CHAIN LEMMA FOR SPLITTING FIELDS OF SYMBOLS

MARKUS ROST

preliminary version

Contents

1.	An invariant	1
2.	Preliminaries, Conventions, and Notations	2
3.	The forms $\mathcal{A}(\alpha_1, \ldots, \alpha_n)$ ("algebras")	4
4.	The forms $\mathcal{B}(\alpha_1, \ldots, \alpha_n)$ ("relative algebras")	7
5.	The forms $\mathcal{C}(\alpha_1, \ldots, \alpha_n)$ (Chain lemma construction)	10
6.	The forms $\mathcal{K}(\alpha_1, \ldots, \alpha_n)$ (universal families of Kummer splitting fields)	15
7.	Proof of the chain lemma	16
Ref	References	

1. An invariant

We assume char k = 0 (to have available resolution of singularities). For a proper variety X we denote

 $I(X) = \deg(\operatorname{CH}_0(X)) \subset \mathbb{Z}$

Let X be an proper variety of dimension d, let $X_0 \subset X$ be closed subvariety, and let $U = X \setminus X_0$. We assume that U is smooth. Let $W \to U$ be a μ_p -torsor. We define

$$\eta(W, X, X_0) \in \mathbb{Z}/I(X_0)$$

as follows: Let L/U be the line bundle obtained as the image of [W/U] via

$$[W/U] \in H^1_{\text{\'et}}(U,\mu_p) \to H^1_{\text{\'et}}(U,\mathbb{G}_{\mathrm{m}}) = H^1_{\mathrm{Zar}}(U,\mathbb{G}_{\mathrm{m}}) = \mathrm{Pic}(U).$$

The degree map induces a map

deg:
$$\operatorname{CH}_0(U) \to \mathbb{Z}/I(X_0).$$

We define

$$\eta(W, X, X_0) = \deg(c_1(L)^d).$$

Example 1.1. Let X be smooth, let F = k(X) and let K/F be a Kummer extension of degree p. Let $\overline{W} \to X$ be the normal closure of K/F. Then $\overline{W} \to X$ is etale over an open subset $U = X \setminus X_0$ and we have an invariant

$$\eta'(K/F, X) = \eta(\overline{W}|U, X, X_0) \in \mathbb{Z}/I(X_0).$$

Date: August 9, 1998.

Passing to the limit over all modells X of F one may define an invariant of K/F in $\mathbb{Z}/...$ where ... can be expressed in terms of valuations on F. But this is not important at the moment.

Proposition 1.2 (Degree formula). Let $W \to U = X \setminus X_0$ as above with X irreducible and let Y be proper and irreducible of dimension dim $Y = \dim X = d$. Let $f: Y \to X$ be morphism, let $Y_0 = f^{-1}(X_0)$, let $U' = Y \setminus Y_0$ and $W' = W \times_U U'$. Then

$$\eta(W', Y, Y_0) = (\deg f)\eta(W, X, X_0) \mod I(X_0).$$

Note that

$$I(Y_0) \subset I(X_0).$$

Proof. This is pretty obvious: Let $\hat{f}: U' \to U$ be the restriction of f. Then the line bundle L' given by W'/U' is \hat{f}^*L , whence

$$c_1(L')^d = \hat{f}^* c_1(L)^d$$

and

$$\hat{f}_*(c_1(L')^d) = (\deg \hat{f})c_1(L)^d.$$

Now apply the degree map.

Example 1.3. Suppose that in Proposition 1.2 one has $I(X_0) \subset pZ$ and suppose further $\eta(W', Y, Y_0) \not\equiv 0 \mod p$. Then deg f is prime to p.

2. Preliminaries, Conventions, and Notations

- The ground field k has characteristic 0. We fix a prime p. We assume $\mu_p \subset k$.
- By a scheme or a variety X (over k) we mean a separated scheme of finite type $\pi_X \colon X \to \operatorname{Spec} k$.
- If X is a smooth variety, then TX denotes the tangent bundle of X.
- Let V be vector bundle over X. We denote by $\pi_V \colon \mathbb{P}(V) \to X$ the projective bundle associated to V. Moreover

$$\mathbb{L}(V) \to \pi_V^* V$$

denotes the tautological line bundle on $\mathbb{P}(V)$.

For the fiber tangent bundle $T(\mathbb{P}(V)/X)$ one has

$$T(\mathbb{P}(V)/X) = \pi_V^* V \otimes \mathbb{L}(V)^{\vee} / \mathcal{O}_{\mathbb{P}(V)}$$

- Let V be vector (or an affine) bundle over X. We denote by $\mathbb{A}(V) \to X$ the associated scheme V.
- By a *form* we understand a triple $(T/S, L, \alpha)$ where $T \to S$ are schemes, L is line bundle on T and $\alpha \in H^0(T, L^{\otimes -p})$ is a form of degree p on L.

There is a natural homomorphism $\mu_p \to \operatorname{Aut}(T/S, L, \alpha)$ induced from the standard action of \mathbb{G}_m on L.

• Let $(\operatorname{Spec} k, L, \alpha)$ be a nonzero form and let $u \in L$ be a basis vector. Then the *p*-power class

$$\{\alpha\} = \{\alpha(u)\} \in K_1 k/p = k^*/(k^*)^p$$

is independent on the choice of u.

 $\mathbf{2}$

CHAIN LEMMA

- Let $(T/S, L, \alpha)$ and let Γ be a finite group acting on $(T/S, L, \alpha)$ (i.e., there is given a homomorphism $\Gamma \to \operatorname{Aut}(T/S, L, \alpha)$). We say that $(T/S, L, \alpha)$ is an *admissable* Γ -form if the following conditions hold:
 - $-\alpha$ is nonzero on an open dense subscheme of T.
 - Γ has only finitely many fixed points on T (a fixed point is a point $P \in T$ with gP = P for all $g \in G$).
 - At each fixed point P the form α is nonzero.
- For vector bundles V, V' on schemes X/S resp. X'/S we denote by $V \boxplus_S V'$ the *exterior direct sum*, given by the sum of the pull backs to $X \times_S X'$. Similarly we denote by $V \boxtimes_S V'$ the *exterior tensor product*, given by the tensor product of the pull backs.
- For forms $(T/S,L,\alpha)$ and $(T'/S,L',\alpha')$ we denote by

$$(T/S, L, \alpha) \boxtimes_S (T'/S, L', \alpha') = ((T \times_S T')/S, L \boxtimes_S L', \alpha \boxtimes_S \alpha')$$

their *exterior product*, with the form defined by

$$(\alpha \boxtimes_S \alpha')(u \boxtimes_S u') = \alpha(u)\alpha'(u')$$

for sections u, u' of L, L', respectively.

If $(T/S, L, \alpha)$ and $(T'/S, L', \alpha')$ are admissable Γ -forms, then $(T/S, L, \alpha) \boxtimes_S (T'/S, L', \alpha')$ is an admissable Γ -form.

• Let (S, H_i, α_i) , $i = 1, \ldots, n$, be admissable Γ -forms and let $P \in S$ be a k-rational fixed point. We say that P is *twisting* for the family $(S, H_i, \alpha_i)_i$, if the homomorphism

$$\Gamma \to \mu_p^n = \prod_{i=1}^n \operatorname{Aut}(H_i | P, \alpha_i | P)$$

is surjective.

• By a *cellular* variety we mean a variety which admits a stratification by affine spaces. The motive of a cellular variety is the direct sum of powers of the Tate motive L, with a summand $L^{\otimes i}$ for each *i*-cell. If X and Y are cellular, then $X \times Y$ is cellular and one has

$$\operatorname{CH}_*(X \times Y) = \operatorname{CH}_*(X) \otimes_{\mathbb{Z}} \operatorname{CH}_*(Y).$$

• Let L be a line bundle L on a smooth and proper variety X over k of dimension $d \ge 0$. We write

$$\delta(L) = \deg(c_1(L)^d) \in \mathbb{Z}.$$

Here

deg:
$$\operatorname{CH}_0(X) \to \operatorname{CH}_0(\operatorname{Spec} k) = \mathbb{Z}$$

is the degree map. If d = 0 we understand by $\delta(L)$ the degree of X as a finite extension of k.

If V is a vector space of dimension n, then

$$\delta(\mathbb{L}(V)) = \deg(c_1(\mathbb{L}(V))^{n-1}) = (-1)^{n-1}.$$

• The *index* I_X of a proper variety is

$$I_X = \deg(\operatorname{CH}_0(X)) \subset \mathbb{Z}$$

• If p is a prime, a field k is called p-special if char $k \neq p$ and if k has no finite field extensions of degree prime to p.

• Let (S, L, α) be a form. We consider the bundle of algebras

$$A = A(S, L, \alpha) = TL/I$$

over R. Here TL is the tensor algebra of L and I is the ideal subsheaf generated by

$$\lambda^{\otimes p} - \alpha(\lambda)$$

for local sections λ of L. A a is bundle of commutative algebras of degree p. Note that

$$A = \bigoplus_{i=0}^{p-1} L^{\otimes i}$$

as vector bundles. We denote by

$$N_A \colon A \to \mathcal{O}_S$$

the norm of the algebra A.

• We use the notation

$$\operatorname{Cyclic}^p(Z) = (Z^p)/(\mathbb{Z}/p).$$

3. The forms
$$\mathcal{A}(\alpha_1, \ldots, \alpha_n)$$
 ("Algebras")

Given a scheme S and forms $(S, H_i, \alpha_i), i = 1, \ldots, m$, we define forms

$$\mathcal{A}(\alpha_1,\ldots,\alpha_n) = (P_n/S, K_n, \Phi_n), \qquad 0 \le n \le m.$$

For n = 0 we put

$$P_0 = S,$$

$$K_0 = \mathcal{O}_S,$$

$$\Phi_0(t) = t^p.$$

Suppose $(P_{n-1}/S, K_{n-1}, \Phi_{n-1})$ is defined. We consider the 2-dimensional vector bundle

$$V_n = \mathcal{O}_{P_{n-1}} \oplus H_n \boxtimes_S K_{n-1}$$

on P_{n-1} , and the form

$$\varphi_n \colon V_n \to \mathcal{O}_{P_{n-1}}$$

on V_n defined by

$$\varphi_n(t - u \otimes v) = t^p - \alpha_n(u)\Phi_{n-1}(v)$$

for sections t, u, v of $\mathcal{O}_{P_{n-1}}, H_n, K_{n-1}$, respectively. Let $(P_{n-1,j}, V_{n,j}, \varphi_{n,j}), j = 1, \ldots, p-1$ be copies of $(P_{n-1}, V_n, \varphi_n)$. We put

$$(P_n/S, K_n, \Phi_n) = (P_{n-1}/S, K_{n-1}, \Phi_{n-1}) \boxtimes_S \bigotimes_{i=1}^{p-1} (\mathbb{P}(V_{n,j}), \mathbb{L}(V_{n,j}), \varphi_{n,j}).$$

We assume now that $S = \operatorname{Spec} k$ and list the most important properties of the forms (P_n, K_n, Φ_n) .

Lemma 3.1. The variety P_n is smooth, proper, cellular, connected, and of dimension $p^n - 1$.

Proof. Indeed, P_n is an iterated projective bundle. The computation of the dimension is clear for n = 0 and for n > 0 we find

$$\dim P_n = \dim P_{n-1} + (p-1)(1 + \dim P_{n-1})$$
$$= (p^{n-1} - 1) + (p-1)p^{n-1} = p^n - 1$$

by induction on n.

Lemma 3.2. $\delta(K_n) = (-1)^n \mod p$.

Proof. This is clear for n = 0. Let

$$u_n = c_1(K_n) \in CH^1(P_n), \quad n \ge 0,$$

$$u_{n-1,j} = c_1(K_{n-1,j}) \in CH^1(P_{n-1,j}), \quad n \ge 1, \ j = 1, \dots, \ p-1,$$

$$z_{n,j} = c_1(\mathbb{L}(V_{n,j})) \in CH^1(\mathbb{P}(V_{n,j})), \quad n \ge 1, \ j = 1, \dots, \ p-1.$$

For $n \ge 1$ let

$$\widehat{P}_n = P_{n-1} \times \prod_{j=1}^{p-1} P_{n-1,j}$$

Then

$$\operatorname{CH}^{*}(\widehat{P}_{n}) = \operatorname{CH}^{*}(P_{n-1}) \otimes \bigotimes_{j=1}^{p-1} \operatorname{CH}^{*}(P_{n-1,j})$$

and

$$CH^{*}(P_{n}) = \frac{CH^{*}(\widehat{P}_{n})[z_{n,j}; j = 1, \dots, p-1]}{\langle z_{n,j}^{2} - z_{n,j}u_{n-1,j}; j = 1, \dots, p-1 \rangle}.$$

Moreover

$$u_n = u_{n-1} + \overline{z}_n$$
, with $\overline{z}_n = \sum_{j=1}^{p-1} z_{n,j}$.

Note that

$$u_{n-1}^{p^{n-1}} = u_{n-1,j}^{p^{n-1}} = 0, \quad z_{n,j}^{p^{n-1}+1} = 0$$

by dimension reasons. Hence, calculating mod p,

$$u_n^{p^{n-1}} = (u_{n-1} + \overline{z}_n)^{p^{n-1}} = u_{n-1}^{p^{n-1}} + \overline{z}_n^{p^{n-1}} = \overline{z}_n^{p^{n-1}}.$$

One finds (using Lemma 3.3 below)

$$u_n^{p^{n-1}} = u_n^{p^{n-1}-1} u_n^{p^{n-1}(p-1)} = u_n^{p^{n-1}-1} \overline{z}_n^{p^{n-1}(p-1)}$$

= $u_n^{p^{n-1}-1} (z_{n,1}^{p^{n-1}} + z_{n,2}^{p^{n-1}} + \dots + z_{n,p-1}^{p^{n-1}})^{p-1}$
= $-u_{n-1}^{p^{n-1}-1} z_{n,1}^{p^{n-1}} z_{n,2}^{p^{n-1}} \dots z_{n,p-1}^{p^{n-1}}$
= $-u_{n-1}^{p^{n-1}-1} z_{n,1} u_{n,1}^{p^{n-1}-1} z_{n,2} u_{n,2}^{p^{n-1}-1} \dots z_{n,p-1} u_{n,p-1}^{p^{n-1}-1}$

It follows that

$$\delta(K_n) = -\delta(K_{n-1}) \left(-\delta(K_{n-1,1}) \right) \left(-\delta(K_{n-1,2}) \right) \cdots \left(-\delta(K_{n-1,p-1}) \right) \\ = -\delta(K_{n-1}) \mod p.$$

 $\mathbf{5}$

whence the claim.

Lemma 3.3. Let R be a ring over \mathbb{F}_p and let $v_1, v_2, \ldots, v_{p-1} \in R$, be elements with $v_1^2 = v_2^2 = \cdots = v_{p-1}^2 = 0$. Then

$$(v_1 + v_2 + \dots + v_{p-1})^{p-1} = -v_1 v_2 \cdots v_{p-1}.$$

Proof. Note that $(p-1)! = -1 \mod p$.

The construction of (P_n, K_n, Φ_n) is functorial in the forms (S, H_i, α_i) . In particular the group

$$\Gamma_n = \mu_p^n \subset \prod_{i=1}^n \operatorname{Aut}(S, H_i, \alpha_i)$$

acts on (P_n, K_n, Φ_n) .

From now on we suppose that $\alpha_i \neq 0$ for $i = 1, \ldots, n$.

Lemma 3.4. The triple (P_n, K_n, Φ_n) is an admissable Γ_n -form. All fixed points are k-rational.

Proof. By induction on *n*. Suppose that $(P_{n-1}, K_{n-1}, \Phi_{n-1})$ is an admissable Γ_{n-1}form. It suffices to show that $(\mathbb{P}(V_n), \mathbb{L}(V_n), \varphi_n)$ is an admissable Γ_n-form. It is easy to see that φ_n is generically nonzero. Every Γ_n-fixed point on $\mathbb{P}(V_n)$ lies over a Γ_{n-1}fixed point $P \in P_{n-1}$. It suffices to show that the fibre $(\text{Spec } \kappa(P), \mathbb{L}(V_n)|P, \varphi_n|P)$ is an admissable Γ-form where

$$\Gamma = \operatorname{Aut}(S, H_n, \alpha_n) = \ker(\Gamma_n \to \Gamma_{n-1}).$$

This is easy to see: If $(\operatorname{Spec} k, H, \alpha)$ is a nonzero form over k, then

$$\mu_p = \operatorname{Aut}(\operatorname{Spec} k, H, \alpha)$$

has in $\mathbb{P}(k \oplus H)$ only the two fixed points $\mathbb{P}(0 \oplus H)$ and $\mathbb{P}(k \oplus 0)$. The form $\varphi(t-u) = t^p - \alpha(u)$ is nonzero on the lines t = 0 and u = 0.

Lemma 3.5. Let $\eta_n \in P_n$ be the generic point. Then

$$\{\alpha_1,\ldots,\alpha_n,\Phi_n(\eta_n)\}=0\in K_{n+1}^Mk(P_n)/p.$$

Proof. By induction on n. Suppose that

$$\{\alpha_1, \dots, \alpha_{n-1}, \Phi_{n-1}(\eta_{n-1})\} = 0 \in K_n^M k(P_{n-1})/p.$$

One has

$$\Phi_n(\eta_n) = \Phi_{n-1}(\eta_{n-1}) \cdot \prod_{j=1}^{p-1} (1 - \alpha_n \Phi_{n-1,j}(\eta_{n-1,j})).$$

Hence it suffices to show

$$\{\alpha_1, \dots, \alpha_n, 1 - \alpha_n \Phi_{n-1,j}(\eta_{n-1,j})\} \in K_{n+1}^M k(P_n)/p$$

for each $j = 1, \dots, p-1$. This follows from $\{a, 1-ab\} = -\{b, 1-ab\}$.

Remark 3.6. Given the forms (Spec k, H_i, α_i), form the vector space

$$A_n = \bigoplus_{j_1,\dots,j_n=0}^{p-1} H_1^{\otimes j_1} \otimes \dots \otimes H_n^{\otimes j_n}.$$

 $\mathbf{6}$

CHAIN LEMMA

One has dim $A_n = p^n$. On A_n there is the form

$$\Theta_n = \bigoplus_{j_1,\dots,j_n=0}^{p-1} (-\alpha_1)^{\otimes j_1} \otimes \dots \otimes (-\alpha_n)^{\otimes j_n}$$

Consider the form $(\mathbb{P}(A_n), \mathbb{L}(A_n), \Theta_n)$. If p = 2, this form satisfies all the properties of (P_n, K_n, Φ_n) listed above (up to a sign in the computation of $\delta(\mathbb{L}(A_n))$). If p > 2, all properties of (P_n, K_n, Φ_n) are also valid, except for the splitting of the symbol. If n = 1, n = 2, or n = p = 3, one may define on A_n an algebra structure with norm form Θ'_n in such a way that $(\mathbb{P}(A_n), \mathbb{L}(A_n), \Theta'_n)$ satisfies all the properties. The (P_n, K_n, Φ_n) form an approximation to these algebras, with the advantage, that (P_n, K_n, Φ_n) can be constructed for all p and n.

4. The forms
$$\mathcal{B}(\alpha_1, \ldots, \alpha_n)$$
 ("relative algebras")

Let $n \ge 1$. Given forms (S, H_i, α_i) , i = 1, ..., n - 1, and $(S'/S, L, \beta)$, we define a form

$$\mathcal{B}(\alpha_1,\ldots,\alpha_{n-1},\beta) = (P'_n/S',K'_n,\Phi'_n)$$

as follows. Let $(P_{n-1}/S, K_{n-1}, \Phi_{n-1})$ be as in section 3. Put

$$\overline{P}_{n-1} = S' \times_S P_{n-1}$$

We consider the 2-dimensional vector bundle

$$\overline{V}_n = \mathcal{O}_{\overline{P}_{n-1}} \oplus L \boxtimes_S K_{n-1}$$

on \overline{P}_{n-1} , and the form

$$\overline{\varphi}_n \colon \overline{V}_n \to \mathcal{O}_{\overline{P}_{n-1}}$$

on \overline{V}_n defined by

$$\overline{\varphi}_n(t-u\otimes v) = t^p - \beta(u)\Phi_{n-1}(v)$$

for sections t, u, v of $\mathcal{O}_{\overline{P}_{n-1}}, L, K_{n-1}$, respectively.

Let

$$(\overline{P}_{n-1,j}, \overline{V}_{n,j}, \overline{\varphi}_{n,j}, K_{n-1,j}, P_{n-1,j}), j = 1, \dots, p-1$$

be copies of $(\overline{P}_{n-1}, \overline{V}_n, \overline{\varphi}_n, K_{n-1}, P_{n-1})$. We put

$$(P'_n/S',K'_n,\Phi'_n) = \bigotimes_{j=1}^{p-1} (\mathbb{P}(\overline{V}_{n,j}),\mathbb{L}(\overline{V}_{n,j}),\overline{\varphi}_{n,j}).$$

We assume now that $S = \operatorname{Spec} k$ and list the most important properties of the forms (P'_n, K'_n, Φ'_n) .

Lemma 4.1. The variety P'_n is smooth and proper over S', and of relative dimension $p^n - p^{n-1}$. If S' is cellular, so is P'_n . The fibres of S/S' are connected.

Proof. Note that P'_n/S' is an iterated projective bundle. Moreover

$$\dim P'_n/S' = (p-1)(\dim P_{n-1}+1) = p^n - p^{n-1}$$

by Lemma 3.1.

Let

$$u'_{n} = c_{1}(K'_{n}) \in CH^{1}(P'_{n}),$$

$$u_{n-1,j} = c_{1}(K_{n-1,j}) \in CH^{1}(P_{n-1,j}),$$

$$v_{n} = c_{1}(L) \in CH^{1}(S').$$

Lemma 4.2. One has

$$u_n'^{p^n} = u_n'^{p^{n-1}} v_n^{p^n - p^{n-1}} \mod p.$$

If $S' = \operatorname{Spec} k$, then

$$\delta(K'_n) = \deg(u'_n p^{n-p^{n-1}}) = -1 \mod p.$$

Proof. Let

$$\widehat{\overline{P_n}} = S' \times \prod_{j=1}^{p-1} P_{n-1,j}$$

Then

$$\operatorname{CH}^*(\widehat{\overline{P_n}}) = \operatorname{CH}^*(S') \otimes \bigotimes_{j=1}^{p-1} \operatorname{CH}^*(P_{n-1,j})$$

and

$$CH^*(P'_n) = \frac{CH^*(\overline{P_n})[z_{n,j}; j = 1, \dots, p-1]}{\langle z_{n,j}^2 - z_{n,j}(v_n + u_{n-1,j}); j = 1, \dots, p-1 \rangle}.$$

Moreover

$$u'_n = \overline{z}_n$$
, with $\overline{z}_n = \sum_{j=1}^{p-1} z_{n,j}$.

Recall that $u_{n-1,j}^{p^{n-1}} = 0$. Calculating mod p, one finds

$$u_{n}^{\prime p^{n}} = \overline{z}_{n}^{p^{n}}$$

$$= z_{n,1}^{p^{n-1}} + \dots + z_{n,p-1}^{p^{n-1}(p-1)} + \dots + z_{n,p-1}^{p^{n-1}} (v_{n} + u_{n-1,p-1})^{p^{n-1}(p-1)}$$

$$= z_{n,1}^{p^{n-1}} (v_{n}^{p^{n-1}} + u_{n-1,1}^{p^{n-1}})^{(p-1)} + \dots + z_{n,p-1}^{p^{n-1}} (v_{n}^{p^{n-1}} + u_{n-1,p-1}^{p^{n-1}(p-1)})$$

$$= z_{n,1}^{p^{n-1}} v_{n}^{p^{n-1}(p-1)} + \dots + z_{n,p-1}^{p^{n-1}} v_{n}^{p^{n-1}(p-1)}$$

$$= \overline{z}_{n}^{p^{n-1}} v_{n}^{p^{n-1}(p-1)} = u_{n}^{\prime p^{n-1}} v_{n}^{p^{n-1}(p-1)}.$$

This proves the first claim. Suppose $v_n = 0$. Then $z_{n,j}^{p^{n-1}+1} = 0$. One finds mod p (using Lemma 3.3)

$$u_{n}^{\prime p^{n-1}(p-1)} = \left(z_{n,1}^{p^{n-1}} + z_{n,2}^{p^{n-1}} + \dots + z_{n,p-1}^{p^{n-1}}\right)^{p-1}$$

= $-z_{n,1}^{p^{n-1}} z_{n,2}^{p^{n-1}} \cdots z_{n,p-1}^{p^{n-1}}$
= $-z_{n,1} u_{n-1,1}^{p^{n-1}-1} z_{n,2} u_{n-1,2}^{p^{n-1}-1} \cdots z_{n,p-1} u_{n-1,p-1}^{p^{n-1}-1}$

Since $\delta(K_{n-1}) \neq 0 \mod p$, it follows that

$$\delta(K'_n) = -(-\delta(K_{n-1,1}))(-\delta(K_{n-1,2}))\cdots(-\delta(K_{n-1,p-1}))$$

= -1 mod p,

whence the second claim.

From now on we suppose that $\alpha_i \neq 0$ for i = 1, ..., n-1. Let Γ be a finite group, let $\Gamma \to \Gamma_{n-1}$ be an epimorphism and let $\Gamma \to \operatorname{Aut}(S', L, \beta)$ be a homomorphism. Thus Γ acts on all the forms (Spec k, H_i, α_i), i = 0, ..., n-1, and (S', L, β) .

Lemma 4.3. Suppose that (S', L, β) is an admissable Γ -form with all fixed points k-rational. Moreover suppose that each fixed point is twisting for the forms

 $(S, H_i, \alpha_i), i = 1, \ldots, n - 1, and (S', L, \beta).$

Then (P'_n, K'_n, Φ'_n) is an admissable Γ -form with all fixed points k-rational.

Proof. This follows as for Lemma 3.4.

Lemma 4.4. Suppose that S' is irreducible. Let $\eta_n \in P_n$ be the generic point. Then

$$\{\alpha_1,\ldots,\alpha_{n-1},\beta(\eta_n),\Phi_n(\eta_n)\}=0\in K_{n+1}^Mk(P_n)/p.$$

Proof. This follows as for Lemma 3.5.

Remark 4.5. Given the form (S', L, β) one may define the "Kummer algebra"

$$A = A(S', L, \beta) = L^{\otimes 0} \oplus L^{\otimes 1} \oplus \dots \oplus L^{\otimes p-1}$$

with the product given by the natural multiplication in the tensor algebra using the form $\beta \colon L^{\otimes p} \to L^{\otimes 0}$ to reduce the degree mod p. One finds

$$\operatorname{CH}^*(\mathbb{P}(A)) \otimes \mathbb{F}_p = \operatorname{CH}^*(S') \otimes \mathbb{F}_p[x]/\langle x^p - x^{p-1}y \rangle$$

with $x = c_1(\mathbb{L}(A))$ and $y = c_1(L)$.

Hence we have a homomorphism

$$R = \mathbb{F}_p[x]/\langle x^p - x^{p-1}y \rangle \to \mathrm{CH}^*(\mathbb{P}(A)) \otimes \mathbb{F}_p$$

Lemma 4.2 shows that there is a homomorphism

$$R \to \operatorname{CH}^*(P'_n) \otimes \mathbb{F}_p, \qquad x \mapsto {u'_n}^{p^{n-1}}, \ y \mapsto {v_n^{p^{n-1}}}$$

If one thinks in terms of the (in general nonexisting) algebras

$$A_n = A(\alpha_1, \dots, \alpha_{n-1}, \beta)$$

with "subalgebras"

$$A_{n-1} = A(\alpha_1, \dots, \alpha_{n-1}),$$

and one imagines to form something like the projective space $\mathbb{P}_{A_{n-1}}(A_n)$, then one may think of P'_n as an approximation $P'_n \to \mathbb{P}_{A_{n-1}}(A_n)$ with the homomorphism $R \to \mathrm{CH}^*(P'_n) \otimes \mathbb{F}_p$ being the pull back on the Chow rings (if say $S' = \mathbb{P}^\infty$ and with L the universal line bundle).

9

5. The forms $\mathcal{C}(\alpha_1, \ldots, \alpha_n)$ (Chain Lemma construction)

Let $n \ge 2$. Given forms $(S, H_i, \alpha_i), i = 1, ..., n - 1$, and $(S'/S, L, \beta)$, we define forms

$$\mathcal{C}_r = \mathcal{C}_r(\alpha_1, \dots, \alpha_{n-1}, \beta) = (S_r/S_{r-1}, L_r, \beta_r), \qquad r \ge -1$$

For r = -1, 0 we put

$$(S_{-1}/S_{-2}, L_{-1}, \beta_{-1}) = (S/S, H_{n-1}, \alpha_{n-1}),$$

$$(S_0/S_{-1}, L_0, \beta_0) = (S'/S, L, \beta).$$

Let r > 0 and suppose C_{r-2} and C_{r-1} are defined.

Let

$$(P'_{n-1,r}/S_{r-1}, K'_{n-1,r}, \Phi'_{n-1,r}) = \mathcal{B}(\alpha_1, \dots, \alpha_{n-1}, \beta_{r-1})$$

be the form constructed in section 4, starting from (S, H_i, α_i) , $i = 1, \ldots, n-2$, and $(S_{r-1}/S_{r-2}, L_{r-1}, \beta_{r-1})$. Put

$$(S_r/S_{r-1}, L_r, \beta_r) = (S_{r-2}/S_{r-3}, L_{r-2}, \beta_{r-2}) \boxtimes_{S_{r-2}} (P'_{n-1,r}/S_{r-1}, K'_{n-1,r}, \Phi'_{n-1,r}).$$

We assume now that $S = \operatorname{Spec} k$ and list the most important properties of the forms $(S_r/S_{r-1}, L_r, \beta_r)$.

Lemma 5.1. The variety S_r is smooth and proper over S', and of relative dimension $r(p^{n-1} - p^{n-2})$. If S' is cellular, so is S_r . The fibres of S/S' are connected.

Proof. This follows from Lemma 4.1. For the dimension note

$$\dim S_r / S_{r-1} = \dim P'_{n-1,r} / S_{r-1} = p^{n-1} - p^{n-2}$$

by Lemma 4.1.

Thus if dim $S' = (p^l - 1)p^n$ for some $\ell \ge 0$, then dim $S_p = (p^{l+1} - 1)p^{n-1}$.

Theorem 5.2. Let $\ell \geq 0$ and suppose that S' is smooth and proper of dimension $(p^l - 1)p^n$. Then

$$\delta(L_p) = \delta(L) \bmod p$$

The proof requires some calculations.

Let $a, b \in \mathbb{F}_p$, and let $r \ge 0$ be an integer. In the ring $\mathbb{F}_p[z_1, \ldots, z_r]$ let

$$\begin{aligned} x_{-1} &= a, \\ x_0 &= b, \\ x_m &= z_m + x_{m-2}, \quad 1 \leq m \leq r. \end{aligned}$$

Then

$$x_{2k} = z_{2k} + z_{2k-2} + \dots + z_4 + z_2 + b,$$

$$x_{2k+1} = z_{2k-1} + z_{2k-3} + \dots + z_3 + z_1 + a.$$

We denote by I the ideal generated by

$$z_m^p - z_m x_{m-1}^{p-1}, \quad 1 \le m \le r$$

and put

$$R_r(a,b) = \mathbb{F}_p[z_1,\ldots,z_r]/I.$$

The elements

$$z^{J} = z_{1}^{i_{1}} \cdots z_{r}^{i_{r}}, \quad J = (i_{1}, \dots, i_{r}), \quad 0 \le i_{j} \le p - 1$$

form an \mathbb{F}_p -basis of $R_r(a,b)$. For $u \in R_r(a,b)$ let $c_m(u)$ be the coefficient of $z_1^{p-1} \cdots z_m^{p-1}$.

Lemma 5.3. If $1 \le r \le p$ one has $c_r(x_r^{r(p-1)}) = 1$ in $R_r(a, b)$.

Proof. One has for $1 \le m \le p$:

$$\begin{aligned} x_m^{m(p-1)} &= x_m^{p(m-1)+(p-m)} \\ &= (z_m + x_{m-2})^{p(m-1)+(p-m)} \\ &= (z_m^p + x_{m-2}^p)^{(m-1)} (z_m + x_{m-2})^{(p-m)} \\ &= (z_m x_{m-1}^{p-1} + x_{m-2}^p)^{(m-1)} (z_m + x_{m-2})^{(p-m)} \end{aligned}$$

Hence for $m \leq p$ one has

$$c_m(x_m^{m(p-1)}) = c_{m-1}(x_{m-1}^{(m-1)(p-1)}).$$

The claim follows by induction.

Proposition 5.4. If $(a,b) \neq (0,0)$, then $R_r(a,b)$ is isomorphic to a product of rings of the form

$$\mathbb{F}_p[v_1,\ldots,v_k]/(v_1^p,\ldots,v_k^p), \quad k \ge 0.$$

Proof. By induction on $r \ge 0$. The case r = 0 is obvious.

Suppose $b \neq 0$. Then the polynomial

$$z_1^p - z_1 x_0^{p-1}$$

is separable with roots $z_1 = ib, i \in \mathbb{F}_p$. It follows that we have isomorphism

$$R_r(a,b) \xrightarrow{\sim} \prod_{i \in \mathbb{F}_p} R_r(a,b)/(z_1-ib).$$

The ring $R_r(a,b)/(z_1-ib)$ is the quotient of $\mathbb{F}_p[z_2,\ldots,z_r]$ by the ideal generated by

$$z_m^p - z_m x_{m-1}^{p-1}, \quad 2 \le m \le r$$

with

$$\begin{aligned} x_0 &= b, \\ x_1 &= ib + a, \\ x_m &= z_m + x_{m-2}, \quad 2 \leq m \leq r. \end{aligned}$$

Hence $R_r(a,b)/(z_1-ib) \simeq R_{r-1}(b,ib+a)$. The claim follows from the induction hypothesis.

Suppose b = 0. Then $a \neq 0$. In this case we consider the homomorphism

$$\varphi \colon \mathbb{F}_p[z_1, \dots, z_r] \to \mathbb{F}_p[z_1]/(z_1^p) \otimes R_{r-1}(0, 1),$$
$$z_m \mapsto (a + z_1) \otimes z_{m-1}, \quad 2 \le m \le r,$$
$$z_1 \mapsto z_1 \otimes 1.$$

We claim that $\varphi(I) = 0$. For this it suffices to show

$$\varphi(z_m^p - z_m x_{m-1}^{p-1}) = 0, \qquad 1 \le m \le r.$$

This is obvious for m = 1. If m = 2, then

$$\begin{aligned} \varphi(z_2^p - z_2 x_1^{p-1}) &= \varphi(z_2^p - z_2 (z_1 + a)^{p-1}) \\ &= (a + z_1)^p \otimes z_1^p - ((a + z_1) \otimes z_1) (z_1 \otimes 1 + 1 \otimes a)^{p-1} \\ &= (a + z_1)^p \otimes z_1^p - ((a + z_1) \otimes z_1) ((z_1 + a) \otimes 1)^{p-1} \\ &= (a + z_1)^p \otimes (z_1^p - z_1) = 0. \end{aligned}$$

If $m = 2k \ge 2$, then

$$\begin{aligned} \varphi(z_{2k}^p - z_{2k} x_{2k-1}^{p-1}) &= \varphi(z_{2k}^p - z_{2k} (z_{2k-1} + \dots + z_3 + z_1 + a)^{p-1}) \\ &= (a + z_1)^p \otimes z_{2k-1}^p - \\ -((a + z_1) \otimes z_{2k-1}) ((a + z_1) \otimes z_{2k-2} + \dots + (a + z_1) \otimes z_2 + z_1 \otimes 1 + 1 \otimes a)^{p-1} \\ &= (a + z_1)^p \otimes z_{2k-1}^p - \\ -((a + z_1) \otimes z_{2k-1}) ((a + z_1) \otimes z_{2k-2} + \dots + (a + z_1) \otimes z_2 + (a + z_1) \otimes 1)^{p-1} \\ &= (a + z_1)^p \otimes (z_{2k-1}^p - z_{2k-1} (z_{2k-2} + \dots + z_2 + 1))^{p-1} \\ &= (a + z_1)^p \otimes (z_{2k-1}^p - z_{2k-1} x_{2k-2}^{p-1}) = 0. \end{aligned}$$

If $m = 2k - 1 \ge 3$, then

$$\varphi(z_{2k-1}^p - z_{2k-1}x_{2k-2}^{p-1}) = \varphi(z_{2k-1}^p - z_{2k-1}(z_{2k-2} + \dots + z_2)^{p-1})$$

= $(a + z_1)^p \otimes (z_{2k-2}^p - z_{2k-2}(z_{2k-3} + \dots + z_1)^{p-1})$
= $(a + z_1)^p \otimes (z_{2k-2}^p - z_{2k-2}x_{2k-3}^{p-1}) = 0.$

It follows that φ induces a homomorphism

$$\overline{\varphi} \colon R_r(a,b) \to \mathbb{F}_p[z_1]/(z_1^p) \otimes R_{r-1}(0,1),$$
$$z_m \mapsto (a+z_1) \otimes z_{m-1}, \quad 2 \le m \le r,$$
$$z_1 \mapsto z_1 \otimes 1.$$

 $\overline{\varphi}$ is obviously surjective. By dimension reasons, $\overline{\varphi}$ must be an isomorphism. Again the claim follows from the induction hypothesis.

Corollary 5.5.
$$u^{p^2} = u^p$$
 for all $u \in R_p(0, 1)$.

2

Corollary 5.6. Let $n \ge 2$, and let $u_n = x_p^{p^n - p} \in R_p(0, 1)$. Then $c_p(u_n) = 1$.

Proof. For n = 2 this is Lemma 5.3. Moreover, by Corollary 5.5, the element u_n does not depend on n.

We rewrite things in a homogenous form. Let x be a variable and let

$$R' = \mathbb{F}_p[x, z_1, \dots, z_p]/I'$$

where I' is the homogenous ideal generated by

$$z_m^p - z_m x_{m-1}^{p-1}, \quad 1 \le m \le p$$

with

$$\begin{array}{l} x_{-1} = 0, \\ x_{0} = x, \\ x_{m} = z_{m} + x_{m-2}, \quad 1 \leq m \leq p. \end{array}$$

Then $R'/(x-1) = R_p(0,1)$. Corollaries 5.5 and 5.6 yield the following two corollaries:

Corollary 5.7.
$$u^{p^2} = u^p x^{p^2-p}$$
 for all $u \in R'$.

Corollary 5.8. Let $n \ge 2$. Then

$$x_p^{p^n-p} = z_1^{p-1} z_2^{p-1} \cdots z_p^{p-1} x^{p^n-p^2} \mod x^{p^n-p^2+1} R'$$

Proof. Recall the basis elements $(z^J)_J$ of $R_p(0, 1)$ considered above. The elements $(z^J x^{p^n - p - |J|})_J$ form a basis of the homogenous subspace of R' of degree $p^n - p$. It follows that

$$\begin{aligned} x_p^{p^n-p} &= c_p(x_p^{p^n-p}) z_1^{p-1} z_2^{p-1} \cdots z_p^{p-1} x^{p^n-p^2} \mod \langle z^J x^{p^n-p-|J|}; \ |J| < p^2 - p \rangle. \end{aligned}$$
But if $|J| < p^2 - p$ then $z^J x^{p^n-p-|J|} \in x^{p^n-p^2+1} R'.$

Proof of Theorem 5.2: Let

$$x_r = c_1(L_r)^{p^{n-2}} \in \operatorname{CH}^{p^{n-2}}(S_r), \qquad r \ge -1,$$

$$z_r = c_1(K'_{n-1,r})^{p^{n-2}} \in \operatorname{CH}^{p^{n-2}}(P'_{n-1,r}), \qquad r \ge 1.$$

Then, calculating mod p,

$$x_{-1} = 0,$$

$$x_0 = c_1(L)^{p^{n-2}} \in \operatorname{CH}^{p^{n-2}}(S') \otimes \mathbb{F}_p,$$

$$x_r = x_{r-2} + z_r, \qquad r \ge 1,$$

since

$$c_1(L_r) = c_1(L_{r-2}) + c_1(K'_{n-1,r}).$$

Moreover

$$z_r^p = z_r x_{r-1}^{p-1}$$

by Lemma 4.2.

We have a homomorphism

$$R'(x) \to \operatorname{CH}^*(S_p) \otimes \mathbb{F}_p, \quad z_m \mapsto z_m, \quad x \mapsto x_0.$$

It follows from Corollary 5.8 that $(\mod p)$

$$x_p^{p^{\ell+2}-p} = z_1^{p-1} z_2^{p-1} \cdots z_p^{p-1} x_0^{p^{\ell+2}-p^2} \mod \langle x^{p^{\ell+2}-p^2+1} \rangle$$

Now if dim $S' = (p^l - 1)p^n$, then $x_0^{p^{l+2} - p^2 + 1} = 0$. Hence

$$x_p^{p^{\ell+2}-p} = \delta(K'_{n-1,1})\delta(K'_{n-1,2})\cdots\delta(K'_{n-1,p-1})\delta(L) = \delta(L) \bmod p,$$

where the last equation follows from Lemma 4.2.

From now on we suppose that $\alpha_i \neq 0$ for i = 1, ..., n-1. Let Γ be a finite group, let $\Gamma \to \Gamma_{n-1}$ be an epimorphism and let $\Gamma \to \operatorname{Aut}(S', L, \beta)$ be a homomorphism. Thus Γ acts on all the forms (Spec k, H_i, α_i), $i = 0, \ldots, n-1$, and (S', L, β) .

Lemma 5.9. Suppose that (S', L, β) is an admissable Γ -form, that all fixed points are k-rational and that each fixed point $P \in S'$ is twisting for the forms

 $(S', H_i, \alpha_i), i = 1, \ldots, n-1, and (S', L, \beta).$

Then for all $r \geq 0$, (S_r, L_r, β_r) is an admissable Γ -form, all fixed points are k-rational, and each fixed point $P \in S_r$ is twisting for the forms

 $(S_r, H_i, \alpha_i), i = 1, \ldots, n-2, (S_r, L_{r-1}, \beta_{r-1}), and (S_r, L_r, \beta_r).$

Proof. Let $P \in S_r$ be a fixed point. By induction we may assume that P is krational and that

$$\Gamma \to \operatorname{Aut}(L_{r-2}|P,\beta_{r-2}|P) \times \operatorname{Aut}(L_{r-1}|P,\beta_{r-1}|P) \times \prod_{i=1}^{n-2} \operatorname{Aut}(H_i|P,\alpha_i|P)$$

is surjective. We claim that

$$\Gamma \to \operatorname{Aut}(L_r|P, \beta_r|P) \times \operatorname{Aut}(L_{r-1}|P, \beta_{r-1}|P) \times \prod_{i=1}^{n-2} \operatorname{Aut}(H_i|P, \alpha_i|P)$$

is surjective. Note that $L_r|P = L_{r-2}|P \otimes K_{n-1,r}|P$. The claim follows now from the fact that $\operatorname{Aut}(L_{r-2}|P, \alpha_{r-2}|P)$ acts trivially on $K_{n-1,r}|P$.

The remaining parts of the statement follow from Lemma 4.3.

Lemma 5.10. Suppose that S' is irreducible. Let $\eta_r \in S_r$ be the generic point. Then

$$\{\alpha_1, \dots, \alpha_{n-2}, \beta_{r-1}(\eta_{r-1}), \beta_r(\eta_r)\} = (-1)^r \{\alpha_1, \dots, \alpha_{n-2}, \alpha_{n-1}, \beta(\eta_0)\}$$

in $K_n^M k(S_r)/p$.

Proof. We show

 $\{\alpha_1, \dots, \alpha_{n-2}, \beta_{r-1}(\eta_{r-1}), \beta_r(\eta_r)\} = \{\alpha_1, \dots, \alpha_{n-2}, \beta_{r-1}(\eta_{r-1}), \beta_r(\eta_{r-2})\}.$ We have

 $\beta_r(\eta_r) = \beta_r(\eta_{r-2})\Phi'_{n-1,r}.$

The claim follows now from Lemma 4.4.

We will need the following special case:

Corollary 5.11.

$$\{\alpha_1, \dots, \alpha_{n-2}, \beta_p(\eta_p), \beta_{p-1}(\eta_{p-1})\} = \{\alpha_1, \dots, \alpha_{n-2}, \alpha_{n-1}, \beta(\eta_0)\}$$

in $K_n^M k(S_p)/p$.

Remark 5.12. Let $S' = \operatorname{Spec} k$. We think of the symbol

$$\{\alpha_1,\ldots,\alpha_{n-2},\beta_p(\eta_p)\}$$

as a family of symbols of weight n-1 "between"

$$\{\alpha_1, \ldots, \alpha_{n-2}\}$$
 and $\{\alpha_1, \ldots, \alpha_{n-2}, \alpha_{n-1}, \beta\}$

with S_p as parameter space.

CHAIN LEMMA

Our later considerations indicate that this family is universal over p-special fields. For n = 2 we will make this precise, and for p = 2 this can be done using Pfister forms. I have no idea how to show this in general. In the case n = p = 3 the universality would have important consequences for the classification of groups of type F_4 .

6. The forms $\mathcal{K}(\alpha_1, \ldots, \alpha_n)$ (universal families of Kummer splitting fields)

Let $n \ge 1$. Given forms $(S, H_i, \alpha_i), i = 1, \ldots, n$, we define forms

$$\mathcal{K}_i = \mathcal{K}_i(\alpha_1, \dots, \alpha_n) = (R_i/R_{i+1}, J_i, \gamma_i), \qquad 1 \le i \le n,$$

$$\mathcal{K}'_i = \mathcal{K}'_i(\alpha_1, \dots, \alpha_n) = (R_i/R_{i+1}, J'_i, \gamma'_i), \qquad 1 \le i \le n.$$

We put

$$(R_n/R_{n+1}, J_n, \gamma_n) = (S/S, H_n, \alpha_n)$$

and

$$(R_n/R_{n+1}, J'_n, \gamma'_n) = (S/S, \mathcal{O}_S, \tau)$$

with $\tau(t) = t^p$.

Let i < n and suppose that \mathcal{K}_{i+1} is defined. Recall the forms

$$\mathcal{C}_r = \mathcal{C}_r(\alpha_1, \dots, \alpha_i, \gamma_{i+1}) = (S_r/S_{r-1}, L_r, \beta_r)$$

defined in section 5. Let $\pi \colon S_p \to S_{p-1}$ be the projection. We put

$$\mathcal{K}_i = \mathcal{C}_p(\alpha_1, \dots, \alpha_i, \gamma_{i+1}),$$

$$\mathcal{K}'_i = \pi^* \mathcal{C}_{p-1}(\alpha_1, \dots, \alpha_i, \gamma_{i+1})$$

We assume now that $S = \operatorname{Spec} k$ and list the most important properties of the forms $(R_i/R_{i+1}, J_i, \gamma_i)$ and $(R_i/R_{i+1}, J'_i, \gamma'_i)$.

Lemma 6.1. The variety R_i is smooth, proper, cellular, and of dimension $p^n - p^i$.

Proof. This follows from Lemma 5.1. For the dimension note

$$\dim R_i / R_{i+1} = p^{i+1} - p^i, \qquad i < n$$

by Lemma 5.1.

Lemma 6.2. $\delta(J_i) = 1 \mod p$.

Proof. By Theorem 5.2 we have

$$\delta(J_i) = \delta(J_{i+1}) \bmod p.$$

Hence $\delta(J_i) = \delta(J_n) = 1 \mod p$.

The construction of $(R_i/R_{i+1}, J_i, \gamma_i)$ is functorial in the forms (S, H_i, α_i) . In particular the group

$$\Gamma_n = \mu_p^n \subset \prod_{i=1}^n \operatorname{Aut}(S, H_i, \alpha_i)$$

acts on $(R_i/R_{i+1}, J_i, \gamma_i)$.

From now on we suppose that $\alpha_i \neq 0$ for $i = 1, \ldots, n$.

Lemma 6.3. The forms $(R_i/R_{i+1}, J_i, \gamma_i)$ are admissable Γ_n -forms, all fixed points are k-rational, and each fixed point $P \in R_i$ is twisting for the forms

$$R_i, H_m, \alpha_m$$
, $m = 1, ..., i - 1, and (R_i, J_i, \gamma_i)$

Proof. This follows form Lemma 5.9.

Lemma 6.4. Let
$$\eta_i \in R_i$$
 be the generic point. Then, for $1 \leq i < n$,

$$\{\alpha_1,\ldots,\alpha_{i-1},\gamma_i(\eta_i),\gamma_i'(\eta_i)\}=\{\alpha_1,\ldots,\alpha_i,\gamma_{i+1}(\eta_{i+1})\}$$

in $K_{i+1}^M k(R_i)/p$.

Proof. This follows from Lemma 5.11.

In particular we have

(6.1)
$$\{\alpha_1, \dots, \alpha_n\} = \{\alpha_1, \gamma_2, \gamma'_3, \dots, \gamma'_n\},$$

(6.2)
$$\{\alpha_1, \alpha_n\} = \{\gamma_1, \gamma'_n\},$$

(0.2)
$$\{\alpha_1, \gamma_2\} = \{\gamma_1, \gamma_2\},$$

(6.3)
$$\{\alpha_1, \dots, \alpha_n\} = \{\gamma_1, \gamma'_2, \dots, \gamma'_n\}$$

We write

$$(R, J, \gamma) = (R_1, J_1, \gamma_1)$$

We denote by $\widetilde{R} \to R$ be the degree p "Kummer extension" corresponding to γ , defined locally by $\mathcal{O}_{\widetilde{R}} = \mathcal{O}_R[t]/(t^p - \gamma(\lambda))$ where λ is a local nonzero section of J.

Corollary 6.5. The symbol $\{\alpha_1, \ldots, \alpha_n\}$ vanishes in the generic point of \widetilde{R} .

Proof. This follows from Lemma 6.4 (see (6.3)).

7. Proof of the chain Lemma

A splitting variety of a symbol is called *p*-generic, if it is a generic splitting variety over any *p*-special field.

Let Z be a p-generic splitting variety of $\{\alpha_1, \ldots, \alpha_n\}$ of dimension $p^{n-1} - 1$. We assume $\{\alpha_1, \ldots, \alpha_n\} \neq 0$. It follows that $I_Z \subset p\mathbb{Z}$.

Let (R, J, γ) be the form of defined at the end of section 6.

Note that Z has point of degree prime to p over $k(\tilde{R})$, hence has a $k(\tilde{R}')$ -rational point where R'/R is of degree prime to p. We have diagram of varieties covered by cyclic extensions of degree p:

Let

$$R_0 \subset R$$

be the zero locus of γ . Inspection shows that $I(R_0) \subset p\mathbb{Z}$. We have

$$\eta(R/R, R, R_0) = c_1(J)^a \mod p = 1 \mod p \neq 0 \mod p$$

by Lemma 6.2.

Let

 $R'_0 = \subset R'$

be the subscheme of ramification of \tilde{R}'/R' . Then $g(R'_0) \subset R_0$ and therefore $I(R'_0) \subset p\mathbb{Z}$. The degree formula tells that

$$\eta(\widetilde{R}'/R', R', R'_0) = (\deg g)^{-1} \bmod p \neq 0 \bmod p.$$

Moreover let

$$\operatorname{Cyclic}^p(Z)_0 = Z \subset \operatorname{Cyclic}^p(Z)$$

be the image of the diagonal. One has $I(\operatorname{Cyclic}^p(Z)_0) = p\mathbb{Z}$. Further, $\operatorname{Cyclic}^p(Z)_0$ contains the subscheme of ramification of $Z^p/\operatorname{Cyclic}^p(Z)$. Therefore $f(R'_0) \subset \operatorname{Cyclic}^p(Z)_0$. The degree formula tells that

$$\deg f \neq 0 \mod p.$$

Now let $K = k(\sqrt[p]{b})$ be a cyclic extension of degree p which splits $\{\alpha_1, \ldots, \alpha_n\}$. We assume that k is p-special. It follows that there is a point $\operatorname{Spec} K \to \widetilde{R}$ lying over a rational point P: $\operatorname{Spec} k \to R$. Then $b = \gamma(P)$ in $k^*/(k^*)^p$. It follows that

(7.1)
$$\{\alpha_1, \dots, \alpha_n\} = \{\alpha_1, \gamma_2(P), \gamma'_3(P), \dots, \gamma'_n(P)\},\$$

(7.2) $\{\alpha_1, \gamma_2(P)\} = \{b, \gamma_2'(P)\},\$

(7.3)
$$\{\alpha_1, \dots, \alpha_n\} = \{b, \gamma'_2(P), \dots, \gamma'_n(P)\}.$$

(see (6.1)–(6.3) after Lemma 6.4). We have proved:

Corollary 7.1. The chain lemma for cyclic algebras of degree p over p-special fields.

Corollary 7.2. The chain lemma for symbols $(a, b, c) \mod p$ over p-special fields.

Now let $k(\sqrt[p]{b})$, $k(\sqrt[p]{c})$ be two cyclic extensions of degree p which split the symbol $\{\alpha_1, \ldots, \alpha_n\}$. Applying the last arguments twice, one finds first $b_i \in k^*$ such that

$$\{\alpha_1,\ldots,\alpha_n\}=\{b,b_1,b_2,\ldots,b_n\},\$$

and then $c_i, c'_i \in k^*$ such that

$$\{b, b_1, b_2, \dots, b_n\} = \{b, c_1, c_2, \dots, c_n\},\$$
$$\{b, c_1\} = \{c, c'_2\}.$$

Let $X(b, c_1)$ be the Brauer-Severi variety associated to the symbol $\{b, c_1\}$. It has rational points over $k(\sqrt[p]{b})$ and over $k(\sqrt[p]{c})$. Moreover, since Z is a p-generic spliting field, we have a correspondence $X(b, c_1) \to Z$ lying over $\mathbb{Z} \to \mathbb{Z}$ of degree prime to p.

Corollary 7.3. Let $x, y \in Z$ be points of degree p and let $\alpha \in \kappa(x)^*$, $\beta \in \kappa(y)^*$. Then there exist $z \in Z$ of degree p and $\gamma \in \kappa(z)^*$, such that

$$[\alpha] + [\beta] = [\gamma] \quad in \quad A_0(Z, K_1).$$

Proof. By the previous considerations, and using that $\operatorname{CH}_0(Z_K) = \mathbb{Z}$ whenever $Z(K) \neq \emptyset$, we may reduce to the case of Brauer-Severi variety. In this case the statement is known [1].

Remark 7.4. In the last proof we assumed $\operatorname{CH}_0(Z_K) = \mathbb{Z}$ whenever $Z(K) \neq \emptyset$. This can be shown for n = 3 for Z the usual $\operatorname{SL}(p)$ -form.

Without this assumption, we get at least the last corollary with $A_0(Z, K_1)$ replaced by

$$\operatorname{coker} A_0(Z^2, K_1) \to A_0(Z, K_1),$$

the group considered in my MSRI-talk.

References

 A. S. Merkurjev and A. A. Suslin, The group of K₁-zero-cycles on Severi-Brauer varieties, Nova J. Algebra Geom. 1 (1992), no. 3, 297–315.

NWF I - MATHEMATIK, UNIVERSITÄT REGENSBURG, D-93040 REGENSBURG, GERMANY *E-mail address*: markus.rost@mathematik.uni-regensburg.de *URL*: http://www.physik.uni-regensburg.de/~rom03516