = sgn(σ)tp

σ(1)−1

m−1 tp
σ(2)−1

m−2 · · · tp
σ(m−1)−1

1 spσ(m)−1−1
1

Hence

c =
( ∑

σ∈Sm

ϕσ

)p−1
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in CH0(R) = Z.
We have s1 = xp, t1 = xp−1 (with i = 1 above). By Lemma 8.7 we

have

(R1 → R2)∗(x
(p−1)k
p−1 x(p−1)h

p ) =

{
0 if h = 0 or k + h < p

s
(p−1)(k+h−p)
2 else

Note that if we replace formally in the sum∑
σ∈Sm

ϕσ

the variables s1, t1 with s2, we get 0. Thus the same statement holds
also for ( ∑

σ∈Sm

ϕσ

)p−1

For

ω = (σ1, . . . , σp−1) ∈ (Sm)p−1

let

Φω = ϕσ1 · · ·ϕσp−1

If σ1(m) = · · · = σp−1(m) = 1, then (use (8.2.1) for r = p and i = 0)

(R1 → R2)∗(Φω) = 0

Otherwise

(R1 → R2)∗(Φω)

is formally obtained from Φω by replacing the variables s1, t1 with s2

and then dividing by s
p(p−1)
2 . Hence we have (up to sign)

c =
( ∑

σ∈Sm, σ(m)=1

sgn(σ)tp
σ(1)−1

m−1 · · · tp
σ(m−2)−1

2 spσ(m−1)−1−1
2

)p−1

in CH0(R2) = Z. Or:

c =
( ∑

σ∈Sm−1

sgn(σ)tp
1+σ(1)−1

m−1 · · · tp
1+σ(m−2)−1

2 sp1+σ(m−1)−1−1
2

)p−1

=
( ∑

σ∈Sm−1

sgn(σ)(tpm−1)
pσ(1)−1 · · · (tp2)pσ(m−2)−1

(sp
2)

pσ(m−1)−1−1
)p−1

We have sp
2 = xp, t

p
2 = xp−1 (with i = 2 above). By Lemma 8.7 we have

(R2 → R3)∗(x
(p−1)k
p−1 x(p−1)h

p ) =

{
0 if h = 0 or k + h < p

(sp
3)

(p−1)(k+h−p) else
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Proceeding further this way, we end up with

c =
(∑

σ∈S1

sgn(σ)
)p−1

= 1

8.4. Further computations. The remarks of this section have been
found some weeks after typing the Subsection 8.3. In the end they will
simplify the presentation of the computation of c(X) considerably.

We keep the notations from Subsection 8.3.
Let

H = Q̂
(
(γ′1) · · · (γ′m−1) ∪ α

)
∈ CHb(T )

Let

si = spi−1

i ∈ CHpi−1

(Ri) ⊂ CHpi−1

(R)

ti = tp
i−1

i ∈ CHpi−1

(Ri) ⊂ CHpi−1

(R)

There is the following remarkable decomposition of H:

Lemma 8.8. One has (up to sign)

H = w
m−1∏
i=1

(
t
p
i − tis

p−1
i

)
Proof. Once this statement is formulated, it can be easily proved by
the arguments used before in Subsection 8.3. In fact, the proof is much
less tedious. We omit the details for now. �

Corollary 8.9. c(X) = 1 mod p.

Proof. This is now easy: Note that

t
p
i − tis

p−1
i = f(ti, si)

where f is as in the proof of (8.2.2). The proof of (8.2.2) yields(
t
p
i − tis

p−1
i

)p−1
+ (si)

(p−1)p = h(ti, si) = sp−1
i+1

From this one gets

(Ri → Ri+1)∗
((
t
p
i − tis

p−1
i

)p−1)
= ±1

Plugging this into the formula of Lemma 8.8 yields the claim. �

Lemma 8.8 was found by a mere computation. I don’t have yet a
geometric explanation of it.

Here is a related remark, which also deserves some explanation:

Lemma 8.10. One has

(Sr+1 → Sr)∗(x
2p−1
r+1 ) = f(xr−1, xr)
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9. Relations with characteristic numbers

The material of this section is not needed for the proof of the Bloch-
Kato conjecture.

Lemma 9.2 of this section was inspired by [3, Lemma 4.4].
Let

S• = S0 + S1 + · · · : CH∗(X)⊗ Z/p→ CH∗(X)⊗ Z/p

Sh : CHj(X)⊗ Z/p→ CHj−h(p−1)(X)⊗ Z/p

and

P • = P 0 + P 1 + · · · : CH∗(X)⊗ Z/p→ CH∗(X)⊗ Z/p

P h : CHj(X)⊗ Z/p→ CHj+h(p−1)(X)⊗ Z/p

be the Steenrod operations of Brosnan [1]. The two variants are related
by

S•(α) = P •(α) · b•(TX)

where b•(−) is the characteristic class with

b•(V ) =
∑
i≥0

bi(p−1)(V )

b•(V ⊕W ) = b•(V )b•(W )

b•(L) =
(
1 + c1(L)p−1

)−1

for vector bundles V , W and line bundle L. (For p = 2 one gets the
Segre classes b•(V ) = c•(−V ).)

Let

b =
pn − 1

p− 1

Let X be a smooth proper irreducible variety of dimension

d = b(p− 1) = pn − 1

Theorem 9.1. Suppose p = 2 or n = 1.
Suppose I(X) ⊂ pZ. Suppose further that there exists a special cor-

respondence ρ ∈ CHb(X2). Then

bd(X)

p
6= 0 mod p

The same statement holds without the restriction p = 2 or n = 1,
see below.

Proof. For Y/k proper with

I(Y ) = degY/k

(
CH0(Y )

)
⊂ pZ
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let

DEGY : CH0(Y )/p→ pZ/p2Z

DEGY (u mod p) = degY/k(u) mod p2

for u ∈ CH0(Y ).
We consider the following commutative diagram

CHd(X
2)

Sd−−−→ CH0(X
2)/p

DEGX2−−−−→ pZ/p2Zy(π0)∗

y(π0)∗

∥∥∥
CHd(X)

Sd−−−→ CH0(X)/p
DEGX−−−−→ pZ/p2Z

One has

Sd([X]) = bd(TX)

and

(π0)∗
(
(ρ)p−1

)
= c(ρ)[X]

One has

S•(ρ
p−1) = P •(ρp−1)b•(TX

2) = P •(ρ)p−1b•(TX
2)

For n = 1 we have b = 1. In this case one has

P •(ρ) = ρ+ ρp

Hence

S•(ρ
p−1) =

(
ρp−1 + (p− 1)ρ2(p−1)

)(
1 + bd(TX0) + bd(TX1)

)
Therefore

c(ρ)b(X) =
(
1 + (−1)p−1

)
c(ρ)b(X)

+ (−1)p−1(p− 1)

(
2(p− 1)

p− 1

)
c(ρ)2 mod pI(X)

This proves the claim.
For p = 2 we have b = d. It suffices to show that if we represent

Sd(ρ) by an integral zero cycle, then the degree of this zero cycle is not
divisible by 4.

We have

(9.0.1) Sd(ρ) = ρbd(TX
2) + P 1(ρ)bd−1(TX

2) + · · ·+ P d(ρ)

For the last term we have P d(ρ) = ρ2 mod 2 and one has

deg(ρ2) = −2c(ρ)2

It suffices to show that all the other terms on the right hand side
of (9.0.1) have integral representatives with degrees divisible by 4.
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Let X0 = X1 = X and write X2 = X0 ×X1. Let F be the function
field of X.

For the first term on the right hand side of (9.0.1) we have over F
by dimension reasons

ρF bd(TX
2) = (H ×X −X ×H)

∑
j+r=d

bj(TX0)br(TX1)

=
(
H × bd(TX1)

)
−

(
bd(TX0)×H

)
This zero cycle has obviously degree 0.

As for the remaining terms: Let 1 ≤ i ≤ d − 1. Note that for
H ∈ CHd(XF )⊗ Z/2 we have P i(H) = 0 by dimension reasons. Since
ρF = H ×X −X ×H we get

(9.0.2) P i(ρ)F = 0

in CHd+i(X2
F )⊗ Z/2.

Let β ∈ CHd+i(X2) be an integral representative of P i(ρ). We have
to show that deg

(
βbd−i(TX

2)
)
∈ Z is 4-divisible. By (9.0.2) there

exists γ ∈ CHd+i(X2
F ) such that βF = 2γ. It remains to show that

deg
(
γbd−i(TX

2)
)
∈ Z is 2-divisible. Now

bd−i(TX
2) =

∑
j+r=d−i

bj(TX0)br(TX1)

It remains to show that all the numbers deg
(
γbj(TX0)br(TX1)

)
∈ Z

are 2-divisible. We have j + r = d− i > 0. We assume r > 0 (the case
j > 0 is similar). Then

deg
(
γbj(TX0)br(TX1)

)
= degX1F /F

(
(π0)∗

(
γbj(TX0)

)
br(TX1)

)
This number is 2-divisible because of the following Lemma 9.2. �

Lemma 9.2. Let p = 2. Suppose that there exists a special correspon-
dence ρ ∈ CHb(X2). Let r > 0. Let α ∈ CHr(X) and β ∈ CHd−r(XF ).
Then

degXF /F (αFβ) ∈ I(X)⊗ Z(2)

Proof. Let ϕ ∈ CHd−r(X2) be a preimage of β under the natural map

CHd−r(X2)→ CHd−r(X × SpecF )

and consider the zero cycle

ω = ρ(α×X)ϕ ∈ CH2d(X2)

Its degree is in I(X2) = I(X). We compute its degree over F . One has

ωF = (H ×X)(αF ×X)ϕF − (X ×H)(αF ×X)ϕF
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The first term vanishes because HαF = 0 by dimension reasons. As
for the second term note that

(π0)∗
(
(αF ×X)ϕF

)
= degXF /F (αFβ)[X]

Hence
deg(ω) = −c(ρ) degXF /F (αFβ)

�

Here is the variant of Lemma 9.2 for any p.
Let

J(X) = {n ∈ Z | np−1 ∈ I(X) }
If I(X) ⊂ pZ, then J(X) ⊂ pZ.

Lemma 9.3. Let r > 0. Suppose that there exists a special correspon-
dence ρ ∈ CHb(X2). Let α ∈ CHr(X) and β ∈ CHd−r(XF ). Then

degXF /F (αFβ) ∈ J(X)⊗ Z(p)

Proof. Let ϕ ∈ CHd−r(X2) be a preimage of β under the natural map

CHd−r(X2)→ CHd−r(X × SpecF )

Then
(π0)∗(α[0]ϕ[0,1]) = degXF /F (αFβ)[X1]

Since
(π1)∗([X1]ρ

p−1
[1,2]) = c(ρ)[X2]

we get

c(ρ) deg(αFβ)[X2] = (π0,1)∗(α[0]ϕ[0,1]ρ
p−1
[1,2])

= (π0,1)∗
(
α[0]ϕ[0,1](ρ[0,2] − ρ[0,1])

p−1
)

=

p−1∑
i=0

(
p− 1

i

)
(−1)i(π0)∗

(
ρp−1−i

[0,2] (π1)∗(α[0]ϕ[0,1]ρ
i
[0,1])

)
=

p−1∑
i=1

(
p− 1

i

)
(−1)idρ

(
(π1)∗(α[0]ϕ[0,1]ρ

i
[0,1])

)
[X2]

Here the term for i = 0 vanishes. Namely, since r > 0 one has
(π1)∗(ϕ[0,1]) = 0 by dimension reasons and therefore (π1)∗(α[0]ϕ[0,1]) =
α[0](π1)∗(ϕ[0,1]) = 0. The claim follows from Corollary 5.7. �

In the following we are going to prove Theorem 9.1 without the
restriction p = 2 or n = 1. We assume that we are given a special
correspondence ρ ∈ CHb(X2). We also assume I(X) ⊂ pZ. Moreover,
as before, we use the notations ρL = H ×X −X ×H with L = F =
k(X).
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Definition 9.4. For i ≥ 0 define

ei(ρ) ∈ Z/p

as follows. Define hi ∈ Q by

i(p− 1) + b(hi + 1) = b(p− 1)

If hi is a nonnegative integer, we set

ei(ρ) = deg
(
P i(H)Hhi

)
∈ Z/p

Otherwise we set ei(ρ) = 0.

For i = 0 we get h0 = p− 2 and

e0(ρ) = c(ρ)

Note that if i > 0, then hi < p− 2.

Lemma 9.5. For i > 0 one has

ei(ρ) = 0

Proof. Let
α = (π0)∗

(
P i(ρ)ρhi+1

)
∈ CHb(X)⊗ Z/p

Then
αL = (π0)∗

((
P i(H0)− P i(H1)

)
(H0 −H1)

hi+1
)

Since hi + 1 < p− 1 one has

αL = uei(ρ)H

for some unit u ∈ Z×
(p). The claim follows from Corollary 5.7. �

We consider the elements

(θi)[0,1] = c(ρ)−2(π2,3)∗
(
P i(ρ[2,3])ρ

p−1
[0,2]ρ

p−1
[1,3]

)
∈ CHb+i(p−1)(X2)⊗ Z/p

and
ωi = c(ρ)−1(π1)∗

(
P i(ρ)ρp−1

)
∈ CHb+i(p−1)(X)⊗ Z/p

Lemma 9.6.
P i(ρ) = θi − (π∗0 − π∗1)(ωi)

Proof.

(θi)[0,1] = c(ρ)−2(π2,3)∗
((
P i(ρ[0,1])− P i(ρ[0,2]) + P i(ρ[1,3])

)
ρp−1

[0,2]ρ
p−1
[1,3]

)
= P i(ρ[0,1])− (ωi)[0] + (ωi)[1]

�

Lemma 9.7. For i > 0 one has

(θi)L = 0

in CHb+i(p−1)(X2
L)⊗ Z/p.
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Proof.

(θi)L = c(ρ)−2(π2,3)∗
((
P i(H2)− P i(H3)

)
(H0 −H2)

p−1(H1 −H3)
p−1

)
The claim follows from Lemma 9.5. �

Lemma 9.8. Let j, k > 0 with j+ k+ rb = 2d for some r ≤ p− 1. Let
α ∈ CHj(X), β ∈ CHk(X). Then

deg
(
π∗0(α)π∗1(β)ρr

)
∈ J(X)2 ⊗ Z(p)

Proof. Computing this degree over L, one gets essentially dρ(α)dρ(β).
The claim follows from Corollary 5.7. �

Theorem 9.9. Suppose I(X) ⊂ pZ. Suppose further that there exists
a special correspondence ρ ∈ CHb(X2). Then

bd(X)

p
6= 0 mod p

Proof. Let A be the 2d-dimensional component (so A is a zero cycle)
of

S•(ρ
p−1) = P •(ρ)p−1b•(TX

2)

=
(
ρ+ P 1(ρ) + · · ·+ P b−1(ρ) + ρp

)p−1
b•(TX0)b•(TX1)

The zero cycle A is a sum of terms

U = P i1(ρ) · · ·P ip−1(ρ)bj(TX0)bk(TX1)

of total degree 2d. We consider various cases.

Case 1. i1 = · · · = ip−1 = 0. In this case

U = ρp−1
(
bd(TX0) + bd(TX1)

)
The degree of this integral zero cycle is (1 + (−1)p−1)c(ρ)bd(X).

Case 2. After a permutation of the ij one has i1 = · · · = ip−2 = 0,
ip−1 = b. (So this case appears exactly p− 1 times). In this case

U = ρ2(p−1)

The degree of this integral zero cycle is upc(ρ)2 for some p-unit u.

It suffices to show that for all other cases the zero cycle U has an
integral representative with degree divisible by p2.

After plugging the formula of Lemma 9.6 into U we get zero cycles
of the form

V = θi1 · · · θirπ
∗
0(α)π∗1(β)

with α ∈ CHj(X), β ∈ CHk(X). The α, β are products of the bj(TX)
and of integral representatives of the ωi.
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We choose integral representatives θ̃ij of θij and put

Ṽ = θ̃i1 · · · θ̃irπ
∗
0(α)π∗1(β)

which is an integral zero cycle. We have to show that deg(Ṽ ) is p2-
divisible in all the cases not coming from Case 1 or Case 2.

Case 3. r ≥ 2 and i1, i2 > 0. In this case one computes the degree
over L. The p2-divisibility follows from Lemma 9.7.

Case 4. j = k = 0. This case appears only when r = p − 1 (because
all the ωi are positive dimensional). But since we have excluded Case 1
and Case 2, we will be in Case 3.

Case 5. i1 = · · · = ir = 0. Then r < p − 1, because otherwise we
would come from Case 1.

Suppose j = 0. Then

(π0)∗(V ) = (π0)∗(ρ
r)β = 0

since (π0)∗(ρ
r) = 0.

Similarly for k = 0.
Suppose j, k > 0. Then

V = ρrπ∗0(α)π∗1(β)

The p2-divisibility follows Lemma 9.8.

There remains the following case:

Case 6. k > 0 or j > 0, r ≥ 1, i1 ≥ 1. We assume k > 0. Let

W = (π0)∗
(
θ̃i1 · · · θ̃irπ

∗
0(α)

)
Then

WL = 0 mod p

by Lemma 9.7.
The p2-divisibility follows Lemma 9.3.

�

Here is a very general fact about smooth proper varieties X of di-
mension d = b(p− 1).

Lemma 9.10. Suppose that d 6= pm − 1 for all m. Then

bd(X) ∈ pI(X) + p2Z(p)
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Proof. First recall that

bd(X) ∈ pZ
for all d > 0 and X. By the multiplicativity property of the series bi,
this implies

bd(Y × Z) ∈ p2Z

if dimY , dimZ > 0.
Let Ω∗ be the complex cobordism ring. Suppose that d 6= pm− 1 for

all m. Let x0 ∈ Ωd with sd(x0) 6= 0 mod p. Consider the characteristic
class

f(V ) = bd(V )− bd(x0)sd(x0)
−1sd(V )

over Z(p). Then f(x0) = 0. Moreover f(yz) ∈ p2Z(p) for positive
dimensional y, z ∈ Ω∗. By the known structure of Ω∗, this implies

f(x) ∈ p2Z(p)

for x ∈ Ωd. By the Hattori-Stong theorem and by Riemann-Roch it
follows that

f(X) ∈ p2Z(p)

for any X over any field. The claim follows from

bd(X) = f(X) +
bd(x0)

p
sd(x0)

−1psd(X)

�

Example 9.11. Let p = 2 and d = 2. Then

b2 = c21 − c2 = (c21 + c2)− 2c2

and therefore

b2(X) = 4 Todd(X)− 2c2(X)

Corollary 9.12. Suppose I(X) ⊂ pZ. Suppose further that there exists
a special correspondence ρ ∈ CHb(X2). Then

d = pm − 1

for some m.

For the case of quadrics see [2, Theorem 6.1], [3, Theorem 5.1].

Proof. This is clear from Theorem 9.9 and Lemma 9.10. �

Here is the variant of Lemma 9.10 for d = pm − 1.

Lemma 9.13. Suppose that d = pm − 1 for some m. Then

bd(X) = ±sd(X) mod
(
pI(X) + p2Z(p)

)
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Proof. Let x0 ∈ Ωd with sd(x0) = p. Consider the characteristic class

f(V ) = bd(V )− bd(x0)

p
sd(V )

As in the proof of Lemma 9.10 one gets

f(X) ∈ p2Z

We have

bd(X) = f(X) +
bd(x0)

p
sd(X)

The number
bd(x0)

p
mod p

is the coefficient of P b when expressing qm in the P i (by some well
known formula). This coefficient is equal to ±1 . �
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