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1. AN INVARIANT

We assume char k = 0 (to have available resolution of singularities).
For a proper variety X we denote

I(X) = deg(CHy(X)) C Z

Let X be an proper variety of dimension d, let Xy C X be closed subvariety, and
let U =X\ Xog. We assume that U is smooth. Let W — U be a p,-torsor. We
define

n(W, X, Xo) € Z/1(Xo)
as follows: Let L/U be the line bundle obtained as the image of [W/U] via
(W/Ul € Hey(U, i) = Hgy (U, Gu) = Hz,, (U, Gu) = Pic(U).
The degree map induces a map
deg: CHo(U) — Z/1(Xy).
We define
n(W, X, Xo) = deg(cl(L)d).

Ezample 1.1. Let X be smooth, let F' = k(X) and let K/F be a Kummer extension
of degree p. Let W — X be the normal closure of K/F. Then W — X is etale
over an open subset U = X \ Xy and we have an invariant

W (K/F,X) =n(W|U, X, Xo) € Z/I(Xo).
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Passing to the limit over all modells X of F' one may define an invariant of K/F
in Z/... where ... can be expressed in terms of valuations on F. But this is not
important at the moment.

Proposition 1.2 (Degree formula). Let W — U = X \ X as above with X irre-
ducible and let Y be proper and irreducible of dimension dimY = dim X = d. Let
f:Y = X be morphism, let Yo = f~4(Xo), let U =Y \ Yy and W = W xy U’.
Then

n(W',Y,Yy) = (deg f)n(W, X, Xo) mod I(Xo).
Note that
1(Yp) C I(Xp).

Proof. This is pretty obvious: Let f : U" — U be the restriction of f. Then the line
bundle L’ given by W' /U’ is f*L, whence

a() = frei(L)?

and

I« (Cl(L/>d) = (deg f)cl (L>d-
Now apply the degree map. O

Ezample 1.3. Suppose that in Proposition 1.2 one has I(Xy) C pZ and suppose
further n(W’,Y,Yy) # 0 mod p. Then deg f is prime to p.

2. PRELIMINARIES, CONVENTIONS, AND NOTATIONS

e The ground field k has characteristic 0. We fix a prime p. We assume p, C k.

e By a scheme or a variety X (over k) we mean a separated scheme of finite
type mx: X — Speck.

e If X is a smooth variety, then T X denotes the tangent bundle of X.

e Let V be vector bundle over X. We denote by 7y : P(V) — X the projective
bundle associated to V. Moreover

L(V) = m,V

denotes the tautological line bundle on P(V).
For the fiber tangent bundle 7' (P(V)/X) one has

TP(V)/X)=mVRLV)"/Opv).

e Let V be vector (or an affine) bundle over X. We denote by A(V) — X the
associated scheme V.

e By a form we understand a triple (T'/S, L, o) where T' — S are schemes, L is
line bundle on 7" and o € H(T, L®P) is a form of degree p on L.

There is a natural homomorphism p, — Aut(T/S, L, o) induced from the

standard action of G, on L.

e Let (Speck, L,a) be a nonzero form and let u € L be a basis vector. Then
the p-power class

{a} ={a(w)} € Kik/p=Fk"/(K*)"

is independent on the choice of .
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e Let (T'/S, L, ) and let T" be a finite group acting on (T'/S, L, ) (i.e., there is
given a homomorphism I' — Aut(T'/S, L, a)). We say that (T/S, L, «) is an
admissable T'-form if the following conditions hold:

— « is nonzero on an open dense subscheme of T'.

— T has only finitely many fixed points on T (a fixed point is a point P € T
with gP = P for all g € G).

— At each fixed point P the form « is nonzero.

e For vector bundles V', ¥V’ on schemes X/S resp. X’/S we denote by V Hg V'
the exterior direct sum, given by the sum of the pull backs to X xg X'.
Similarly we denote by V Kg V' the exterior tensor product, given by the
tensor product of the pull backs.

e For forms (T/S, L,«) and (T'/S, L', ') we denote by

(T/S, L, a) Ks (T//S, L/, O/) = ((T X5 T’)/S, L Xg L/, aXg Oz/)
their exterior product, with the form defined by
(aXs o) (uls v') = a(u)d (v)
for sections u, v’ of L, L', respectively.
If (T/S,L,a) and (T"/S, L, ') are admissable I'-forms, then (T'/S, L, a)Xg
(T'/S,L', &) is an admissable I'-form.
o Let (S,H;,;), i = 1, ..., n, be admissable I'-forms and let P € S be a

k-rational fixed point. We say that P is twisting for the family (S, H;, a;);, if
the homomorphism

n
I — pp = [ [ Aut(H;|P, ;| P)
i=1
is surjective.

e By a cellular variety we mean a variety which admits a stratification by affine
spaces. The motive of a cellular variety is the direct sum of powers of the
Tate motive L, with a summand L®? for each i-cell. If X and Y are cellular,
then X x Y is cellular and one has

CH,(X x Y) = CH,(X) ®z CH,(Y).

e Let L be a line bundle L on a smooth and proper variety X over k of dimen-
sion d > 0. We write

§(L) = deg(e1(L)?) € Z.
Here
deg: CHy(X) — CHy(Speck) =Z

is the degree map. If d = 0 we understand by 6(L) the degree of X as a finite
extension of k.
If V is a vector space of dimension n, then

S(L(V)) = deg(er (L(V))" ™) = (=)™
e The index Ix of a proper variety is
Ix = deg(CHo(X)) C Z

o If pis a prime, a field k is called p-special if chark # p and if k has no finite
field extensions of degree prime to p.
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e Let (S,L,a) be a form. We consider the bundle of algebras
A=A(S,L,a)=TL/I

over R. Here T'L is the tensor algebra of L and I is the ideal subsheaf
generated by

AZP — ()

for local sections A of L. A a is bundle of commutative algebras of degree p.
Note that

p—1
A~ @
i=0
as vector bundles. We denote by
Ny: A— Og

the norm of the algebra A.
e We use the notation

Cyclic?(2) = (27)/(Z/p)-

3. THE FORMS A(ay,...,a,) (“ALGEBRAS”)
Given a scheme S and forms (S, H;, «;), i = 1, ..., m, we define forms
Alaq, ... apn) = (Pn/S, Ky, @,), 0<n<m.

For n =0 we put

Py=5,
KO = OS)
o (t) = 17,

Suppose (P,-1/5, Kn—1,P,—1) is defined. We consider the 2-dimensional vector
bundle

Vo=0p, , ® H,Xs Kp_1
on P, 1, and the form
on: Vi = Op,
on V,, defined by
on(t —u®v) =t" — ap(u)P,—1(v)

for sections ¢, u, v of Op, ,, Hy, K,_1, respectively.

Let (Po=1,j, Vajs @nj), 3 =1, ..., p— 1 be copies of (P,,—1, Vy, ¥n). We put

(Pn/S, Kp,®n) = (Po_1/S, Kn1, 1) Ks j&} (P(Vi,j)s L(Vaj), #n,)-

We assume now that S = Speck and list the most important properties of the

forms (P, Kp, ®p).

Lemma 3.1. The variety P, is smooth, proper, cellular, connected, and of dimen-
ston p"™ — 1.
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Proof. Indeed, P, is an iterated projective bundle. The computation of the dimen-
sion is clear for n = 0 and for n > 0 we find

dimP, =dimP,_1 + (p — 1)(1 + dim P,_1)
=" -+t =p" 1
by induction on n. O
Lemma 3.2. §(K,,) = (—1)" mod p.
Proof. This is clear for n = 0. Let
up = c1(Ky) € CHY(P,), n >0,

Un—1;=c1(Kn_1;) € CH'(Py1y), n>1,j=1,...,p—1,
Zng = 1(L(Vay)) € CH (P(Va ), n>1,5=1,...,p—1.
For n>1 let
p—1
P,=P,_1 X HPn—l,j
j=1
Then
p—1
CH*(P,) = CH*(P,-1) ® Q) CH*(P,_1,))
j=1
and
CH*(P))zniij=1,....p—1
CH*(Pn): 5 ( )[Z 5] J . 9 p ] )
<zn7j — ZnjUn—15;7=1,...,p—1)
Moreover
p—1
Up = Un_1 + Zn, WwWith Z, = ZZ”J
j=1
Note that
W = =0, 2 =0

by dimension reasons. Hence, calculating mod p,

n—1 n—1 n—1 n—1 n—1
_ = _ P = =
= (e )P = T =
One finds (using Lemma 3.3 below)
pr—=1 _ ,p" =1, p" " (p—1) _ , p" T =15p™ T (p—1)
ub =ub ub =ul z0
—1 n—1 n—1 n—1 1
— . P" 71( p p P p
=uy zn, + zn,2 + + Zn,p—l)
—1 n—1 n—1 n—1
_ _,p" T -1_p P .
= —Up_g Zn,l Zn,2 Zn,p—l
_ Pl o1 ] n—-1_q
—Up_1 Zn,1Up 1 Zn,2UWp o o Znp—1Up po1 -

It follows that

§(Kpn) = —6(Kn-1)(—6(Kn-1,1)) (=06(Kpn-12)) -+ (—6(Kn-1,p-1))
= —0(Kp—1) mod p.
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whence the claim. |
Lemma 3.3. Let R be a ring over Fy, and let vy, va, ..., vp—1 € R, be elements
with v =v3 =+ = 0271 =0. Then

(v +va 4+ vpfl)p_l = —V1v2 - - Vp_1.
Proof. Note that (p — 1)! = —1 mod p. O

The construction of (P,, K,,®,) is functorial in the forms (S, H;, ;). In par-
ticular the group

Lp=p, C HAut(S, H;,a;)
i=1

acts on (P, K, ®,).
From now on we suppose that o; #0 fori =1, ..., n.

Lemma 3.4. The triple (P, K., ®,) is an admissable Ty -form. All fized points
are k-rational.

Proof. By induction on n. Suppose that (P,—1, K,—1, ®,—1) is an admissable I'y,_;-
form. It suffices to show that (P(V},),L(V},), ¢x) is an admissable I'y,-form. It is easy
to see that ¢, is generically nonzero. Every I',,-fixed point on P(V},) lies over a ', _1-
fixed point P € P,_;. It suffices to show that the fibre (Spec x(P), L(V;,)|P, ¢n|P)
is an admissable I'-form where

I'= Aut(S, Hp, ap) = ker(T'), = Tpp_q).
This is easy to see: If (Speck, H, «) is a nonzero form over k, then
wp = Aut(Speck, H, a)

has in P(k & H) only the two fixed points P(0 & H) and P(k & 0). The form
o(t —u) = t? — a(u) is nonzero on the lines t = 0 and u = 0. O

Lemma 3.5. Let n, € P, be the generic point. Then
{a1, ... 0, ®,(0n)} =0 € KM K(P,) /p.
Proof. By induction on n. Suppose that
{ar,..s0n_ 1,00 1(n_1)} =0€ KME(P,_1)/p.
One has

p—1
(I)n(nn) - q)nfl(nnfl) . H(l - anq)nfl,j(nnfl,j))-
j=1

Hence it suffices to show

{oa,...,an, 1 —an®p_1j(Mn-1,;)} € Kflvilk(Pn)/p
for each j =1, ..., p— 1. This follows from {a,1 — ab} = —{b, 1 — ab}. O
Remark 3.6. Given the forms (Speck, H;, «;), form the vector space

p—1
A, = @ H?h R - H?jn_

Jiseejn=0



CHAIN LEMMA 7

One has dim A,, = p™. On A, there is the form

p—1
6o D (a5 Can

Jiseesdn=0

Consider the form (P(4,),L(Ay), ©,). If p = 2, this form satisfies all the properties
of (P, Ky, ®,,) listed above (up to a sign in the computation of §(IL(4y))). If p > 2,
all properties of (P,, K,, ®,) are also valid, except for the splitting of the symbol.
Ifn=1,n=2, or n = p = 3, one may define on A, an algebra structure with
norm form ©J, in such a way that (P(A,),L(A4,),©)) satisfies all the properties.
The (P,, K,,,®,) form an approximation to these algebras, with the advantage,
that (P, Kp, ®,) can be constructed for all p and n.

4. THE FORMS B(ai,...,a,) (“RELATIVE ALGEBRAS”)

Let n > 1. Given forms (S, H;,o;), i =1, ..., n—1,and (S'/S, L, 8), we define
a form

B(ai,...,an—1,8) = (P./S" K|, @)
as follows. Let (P,—1/S, K;,—1, ®,—1) be as in section 3. Put
P,1=5"xgP,1
We consider the 2-dimensional vector bundle
Va=0p  ©LKsK, 1
on P,_1, and the form
Bp: Vi — 05, ,

on V,, defined by

Pt —u@v) =17 = Bu)Pn_1(v)

for sections ¢, u, v of Op _ , L, K1, respectively.
Let

(ﬁnfl,jv Vn,jaan,jv anl,jv Pnfl,j)a j = 17 R Za 1
be copies of (Py—1,V 1, 8., Kn_1, Pu_1). We put
p—1 — —
(P’I/l/S/7 Kr:w (I);z) = xls’ (P(Vn,j)v L(Vn,j>a¢n,j)'
]:
We assume now that S = Speck and list the most important properties of the
forms (P), K], ®).

Lemma 4.1. The variety P, is smooth and proper over S’, and of relative dimen-
sion p™ — p" L. If S’ is cellular, so is P. The fibres of S/S" are connected.

Proof. Note that P/, /S’ is an iterated projective bundle. Moreover
dim P, /S = (p— 1)(dim Py_y + 1) = p" — p" !
by Lemma 3.1. -



8 MARKUS ROST

Let
u, =ci(Ky) € CH'(P,),
tun-15 = c1(Kn-1,5) € CH' (Py_1,5),
v, = c1(L) € CHY(S").
Lemma 4.2. One has
u,? = ul? vﬁn*pnil mod p.

If S’ = Speck, then
§(K!) = deg(u,”" ") = —1 mod p.

Proof. Let
—~ p—1
P_n:S/ X HP'”*LJ'
j=1
Then
—~ p—1
CH*(P,) = CH"(S") @ (X) CH* (P, _1,;)
j=1
and
H*P:n niti=1,...,p—1
CH*(PZL): K C ( )[Z J?] 7. y D ] )
<Zn,j — Znj(Un +Un—15);7=1,...,p—1)
Moreover

Recall that uf::ll ; = 0. Calculating mod p, one finds

n n
— P
Z’n

p" p"
n,l +o Zn,p—l

Ip
un
=z

-1 n—1 n—1 n—1
— P PPl oLy P (p—1)
- Zn,l (’U”l + u"—Ll) + + zn,p—l(’vn + Un—l,p—l)

—1 n—1 n—1 n—1 n—1 n—1
_ " » p (p—1) 4 ... p P p (p—1)
= Zn1 (vh + un—1,1) +ot Zn,p—l(”n + un—1,p—1)
 —1 —1 n—1 n—1
— " T =) P p"(p—1)
- Zn, Un, + + Zn,p—lvn

 —1 n—1 n—1 n—1
—=p" T, p" T (p=1) /P p" " (p—1)
=z b =U, vb .

This proves the first claim.
n—1

Suppose v, = 0. Then 2P 1 = 0. One finds mod p (using Lemma 3.3)

)]

_ —1 n—1 n—1 1
1 p" 1(p—l)_(z)" P P P
U, - Zn,l + zn,2 + + Zn,p—l)
—1 n—1 n—1
_ T p R
- Zn,l Zn,2 Zn,p—l
n—1 Pl n-1_1

p" -1 p
“ZnalUp_11 An2Wp_192 " Rnp-1Up_j p_1
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Since §(Kp—1) # 0 mod p, it follows that
0(K7,) = —(=0(Kn-11)) (~0(Kn-12)) -+ (=0(Kn-1,p-1))

= —1 mod p,
whence the second claim. O
From now on we suppose that «; £ 0 fori =1, ..., n—1. Let I" be a finite group,

let ' — I';,—1 be an epimorphism and let I' — Aut(S’, L, 8) be a homomorphism.
Thus T acts on all the forms (Speck, H;,«;), i =0, ..., n—1, and (5, L, B).

Lemma 4.3. Suppose that (S, L, 8) is an admissable T-form with all fized points
k-rational. Moreover suppose that each fized point is twisting for the forms

(S,Hjyaep),i=1,...,n—1, and (S, L, B).
Then (P, K, ®") is an admissable T-form with all fized points k-rational.

Proof. This follows as for Lemma 3.4. O

Lemma 4.4. Suppose that S’ is irreducible. Let 1, € P, be the generic point.
Then

{at, .. an_1,B80m), Pn(nn)} =0 € K'rlzv-[i-lk(Pn>/p'
Proof. This follows as for Lemma 3.5. |

Remark 4.5. Given the form (S, L, 8) one may define the “Kummer algebra”
A=A LB =L L% . ..¢ L% !

with the product given by the natural multiplication in the tensor algebra using
the form B: L® — L®° to reduce the degree mod p. One finds

CH*(P(A)) ® F, = CH*(5") @ Fp[z]/ (2" — 2P~ 'y)
with z = ¢; (L(A)) and y = ¢1(L).
Hence we have a homomorphism
R =TF,[z]/(z" — 2P 'y) — CH"(P(A)) ® F,

Lemma 4.2 shows that there is a homomorphism

1 1

R — CH*(P)) ® F), zulP Tyl
If one thinks in terms of the (in general nonexisting) algebras
A, = Ao, ... an-1,0)
with “subalgebras”
Ap_1=Aar, ..., an-1),

and one imagines to form something like the projective space P4, _,(A,), then one
may think of P/ as an approximation P, — P4, _,(A,) with the homomorphism
R — CH*(P)) ® F), being the pull back on the Chow rings (if say S’ = P> and
with L the universal line bundle).
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5. THE FORMS C(ay,...,a,) (CHAIN LEMMA CONSTRUCTION)
Let n > 2. Given forms (S, H;,«;),i=1,...,n—1,and (5'/S, L, 8), we define
forms
Cr =Crlan,...,an—1,8) = (Sr/Sr-1, Lr, Br), r>—1.
For r = —1, 0 we put
(S—1/S—2,L_1,8-1) = (S/S, Hy—1,0n1),
(So/S-1, Lo, Bo) = (5/S, L, B).

Let » > 0 and suppose C,_5 and C,._; are defined.

Let
(P'rlzfl,r/ST—l’ K:zfl,r’ (I){nfl,r) = B(ala s, Qpn—1, 67‘—1)

be the form constructed in section 4, starting from (S, H;, o), i = 1, ..., n — 2,
and (Srfl/Srf% erlv ﬂrfl)- Put

(Sr/Srfla Lr; ﬂr) = (ST72/S7“737 LT*Q} ﬂT*Q) IES'F*Z (P;z—l,r/STflv K’:L—l,’ﬁ (I);z—l,r)'

We assume now that S = Speck and list the most important properties of the
forms (Sy/Sr—1, Ly, Br).

Lemma 5.1. The variety S, is smooth and proper over S’, and of relative dimen-
sion r(p"~t —p"2). If S’ is cellular, so is S,. The fibres of S/S" are connected.

Proof. This follows from Lemma 4.1. For the dimension note
dim S, /S, —1 = dim P,Q_LT/ST,l =pt—_pn2
by Lemma 4.1. 0
Thus if dim S’ = (p! — 1)p™ for some £ > 0, then dim S, = (p'*t! — 1)p"~1L.

Theorem 5.2. Let £ > 0 and suppose that S’ is smooth and proper of dimension
(pt — 1)p™. Then
0(Lp) = 6(L) mod p.

The proof requires some calculations.
Let a, b € Fp,, and let r > 0 be an integer. In the ring Fp[z1,..., 2] let

r—1 = a,
zo = b,
Tm = 2Zm + Tm—2, 1<m<7.
Then

To = zok + Z2k—2 + -+ 24 + 22+,
Tok41 = R2k—1 + Z2k—3 + -+ 23+ 21 +a.
We denote by I the ideal generated by

P _ p—1
2P —zme, S, 1<m<r

and put
R.(a,b) =F,lz1,...,2:]/1.
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The elements
ZJ:Zil"'Zirv J:(ilv"'vi’r)v OS’LJSP*l
form an Fp-basis of R.(a,b). For u € R,(a,b) let ¢, (u) be the coefficient of

p=1  _p-1
2] zP1.

Lemma 5.3. If1 <r < p one has cr(x:(p_l)) =1 in Ry(a,b).

Proof. One has for 1 <m < p:

xﬁ(”_l) — mﬁgm—l)-ir(p—m)
= (2m + xm72)p(mfl)+(p*m)
= (2h, + xfn—Q)(m_l)(zm + xm—Q)(p_m)

= (Zng;ll + :cfn72)(m71)(zm + szQ)(pim)'

Hence for m < p one has

em (@) = e (2l V).

The claim follows by induction. O

Proposition 5.4. If (a,b) # (0,0), then R,(a,b) is isomorphic to a product of
rings of the form
Fylor, .ol /(0 0), k>0,
Proof. By induction on r > 0. The case r = 0 is obvious.
Suppose b # 0. Then the polynomial
zf — zlxpfl
is separable with roots z; = ib, i € F,,. It follows that we have isomorphism
Ry(a,b) = [ Re(a,b)/(z1 — ib).
i€F,
The ring R, (a,b)/(z1 — ib) is the quotient of Fp[za,..., 2] by the ideal generated
by

Z%_meil__lp 2<m<r
with
Lo = ba
xr1 =1b+a,
T = Zm + Tm—2, 2<m<T.
Hence R, (a,b)/(z1 —ib) ~ R,_1(b,ib + a). The claim follows from the induction
hypothesis.
Suppose b = 0. Then a # 0. In this case we consider the homomorphism
P Fp[zlﬂ s ﬂZT] - Fp[zl]/(zf) ® RTfl(Oﬂ 1)7
Zm = (@+21) @ z—1, 2<m<r,
z21+—= 21 ®1.
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We claim that ¢(I) = 0. For this it suffices to show
o(2h, — zmab )—0 1<m<r.
This is obvious for m = 1. If m = 2, then
p(2h — 2al ™) = (2 — 22(21 + @)P )

:(a+zl)p®sz((a+zl)®zl)(zl®1+1®a)pil

—(a+a)Ped—(a+z2)®z)(z1+a) 1)
=(a+21)’ @ (2 —2z)=0.
If m =2k > 2, then
(2, — zopall)) = @25 — zan(z2h1 + -+ 23+ 21 +a) )
=(at+21)' ®2g_ —
—((a+21) @z 1)((a+21) @2k 2+ +(a+21)®n+201+12a)"
=(a+2) @2y, —
~((a+21) ®z25-1) ((a+21) @ 2mp—a + -+ (a+21) @22+ (a+ 21) @ 1)7
=(a+2)"® (25, —zon1(zop2+ -+ 22+ 1))p_1
=(a+2)P @ (25, _, — zan_175 ) = 0.

If m=2k—12> 3, then

-1

P(2B_y — 2ok 125 y) = (2 — zak-1(z2h—2 + -+ 22)77 )
= (a+21)" @ (2o — zon—2(22k-3+ -+ 21)"" ")
=(a+2)P® (zgk_2 — zzk,gzg;_l3) =0.
It follows that ¢ induces a homomorphism
?: Rp(a,b) = Fpla1]/(27) ® Rr-1(0,1),
Zm’_>(a+zl)®zm—1; 2§m§7‘,
21— 21 ® 1.

© is obviously surjective. By dimension reasons, p must be an isomorphism. Again
the claim follows from the induction hypothesis. [l

Corollary 5.5. u?" = uP for all u € R,(0,1). O
Corollary 5.6. Let n > 2, and let u, = xp P € Ry(0,1). Then cp(u,) = 1.

Proof. For n = 2 this is Lemma 5.3. Moreover, by Corollary 5.5, the element u,,
does not depend on n. [l

We rewrite things in a homogenous form. Let  be a variable and let
R =F,[z, z1,...,2p) /T
where I’ is the homogenous ideal generated by

P p—1
Zm — AmLpy 15 1<m<p



CHAIN LEMMA 13

with
Tr—1 :0,
Io = T,
T = Zm + Tm—2, 1<m<p.

Then R'/(x — 1) = R,(0,1). Corollaries 5.5 and 5.6 yield the following two corol-
laries:

Corollary 5.7. u?” = uPz?" P for allu € R'. O

Corollary 5.8. Let n > 2. Then

n__ —1 —1 _ n__ 2 n__ 2 /
ab P =TT P P mod 2P PR

Proof. Recall the basis elements (27); of R,(0,1) considered above. The elements
(z72P" ~P=171) ; form a basis of the homogenous subspace of R’ of degree p™ — p. Tt
follows that

n_ L -1 _p-1 -1, p"—p? J " —p—|J 2

xb TP = cp(ab TP T 2y - 2h T P TP mod (272 TP 1| < p? = p).
. n n 2

But if |J| < p? — p then z/zP" —P=IJl ¢ gP"—P 1R/, O

Proof of Theorem 5.2: Let

z = (L)Y e CHP"U(S,), r>—1,
Zp = cl(K,’L_LT)pW2 ecur’ (P,’L_LT), r>1.
Then, calculating mod p,
rz_1 =0,
2o =ci(L)P" € CH" *(S) @ F,,
Ty = Tr_2 + Zr, r=1,
since
ci(Ly) = c1(Lr—2) +c1 (K], ).
Moreover
ZP = zrxf:i
by Lemma 4.2.

We have a homomorphism
R'(z) = CH"(Sp) @ Fp,  zm > 2m, & Zo.
It follows from Corollary 5.8 that (mod p)

042 ~1_p—1 2_,2

£+ +2 2
pt—p _ P ... p—1.p —p°+1
xh =272 20 g )

mod (z?
Now if dim S’ = (p! — 1)p”, then xSHZ_pQH = 0. Hence

P = S )O(K_y5) -+ S(K_y ,)3(L) = 6(L) mod p,

n—1,p—1

where the last equation follows from Lemma 4.2. O
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From now on we suppose that «; £ 0 fori =1, ..., n—1. Let I" be a finite group,
let ' — I';,—1 be an epimorphism and let I' — Aut(S’, L, 8) be a homomorphism.
Thus I acts on all the forms (Speck, H;,;), i =0, ..., n—1, and (S, L, B).

Lemma 5.9. Suppose that (S', L, 3) is an admissable T'-form, that all fized points
are k-rational and that each fized point P € S’ is twisting for the forms
(S H;,a;),i=1,...,n—1, and (S', L, ).

Then for all v > 0, (Sy, Ly, B;) is an admissable T-form, all fixed points are
k-rational, and each fixed point P € S, is twisting for the forms

(ST,HZ',OQ‘), 1=1,...,n—2 (ST;LTfla/BTfl); and (STaLTa/BT)'

Proof. Let P € S, be a fixed point. By induction we may assume that P is k-
rational and that

n—2
' — Aut(Ly_o| P, Br_2|P) x Aut(L,_1|P, Br_1|P) x [ Aut(H;| P, as|P)
i=1
is surjective. We claim that
n—2
' — Aut(L,|P, B,|P) x Aut(L,_1|P, B,_1|P) x [ Aut(H;|P, | P)
i=1

is surjective. Note that L.|P = L,_2|P ® K,,_1 |P. The claim follows now from
the fact that Aut(L,_2|P, a,—2|P) acts trivially on K,,_1 | P.
The remaining parts of the statement follow from Lemma 4.3. O

Lemma 5.10. Suppose that S’ is irreducible. Let n,. € S, be the generic point.
Then

{ala vy Qp—29, ﬁ’r—l(n’r—l)a 67‘(777‘)} - (_1)T{ala ey 2,01, 5(770)}
in KMk(S,)/p.
Proof. We show

{ala ceey (2, ﬂrfl(nrfl)vﬂr(m")} = {0417 sy On_2, ﬂrfl(nrfl)vﬂr(nrfﬂ}-
We have

67‘ (777‘) = ﬁ?“ (777“—2)(1);171,7"'

The claim follows now from Lemma 4.4. O
We will need the following special case:
Corollary 5.11.
{ars oy an—2,Bp(mp), Bp—1(mp—1)} = {an, ..., an—2, a1, B(mo) }
in KMk(S,)/p. O
Remark 5.12. Let S’ = Speck. We think of the symbol
{ar, .. an—2, Bp(mp)}

as a family of symbols of weight n — 1 “between”
{ala"'aan—Q} and {ala-"aan—Qaan—laB}a

with S, as parameter space.
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Our later considerations indicate that this family is universal over p-special fields.
For n = 2 we will make this precise, and for p = 2 this can be done using Pfister
forms. I have no idea how to show this in general. In the case n = p = 3 the
universality would have important consequences for the classification of groups of
type Fjy.

6. THE FORMS K(aq,...,a,) (UNIVERSAL FAMILIES OF KUMMER SPLITTING
FIELDS)
Let n > 1. Given forms (S, H;,«;), i =1, ..., n, we define forms

K;=Kilan,...,an) = (Ri/Riv1, Ji, i), 1<i<n,
K= Ki(a1,...,an) = (Ri/Riz1, J}, 7)), 1<i<n.
We put
(Bn/Rnt1, Jns ) = (S/S, Hn, om)
and
(Rn/Rnt1, I, 1) = (S/8,0s,7)
with 7(¢) = ¢P.

Let ¢ < n and suppose that ;41 is defined.
Recall the forms

CT = Cr(ala ceey O‘i;'}/iJrl) = (ST/S’I“717 Lhﬂr)

defined in section 5. Let 7: S, — Sp_1 be the projection.
We put

Ki =Cp(at, ..., a5, Yit1)s
Kl =1"Cp_1(Qv1, ..., Q, Yit1)-

We assume now that S = Speck and list the most important properties of the
forms (R;/Ri+1,Ji,vi) and (R;/Rit1, J!, 7).
Lemma 6.1. The variety R; is smooth, proper, cellular, and of dimension p" — p'.
Proof. This follows from Lemma 5.1. For the dimension note

dim R;/Riy1 = p'™! — ', i<n
by Lemma 5.1. |
Lemma 6.2. 6(J;) =1 mod p.
Proof. By Theorem 5.2 we have
6(J;) = 6(Ji+1) mod p.

Hence §(J;) = 6(J,) = 1 mod p. O

The construction of (R;/R;y1,Ji,v:) is functorial in the forms (S, H;, ;). In
particular the group

n
Ly =p, C HAut(S, H;,a;)
i=1
acts on (R;/Riy1, Jiy Vi) -
From now on we suppose that a; Z0 fori =1, ..., n.
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Lemma 6.3. The forms (R;/Rit1,Ji, Vi) are admissable T'y,-forms, all fized points
are k-rational, and each fixed point P € R; is twisting for the forms

(Riy Hpyam), m=1, ..., i—1, and (R;, Ji,vi)-
Proof. This follows form Lemma 5.9. O
Lemma 6.4. Let n; € R; be the generic point. Then, for 1 <i <mn,
{ar, .. oi1,yi(m), vi(m) b = {an, .. 06, Yirr (i)}
in KM k(R;)/p.

Proof. This follows from Lemma 5.11. |
In particular we have
(6.1) {an, .., an}t ={a1,72, %, -,V b
(6.2) {ar,72} = {1, %}
(6.3) {1, yant ={v1,%, 7L}
We write

(Ra Ja’}/) = (Rlajlafyl)

We denote by R — R be the degree p “Kummer extension” corresponding to =,
defined locally by Oy = Oglt]/(t? — v(X)) where ) is a local nonzero section of J.

Corollary 6.5. The symbol {a1,...,a,} vanishes in the generic point of R.
Proof. This follows from Lemma 6.4 (see (6.3)). O

7. PROOF OF THE CHAIN LEMMA

A splitting variety of a symbol is called p-generic, if it is a generic splitting variety
over any p-special field.

Let Z be a p-generic splitting variety of {a1,...,a,} of dimension p"~1 —1. We
assume {aq,...,a,} # 0. It follows that Iz C pZ.

Let (R, J,v) be the form of defined at the end of section 6.

Note that Z has point of degree prime to p over k(R), hence has a k(R’)-rational
point where R’/R is of degree prime to p. We have diagram of varieties covered by
cyclic extensions of degree p:

Rt R S Zv
R «2— R —1 Cyclic?(2).
Let
Ry CR

be the zero locus of v. Inspection shows that I(Rg) C pZ. We have
n(R/R,R,Ry) = c1(J)* mod p =1 mod p # 0 mod p

by Lemma 6.2.
Let
Ry=CR
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be the subscheme of ramification of R'/R’. Then g(R}) C Ro and therefore I(R}) C
pZ. The degree formula tells that

n(R'/R',R',R)) = (deg g) ™" mod p # 0 mod p.
Moreover let
Cyclic?(Z)g = Z C Cyclic?(Z)
be the image of the diagonal. One has I(Cyclic?(Z)g) = pZ. Further, Cyclic?(Z),

contains the subscheme of ramification of Z?/Cyclic?(Z). Therefore f(R{) C
Cyclic?(Z)o. The degree formula tells that

deg f # 0 mod p.

Now let K = k(¥/b) be a cyclic extension of degree p which splits {a1, ..., apn}.
We assume that k is p-special. It follows that there is a point Spec K — R lying
over a rational point P: Speck — R. Then b = ~v(P) in k*/(k*)P. It follows that

(7.1) {ar,. o om} = {a1,72(P),%(P), - 7 (P)}
7.2) {o1,7%2(P)} = {b,7%(P)},
73) {ala'--7an} = {balyé(P)aa’%/z(P)}

(
(
(see (6.1)—(6.3) after Lemma 6.4).
We have proved:

Corollary 7.1. The chain lemma for cyclic algebras of degree p over p-special
fields.

Corollary 7.2. The chain lemma for symbols (a,b,c) mod p over p-special fields.

Now let k({/b), k(/¢) be two cyclic extensions of degree p which split the symbol
{a1,...,a,}. Applying the last arguments twice, one finds first b; € k* such that
{al, e ,Oén} = {b,bl,bg, e ,bn},

and then ¢;, ¢, € k* such that
{ba b17 b27 te bn} = {ba C1,C2,. .., Cn}7
{b7 Cl} = {Ca C/Q}
Let X (b, 1) be the Brauer-Severi variety associated to the symbol {b, ¢;}. It has
rational points over k({/b) and over k({/c). Morover, since Z is a p-generic spliting

field, we have a correspondence X (b,c;) — Z lying over Z — 7Z of degree prime
to p.

Corollary 7.3. Let x, y € Z be points of degree p and let o € k(x)*, B € k(y)*.
Then there exist z € Z of degree p and v € k(2)*, such that

[+ (Bl =[] in Ao(Z, K1)

Proof. By the previous considerations, and using that CHo(Zx) = Z whenever
Z(K) # &, we may reduce to the case of Brauer-Severi variety. In this case the
statement is known [1]. O

Remark 7.4. In the last proof we assumed CHy(Zx) = Z whenever Z(K) # @.
This can be shown for n = 3 for Z the usual SL(p)-form.
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Without this assumption, we get at least the last corollary with Ag(Z, K1) re-
placed by
COkGI‘AAQ(ZQ7 Kl) — Ao(Z, Kl),
the group considered in my MSRI-talk.
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