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MARKUS ROST

1. Preliminaries, Conventions, and Notations

o The ground field k has characteristic 0. We fix a prime p. We assume p, C k.
e By a scheme or a variety X (over k) we mean a separated scheme of finite
type mx: X — Speck.

e If X is a smooth variety, then T X denotes the tangent bundle of X.

e Let V be vector bundle over X. We denote by 7y : P(V) — X the projective
bundle associated to V. Moreover

L(V) =,V

denotes the tautological line bundle on P(V).
For the fiber tangent bundle 7'(P(V)/X) one has

T(P(V)/X) =,V @L(V)"/Opw).

Let V' be vector (or an affine) bundle over X. We denote by A(V) — X the
associated scheme V.
By a form we understand a triple (7'/S, L, o) where T'— S are schemes, L is
line bundle on T and a € H(T, L®P) is a form of degree p on L.

There is a natural homomorphism y, — Aut(7/S, L, o) induced from the
standard action of G, on L.
Let (Speck, L, «) be a nonzero form and let u € L be a basis vector. Then
the p-power class

{a} ={a(u)} € Kik/p=k"/(K")?
is independent on the choice of w.
Let (T'/S, L, «) and let T" be a finite group acting on (T'/S, L, @) (i.e., there is
given a homomorphism I' — Aut(7T'/S, L, a)). We say that (T/S, L, «) is an
admissable T'-form if the following conditions hold:
— « is nonzero on an open dense subscheme of T'.
— T has only finitely many fixed points on T" (a fixed point is a point P € T
with gP = P for all g € G).
— At each fixed point P the form « is nonzero.
For vector bundles V, V' on schemes X/S resp. X’/S we denote by V Hg V'
the exterior direct sum, given by the sum of the pull backs to X xg X'.
Similarly we denote by V Kg V' the exterior tensor product, given by the
tensor product of the pull backs.
For forms (T'/S, L, a) and (T'/S, L', o’) we denote by
(T/S,L,0)Rs (T'/S, L', a') = (T xsT')/S, L Rs L', o Kg ')
their exterior product, with the form defined by
(aKs o) (uKsu') = alu)d (u)
for sections u, u’ of L, L', respectively.
If (T/S,L,a) and (T"/S, L, ') are admissable I'-forms, then (T'/S, L, a)Xg
(T'/S,L' &) is an admissable I'-form.
Let (S, H;,«;), @ = 1, ..., n, be admissable I'-forms and let P € S be a

k-rational fixed point. We say that P is twisting for the family (S, H;, a;);, if
the homomorphism

I — pp =[] Aut(H:|P, ai| P)

i=1
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is surjective.

By a cellular variety we mean a variety which admits a stratification by affine
spaces. The motive of a cellular variety is the direct sum of powers of the
Tate motive L, with a summand L®? for each i-cell. If X and Y are cellular,
then X x Y is cellular and one has

CH.(X x Y) = CH,(X) ®z CH,(Y).

Let L be a line bundle L on a smooth and proper variety X over k of dimen-
sion d > 0. We write

§(L) = deg(e1(L)?) € Z.
Here
deg: CHy(X) — CHy(Speck) =Z

is the degree map. If d = 0 we understand by 6(L) the degree of X as a finite
extension of k.
If V is a vector space of dimension n, then

S(L(V)) = deg(cr (L(V))" 1) = (=1)" L.
The index Ix of a proper variety is
Ix = deg(CHo(X)) C Z

If p is a prime, a field k is called p-special if char k # p and if k has no finite
field extensions of degree prime to p.
Let (S, L, a) be a form. We consider the bundle of algebras

A=A(S,L,a) =TL/I

over R. Here T'L is the tensor algebra of L and I is the ideal subsheaf
generated by

AP — q(\)

for local sections A of L. A a is bundle of commutative algebras of degree p.
Note that

p—1
A~ @
i=0
as vector bundles. We denote by
Na: A— Og

the norm of the algebra A.
We use the notation

Cyclic?(2) = (27)/(Z/p)-
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2. Consequences of Voevodsky’s work

In this paper p always is a prime, k is a field with char k = 0 and KMk denotes
Milnor’s n-th K-group of k. Let
h(n,p) : K'rl;/[k/p — Hgﬁ(kv M?n)v
{a1,...,an} — (a1,...,a,).

be the norm residue homomorphism.

2.1. Voevodsky’s theorem. V. Voevodsky announced in October 1996 the fol-
lowing theorem:

Theorem (Voevodsky). Let p be a prime and let m be a natural number.

Suppose that for every subfield k C C containing the p-th roots of unity and for
every sequence of elements a1, ..., a, € k¥, 2 < n < m, there exists a smooth
projective variety X over k such that:

(Vl) {al, . ,an}k(x) =01n K}YI/C(X)/])
(V2) X has dimension d =p"~t — 1.
(V3) In the category of Chow motifs over k(X) with Zy,)-coefficients there erist
an effective object Y such that
Xpx) =L@ (Y ®L).

Here L denotes the Tate motive.
(Va) The characteristic number sq(X(C)) € Z is not divisible by p>.
(Vs) The sequence

H Kok(z) N H Kik(z) RENy N
TE€X (1) z€X(0)
is exact. Here Nx = % Ny )|k
Then one has:

(BK) The Bloch-Kato conjecture holds in weight m and mod p, i.e., the norm
residue homomorphism hy, ) is bijective. (for all fields k with chark # p

)

(S) For n < m, for elements ay, ..., an, € k*, and for a smooth projective
variety X satisfying (V1)—(Vs), the sequence
N b A1yeneyQn b n n
[T Hune) =5 Kk 220l H ()
z€X(0)
18 exact.
2.2. A degree formula for s4(X). We fix a prime p be a prime and a number d
of the form d = p™ — 1.
Let X, Y be irreducible smooth proper varieties over k with dimY < dim X =d
and let f: X — Y be a morphism. Define deg f as follows: If dim f(X) < dim X,

then deg f = 0. Otherwise deg f € N is the degree of the extension of the function
fields:

f+([X]) = deg f - [Y].
Theorem 1 (“Degree formula”).
(Sd(X)/p) = (deg f) (Sd(Y)/p) mod Iy
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This is a consequence of algebraic cobordism theory. One uses the spectrum ®
considered in [4].

Corollary 2. The class
sa(X)/pmod Ix € Z/Ix
18 a birational invariant

2.3. On a higher degree formula. All of what I am saying in the next lines
are mainly guesses from my poor knowledge of Morava K-theories and algebraic
cobordism. Everything has to be checked.

Let @, be the ®-construction of [4], iterated r-times, i.e., @, is a tower consist-
ing of EQid’idHZ/p, it =0, ..., r with all intermediate towers of length 2 being a
suspension of ®. Then the Thom class lifts to MU — ®,. and for X of dimension
rd we have a fundamental class

[X] S Wgrd’Td(X A\ (I)T).
Define ¢(X) € Z/p as the image of [X] in
mrdﬂod(Spec kA (I)r> = ﬁgrd’rd(spe(‘, kA EQTd’Tde/p> = Z/p
From the known structure of Morava K-theories it follows that (perhaps up to
multiplication with a number prime to p)

H(X1 x Xo x -+ x X)) = (sa(X1)/p) (sa(X2)/p) -+~ (sa(X:)/p) mod p
if dim X; = d.
Furthermore, let ¥ be the fibre of ®, — Hy/,, and define J(X) C Z as the image
of
W?rd,rd(X A \I/> — wzrd,rd(Spec kA \I/) = ﬁgrd’rd(spe(‘, kA E2Td’Tde/p> = Z/p

Note that ¥ = ¥24:4P,._,.
Then the “higher degree formula” is
(1) t(X)=tY)(deg f) mod J(Y)
forany f: X — Y with X, Y, smooth proper of dimension rd. It should be possible
to show this in the same way as for the degree formula for s;/p.
Moreover, one should have
(2) J(X)=J(Y), if deg f is prime to p

by a transfer argument.
I guess that the following is true:
Let X;, i =1, ..., r be of dimension d and suppose that I(x, .y C pZ for all i,
where N '
Fi=k(X1 x- - xX; x--xX,).
Let X = X1 x---x X,.. Then

(3) J(X) C pZ

In the case of curves (d = 1 = 2' — 1) one has (?)
J(X) = (mx)u (Ko(X) M)
where

Ko(X) W = ker(Ko(X) — CH’(X))
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and wx : X — Speck is the structure map for X.
In this case (3) is not difficult to show:

Proof for d =1 and r = 2: One has an exact sequence
H Ko(Xok(e)) = Ko(X1 ¥ X)W — KO(X2k(X1))(1) -0
€X1(0)
Push forward along 7': X; X X5 — X; maps this sequence into the sequence
CH()(Xl) — Ko(Xl) — Ko(k(Xl)) —0
Since the index of Xay(x,) is 2-divisible, we see that
7 (Ko(X1 x X2)M) € CHo(X1) + 2Ko(k(X1))
The claim (3) follows since Ix, is 2-divisible. O

It should be possible to extend this reasoning to the general case (7).

In my application one has r = p and the X; are of the following type: Let
am € k§ be such that {a1,...,a,} is a nontrivial symbol, let k = ko(t1,...,%p)
and let X;/k be a norm variety for the symbol {a1,...,a,,t;}. We may take X; to
be defined over kq(t;). Note that then each of the fields ko(¢;)(X;) has a ko-place,
hence the field F; has a ko(t;)-place, whence {ay,...,an,t;} is nontrivial over F;.
Therefore the index of X;p, is p.
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3. The Conner-Floyd theorem: computing sq(X)

In this section we indicate how one can get information about s4(X) from a
(Z/p)"~1-action on X with isolated fixed points.

We assume that p is odd and ¥ C C. For odd p the Chern number s4(X) =
34(TX) of a complex variety is also an Pontrjagin number of the underlying dif-
ferentiable manifold M = X (C). Therefore the number s4(X) can be computed in
terms of the class [M] of M in the oriented cobordism ring.

In order to compute this number for certain norm varieties we use the following
theorem of Conner and Floyd: ( [2]).

Theorem 3. Letd = p™—1, let G = (Z/p)™, and let M be an oriented differentiable
manifold. Suppose that there exist a fized point free G-action on M. Then the class
of M in the oriented cobordism ring Q2. lies in the ideal I,_1 , generated by Milnor
the base elements My, = p- Point, My, ..., My_1, (dim M, , = p* —1).

Corollary 4. Let d = p™ — 1, let G = (Z/p)™, and let M be an oriented differen-
tiable manifold of (real) dimension 2d. Suppose that there exist an fized point free
G-action on M. Then sq(M) is divisible by p?.

Proof. This follows from sq(M) € pZ for all M of dimension 2d and sq(M; x Ma) =
0ifd>dimX; > 0. O

Using canonical desingularization [1] and the Conner-Floyd theorem one finds:

Corollary 5. Let p be odd, let X, Y be proper varieties with Y smooth. Suppose
that G = (Z/p)™ acts on X andY such that the fized point schemes Fx and Fy are
of dimension 0 and suppose that Fx C Xieg. Suppose further that the families of
G-representations (I'pX) pery(c), (IPY ) pery () are isomorphic. Then there exist
a smooth proper variety X together with a birational isomorphism X — X such

that X(C) and Y (C) represent the same element in Q0 /In_1 p.
In particular, if dm X =dimY =d =p™ — 1, then

sa(X) = sa(Y) mod p?

This consequence is extremely useful to compute the birational invariant of
Corollary 2.

Proof. By canonical desingularization [1] we may assume that X is smooth. Let Z
be the multifold connected sum of the differentiable manifolds X (C) and —Y(C),
build by glueing together pairs of fixed points with isomorphic G-normal structures.
Since S?? and S! x S29~! are bordant, one has [Z] = [X] — [Y] for the cobordism
classes. On Z we have a fixed point free G-action, and the Conner-Floyd theorem
shows [Z] € I;,—1 p. O

If the families of G-representations (TpX)pecry(c), (TPY)pery (c) are isomor-
phic, we say that X and Y are G-fized point equivalent.
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4. The forms A(ai,...,ay) (“algebras”)
Given a scheme S and forms (S, H;, «;), i = 1, ..., m, we define forms
Alaq, ... apn) = (Pn/S, Kn, @,), 0<n<m.

For n =0 we put

P =S5,
KO = OS)
o (t) = 17,

Suppose (P,—1/S, Ky—1,®,,—1) is defined. We consider the 2-dimensional vector
bundle

Vo=0p, ,®H,Xs K,,_1
on P,_1, and the form
on: V= 0Op,_,
on V,, defined by
on(t —u®v) =t" — ay(u)P,—1(v)

for sections ¢, u, v of Op, ,, Hy, K,_1, respectively.
Let (Po=1,j, Vajs @nj), 3 =1, ..., p—1 be copies of (P,,_1, Vy, ¥n). We put

p—1
(Pn/S; K, q)n) = (Pnfl/Sa Kn717¢n71) Xs &S (P(Vn,j)’L(Vnﬁj)vwnJ)'
j=1

We assume now that S = Speck and list the most important properties of the
forms (P, Kp, ®p).

Lemma 6. The variety P, is smooth, proper, cellular, connected, and of dimension
p*—1.

Proof. Indeed, P, is an iterated projective bundle. The computation of the dimen-
sion is clear for n = 0 and for n > 0 we find

dim P, =dimP,—1 + (p— 1)(1 + dim P,,_1)
=@ =D+ p-p" T =p" -1
by induction on n. O
Lemma 7. §(K,) = (—1)" mod p.
Proof. This is clear for n = 0. Let

up = c1(Ky) € CHY(P,), n >0,
un—l,j = Cl(K"—Lj) € CHl(Pn—l,j)) n Z 1) j =1L ...,p— 13
Znj = C1 (L(Vnﬁj)) € CH! (]P’(Vnyj)), n>1,57=1,...,p—1.
For n>1 let
p—1

Pn: nflePnfl,j

j=1
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Then
p—1
CH*(P,) = CH*(P,_1) ® (X) CH*(P_1,5)
=1
and
CH*(P))|zniij=1,....p—1
CH*(Pn>: 5 ( )[Z ] ] : Y ap ] .
<zn,j — Zn,jUn-1,55 ] = 1, R 1>
Moreover
p—1
Up = Up_1 + Zn, with Z, = ZZ"J
j=1
Note that
U,Irjln_ill = Uﬁi}t] = 0, Zﬁt}il-‘rl = 0

by dimension reasons. Hence, calculating mod p,

n—1 n—1 n—1 n—1 n—1
— = — P = —=
b = (up1 +Z,)? =uL_, +Z =7

One finds (using Lemma 8 below)

uﬁn_l — u£"*1—1u£"*1(p—1) _ uﬁ"’l—lgﬁ"’l(zﬁ—l)
=L A )
= _u2111_125T17125T271 T Zn:;;—i
= —uﬁi}l_ zn,lufl:l_lzmguf:;_l . -zmp_luf:;l_l

It follows that

§(Kn) = —6(Kn-1)(—6(Kn-1,1)) (=6(Kpn-1,2)) -+ (—6(Kn-1,-1))
= —0(Kp—1) mod p.

whence the claim. O
Lemma 8. Let R be a ring over F,, and let vy, va, ..., vp—1 € R, be elements with
U%:vgz---:vf,_l = 0. Then

(v1 +vg + -+ ’Up71>p71 = —U1V2 " Vp—1.
Proof. Note that (p — 1)! = —1 mod p. O

The construction of (P,, K, ®,,) is functorial in the forms (S, H;, «;). In par-
ticular the group

Ty = pp € [JAut(S, Hi, i)
=1

acts on (P, K, ®,).
From now on we suppose that o; #0 fori =1, ..., n.

Lemma 9. (P,, K,,®,) is an admissable T'y,-form. All fized points are k-rational.
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Proof. By induction on n. Suppose that (P,—1, K,,—1, ®,,—1) is an admissable I';,_;-
form. It suffices to show that (P(V},),L(V},), ¢x) is an admissable I'y,-form. It is easy
to see that ¢, is generically nonzero. Every I',,-fixed point on P(V},) lies over a I, 1~
fixed point P € P,_1. It suffices to show that the fibre (Spec x(P), L(V;,)|P, ¢n|P)
is an admissable I'-form where

' = Aut(S, Hp, ap) = ker(T', = Tp_q).
This is easy to see: If (Speck, H, «) is a nonzero form over k, then

pp = Aut(Speck, H, a)

has in P(k @ H) only the two fixed points P(0 & H) and P(k & 0). The form
o(t —u) = tP — o(u) is nonzero on the lines t = 0 and u = 0. O

Lemma 10. Let n, € P, be the generic point. Then
{a1, .., 00, Pp(n)} =0 € K +1k( )/ D-
Proof. By induction on n. Suppose that
{1, san 1, P 1(n_1)} =0 € KME(P,_1)/p.
One has

(I)n(nn): n—1 nn 1 H 1_an n— 1,j(77n—1,j))'

Hence it suffices to show
{Oél,...,Oén,l Oénq)n 1](77” 1])}€K+1k( )/p

for each j =1, ..., p— 1. This follows from {a,1 — ab} = —{b, 1 — ab}. O
Remark 1. Given the forms (Speck, H;, «;), form the vector space
p—1
A4,= P B w0 HPM
J1yeein=0
One has dim A,, = p™. On A, there is the form
p—1
0, = @ (—a1)® @ @ (—ay)®n
G1eenjn=0

Consider the form (P(A4,),L(Ay), ©,). If p = 2, this form satisfies all the properties
of (P, Ky, ®,,) listed above (up to a sign in the computation of §(IL(4y))). If p > 2,
all properties of (P,, K, ®,) are also valid, except for the splitting of the symbol.
If n=1,n=2,or n =p = 3, one may define on A, an algebra structure with
norm form ©J, in such a way that (P(A,),L(A4,),©)) satisfies all the properties.
The (P,, K,,,®,) form an approximation to these algebras, with the advantage,
that (P, Kp, ®,) can be constructed for all p and n.
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5. The forms B(ai,...,a,) (“relative algebras”)

Let n > 1. Given forms (S, H;,«;),i=1,...,n—1,and (5'/S, L, ), we define
a form

B(ai,...,an—1,8) = (P./S" K|, &)
as follows. Let (P,—1/S, Kn—1,®,_1) be as in section 4. Put

P, = S’ X5 Pn1
We consider the 2-dimensional vector bundle

Vn = Oﬁn71 S L &S anl

on P,_1, and the form

@nivng)o?

on V,, defined by
Bult—u®v) = 1 — Bu)By_1(v)

for sections ¢, u, v of Op _ , L, K1, respectively.
Let

(ﬁnfl,jvVn,jaan,jvanl,jvpnfl,j)a j = 17 R Za 1
be copies of (Py_1, V1, 3,,, Kn_1, Pa_1). We put

p — —
(Pn/S" K5, @) = Rg (P(Ving), L(Ving) B j)-

Jj=1

We assume now that S = Speck and list the most important properties of the
forms (P, K|, ®!).

Lemma 11. The variety P!, is smooth and proper over S’, and of relative dimen-
sion p™ — p" L. If S' is cellular, so is P.,. The fibres of S/S’" are connected.

Proof. Note that P, /S’ is an iterated projective bundle. Moreover
dim P/ /S" = (p — 1)(dim P,_; + 1) = p™ —p"~!
by Lemma 6. |
Let
u, = (L) € CHY(P)),
tn—1; = 1(Kn_1;) € CH' (Po_15),
vp = c1(L) € CHY(S").
Lemma 12. One has
=u,P vfbnfpnil mod p.
If S’ = Speck, then
§(K!) = deg(u,”" """ ") = —1 mod p.
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Proof. Let
—~ p—1
Po=8x]][Pu-1;
=1
Then
—~ p—1
CH"(P,) = CH*(S") @ Q) CH (Po-1,5)
j=1
and
CH*(P) = — CH"(Po)[znj; J = L....p= 1] .
(zp ;= 2nj(Un +un—1;); j=1,...,p—1)
Moreover
p—1
u; =7Zn, with Z, = ZZ"J
j=1

Recall that uf::ll ; = 0. Calculating mod p, one finds

n _an
=ZP

'p
u”l n
_ p" L. p"
- Zn,l + + Zn,p—l

-1 n—1 n—1 n—1
p" —1 P —1
zh (Un + Unfl,l)p (p—1) 4+ Zn,p—l(vn + unfl,pfl)p (p—1)

n
LTt e T N1 e T T (p-1)
= Zn1 (vh + un—1,1) +ot Zn,p—l(”n + un—1,p—1)
,—1 —1 n—1 n—1
— " T - o P p"(p—1)
- Zn,l Un + + Zn,pflvn

_=p" " (1) p™ T p T (p—1)
=z vP =ul, v }

This proves the first claim.

-1
_ p" T+l :
Suppose v, = 0. Then 2, ; = 0. One finds mod p (using Lemma 8)
/ pn—l(p_l) _ pnfl pn—l o pn—l p—1
Up, - (zn,l + zn,2 + + Zn,p—l)
-1 n—1 n—1
_ Lt et
- Zn,l Zn,2 Zn,p—l
_ o1 n-1_q Pl
= TZnaUp_11 2n2Up_192 " Znp—1Up_1p—1

Since §(K,—1) # 0 mod p, it follows that
5(K7Iz) = _(_5(Kn—1,1)) (_5(Kn—1,2)) T (_5(Kn—1,p—1))

= —1 mod p,
whence the second claim. O
From now on we suppose that «; £ 0 fori =1, ..., n—1. Let I" be a finite group,

let ' — I';,—1 be an epimorphism and let I' — Aut(S’, L, 8) be a homomorphism.
Thus I' acts on all the forms (Speck, H;,«;), i =0, ..., n—1, and (S, L, B).

Lemma 13. Suppose that (S’, L, 3) is an admissable T'-form with all fixed points
k-rational. Moreover suppose that each fized point is twisting for the forms

(S, Hjyaep),i=1,...,n—1, and (S, L, B).
Then (P!, K] ,®!) is an admissable T'-form with all fixed points k-rational.
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Proof. This follows as for Lemma 9. |
Lemma 14. Suppose that S’ is irreducible. Let n, € P, be the generic point. Then
{at, .. an_1,B0m), Pn(nn)} =0 € K’rl;/[—i-lk(Pn)/p'

Proof. This follows as for Lemma 10. |

Remark 2. Given the form (S, L, 8) one may define the “Kummer algebra”
A=A, LA =L L% @ ... L}
with the product given by the natural multiplication in the tensor algebra using
the form B: L® — L®° to reduce the degree mod p. One finds
CH*(P(4)) ® F, = CH*(Y") @ Fp[z]/(a? — 2P~ 'y)
with 2 = ¢; (L(A)) and y = ¢1(L).
Hence we have a homomorphism
R =TF,[z]/(z" — 2P 'y) — CH"(P(A)) ® F,
Lemma 12 shows that there is a homomorphism
R — CH*(P)) @ F,, e ul? e
If one thinks in terms of the (in general nonexisting) algebras
An = A(O[l, b '7an717ﬂ)
with “subalgebras”
Anfl = A(Oél, o aanfl)a
and one imagines to form something like the projective space P4, _,(A,), then one
may think of P/ as an approximation P, — P4, _,(A,) with the homomorphism

R — CH*(P)) ® F), being the pull back on the Chow rings (if say S’ = P> and
with L the universal line bundle).
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6. The forms C(ay,...,a,) (Chain lemma construction)
Let n > 2. Given forms (S, H;,«;),i=1,...,n—1,and (5'/S, L, ), we define
forms
Cr =Crlar,...,an-1,8) = (S+/Sr—1, Ly, Br), r>—L
For r = —1, 0 we put
(S—1/S—2,L_1,8-1) = (S/S, Hy—1,0n-1),
(S0/S-1, Lo, o) = (5"/S, L, B).

Let » > 0 and suppose C,_5 and C,._; are defined.
Let

(P'r/zfl,r/STfl’ K:zfl,r’ q){nfl,r> = Blay,...,an—1,Br-1)
be the form constructed in section 5, starting from (S, H;, o), it = 1, ..., n — 2,
and (Sy—1/Sr—2,Ly—1,Br-1). Put
(ST/ST—la L,, BT) = (ST—Q/ST—3a Lo, BT—2) s, _» (sz—l,r/sr—la K’:L—l,rﬂ (I):L—l,r)‘
We assume now that S = Speck and list the most important properties of the

forms (S;/Sy—1, Ly, Br).

Lemma 15. The variety S, is smooth and proper over S', and of relative dimen-
sion r(p"~t —p"=2). If S’ is cellular, so is S,. The fibres of S/S’ are connected.

Proof. This follows from Lemma 11. For the dimension note
dim S, /S, -1 = dim P,Q_LT/ST,l =pt_pn2

by Lemma 11. 0

Thus if dim S’ = (p' — 1)p" for some ¢ > 0, then dim S, = (p'*1 — 1)p"~1L.
Theorem 16. Let ¢ > 0 and suppose that S’ is smooth and proper of dimension
(pt —1)p™. Then

0(Lp) = 6(L) mod p.
The proof requires some calculations.
Let a, b € F,,, and let r > 0 be an integer. In the ring Fp[z1,..., 2] let
r—1=a,
zo = b,
T = Zm + Tm—2, 1<m<r.
Then
Top = Zok + Z2k—2 + -+ 24+ 22 + b,
Tok+1 = Z2k—1 + 22k—3 + -+ + 23 + 21 +a.
We denote by I the ideal generated by
2P =zt 1<m<r
and put
R(a,b) =F,lz1,...,2:]/1.

The elements

2l =i T = (g, i), 0<i;<p—1

T
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form an Fp-basis of R.(a,b). For u € R,(a,b) let ¢, (u) be the coefficient of
p—1 p—1
Zl . ..Zm .

Lemma 17. If 1 <r < p one has cT(:E:(pfl)) =1 in R.(a,b).

Proof. One has for 1 <m < p:

zz(pfl) - z%mfl)ﬂp*m)

— p(m—1)+(p—m)
(Zm + xm—Q)
= (28, + :cfn72)(m71)(zm + $m72)(p7m)

= (meg;—ll + xfn72)(m_1)(zm + xm—2)(p_m)-
Hence for m < p one has

cm(xm(p—l)) _ Cm—l(iﬁ,(:l:ll)(pil))-

The claim follows by induction. O

Proposition 18. If (a,b) # (0,0), then R,(a,b) is isomorphic to a product of rings
of the form

Fplor,..., 0]/ (0], ...,0}), k>0.
Proof. By induction on r > 0. The case r = 0 is obvious.

Suppose b # 0. Then the polynomial

p p—1
z] — 217

is separable with roots z; = ib, i € .. It follows that we have isomorphism
Ry(a,b) = [] Re(a,b)/(z1 — ib).
i€F,,
The ring R, (a,b)/(z1 — ib) is the quotient of Fp[za,..., 2] by the ideal generated
by
2P — zmzﬁ;ll, 2<m<r

with

xg = b,

r1 =1ib+ a,

Ton = Zm + T2, 2<m<T.
Hence R,(a,b)/(z1 —ib) ~ R,_1(b,ib + a). The claim follows from the induction

hypothesis.
Suppose b = 0. Then a # 0. In this case we consider the homomorphism

o: Fplz1, ..., 20] = Fpla1]/(2)) ® R—1(0,1),
Zm = (@+21) @ zip—1, 2<m<r,
z21—= 21 ® 1.

We claim that ¢(I) = 0. For this it suffices to show

o(zh — zm:cﬁ:_ll) =0, 1<m<r
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This is obvious for m = 1. If m = 2, then
(25 — 2028 71) = p(25 — z22(z1 + )7 )
=(a+zn)Pe-((a+z21)®@zn)(n®1+1®a)"
=(a+z) @20 — ((a+2)®2)((= +a)®1)p71
=(a+21)’ @ () —2z)=0.

-1

If m =2k > 2, then
(23, — ZZk»’Cg;;_lO = @(ng — zop(2zak—1 + -+ 23+ 21+ a)pfl)

=(a+z)f @25, —

—((a+z1)®22k_1)((a+21)®22k—2+"'+(a+21)®22+21®1+1®a)p_1

=(a+2n) @2y, —

7(((1 +21)® 22;6,1) ((a +21)Qzop2+ - +(a+21) Q20+ (a+21)® 1)p71

-1
=(a+21)"® (25, — zok-1(200—2 + -+ 22 +1))"
=(a+21)! ® (25_; — Z2k—1x12)l;12) =0.
If m=2k—12> 3, then
(B — zan—17h,Ly) = () — 221 (zan—2 + -+ 22)7 )
= (a + Zl)p & (ng_Q — 22k72(22k73 + -+ Zl)p_l)
=(a+2)P® (25, _,— zzk,gzg;_l3) =0.
It follows that ¢ induces a homomorphism
?: Rp(a,b) = Fpla1]/(27) ® Rr-1(0,1),
Zm = (a+21) ® 2m-1, 2<m<r,

21— 21 Q 1.
© is obviously surjective. By dimension reasons, p must be an isomorphism. Again
the claim follows from the induction hypothesis. [l
Corollary 19. u?" = u? for all u € R,(0,1). O

Corollary 20. Let n > 2, and let u,, = zgn’p € R,(0,1). Then cp(uy,) =1.

Proof. For n = 2 this is Lemma 17. Moreover, by Corollary 19, the element u,
does not depend on n. [l

We rewrite things in a homogenous form. Let x be a variable and let
R =Fplz,z1,...,2)/T

where I’ is the homogenous ideal generated by

22— el 1<m<p
with
r—1 = 0,
Lo = I,

T = Zm + Tm—2, 1<m<p.
Then R'/(x—1) = R,(0,1). Corollaries 19 and 20 yield the following two corollaries:
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Corollary 21. u?" = uPz?" =P for allu € R'. O
Corollary 22. Letn > 2. Then

ab TP = ,25713:’"”7’”2 mod 2P P 1R/
Proof. Recall the basis elements (z7); of R,(0,1) considered above. The elements

(27 2P" —P=171) ; form a basis of the homogenous subspace of R’ of degree p"™ — p. It
follows that

xgnfp = cp(zgnfp)szlzgfl . .2571:0;;”7;92 mod <Zsz"7p7‘J‘; |J| < p? —p).

But if [J| < p? — p then z7a?" —P=|7| g 2" —P*+1R/, O
Proof of Theorem 16: Let
w2 =c(L)P T e CHYT(S,), r>—1,

=K, P eCH" (P ), r>1.

Then, calculating mod p,

r_1 =0,

vo=ci(L)" " e CHY" (S @ F,,

Ty = Tr_2 + Zr, r=>1,
since

c1(Lr) = e1(Ly—2) + c1(Kp_q ).
Moreover

z = erzr):i

by Lemma 12.

We have a homomorphism
R'(z) = CH"(Sp) ®Fp,  zm > 2m, & Zo.
It follows from Corollary 22 that (mod p)

042 —1 p—1 _ L+2_ 2 042 2
p P — P p—1 . . p—-1.p p D p°+1
zh =27 Zy 2D xg mod (z )

Now if dim S’ = (p! — 1)p"™, then xSHZ_pQH = (. Hence
042
965 b= 5(K7/1—1,1)5(K7/1—1,2) T 5(K’:7,—1,p—1)5(L) = 0(L) mod p,
where the last equation follows from Lemma 12. O

From now on we suppose that «; # 0 fori =1, ..., n—1. Let I" be a finite group,
let T' — T',,—1 be an epimorphism and let ' — Aut(S’, L, 3) be a homomorphism.
Thus I' acts on all the forms (Speck, H;,«;), i =0, ..., n—1, and (S, L, B).

Lemma 23. Suppose that (S, L, ) is an admissable T'-form, that all fized points
are k-rational and that each fized point P € S’ is twisting for the forms
(S Hj,a;),i=1,...,n—1, and (S', L, ).
Then for all v > 0, (Sy, Ly, B;) is an admissable T-form, all fixed points are
k-rational, and each fixed point P € S, is twisting for the forms

(ST,HZ',OQ‘), t=1,...,n—2, (STvL’l"fla/BTfl)y and (Srervﬂr)'
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Proof. Let P € S, be a fixed point. By induction we may assume that P is k-
rational and that

n—2
' — Aut(Ly_o|P, Br_2| P) x Aut(L,_1|P, B_1|P) x [ Aut(H;|P,a;|P)
=1
is surjective. We claim that
n—2
T — Aut(L,|P, B,|P) x Aut(L,1|P, B,—1|P) x [ Aut(H;|P, | P)
=1

is surjective. Note that L.|P = L,_2|P ® K,,_1,|P. The claim follows now from
the fact that Aut(L,_2|P, a,—2|P) acts trivially on K,,_1 | P.
The remaining parts of the statement follow from Lemma 13. O

Lemma 24. Suppose that S’ is irreducible. Let 1, € S, be the generic point. Then
{ala ey Qp—9, 67‘—1(777‘—1)5 67‘(777‘)} - (_1)T{ala ey, 02,01, 5(770)}
in KME(S,)/p.
Proof. We show
{ar, s an—2, Bro1(mr—1), Br(ny)} = {aa, ..., an—2, Br—1(Nr—1), Br(Mr—2) }.
We have

Br(nr) = ﬁr(m_g)@;}_lw
The claim follows now from Lemma 14. O

We will need the following special case:
Corollary 25.
{ar, s an—2, Bp(mp), Bp—1(mp—1)} = {a1, ..., an—2,an—1,8(n0) }

in KME(S,)/p. O
Remark 3. Let S’ = Speck. We think of the symbol

{a1,...;an—2,Bp(np)}
as a family of symbols of weight n — 1 “between”

{alv"'van72} and {Oél,..-,an72,04n71,,6},

with S, as parameter space.

Our later considerations indicate that this family is universal over p-special fields.
For n = 2 we will make this precise, and for p = 2 this can be done using Pfister
forms. I have no idea how to show this in general. In the case n = p = 3 the
universality would have important consequences for the classification of groups of
type Fy.
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7. The forms K(a1,...,a,) (universal families of Kummer splitting
fields)

Let n > 1. Given forms (S, H;,«;), i =1, ..., n, we define forms
Ki=Ki(aq,...,an) = (Ri/Rit1, Ji, Vi), 1<i<n,
K =Ki(a1,...,an) = (Ri/Riz1, J}, 7)), 1<i<n.
We put
(Bn/Rns1s In,vn) = (S/S, Hy, o)
and
(Bn/Rys1, T3, ) = (S/5,0s,7)
with 7(t) = tP.

Let ¢ < n and suppose that ;41 is defined.
Recall the forms

C’I‘ = Cr(ala RS Oéi,%'+1) = (ST/ST—la LT?ﬁT)

defined in section 6. Let m: S, — Sp_1 be the projection.
We put

Ki =Cp(a, ...,y Yit1)s
K =n*Cp_1(ai,...,q,Yit1).
We assume now that S = Speck and list the most important properties of the
forms (R;/Riy1, Ji,vi) and (R;/Rit1, J], Vi)
Lemma 26. The variety R; is smooth, proper, cellular, and of dimension p™ — p'.
Proof. This follows from Lemma 15. For the dimension note
dim R; /Ry, = p'™! — pf, i<n
by Lemma 15. |
Lemma 27. §(J;) =1 mod p.
Proof. By Theorem 16 we have
6(Ji) = 6(Ji+1) mod p.

Hence §(J;) = 6(J,) = 1 mod p. O

The construction of (R;/R;y1,Ji,7:) is functorial in the forms (S, H;, ;). In
particular the group

n
Ty = pp € [JAut(S, Hi, i)
i=1
acts on (R;/Riy1, Jis Vi) -
From now on we suppose that a; Z0 fori =1, ..., n.

Lemma 28. The forms (R;/Rit1,Ji, Vi) are admissable Ty, -forms, all fized points
are k-rational, and each fixed point P € R; is twisting for the forms

(RiyHmyam), m=1, ..., i—1, and (R;, Ji,vi).
Proof. This follows form Lemma 23. |
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Lemma 29. Let n; € R; be the generic point. Then, for 1 <i <mn,

{ala ceey ai—la’yi(ni)a’yz{(ni)} = {ala ce aaia7i+1(ni+1)}
m KM_lk(Ri)/p.

Proof. This follows from Lemma 25. O
In particular we have
(4) {ar, o an} = {a1, 72,755 )
(5) {a, 72} = {7,%}
(6) {a1,..yan}t = {71,770}
We write

(Ra Ja’y) = (RlaJlavl)

We denote by R — R be the degree p “Kummer extension” corresponding to v,
defined locally by O = Og|[t]/ (" — (X)) where X is a local nonzero section of J.

Corollary 30. The symbol {a1,...,a,} vanishes in the generic point of R.
Proof. This follows from Lemma 29 (see (6)). O
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8. Construction of a norm variety via chain lemma

We fix a p-th root of unity ¢ # 1.
Let (R, J,v) be the form of defined at the end of section 7 and let G = T,,.
Moreover let A = A(R, J,~) be the associated algebra bundle, with norm
NA: A— OR.
Let b € k*. We define the variety
X=Xp={[z,t] e P(A® OR) | Na(z) = bt" }.
The G-action extends to a G-action on A, A® Og, P(A® Og), and X.

Proposition 31. The variety X has the following properties:
(1) X is proper of dimension d = dim X = p™ — 1.
(2) One has

{ar,..am,blx) =0 in KN k(X)/p

(3) The fixed point scheme Fx of the G-action on X is a smooth 0-dimensional
subscheme of X contained in the smooth part of X.
(4) There exist a proper smooth G-variety Y such that
a) X and Y are G-fixed point equivalent.
b) sa(Y) # 0 mod p?.

Proof. (1) follows from Lemma 26 and (2) follows from Corrollary 30. For the
variety Y we take Y = P(A) with the natural G-action.
Proof of 4a): We have the map

X5y, =n(zt]) =[z]
The map 7 is a branched covering of degree p. It should be noted that the map «
seems to have no real significance for the applications of the proposition, however
it turns out to be useful to compare the fixed points of X and Y.
To compute the fixed point sets Fx and Fy we first note that both lie over Fg.
For each P € Fr(ksep) let Gp = pp C Aut(J|P) and let Xp, Yp be the fibres of X

resp. Y over P.
Recall that P is twisting by Lemma 28. Therefore the homomorphism

G—)GP

is surjective. From this one sees that all fixed points in X are contained in the
smooth locus of X.
For x € Fx N Xp, y € Fy NYp one has G-equivariant decompositions
TIX = TIXT S5 TPR
T,Y =T,Y, @ TpR.
Therefore, in order to prove 4a), it suffices to show that for each r € Fr(ksep) the
fibres X, and Y, are Gp-fixed point equivalent. Moreover, we may assume that
k = ksep. Hence we are reduced to the case n =1, G = p,, R = Speck, J =k,
v(A) = AP, and b = 1.
In this case the G-fixed points of X resp. Y are
[¢h1,...,1] 0<i<p-1 (for X)
[0,...,0,1,0,...,0] 0<i<p-1 (for Y)
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with respect to the coordinates

ACk=koL®--- oL k=L
resp.

A=k®L® - @ L1 = kP,

The fixed points of Y have all the same tangential G-structure, since the cyclic
permutation of the coordinates on Y = P(A) commutes with the G-action. More-
over the map m: X — Y induces isomorphisms between the tangent spaces at the
fixed points of X and the fixed point [1,0,...,0] of Y. Hence X and Y have both
p fixed points, with all having the same tangential G-structure. (Of course this
can be verified also directly by computing the tangential G-structures: they are all
isomorphic to the sum of the p — 1 irreducible representations of G.)

This proves 4a) and along the way we have also seen (3).

Proof of 4b): The tangent bundle of ¥ decomposes (in Ky(Y)) as the sum of
the tangent bundle TR of R and the fibre tangent bundle T(Y/R) of the projection
wa:Y =P(A) — R. Hence

54(TY) = sa(m4(TR)) + sa(T(Y/R)).
We have
sa(mh(TR)) = 7} (sa(TR)) =0

since dim R < d. Moreover

We put

Then

p—1
=P v cH (R)
1=0

(by the computation of the Chow ring of projective bundles) and

p—1

sa(TY) = (y —ix)".

=0
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In the ring
p—1
Zlz,yl/ (][ (v — ix))
i=0
write
p—1 p—1
Z(y —iz)d = Zaiyizd%, a; € 7.
i=0 i=0

Since d —i =dim R+ p — 1 — ¢, we have
sq4(TY) = ap,lypflzdimR
Moreover (74).(y?~1) = [R] € CH(R). Hence
54(Y) = deg(s4(TY)) = ap—1 deg((—c1(J)) ™).

The claim follows now from §(J) = 1 mod p (Lemma 27) and from the following
Lemma 32. O

Lemma 32. Let p be a prime, Z = Z/p?, and let

p—1
s =2W)/([Ttv-0)
i=0
For u € S define a;(u) € Z by
p—1
u= Zai(u)y’
=0
Forn>1 let
p—1
Up = Z(y — Z’)pnil es.
=0

Then ap—1(un) = p.

Proof. One easily sees ap—1(u1) = p. We show that u,, does not depend on n.
The homomorphism
p—1
oS- ]2
i=0
y—(0,1,2,...,p—1)

is an isomorphism of rings. Hence it suffices to show that ®(u,,) does not depend
on n.

This means that for each j =0, ..., p— 1 the residue class
p—1
> (G =)~ mod p’
i=0

is independent of n. In fact, for any integer h one has h?" ~1 = h(?=1) mod p?. This
is obvious if A = 0 mod p (if p # 2). Otherwise h?~! = 1 mod p and h(P~VP =
1 mod p?. Then

Rt =1 — (=D (pt4p™ Y (0-1) 104 p°.
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If p =2, then

S=ZW/ " —v)
and the claim is easy to check.
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9. Multiplicativity

A splitting variety of a symbol is called p-generic, if it is a generic splitting
variety over any p-special field.

Let Z be a p-generic splitting variety of {a1, ..., a,} of dimension p"~! —1. We
assume {aq,...,a,} # 0. It follows that Iz C pZ.

Let (R, J,v) be the form of defined at the end of section 7.

We have diagram of varieties

NAT NA/T Tmult

AA) 2 — AA) —L— Cycic?(Z x A1)

| ! |

R «%* g 1, Cyclic?(Z)

Here g is of degree prime to p and f is a morphism. The maps f, g come from the
fact that Z has point of degree prime to p over k(]%), hence has a k:(é' )-rational
point where R'/R is of degree prime to p. This point defines the map f. The maps
f, g are covered by the cyclic extensions of degree p:

f

R«‘I— R zr
L |
R+2 Rr 1 Cyclic?(Z)

with R’ = RgR'.
They are also covered by line bundles:

Jt g L (2 < B @)

Lo l

R «2— R —1 5 Cyclic?(2).

with AT C AP the image of Al — AP, t s t(1,¢,¢3,...,¢P71) with 1 # ¢ € .
This diagram induces the maps f, g.

Note that deg g = deg g and deg f = deg f.

The fibre X; of N4 over the generic point Spec k(t) is a splitting variety of the
symbol

{a1,...,an,t}.

One has I'x, = pZ, since {aq,...,an,t} # 0.
We assume now p # 2. By Proposition 31 (4), Corollary 5, and Corollary 2, one
finds that the birational invariant of X; in

Z)Ix, =Z[p

is nonzero. Since deg g is prime to p, the degree formula implies that the fibre X]
of N4/ has nontrivial invariant. The degree formula shows then that deg f is prime
to p, hence deg f is prime to p.
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Now let K = k({/b) be a cyclic extension of degree p which splits {a, ..., an,}.
We assume that k is p-special. It follows that there is a point Spec K — R lying
over a rational point P: Speck — R. Then b = ~v(P) in k*/(k*)P. It follows that

(7) {or,. o om} = {a1,72(P),%(P), - 7 (P)}
(®) {o1,72(P)} = {b,%(P)},

9) {ar,. o om} = {0,%(P), ... 7 (P)}-

(see (4)—(6) after Lemma 29).

Now let k({/b), k(%/¢) be two cyclic extensions of degree p which split the symbol
{a1,...,a,}. Applying the last arguments twice, one finds first b; € k* such that

{a1,...,an} ={b,b1,ba,... by},
and then ¢;, ¢, € k* such that
{b,b1,ba,...,bn} ={b,c1,c2,...,¢n},
{b,c1} = {c,ch}.
Let X (b, ¢1) be the Brauer-Severi variety associated to the symbol {b, c;}. It has
rational points over k:(i'/g) and over k({/c). Morover, since Z is a p-generic spliting

field, we have a correspondence X (b,¢1) — Z lying over Z — Z of degree prime
to p.

Corollary 33. Let x, y € Z be points of degree p and let o € k(x)*, B € k(y)*.
Then there exist z € Z of degree p and v € k(2)*, such that
[a] + 8l =[] in Ao(Z, K1)

Proof. By the previous considerations, and using that CHo(Zx) = Z whenever
Z(K) # &, we may reduce to the case of Brauer-Severi variety. In this case the
statement is known [3]. O

Corollary 34. If k is p-special, then the set V(Na) of values # 0, oo of the map
Na: A(A) (k) — k

is a multiplicative subgroup of k*. O
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10. On the norm principle

We fix a p-th root of unity ¢ # 1.

Let (Speck, I, €) be a nonzero form and let K = A(Speck, I, €) be the associated
algebra.

Let (R, J,v) be the form defined at the end of section 7, let G = T',,, and let
A = A(R, J,7) be the associated algebra bundle, with norm

Ny: A— OR.
We denote by
Nao,: AR K - Or® K
the induced map of degree p.
Let B=0r @& A® I. We have a natural inclusion B —+ A® K. Let
M: B— K ®; Ogr

be the restriction of N4, to B.
Let (B;,R;,M;),i=1, ..., p—1 be copies of (B, R, M). We put

U = p(a) x [ 25,

p—1
L=LA)K K L(B)),

1=1
V=L&Oy.

Then dimU =p" — 1+ (p—1)p™ = p"*t — 1 and L is a line bundle on U and V is
a 2-dimensional vector bundle on U.
Let w € K*. On V we define a K-valued form

0: V-0 K
of degree p by
Ou(u® @ u; +1) = Na(u)M (ur) - - M(up_1) — wtP,

1=

where u, u;, t are sections of L(A), L(B;), Ov, respectively.
We define the variety

X, ={[z] €eP(V)|O,(z) =0}.

Proposition 35. There exist an open dense subset () C A(K) such that the vari-
ety X = X, has the following properties:

(1) d=dim X =p(p" — 1).

(2) One has

{on,.. . am,whys) =0 in KM K(X)/p

(3) The fized point scheme Fx of the G-action on X is a smooth 0-dimensional
subscheme of X.
(4) There exist a proper smooth G-variety Y such that
a) X and Y are G-fized point equivalent.
b) Y is the union of (p—1)! copies of YP, where Y is a variety of dimension
d=p" — 1 with s4(Y) # 0 mod p?.
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Proof. (1) and (2) are obvious from former considerations (for all w € K*).

We have to determine the fixed points on X. Any fixed point lies over a fixed
point P € RP. There are only finitely many such P, and any P is twisting for the
bundles (Speck, H;,«;), i =1, ..., n. On P(A|P) there are exactly p fixed points.
The fixed point scheme of P(B|P) ~ PP consists of a 1-dimensional component

P=Pkol®0d --00)~P!
and p — 1 isolated fixed points
POS0®0® 0 J¥ 1@ - ®0)
Hence any of the fixed point components C in U|P is a product
C=CoxCix-xCp
with Cy a point, and, for i > 0, C; a point or ~ P!,

Let s =dimC. If s < p — 1, then the equation @, (x) = 0 has no solution at all,
provided w is generic. If s =p — 1 and

Co=1[0,...,L(A)®" ... 0]

for some ¢ > 0, then P(V)|C has only two fixed points, which do not lie in X.
Hence fixed points appear only if

C=1[1,0,...,0] xCq x -+ xCp_1

with C; ~ P!, One finds that there exactly (p — 1)!p? fixed points (for generic w).
For this use the following facts:
Let

o: (PPt — PP
P (([zi + tyi))i=t,...p—1) = [H(% + tys)]

3
be the “morphism of the fundamental theorem of algebra”. ® is a finite morphism
of degree (p — 1)!. Let

® is a finite morphism of degree (p — 1)pP~!.

Hence there are exactly (p — 1)!p? fixed points over P. These are given by just
(p — 1)! copies of the fixed point set of P(A|P)?. The characteristic number of
Y = P(A) has been computed in section 8. O

We assume {ag,...,a,}x # 0. Let w be the generic element of A(K). Then
{a1,...,an,w} #0.

Let further T = Ngl(w) (the splitting variety over K for {aq,...,an,w}, con-
structed from the family (R, J,v) of Kummer splitting fields of {a1,...,an}).

Let Rg/(T) be the transfer of 7. We claim the Rg/,(T) has a point of degree
prime to p over k(X,,).

In fact, by applying Corollary 34 to the ground field K (X,,), we see that there
exist an extension H/K(X,) of degree prime to p, such that w is a value of Ny
over H. But then there exist an extension H'/k(X,) of degree prime to p, such
that w is a value of N4 over H' @ K.
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Writing H' = k(W) we get maps

X, 24— W —L s Ryp(T)

with (degg,p) = 1.
We would like to conclude that (deg f,p) = 1. To compute deg f we may do
base change k — K, so that K =k x --- X k. Then the diagram looks as

I T.— f[ Nyt (ws)

=1

X, 2w

withw = (w1, ...,wp), andw; € k are p independent generic elements. (deg f,p) =1
follow from Proposition 35 (4) and the “higher degree formula”.

Let us take it for granted, so that deg f is prime to p. Extension from the generic
point of A(K) to A(K) provides a diagram

A(K) A(K) A(K)

NAIVII...Mp,lT T TRK/;C(NA)
AL 2w 1, R/ (A(A))

with (deg g, p) = (deg f,p) = 1.
Assume now that k is p-special.
Let x € Zk be a point of degree p and let § € k(z)*. Our aim is to show that
Nie/k([0]) € Ao(Z, K1)

is represented by a sum of elements concentrated in points of Z of degree p (over k).
If the symbol is split over K, this is easy to check (assuming CHy(Zx) = Z, when
K is a splitting field). So we may assume {aq,..., @,k # 0.

Let w = Ny)/x(0) € K*. By multiplying w with some p-th power in (K*)?,
we may arrange that w lies in any given open dense subset of A(K).

As we have seen, there is a K-rational point P € R such that

(R, J,7)|P

represents the Kummer extension x(z)/K. Hence w is a value of N4 over K. Hence
w is in the image of R /(A(A)) under Ry /i (Na). Since (deg f,p) = 1, w is also
in the image of A(L) under NoaM; ... Mp_1.

The p projections A(L) — R (via P(A), P(B;)) give us p points in R, whence p
points z; € Z of degree p. Furthermore we have elements §; € k(z;) such that

0 = Ny(z0)/k(00) N @r(z1) /i (1 4+ 218/€) - - Nkge(z,_1) /5 (1 4 2p-1%/€)

in K*.

By multiplicativity we see that

(6] = [0o]x + [L+ z1¢/€e] + -+ [1+ zp—1{/€].

in Ao(ZK,Kl). But then

Ni/([0]) = ploo] + [Nrgn(sr)/m(en) (1 + 219€)] + ...

is concentrated in the points z;. o777
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