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§ 1 Introduction

The computation of some K-cohomology groups of certain normvarieties plays an essential
role in the investigation of the bijectivity of the Galoissymbol

Ky F/p — H"(F;pg™).

In the case p = 2 these normvarieties are quadrics associated with Pfisterforms.

In this note we describe some new results and conjectures about such quadrics. In short
we have the following results:

It turns out that for a n-fold Pfisterform ¢ the Chow-motive of its associated quadric X,
can be described as
Xy~ My, x P d,=2""1-1,

where M, is a certain Chow-motive associated with ¢. We give a complete description
of the Chowgroups of M, and of the generators of H?(M,; Kp1); moreover we have a
precise conjecture about (the Milnor- K-theory version of) H?(M,; K,4.,) for r < 2.

This note contains no proofs. Detailed proofs will be prepared as soon as possible.

§ 2 Motific decomposition of certain quadrics

We work in the category of Chow-motives over a field F(Char F # 2) (see e.g. [Fulton;
Intersection Theory, §16]). For a motive M = (X,p) let CHi(M) = p.(CH(X)), where
CHy(X) is the group of k-dimensional cycles modulo rational equivalence. We denote by
L= (}P’l, p) the Tate motive and by L* its i-th power. For a quadratic form ¢ over F we
denote by X, the corresponding projective quadric (dim X, = dim¢ —2) and by YSO its
associated Chow-motive.

One first observation is



Proposition 1
Let ¢ = _Lh, where h is a hyperbolic plane and dim ¢ > 0. Then

X=Xy ®L®L® L% d=dim 1.

Hence the motive of the quadric X, depends essentially only on the class of ¢ in the
Wittring of F'. Moreover the proposition shows that the motive of a trivial quadric X,
(i.e. o = X(—1)'z?) is just a sum of certain powers of the Tate motive.

Proposition 2 o

Let K|F be any field extension. Then o € End(X,) is invertible if and only if ax €

End((X,)k) is invertible.

This is basic to all what follows. To proof proposition 2 one considers the filtration on

End(X,) = CHy(X,xX,) (d =dim X,) given by the dimension of cycles after projection
to one factor.

For a n-fold Pfisterform ¢ we call n, = n the degree of ¢; moreover we put d, = 2"~ 1 —1.
Note that dim X, = 2d,,.

Theorem 3
For a Pfisterform ¢ there exists a unique motive M = M., such that for extensions K|E|F
there exists

i) an isomorphism

d
Mg =L% @ LY
if pp is isotropic.
ii) a commutative diagram of isomorphisms

Z

ZE/ \iK

resK‘E

CH,, (Mg) CH,, (Mx)

iii) a commutative diagram of injective homomorphisms

CHo(Mp) —=2  CHy(Mgk)
N\ Ng / Nk
Z
with
27 if pg is anisotropic
Im Ng = : . .
7  if g is isotropic.
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The motive M, can be described more precisely as follows: Let ¢ = p® ((a)) where p is a
Pfisterform of degree n,, = n, —1 and put p = pL(—a). Then M, = (X,,p) for a certain

projector p € End(X,) such that p, is the identity on CHy,(X,) and CHy(X,) (note
that d, = dim X,). Hence CHy,(M,) = Z with the cycle X, as canonical generator; we
denote this generator by [M,]. Moreover CHy(M,) = CHy(X,); the homomorphisms
N in iii) are given by the degree of a zero-cycle.

The motive of X, decomposes as

X, =M, X,y ®L,
where p/ is the pure subform of p, i.e. p = p/L(1). More generally, one has

Proposition 4
Let ¢ be a Pfisterform and let p be a subform of ¢ with dim p = %dim po+k, k>0.
Suppose that

PF(X,) = NF(x,)-Lh,
where 7 is a form over F' and h is hyperbolic of dimension 2k. Then
— k—1 S
X,=@p M,eL &X,xL"
i=0

Hence, if p is an excellent form, i.e. the class of ¢ in the Wittring of F' is the alternating
sum of a sequence ¢y, ..., p, of Pfisterforms ¢; with ¢; a subform of ¢;;1, one has a
decomposition of the motive X, in terms of the motives M, .

§3 On the K-cohomology of M,

For a variety X over F we denote by A,(X, K}M) the homology of the complex

d d
D Kipns) = @ K@) = @ Ky, k()
vEX(pt1) veX(p) veX(p-1)

where KM denotes the n-th Milnor K-group, X (p) denotes the set of all points of X of

dimension p and d is given by the tame symbol.

Using the deformation to the normal cone (see Fulton) one can define intersection theory
for the groups A,(X; KM). Hence the functors A,( ,KM) are defined on the category
of Chow-motives.

Note that A,(X; KM) = CH,(X) and that for a smooth variety X of dimension d there
is a natural homomorphism

Ap(X; K — HEP (X5 Kpya)

-3 -



induced by the canonical map from Milnor- K-theory to Quillen’s K-groups (which is an
isomorphism for n+p < 2).

For a nonsingular quadratic form ¢ let Dy(p) C KoF = Z be the subgroup

Do(e) = KoF  if ¢ is isotropic
o= 2KyF if ¢ is nonisotropic

and for n > 1 let D, (¢) C KMF be the subgroup generated by symbols in which one
entry is represented by ¢.

One can show that D, (p) is exactly the image of the normmap

N : Ag(X,KM) — KMF.

Theorem 5
For a Pfisterform ¢ of degree n, > 2 one has

KyF forp=d, =2""1 -1

KoF/Do(p) forp=2F—-1;k=1,...,n, —2
Ap(My; K_p) = CHyp(M,) = o 7

Do() forp=10

0 else

The generators of CH,(M,) can be described as follows.

For a Pfistersubform @ of ¢ there is a natural morphism
Gyt My — M,
compatible with the norm maps CHy — Zq. It is induced by inclusion X; — X, for

appropriate choices of representations M, = (X,,p), My = (X;,p) as described above.

The generator of CH,(M,), p = 2% — 1 for some k € {1,...,n, — 1}, is then given by
the image (i, )«([ My ]) of the fundamental cycle [ My ] € CHgy(My), where 9 is any
Pfistersubform of ¢ of degree ny =k + 1.

Theorem 6
Let ¢ be a Pfisterform of degree n, > 2.

i) Ifp=2F+2-1,0<l<k<n,—1,then A,(M,;K;_,) is cyclic of order at most
2.

ii) If p =0, then the normmap Ay(My; K1) — K F is injective with image D ().
iii) For all other values of p the multiplication map
CH,(M,) ® K1 F — Ap(My; Kq1—)p)

is surjective.



To give some information about the generators for the groups in i) we describe now a
general conjecture about certain elements in the groups A,(M,; K,,).
Let /: N — N be the function with the property

£(p)

p+1=> 2k for some 0< ko <hks <-- <kyp
i=0

Conjecture 7
For Pfisterforms ¢ of degree n, > 2 there exist unique classes

W(p) € Ap(My; Kty ) for 0 <p<dy, p odd,
such that
I) va,(¢) € CHq,(M,) is the generator [ M, ].
IT) For a Pfister-subform v < ¢ one has
(ip,0)«(1p(¥)) = () for 0 <p < dy, p odd.

IIT) For a Pfister-subform ¢ < ¢ with ¢ =19 ® ((a)) one has

(ig.0)* (1(9)) = {a} - Yp—dpta, (W) for dy <p < dy, p odd.

For IIT) note that ¢(p —d, + dy) = £(p) — 1.

For {(p) = 0 the classes 7,(y) are exactly the generators of CHp,(M,) as described above
(this follows from I) and II)). I have constructed the classes v,(¢) for ¢(p) < 1 (which
are the generators for A,(M,; K1_p)) and it is probable that I can do this for ¢(p) < 2.
Moreover our methods should lead to a proof of

Conjecture 8
For a Pfisterform ¢ of degree n, > 2 one has for n < 2:

KMF for p =d,
A, (M, KM ) = [Ké\/l—f(p)F/Dn—é(p)(Qo)] for 0 < p < d,, p odd,
P 0 for 0 < p < dy, p even
Dy (p) p=20

Here we understand KMF =0 for r < 0. For 0 < p < d,, p odd, the isomorphism is
given by multiplication with ~,() and for p = 0 by the normmap to KM F'.

Conjecture 8 is definitely false for n > 3 (e.g. for n, = 2 the motive M,, is the conic

M
corresponding to ¢ and KM F Mo, A1 (My; K37 is neither surjective nor injective in

general). Nevertheless the classes 7,(¢) should form a (part of a) fundamental set of
generators of the groups A,(M,; KM).



