Some new results on the Chowgroups of quadrics

Markus Rost Regensburg, January 1990

§1 Introduction

The computation of some K-cohomology groups of certain normvarieties plays an essential role in the investigation of the bijectivity of the Galoissymbol

$$K_n^M F/p \to H^n(F; \mu_p^{\otimes n}).$$

In the case p = 2 these normvarieties are quadrics associated with Pfisterforms.

In this note we describe some new results and conjectures about such quadrics. In short we have the following results:

It turns out that for a *n*-fold Pfisterform φ the Chow-motive of its associated quadric X_{φ} can be described as

$$X_{\varphi} \simeq M_{\varphi} \times \mathbb{P}^{d_{\varphi}}, \quad d_{\varphi} = 2^{n-1} - 1,$$

where M_{φ} is a certain Chow-motive associated with φ . We give a complete description of the Chowgroups of M_{φ} and of the generators of $H^p(M_{\varphi}; K_{p+1})$; moreover we have a precise conjecture about (the Milnor-*K*-theory version of) $H^p(M_{\varphi}; K_{p+r})$ for $r \leq 2$.

This note contains no proofs. Detailed proofs will be prepared as soon as possible.

$\S 2$ Motific decomposition of certain quadrics

We work in the category of Chow-motives over a field $F(\text{Char } F \neq 2)$ (see e.g. [Fulton; Intersection Theory, § 16]). For a motive M = (X, p) let $CH_k(M) = p_*(CH_k(X))$, where $CH_k(X)$ is the group of k-dimensional cycles modulo rational equivalence. We denote by $L = (\mathbb{P}^1, p)$ the Tate motive and by L^i its *i*-th power. For a quadratic form φ over F we denote by X_{φ} the corresponding projective quadric (dim $X_{\varphi} = \dim \varphi - 2$) and by \overline{X}_{φ} its associated Chow-motive.

One first observation is

Proposition 1

Let $\varphi = \psi \perp h$, where h is a hyperbolic plane and dim $\psi \geq 0$. Then

$$\overline{X}_{\varphi} = \overline{X}_{\psi} \otimes L \oplus L^0 \oplus L^d; \ d = \dim \psi.$$

Hence the motive of the quadric X_{φ} depends essentially only on the class of φ in the Wittring of F. Moreover the proposition shows that the motive of a trivial quadric X_{φ} (i.e. $\varphi = \Sigma(-1)^i x_i^2$) is just a sum of certain powers of the Tate motive.

Proposition 2

Let K|F be any field extension. Then $\alpha \in \operatorname{End}(\overline{X}_{\varphi})$ is invertible if and only if $\alpha_K \in \operatorname{End}((\overline{X}_{\varphi})_K)$ is invertible.

This is basic to all what follows. To proof proposition 2 one considers the filtration on $\operatorname{End}(\overline{X}_{\varphi}) = CH_d(X_{\varphi} \times X_{\varphi})$ $(d = \dim X_{\varphi})$ given by the dimension of cycles after projection to one factor.

For a *n*-fold Pfisterform φ we call $n_{\varphi} = n$ the degree of φ ; moreover we put $d_{\varphi} = 2^{n-1} - 1$. Note that dim $X_{\varphi} = 2d_{\varphi}$.

Theorem 3

For a Pfisterform φ there exists a unique motive $M = M_{\varphi}$ such that for extensions K|E|F there exists

i) an isomorphism

$$M_E = L_E^0 \oplus L_E^{d_{\varphi}}$$

if φ_E is isotropic.

ii) a commutative diagram of isomorphisms

$$\mathbb{Z}$$

$$i_E \swarrow \qquad \searrow i_K$$

$$CH_{d_{\varphi}}(M_E) \xrightarrow{\operatorname{res}_{K|E}} CH_{d_{\varphi}}(M_K)$$

iii) a commutative diagram of injective homomorphisms

$$\begin{array}{ccc} CH_0(M_E) & \xrightarrow{\operatorname{res}_{K|E}} & CH_0(M_K) \\ \searrow N_E & \swarrow N_K \\ & \mathbb{Z} \end{array}$$

with

Im
$$N_E = \begin{cases} 2\mathbb{Z} & \text{if } \varphi_E \text{ is anisotropic} \\ \mathbb{Z} & \text{if } \varphi_E \text{ is isotropic.} \end{cases}$$

The motive M_{φ} can be described more precisely as follows: Let $\varphi = \mu \otimes \langle \langle a \rangle \rangle$ where μ is a Pfisterform of degree $n_{\mu} = n_{\varphi} - 1$ and put $\rho = \mu \perp \langle -a \rangle$. Then $M_{\varphi} = (X_{\rho}, p)$ for a certain projector $p \in \operatorname{End}(\overline{X}_{\rho})$ such that p_* is the identity on $CH_{d_{\varphi}}(X_{\rho})$ and $CH_0(X_{\rho})$ (note that $d_{\varphi} = \dim X_{\rho}$). Hence $CH_{d_{\varphi}}(M_{\varphi}) = \mathbb{Z}$ with the cycle X_{ρ} as canonical generator; we denote this generator by $[M_{\varphi}]$. Moreover $CH_0(M_{\varphi}) = CH_0(X_{\rho})$; the homomorphisms N in iii) are given by the degree of a zero-cycle.

The motive of X_{ρ} decomposes as

$$\overline{X}_{\rho} = M_{\varphi} \oplus \overline{X}_{\mu'} \otimes L,$$

where μ' is the pure subform of μ , i.e. $\mu = \mu' \perp \langle 1 \rangle$. More generally, one has

Proposition 4

Let φ be a Pfisterform and let ρ be a subform of φ with dim $\rho = \frac{1}{2} \dim \varphi + k$, k > 0. Suppose that

$$\rho_{F(X_{\varphi})} \simeq \eta_{F(X_{\varphi})} \bot h,$$

where η is a form over F and h is hyperbolic of dimension 2k. Then

$$\overline{X}_{\rho} = \bigoplus_{i=0}^{k-1} M_{\varphi} \otimes L^{i} \oplus \overline{X}_{\eta} \otimes L^{k}.$$

Hence, if ρ is an excellent form, i.e. the class of φ in the Wittring of F is the alternating sum of a sequence $\varphi_0, \ldots, \varphi_n$ of Pfisterforms φ_i with φ_i a subform of φ_{i+1} , one has a decomposition of the motive X_{ρ} in terms of the motives M_{φ_i} .

\S 3 On the K-cohomology of M_{φ}

For a variety X over F we denote by $A_p(X, K_n^M)$ the homology of the complex

$$\bigoplus_{v \in X_{(p+1)}} K^M_{n+p+1}\kappa(v) \xrightarrow{d} \bigoplus_{v \in X_{(p)}} K^M_{n+p}\kappa(v) \xrightarrow{d} \bigoplus_{v \in X_{(p-1)}} K^M_{n+p-1}\kappa(v),$$

where K_n^M denotes the *n*-th Milnor K-group, $X_{(p)}$ denotes the set of all points of X of dimension p and d is given by the tame symbol.

Using the deformation to the normal cone (see Fulton) one can define intersection theory for the groups $A_p(X; K_n^M)$. Hence the functors $A_p(\ , K_n^M)$ are defined on the category of Chow-motives.

Note that $A_p(X; K^M_{-p}) = CH_p(X)$ and that for a smooth variety X of dimension d there is a natural homomorphism

$$A_p(X; K_n^M) \to H^{d-p}(X; K_{n+d})$$

induced by the canonical map from Milnor-K-theory to Quillen's K-groups (which is an isomorphism for $n + p \leq 2$).

For a nonsingular quadratic form φ let $D_0(\varphi) \subset K_0 F = \mathbb{Z}$ be the subgroup

$$D_0(\varphi) = \begin{cases} K_0 F & \text{if } \varphi \text{ is isotropic} \\ 2K_0 F & \text{if } \varphi \text{ is nonisotropic} \end{cases}$$

and for $n \geq 1$ let $D_n(\varphi) \subset K_n^M F$ be the subgroup generated by symbols in which one entry is represented by φ .

One can show that $D_n(\varphi)$ is exactly the image of the normmap

$$N: A_0(X_{\varphi}K_n^M) \to K_n^M F.$$

Theorem 5

For a Pfisterform φ of degree $n_{\varphi} \geq 2$ one has

$$A_p(M_{\varphi}; K_{-p}) = CH_p(M_{\varphi}) = \begin{cases} K_0 F & \text{for } p = d_{\varphi} = 2^{n_{\varphi} - 1} - 1\\ K_0 F/D_0(\varphi) & \text{for } p = 2^k - 1; \ k = 1, \dots, n_{\varphi} - 2\\ D_0(\varphi) & \text{for } p = 0\\ 0 & \text{else} \end{cases}$$

The generators of $CH_p(M_{\varphi})$ can be described as follows.

For a Pfister subform ψ of φ there is a natural morphism

$$i_{\psi,\varphi}: M_{\psi} \to M_{\varphi}$$
,

compatible with the norm maps $CH_0 \to \mathbb{Z}_0$. It is induced by inclusion $X_{\tilde{\rho}} \to X_{\rho}$ for appropriate choices of representations $M_{\varphi} = (X_{\rho}, p), M_{\psi} = (X_{\tilde{\rho}}, \tilde{p})$ as described above.

The generator of $CH_p(M_{\varphi})$, $p = 2^k - 1$ for some $k \in \{1, \ldots, n_{\varphi} - 1\}$, is then given by the image $(i_{\psi,\varphi})_*([M_{\psi}])$ of the fundamental cycle $[M_{\psi}] \in CH_{d\psi}(M_{\psi})$, where ψ is any Pfistersubform of φ of degree $n_{\psi} = k + 1$.

Theorem 6

Let φ be a Pfisterform of degree $n_{\varphi} \geq 2$.

- i) If $p = 2^k + 2^{\ell} 1$, $0 < \ell < k < n_{\varphi} 1$, then $A_p(M_{\varphi}; K_{1-p})$ is cyclic of order at most 2.
- ii) If p = 0, then the normmap $A_0(M_{\varphi}; K_1) \to K_1 F$ is injective with image $D_1(\varphi)$.
- iii) For all other values of p the multiplication map

$$CH_p(M_{\varphi}) \otimes K_1F \to A_p(M_{\varphi}; K_{1-p})$$

is surjective.

$$-4 -$$

To give some information about the generators for the groups in i) we describe now a general conjecture about certain elements in the groups $A_p(M_{\varphi}; K_n)$.

Let $\ell : \mathbb{N} \to \mathbb{N}$ be the function with the property

$$p+1 = \sum_{i=0}^{\ell(p)} 2^{k_i}$$
 for some $0 \le k_0 < k_1 < \dots < k_{\ell(p)}$

Conjecture 7

For Pfisterforms φ of degree $n_{\varphi} \geq 2$ there exist unique classes

$$\gamma_p(\varphi) \in A_p(M_{\varphi}; K^M_{\ell(p)-p}) \text{ for } 0$$

such that

- I) $\gamma_{d_{\varphi}}(\varphi) \in CH_{d_{\varphi}}(M_{\varphi})$ is the generator $[M_{\varphi}]$.
- II) For a Pfister-subform $\psi < \varphi$ one has

$$(i_{\psi,\varphi})_*(\gamma_p(\psi)) = \gamma_p(\varphi) \text{ for } 0$$

III) For a Pfister-subform $\psi < \varphi$ with $\varphi = \psi \otimes \langle \langle a \rangle \rangle$ one has

$$(i_{\psi,\varphi})^*(\gamma_p(\varphi)) = \{a\} \cdot \gamma_{p-d_{\varphi}+d_{\psi}}(\psi) \text{ for } d_{\psi}$$

For III) note that $\ell(p - d_{\varphi} + d_{\psi}) = \ell(p) - 1$.

For $\ell(p) = 0$ the classes $\gamma_p(\varphi)$ are exactly the generators of $CH_p(M_{\varphi})$ as described above (this follows from I) and II)). I have constructed the classes $\gamma_p(\varphi)$ for $\ell(p) \leq 1$ (which are the generators for $A_p(M_{\varphi}; K_{1-p})$) and it is probable that I can do this for $\ell(p) \leq 2$. Moreover our methods should lead to a proof of

Conjecture 8

For a Pfisterform φ of degree $n_{\varphi} \geq 2$ one has for $n \leq 2$:

$$A_p(M_{\varphi}; K_{n-p}^M) = \begin{cases} K_n^M F & \text{for } p = d_{\varphi} \\ [K_{n-\ell(p)}^M F/D_{n-\ell(p)}(\varphi)] & \text{for } 0$$

Here we understand $K_r^M F = 0$ for r < 0. For $0 , p odd, the isomorphism is given by multiplication with <math>\gamma_p(\varphi)$ and for p = 0 by the normmap to $K_n^M F$.

Conjecture 8 is definitely false for $n \ge 3$ (e.g. for $n_{\varphi} = 2$ the motive M_{φ} is the conic corresponding to φ and $K_3^M F \xrightarrow{[M_{\varphi}]} A_1(M_{\varphi}; K_2^M)$ is neither surjective nor injective in general). Nevertheless the classes $\gamma_p(\varphi)$ should form a (part of a) fundamental set of generators of the groups $A_p(M_{\varphi}; K_n^M)$.