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2 MARKUS ROST

Introduction

In this paper p always is a prime, k is a field with chark 6= p and KM
n k denotes

Milnor’s n-th K-group of k. Let

h(n,p) : K
M
n k/p → Hn

ét(k, µ
⊗n
p ),

{a1, . . . , an} 7→ (a1, . . . , an).

be the norm residue homomorphism.

Voevodsky’s theorem. V. Voevodsky announced in October 1996 the following
theorem:

Theorem (Voevodsky). Let p be a prime and let m be a natural number.

Suppose that for every subfield k ⊂ C containing the p-th roots of unity and for

every sequence of elements a1, . . . , an ∈ k∗, 2 ≤ n ≤ m, there exists a smooth

projective variety X over k such that :

(V1) {a1, . . . , an}k(X) = 0 in KM
n k(X)/p.

(V2) X has dimension d = pn−1 − 1.
(V3) In the category of Chow motifs over k(X) with Z(p)-coefficients there exist

an effective object Y such that

Xk(X) = L⊗0 ⊕ (Y ⊗ L).

Here L denotes the Tate motive.

(V4) The characteristic number sd
(
X(C)

)
∈ Z is not divisible by p2.

(V5) The sequence
∐

x∈X(1)

K2κ(x)
d−→

∐

x∈X(0)

K1κ(x)
NX−−→ K1k

is exact. Here NX =
∑

Nκ(x)|k.

Then for all fields k with char k 6= p one has :

(BK) The Bloch-Kato conjecture holds in weight m and mod p, i.e., the norm

residue homomorphism h(m,p) is bijective.

(S) For n ≤ m, for elements a1, . . . , an ∈ k∗, and for a smooth projective

variety X satisfying (V1)–(V5), the sequence

∐

x∈X(0)

K1κ(x)
N−→ K1k

b 7→(a1,...,an,b)−−−−−−−−−−→ Hn+1
ét (k, µ⊗(n+1)

p )

is exact.

Interpretation of Voevodsky’s conditions. Condition (V1) identifies X as a
splitting variety of the symbol {a1, . . . , an} (mod p). The dimension in (V2) is
presumably the minimal dimension of a generic splitting variety of a mod p-symbol
of length n.

Condition (V3) can be interpreted as follows. For a somewhat reasonable generic
splitting varietyX of a symbol, one should expect that for any field F/k, over which
the symbol splits, the variety XF is “split”. For example, Brauer-Severi varieties
have the property that they become rational over any field which split the corre-
sponding algebra. One may think of condition (V3) as a kind of weak “rationality
condition”. In fact, if Xk(X) is rational, then (V3) holds. Condition (V3) has the
following consequence for the Chow group of zero cycles:
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(V3)
′ For any field F/k with X(F ) 6= ∅ the degree map

deg : CH0(XF ) → Z

is bijective.

In the discussions of this paper we will need from condition (V3) only this implica-
tion.

Condition (V4) is the most exciting one. Recall the complex cobordism ring

ΩC

∗ = Z[x1, x2, . . . ], dimR(xi) = 2i.

Let P ∈ ΩC

2d be a polynomial and write P as

P = aPxd + P ′(x1, . . . , xd−1).

The Chern numbers of (complex) dimension d define homomorphisms ΩC

2d → Z and
for sd one has

sd(P ) =

{
±paP if d = pm − 1 for some prime p and m > 0,

±aP else.

Therefore condition (V4) is equivalent to saying that X(C) is a ring generator of
the complex cobordism ring mod p.

The numbers sd receive a further important role over non-closed fields because
of the following “degree formula”. For a variety X we denote by D(X) ⊂ Z the
ideal generated by the degrees of the closed points on X .

• Let f : X → Y be a morphism of irreducible smooth proper varieties of di-
mension d = pm − 1. Then

sd(X)

p
= deg f · sd(Y )

p
mod D(Y ).

Note that over an algebraically closed field this formula is vain, because then always
D(Y ) = Z.

In the case of curves (p = 2, m = 1) this formula is a consequence of the
Riemann-Roch theorem. Also for m = 1 and arbitrary p one can derive it from
Riemann-Roch. In the general case one uses at the moment algebraic cobordism
theory. ref

Using resolution of singularities, the formula implies that the element

s̃(X) =
sd(X)

p
∈ Z/D(X)

is a birational invariant of X (defined for proper smooth irreducible varieties of
dimension pm − 1). In the case m = 1 the element s̃(X) can also be described in
terms of the Todd number. ref

Concerning splitting varieties of symbols, the formula has the following striking
consequence.

If p is a prime, we call a field k p-special, if chark 6= p and if k has no finite field
extensions of degree prime to p. A splitting variety X of a symbol mod p is called
p-generic if for any splitting field F the variety XF has a point of degree prime
to p. In other words, X is p-generic if it is a generic splitting variety with respect
to p-special splitting fields.
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• Let Y be a generic splitting variety of a nontrivial symbol {a1, . . . , an} mod p
of dimension d = pn−1 − 1. Moreover let X be a variety satisfying conditions
(V1), (V2) and (V4). Then Y satisfies (V4). Moreover X is a p-generic
splitting variety.

Here is a sketch of proof: Since Y is a generic splitting field, there exist a rational
morphism f : X → Y . Using resolution of singularities, we may assume that f is
regular. The degree formula tells that Y satisfies (V4) and deg f is prime to p.

Condition (V5) can be thought of as a generalization of the classical Hilbert’s
Satz 90. Assuming that X is a generic splitting variety, then condition (V5) com-
putes essentially the kernel of the norm map

⊕

F

F ∗ → k∗.

with F running through the finite splitting fields of the symbol {a1, . . . , an}. In
the case n = 1 this amounts to Hilbert’s Satz 90 for a cyclic field extension L/k of
degree p, i.e., the exactness of

K1L
1−σ−−→ K1L

NL/k−−−→ K1k.

For the purpose of this introduction we use the notation

A(X) = coker

( ∐

x∈X(1)

K2κ(x)
d−→

∐

x∈X(0)

K1κ(x)

)
.

The group A(X) is also known as Hd(X,Kd+1). It is a birational invariant of X ,
see [11]. Let

NX : A(X) → k∗

be the norm map. Condition (V5) means that NX is injective.

Computations of the characteristic numbers sd. In the case n = 2 the split-
ting varieties one considers are Brauer-Severi varieties for algebras of degree p. In
this case (V4) is well known: sd(P

d) = d+ 1.
In the case p = 2 one uses quadrics. Again the numbers sd are well known in this

case. In fact it is not difficult to compute sd for a smooth projective hypersurface
of any degree.ref

For n ≥ 3 or p ≥ 3, the computation of the numbers sd of candidates for generic
splitting varieties seems to be more subtle. Here the only successful technique I am
aware of is to use a theorem of Conner and Floyd.

The principle is as follows. Suppose p is odd. In this case the numbers sdref

are Pontryagin numbers and oriented bordism invariants. Let Z be an oriented
differentiable manifold of (real) dimension 2d with d = pm − 1 and suppose that
there is a fixed point free G-action with G = (Z/p)m. Then the Conner-Floyd
theorem tells that Z lies in a certain ideal of the oriented cobordism ring, and by
the structure of this ideal it follows that

sd(Z) = 0 mod p2.

Now suppose we have two manifolds X , Y of dimension 2d with G-actions having
only finitely many fixed points, and suppose that the sets of fixed point together
with the G-actions on the tangent spaces are isomorphic (in this case we say that
X and Y are G-fixed point equivalent). Then one can form the multifold connected
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sum of X and −Y , along their fixed points, and obtains a manifold Z with a fixed
point free G-action. It follows that

sd(X) = sd(Y ) mod p2.

Now in many cases of candidates X of generic splitting varieties it is possible to
find an appropriateG-action and aG-variety Y such thatX and Y have only finitely
many fixed points, are G-fixed point equivalent, and such that the number sd(Y )
is comparatively easy to compute. Then we know also the number s̃(X). The
varieties Y we consider here usually don’t split the symbols.

The settled cases.

Theorem. Let n be a natural number and let p be a prime and suppose that n, p
are subject to one of the following conditions :

1. n = 2 and p arbitrary.

2. p = 2 and n ≥ 2.
3. p = 3 and n = 3, or 4.

Moreover let k be a field with char k 6= p containing the p-th roots of unity and let

a1, . . . , an ∈ k∗.
Then there exists a smooth projective variety X over k satisfying (V1)–(V5).

In the case n = 2 one takes here the Brauer-Severi variety corresponding to the
symbol. The only subtle condition is here (V5), which has been proved in [6].

In the case p = 2 one takes here the projective quadric with form 〈〈a1, . . . , an−1〉〉⊥
〈−an〉 corresponding to the symbol. Again the only subtle condition is here (V5),
which has been proved in [12].

The essentially new cases are p = 3 and n = 3, 4. Here we used exceptional
Jordan algebras and their relation with 3-symbols mod 3 (see [13]) and some cubic
tricks. The varieties X considered are desingularizations of the varieties

{ [x, t] ∈ P(J ⊕ k) | NJ(x) = bt3 }
where J is either a central simple algebra of degree 3 or an exceptional Jordan
algebra. The varieties Y mentioned above used for the computations of the char-
acteristic numbers are (diagonal) cubic hypersurfaces. Details will appear in [11]. ref

The program of this paper. The most difficult one among the conditions (V3)–
(V5) seemed to be for some time (V5). Indeed for n = 2 or p = 2 conditions
(V3), (V4) are almost trivial to check for the mentioned varieties. Also for p = 3
and n = 3, 4, condition (V3) is easy to check and (V4) can be surely settled without
using the Conner-Floyd theorem. Namely the varieties in question have a lot of
additional structure, e.g., big automorphism groups of type A2 + A2 or E6. The
Conner-Floyd theorem was used here more for convenience.

In this paper we propose some arguments in order to attack (V4) and (V5). The
basic idea of the approach is to reduce the problems for symbols of arbitrary length
to symbols of length 2, that is to algebras.

If the program is successful, then one could conclude the following:

• Suppose that X has a point of degree p, satisfies (V2), and (V3)
′, and that X

is a p-generic splitting variety of {a1, . . . , an} mod p.
Then (V4) and the following condition (V5)

′ holds for X .
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(V5)
′ After base change to any p-special field one has: For every w ∈ A(X)
there exist a point x ∈ X(0) of degree p and α ∈ κ(x)∗ such that w is
represented by

[α] ∈
∐

x∈X(0)

K1κ(x).

We mention that if X has a point of degree p, is not difficult to show that (V3)
′

+ (V5)
′ ⇒ (V5).

If things work out, it is likely that Voevodsky’s conditions can be settled for
n ≤ 3 and p = 3, n ≤ 5. In these cases one can deal with condition (V3) using the
fact that one has generic splitting splitting varieties which are forms of the algebraic
group SL1(p), or one can use some cubic phenomena.

In order to be not misleading, we would like to point out that to settle con-
dition (V3) in general, it still seems important to have available generic splitting
fields (their existence is known for n ≤ 3), not only p-generic splitting fields.

At the moment there are two major gaps in our program.
The first is that we need a G-equivariant resolution of singularities (in charac-

teristic 0). Namely our candidates X will be not smooth, but proper and with
a G-action having only finitely many fixed points in the smooth locus. Moreover
there will be always G-varieties Y which are G-fixed point equivalent to X and
whose number sd is not too difficult to compute. Having G-equivariant resolution
of singularities (away from the fixed points) available, we could assume that X is
smooth and the birational invariant s̃(X) could be computed.

The second gap is hopefully only due to my minor knowledge of the topological
Morava K-theories. We need a generalization of the degree formula which involves
morphisms to products of independent norm varieties. In the case (n, p) = (2, 2),
this generalization is basically the following:

• Let C1, . . . , Cr be conics such that their classes in Br(k) are linearly indepen-
dent. Let Y = C1×· · ·×Cr, let X be a smooth proper variety of dimension r
and let f : X → Y be a morphism. Then

td(X) = deg f mod 2.

Here td is the Todd number.

This fact can be proven using Riemann-Roch.ref

Multiplicative functions. Before describing our program in more detail, we dis-
cuss an exemplary application of the degree formula to problems related with sym-
bols.

In an ideal (but boring) world one could associate to a symbol {a1, . . . , an} mod p
a kind of algebra A of dimension pn and a form NA : A → k of degree p such that
{a1, . . . , an, b} = 0 if and only if b is a value of NA (this should hold over all fields
F/k and for b ∈ F ∗). The set of values 6= 0 of such a form NA would necessarily
form a group and would be stable under transfer from finite extensions.

The existence of such forms NA for all n and p seems to much to ask for. However
one can hope that there exist rational functions NA on some varieties A which are
very near to a rational variety (by this we mean e.g., that A has many rational
points, CH0(A) = Z, etc.).

Indeed, if there exists for a symbol {a1, . . . , an} mod p a generic splitting vari-
ety X of dimension pn−1 then one could try to take for A the canonical bundle
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A → Sp(X) of commutative degree p algebras (=transfer of the structure sheaf
of Xp) and for NA the norm map of this algebra bundle. This approach leads
hopefully in the end to multiplicative functions as desired. However, the singulari-
ties of Sp(X) cause some troubles, and at the moment one does not know how to
deal with this approach.

Later we discuss the chain lemma construction of Kummer structures. The
Kummer structures are supposed to give parametrizations of the Kummer subfields
of the (non-existent) algebras A over p-special fields.

One can go even further and try to define multiplicative functions ad hoc as
follows. Let a1, . . . , an ∈ k∗ and define rational functions Φn in pn variables
inductively by:

Φ0(t) = tp,

Φn(x0, x1, . . . , xp−1) = Φn−1(x0)

p−1∏

i=1

(
1− anΦn−1(xi)

)(−1)i

.

It is easy to see that {a1, . . . , an, b} = 0 for any value b 6= 0, ∞ of Φn.
For the functions Φn I expect:

• Let b ∈ k∗ with

{a1, . . . , an, b} = 0 in KM
n+1k/p.

Then there exist a finite extension F/k of degree prime to p such that b is
over F a value of the form Φn.

The reasoning for this is the following. Let

X = {Φn(x) = b}.
On the variety X one can define a certain G-action (G = µn

p ) for which one can
apply the above mentioned method to compute the invariant s̃(X) (using equi-
variant resolution of singularities). It seems very probable that s̃(X) 6= 0 (if
{a1, . . . , an, b} 6= 0). If we assume the existence of a generic splitting variety of
{a1, . . . , an, b} of dimension dimX = pn−1 − 1, then, by the degree formula, there
would exist a generically finite map X → Y of degree prime p.

The definition of the functions Φn is suggested by looking at small values for n
and p.

For n = 1 it is an elementary exercise to show that any element

λ = α0 + tα1 + · · ·+ tp−1αp−1 ∈ k[t]/(tp − a1)

can be written in the form

λ = β0

p−1∏

i=1

(1 + tβi)
(−1)i

over an extension of degree

u =

[(
p− 1

2

)

!

]2
.

One can do a similar game for n = 2.
For p = 2 it is not difficult to see that the function Φn is rationally equivalent

to the Pfister form 〈〈a1, . . . , an〉〉.
For p = 3 the functions Φ1, Φ2, Φ3 are rationally equivalent to the norm forms

of a Kummer extension, of a central simple algebra, and of an exceptional Jordan
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algebra, respectively. One can show that for Φ4 the set of values forms a group.
Details concerning p = 3 will appear in [11].

One may ask for a bound ǫn,p such that the extension F needed to represent b
by Φn can be always chosen with [F : k] dividing ǫn,p. Playing around assuming the
existence of the “ideal algebras A” one is led to guess

ǫn+1,p = upn

ǫpn,p

which gives

ǫn,p =

[(
p− 1

2

)

!

]2np(n−1)

Here p is odd and if n = 1 one should assume that the field k is infinite. Note that
ǫn,3 = 1.

Concerning the choice of functions like Φn (disregarding the bounds ǫn,p) one has
a lot of freedom. For example one may replace the exponents (−1)i by any integer
prime to p, for Φ1 and Φ2 one can choose the norm forms of Kummer extensions
resp. cyclic algebras, etc.

Multiplicativity and the norm principle. In order to settle (V5) one may
assume that the ground field is p-special (if X has a point of degree p and (V3)

′

holds). Then one can replace (V5) by the following two statements (M) and (N).
Let X ′ ⊂ X(0) denote the set of points of degree p.

(M) (“Multiplicativity”) For x, y ∈ X ′ and α ∈ κ(x)∗, β ∈ κ(y)∗, there exist
z ∈ X ′ and γ ∈ κ(z)∗ such that

[α] + [β] = [γ] ∈ A(X)

(N) (“Norm principle for degree p extensions”) For a field F/k of degree p, a point
x ∈ X ′

F , and α ∈ κ(x)∗, there exist points x1, . . . , xr ∈ X ′ and elements
αi ∈ (κ(xi)⊗ F )∗, i = 1, . . . , r such that

NXF ([α]) =
r∏

i=1

NXF ([αi]).

The names of these conditions have their origin in the corresponding properties
of the reduced norms of algebras and for Pfister forms: their set of values form a
group, and they are stable under transfer.

If X has a point of degree p, it is not difficult to check (V3)
′ + (M) + (N)

⇒ (V5).
In the following we try to sketch our approach to settle (M) and (N) for the

case n = 3. For the varieties X we choose any smooth proper variety birationally
isomorphic to

{ [x, t] ∈ P(A⊕ k) | NA(x) = a3t
p }

where A = A(a1, a2) is the degree p algebra with class (a1, a2) and NA is its reduced
norm. The variety X is a generic splitting variety of {a1, a2, a3}, see [5]. Moreover
one can show that (V3)

′ holds for X .
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The “chain lemma approach”. Condition (M) holds for Brauer-Severi varieties,
see [6]. Therefore, in order to settle (M) in general, it would be enough to show
that given x, y as in (M), there exist a Brauer-Severi variety Y and a morphism
Y → X such that x, y are rationally equivalent to points which lift to Y .

For this it would suffice to find b1, b2, b3 ∈ k∗ such that

(1) {a1, a2, a3} = {b1, b2, b3}.
(2) κ(x) and κ(y) split {b1, b2}.

Then we would take for Y the Severi-Brauer variety for A(b1, b2) and the existence
of a morphism Y → X would be granted by the fact that X is a generic splitting
variety.

The only way I know to produce elements bi with (1) (besides for p = 2, 3) is to
use some elementary changes in the entries of the symbols. By an elementary change
we mean here a permutation of the entries or replacing a3 by a norm from A(a1, a2).
In the case p = 2 one knows that all triples (b1, b2, b3) with (1) can be obtained
in such a way (“Chain equivalence of Pfister forms”). For p > 2 there was until
recently not much known about a chain lemma for symbols even for n = 2. In order
to define the H3(Z/3)-invariant for F4, J-P. Serre proposed some years ago to settle
the chain lemma for exceptional Jordan algebras (i.e., if J(a1, a2, a3) ≃ J(b1, b2, b3)
then (b1, b2, b3) can be obtained from (a1, a2, a3) by elementary changes). This was
eventually done by Petersson and Racine [9], at least up to replacing the ground
field by a quadratic extension. The analysis of the Petersson-Racine arguments led
to our approach to (M) to be discussed in this paper.

The basic idea is the following.
One tries to show the following “chain lemma for splitting fields of symbols”:

(3) There exist a natural number m with the following property:

Let F = k(p
√
b) be a splitting field of {a1, a2, a3}. Then after a sequence of

m elementary changes of the type

a3 7→ a3NA(a1,a2)(x) and a2 7→ a2NA(a1,a3)(x)

(so keeping the first entry a1 fixed) one may arrange that F splits {a1, a2}.
Suppose (3) holds. Let

F = k(
p
√
b), F ′ = k(

p
√
b′)

be two splitting fields of {a1, a2, a3}. After some elementary changes we could
assume that F splits {a1, a2}. Then there exists c ∈ k∗ with {a1, a2} = {b, c}, so
that we may assume b = a1. Applying (3) now to F ′, we see that there exist a
subsymbol {b, d} split by F and by F ′. This way (2) would be settled.

The number m of necessary elementary changes is of course not important for
the last argument. However it plays an important role in our picture. If we do
m elementary changes (alternating in the second and third entry and normalizing
the parameters x by say trace(x) = 1) we end up with a triple

(
a1, a

′
2(r), a

′
3(r)

)

with functions a′2(r), a
′
3(r) on a rational variety Rm of dimension m(p2 − 1). If

(3) is true, then Rm would give a parameter space for all Kummer splitting fields
of degree p, by associating to r ∈ R the (finite-dimensional) family of Kummer
subfields of A

(
a1, a

′
2(r)

)
(a′2(r) is the last changed entry).

It is obvious from the construction that the function a′2(r) on Rm parametrizes
some Kummer splitting fields of degree p. Since X is generic, we have a rational



10 MARKUS ROST

map

fm : Rm 7→ Xp/(Z/p)

with Z/p acting by cyclic permutation. A key observation of the “chain lemma
approach” is that for m = p we get

dimRp = p(p2 − 1) = dimXp/(Z/p).

We are led to compute the degree of f = fp.
Our general conjecture is that the degree of f is prime to p. This would give (3)

over p-special fields, which is all what we need.
Variants of the map f can be constructed for all n and p. Concerning explicit

computations of the degree, we have looked only at the cases (n, p) = (2, 2) (here
deg f = 1) and (n, p) = (2, 3) (here deg f = 2). I am sure that deg f can be
computed explicitely for p = 2 and arbitrary n (probably deg f = 1) and (n, p) =
(3, 3) (probably deg f = 2) and hopefully for n = 2 and arbitrary p (perhaps
deg f = (p − 1)! ?). The Petersson-Racine arguments show that for (n, p) = (2, 3)
and (n, p) = (3, 3) the map f4 has a rational section. In particular (3) is true in
these cases for m = 4.

In this paper we show that deg f is prime to p for n ≤ 3, assuming equivariant
resolution of singularities and the degree formula for varieties of dimension pn − 1.
The method is to construct from f a morphism

f̂ : R̂ → Z

of splitting varieties of the symbol {a1, a2, a3, t} over k(t) and to compute the

number s̃(R̂) using the fixed point method mentioned above.
So even for n = 2, where (3) amounts to the chain equivalence for classical

algebras, we use at the moment algebraic cobordism.

Kummer structures. We have tried to axiomatize the families R of Kummer
splitting fields, which led us to the notion of “Kummer structures”. A (split)
Kummer structure of degree p and weight n consists of a smooth proper variety R
of dimension dimR = pn − p together with a line bundle L on R and form δ of
degree p on L. Moreover there is a G-action (G = µn

p ) on (R,L, δ) with some nice
properties. It is part of the axioms, that if we twist (R,L, δ) with

a =
(
(a1), . . . , (an)

)
∈ H1

ét(k,G) = k∗/(k∗)p × · · · × k∗/(k∗)p.

to (Ra, La, δa), then for r ∈ R the Kummer extensions κ(r)(p
√
δa) split the sym-

bol {a1, . . . , an}. From a Kummer structure (R,L, δ) of weight n one may easily
construct splitting varieties X of symbols of length n+ 1 of the correct dimension
d = pn − 1. The axioms of Kummer structures guarantee (modulo equivariant
resolution of singularities) that X has always a good number sd.

This way the construction of norm varieties is reduced to the construction of
Kummer structures. For this we use the chain lemma approach indicated above.

On the norm principle. We now discuss the basic idea to approach condition (N).
We keep the notations used in the formulation of (N).

Given α, we have to solve for some r the equation

NXF ([α]) =

r∏

i=1

NXF ([αi])
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in the αi.
Suppose that conversely the αi are given and we have to solve the equation in α.

Then we would be done by the multiplicativity property (M).
We write

F = k[t]/(tp − c)

and γ = p
√
c.

We make the following Ansatz:

• The elements αi ∈ κ(xi)⊗ F are of the form

α1 = β1,

αi = 1 + γβi, i ≥ 2.

with βi ∈ κ(xi).

Let A → Sp(X) be the canonical bundle of commutative degree p algebras and let
NA be its norm map. Then our equation reads as

NAF (α) = NA(β1)

r∏

i=2

NAF (1 + γβi), α ∈ AF , βi ∈ A.

Let λ ∈ F be a generic element. We consider the two varieties

Z = RF/k

(
{α ∈ AF | NAF ([α]) = λ }

)
,

Tr = { (β1, . . . , βr) ∈ Ar | NA(β1)

r∏

i=2

NAF ([1 + γβi]) = λ }.

Here RF/k denotes the restriction of varieties.
As mentioned before, the multiplicativity property (M) gives a morphism

gr : Tr → Z.

(Actually, the preceding arguments would give (M) only over p-special fields, so gr
would exist only over a covering T̃r → Tr of degree prime to p, but we neglect this
problem at this place.)

A calculation of the dimensions gives

dimZ = p(pn − 1),

dim Tr = rpn − p

So for r = p the dimensions are equal and we are led to ask for the degree of
g = gp. If deg g is prime to p we would have settled (N) over p-special fields.

If one looks at the cases n = 1, 2 and uses for NA the norm form of a Kummer
extension resp. a cyclic algebra, one finds indeed (deg g, p) = 1 (for the natural
choice of g).

To compute deg g we may pass to any field extension, in particular we can make
base change k → k′ = F . Then F = k′×· · ·×k′ is split and the element λ becomes
a tuple of p generic elements t1, . . . , tp of k′. Moreover Z becomes

Z ′ = X1 × · · · ×Xp

where Xi is a norm variety for the symbol {a1, . . . , an, ti}.
Now having available all the tools considered before to settle (M) and further-

more an appropriate generalization of the degree formula applicable to maps to Z ′,
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one should be able to conclude (deg g, p) = 1 from the computation of a certain
characteristic number of Tp.
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