THE CHAIN LEMMA FOR KUMMER ELEMENTS OF
DEGREE 3

MARKUS ROST

Abstract. Let A be a skew field of degree 3 over a field containing the 3" roots
of unity. We prove a sort of chain equivalence for Kummer elements in A. As a
consequence one obtains a common slot lemma for presentations of A as a cyclic
algebra.

Chaines d’éléments de Kummer en degré 3

Résumé. Soit k& un corps contenant les racines cubiques de I'unité, et soit A un
corps gauche de centre k, avec [A:k] = 9. Nous montrons que deux éléments de
Kummer de A peuvent étre joints par une chaine de longueur 4.

Version francaise abrégée

Soit k un corps contenant une racine primitive n-éme de I'unité ¢, et soit A une
k-algebre centrale simple de degré n. Un élément de Kummer de A est un élément
dont le polynome caractéristique est de la forme t" —a, avec a € k*. Par une (-paire
on entend un couple (X,Y) d’éléments de Kummer de A tels que YX = (XY. Une
telle paire donne une présentation de A comme produit croisé cyclique:

A=(X,)Y | X"=a,Y"=b,YX =(XY), avec a,b€k".

Soient X, Y deux éléments de Kummer de A, et soit m un entier > 1. Une
chaine de longueur m joignant X a'Y est une suite de m+ 1 éléments de Kummer :

X=2Z0,21, ., Zm =Y

tels que (Z;—1, Z;) soit une (-paire pour i =1, ..., m.

Supposons que A soit un corps gauche. Sin = 2 (i.e. si A est un corps de
quaternions), il est facile de voir que tout couple d’éléments de Kummer peut étre
joint par une chaine de longueur 2. Sin = 3, J.-P. Tignol a donné des exemples de
couples (X, Y') d’éléments de Kummer tels qu’il n’existe aucune chaine de longueur 2
joignant X & Y (ni méme & un conjugué de Y, cf. Appendice); dans ce qui suit,
nous montrons qu’un tel couple peut étre joint par une chaine de longueur 4. La
démonstration s’inspire de celle donnée par Petersson-Racine [1] pour un résultat
analogue dans les algebres de Jordan exceptionnelles. Comme conséquence, on
obtient un “common slot lemma” pour les algebres de degré 3.
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INTRODUCTION

The well known common slot lemma for quaternion algebras asserts that if (a, b)
is split over k(+/c), then (a,b) =~ (a,e) ~ (c, e) for some e.

Till a few years ago not much has been known about similar statements for
algebras of degree > 2. Tignol has given an example (cf. Appendix) which shows
that a common slot lemma with just one additional “slot” does not hold in general
for algebras of degree 3. The first positive result was obtained by Petersson and
Racine [1] who proved, taking up a suggestion of J-P. Serre, a common slot lemma
for exceptional Jordan algebras over quadratically closed fields.

The major purpose of this Note is to present the Petersson-Racine arguments in
the much simpler case of central simple algebras of degree 3. They yield a sort of
chain equivalence for Kummer elements. As a consequence one obtains a common
slot lemma for such algebras.

I am indebted to Jean-Pierre Tignol for leaving his text on the counterexample
as an appendix to this Note.

1. KUMMER ELEMENTS

Let n > 2 and let k be a field containing a primitive n*® root of unity ¢. For a,
b € k* we denote by (a,b) the k-algebra defined by the presentation

(%) (X,Y|X"=a,Y"=bYX =(XY).

Let A be a central simple algebra of degree n over k. A Kummer element in A is
an element X € A whose characteristic polynomial Py is of the form Px(t) = t"—a
for some a € k*.

Lemma 1.1. Let X € A be a Kummer element and let
EX,()={Zc¢A|ZX=(XZ}.

(i) L = k[X] is the centralizer of X in A.
(ii) There exists Y € A* such that Y XY 1 = (X.
(ili) For Y asin (ii) one has E(X,() =YL =1LY.

Proof. (i) follows from dimy L = deg A, (ii) from the Skolem-Noether theorem, and
(iil) from (i) and (ii). O

By a (-pair we understand a pair (X,Y) of invertible elements X, Y € A such
that YX = (XY.

Lemma 1.2. Let (X,Y) be a (-pair.

(i) X and Y are Kummer elements.

(ii) If A = M, (k) and X™ = Y™ = 1, then the pair (X,Y) is conjugate to the
pair (Xo,Yo), where Xo is the diagonal matriz diag(1,¢,¢2,...,¢""1) and
where Yy s the permutation matrix e; — e;_1 with i taken mod n.

(iii) The algebra A has the presentation (x).

Proof. Since YXY ™! = (X, the n different powers of ¢ are roots of Py, whence
Px(t) = t" — a for some a € k. Further, X is invertible and therefore a # 0.
Similarly one sees Py (t) = "™ — b for some b € k*. This proves (i). For (ii) note
that any matrix X with Px(t) = t™ — 1 is conjugate to Xy and we may therefore
assume X = Xg. Then necessarily Y = UYj where U is in the centralizer L = k[X]
of X. One has Np,,(U) = Y™ = 1. Therefore there exist V' € L* such that
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U =VY,V=1Y; ! Tt follows that V™'YV = Yp, which proves the claim. For (iii)
one may assume that k is algebraically closed and that A = M, (k). The claim

follows from (ii) after replacing X by X/{/a and Y by Y//b. O
2. CHAINS

Let X, Y € A be Kummer elements. By a chain from X to Y of length m we
understand a sequence X = Zy, Z1, ..., Z,, = Y of Kummer elements in A such
that (Z;_1,Z;) is a -pair fori =1, ..., m.

Let Zy, ..., Z,, be a chain of Kummer elements in A and let a; = Z'. Then

A ~ (ai,l,ai)

for i = 1, ..., m. This shows that a chain of Kummer elements gives rise to a
sequence of presentations (*) with “common slots”.

If there exists a chain from X to Y of length m, then there exists also a chain
from X to Y of length m’ for any m’ > m (if X, Y is a chain of length 1, then X,
Y X, Y is a chain of length 2).

Given Kummer elements X and Y, does there exist a chain from X to Y'?

Let us consider the case n = 2. Then A is a quaternion algebra and X € A is a
Kummer element if and only if X is invertible and trace(X) = 0. Given Kummer
elements X and Y, let Z7 = XY — YX. If Z is invertible, then X, Z, Y is chain
from X to Y. If Z =0, then X and Y are scalar multiples of each other and any
Kummer element Z’ anti-commuting with X gives rise to a chain X, Z/, Y. It
follows that for quaternion skew fields there exist always chains from X to Y of
length 2. In the case A = Ms(k) is not difficult to see that there exist always chains
of length 3 and to give examples of Kummer elements X, Y for which there does
not exist a chain of length 2.

We now assume n = 3.

Proposition 2.1. Let A a skew field of degree 3 over a field containing a primitive
3" root of unity C. Then for any two Kummer elements X, Y € A there exists a
chain of length 4 from X to Y.

As an immediate consequence of the proposition one obtains:

Corollary 2.2. Suppose that (a,b) is split over k(/c). Then there exist e, f,
g € k* such that

(a,0) =~ (a,e) = (f,e) = (f,g) =~ (¢, 9)-

Proof. Let A = (a,b). If A is split, one takes e = f = g = 1. Assume that A is a
skew field and choose Kummer elements X, Y € A with X3 = a and Y? = ¢. By
Proposition 2.1 there exists a chain X, 7y, Zo, Z3, Y. It suffices to take e = Z7,
f:Z;3,andg:Z§3. O

Tignol’s example in the appendix shows that there exist an algebra A of degree 3
and Kummer elements X, Y € A for which there is no chain of length 2 from X to
any conjugate of Y. The question for chains of length 3 is more delicate: it turns
out that for generic X, Y there exist exactly 2 chains of length 3 which however
might be defined only over a quadratic extension of the ground field. We hope to
provide details for this at another occasion.



4 MARKUS ROST

3. PROOF OF PROPOSITION 2.1

Let k be a field with chark # 3 containing a primitive 3¢ root of unity (.
Moreover let A be a skew field of degree 3 and let X, Y € A be Kummer elements.
Let L = k[X] C A be the subfield generated by X. Then
(%%) A=LaE(X, ()& EX,).

We show that there exist invertible elements 7y, Z5, Z3 € A such that:

1) Zy € E(X, (),

2) ZyZy = (Z1 Zs,

3) Z3Zy = (Z2Z3,

4) Z3 € BE(Y, (%),

5) Zy € X’k ® E(X,(?),

6) Z3 € E(X,() ® E(X,(?).

Conditions (1)-(4) mean that X, Z;, Za, Z3, Y is a chain. The additional
conditions (5) and (6) are taken from [1]. Their significance lies in the fact that for
generic X, Y the system of equations (1)—(6) has a solution (Z1, Z3, Z3), Z; # 0
which is unique up to scalar factors of the Z;. It would be interesting to understand
more about the geometry of the system (1)—(6). In the following we merely present
a solution.

Lemma 3.1. There exist Z3 # 0 satisfying (4) and (6).

Proof. One has dimy, E(Y,(?) = 3 and dimy, (E(X, () @ E(X, (%)) = 6. Both vector
spaces lie in the 8-dimensional vector subspace of A of trace zero elements. Hence
they have a nontrivial intersection. O

We choose Z3 as in Lemma 3.1. It remains to find 71, Zy € A* satisfying (1),
(2), (3), and (5).

Let Z € E(X,(), Z #0. Then E(X,(¢) = ZL and E(X, (%) = LZ~". Write

Z3 _ Z'u/ + ‘uuzfl

with u/, " € L.

If 4/ =0, then Z3 € E(X,(?) and Z; = Zg_l, Zy = X? do the job.

If W’ =0, then Z3 € E(X,(¢) and Z; = Z3X, Zy = Z3X do the job.

Assume that p/ # 0 and p”’ # 0. After replacing Z by Zu” we have Z3 =
Zu+ Z~* for some nonzero p € L.

Lemma 3.2. Let (X,Z) be a (-pair, let p = mg +m1 X +me X2, m; € k, and
let T = Zp+ Z=1. Let further c; be the second coefficient of the characteristic
polynomial of T. Then co = —3my.

Proof. One has trace(T) = 0 and trace(T?) = 2trace(u) = 6mg. Since 2cy =
trace(T)? — trace(T?), it follows that 2co = —6mg. This proves the claim for
chark # 2. For chark = 2, consider co = —3myg as a polynomial identity in
the variables m;. It suffices to verify this identity for a standard (-pair (X, Z)
in M5(Z[¢]). This follows from the characteristic 0 case. O

For the Kummer element T' = Z3 one has c; = 0 and Lemma 3.2 shows that
p=mX+meX? Z3=Z(mX +meX?)+ 2!

for some my, mo € k.

If m; =0, then Z; = Z and Zy = (ZX)~! do the job.
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Otherwise let
b=2773, c¢= Cmaib/Np (i), A= cuX,
Zy=2ZX\, Zy=X*(1+(ZN7").
With these settings, (1), (2), and (5) are obvious. It remains to verify (3):
(Zp+Z X1+ (2NN =(X*(1+ 2N N (Zu+Z7H).

To check this, one considers the components with respect to the decomposition ().
For the first component one gets ZuX2?\~'Z~! = (X2)\~1Z~1Zu, which follows
from pX?A"! = Xc¢7! and ZX = (XZ. For the third component one gets
Z71X2% = (X2Z~', which is immediate from ZX = (XZ. For the second compo-
nent one gets

ZpX? + Z7 XNz = (X2 Zpu 4 XN 2T
This is equivalent to both of the following equations:
XQM + Z—2X2>\—lz—1 _ CQXQM + <2X2z—1>\—lz—27
(1 _ CQ)X2,U — C2X2Z71>\71Z72 _ Z72X2A71Z71'
For the right hand side of the last equation one computes
r.hos. =X Z Y epX) 1272 - (X277 (cuX) 27!
— ClezfllullefQ _ C714X272‘U71Z71
=bc ' X(Z7uZ)"t —be X (Z72uz?)

We multiply both sides with the conjugates Z 'uZ and Z2uZ? of u. Then our
equation reads as

(1= )X Npp(p) = be ' X(Z272p2%) = be™ ' ¢X (27" pZ)
= b X (M1 X 4 maC?X?) — be 1 X (miCPX + maolX?)
= b 'miCX3(1 - ¢?).

The equality is now clear.

APPENDIX

With the kind permission of Jean-Pierre Tignol we reproduce here his text on

A “common slot” counterexample in degree 3

Notation: For a, b nonzero elements in a field F' containing a primitive cube root of
unity w, the symbol (a,d) denotes the element of the Brauer group of F' represented
by the F-algebra generated by elements «, 8 subject to

o =a, 83 =0b, Ba = waf.
Let aq, b1, as € F*. If there exist x, y € F'* such that
(*) (Cl]_,b]_) = (Cl]_,l‘) + (alay)a (a]_,l‘) = —(G/Q,x), (a/17y) = (a25y>7

then the additivity of symbols yields (a1,b;) = (a2, 'y). However, the next
example shows that when (aq,b1) is split by F'(#az), there need not exist elements
x, y satisfying (x).
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Example: A global field F' containing a primitive cube root of unity and elements
a1, b1, az, by such that (a1,b1) = (az,b2), but no couple of elements x, y satisfy-
ing (x). In particular (taking x = 1), the field F does not contain any element y
such that

(a1,b1) = (a1,y) = (az,y) = (az, ba).

Let F =T(t), where ¢ is an indeterminate, a; = ¢ and as = t(1 — ¢). Note that
(a1,az2) = 0. Therefore, for all places v of F, the local invariant (a1, az), is trivial. It
follows that in the completion F, of F' at v we have either a; € FvX3 or a; = ag mod
F)3 or a; = a3 mod F3 or ay € F)3, since the (generalized) Hilbert symbol
(ot (FX/ES3) x (FY/F)®) — 3Z/Z is a nondegenerate alternating pairing.

Consider in particular v; the t-adic place and v the (t+3)-adic place. Since aq, as
are uniformizing parameters at vy, we have aj, as ¢ FUXI?’; but a; = as mod va?’.
On the other hand, a; and as have non-cube residues at ve, hence aq, as ¢ F;;?’
but a; = a; ' mod F$3.

Let now A be the central simple F-algebra with local invariants 1/3 at vy, 2/3
at vy and 0 everywhere else. If v is a place of F' where a; € FX?, then v # v1, vy
hence [A], = 0. It follows that A is split by F(#ay), hence we may find b; € F*
such that [A] = (a1, b1) in the Brauer group of F. Similarly, A is split by F(¥/az)
hence we may find by € F* such that [A] = (ag,bs); thus,

(al, bl) = (CLQ, b2)

Suppose now z, y € F* satisfy (x). Since a1 = ap mod F*3, the relation (ay,z),, =
—(as, )y, implies (a1,7),, = 0. On the other hand, since a; = a5 ' mod F$3, it
follows from (a1,¥y)v, = (a2,¥y)w, that (a1,y)v, = 0, hence (a1, )y, = (a1,b1)p, =
2/3.

For v # vy, ve, we consider four cases, according to the relation between a
and as in the group of cube classes:

e if a; € FX3, then clearly (aj,z), = 0.

e if a; = ap mod F*3, then (a1,z), = 0 as for v = v; above.

o if g = a;l mod F*3, then (a1,x), = (a1,b1), as for v = vy above, hence

(a1,2), = 0.
o if ay € F3, then (aj,x), = 0 follows from (a1, ) = (az,z71%).
Thus, the invariants of (a;, ) are:
(a1,2)p, =2/3, and (a1,x), =0 for v # vg,

a contradiction to the reciprocity law.
Jean-Pierre Tignol, June 1996.
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