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1. Preliminaries, Conventions, and Notations

• The ground field k has characteristic 0. We fix a prime p. We assume µp ⊂ k.
• By a scheme or a variety X (over k) we mean a separated scheme of finite
type πX : X → Spec k.
• If X is a smooth variety, then TX denotes the tangent bundle of X .
• Let V be vector bundle over X . We denote by πV : P(V )→ X the projective
bundle associated to V . Moreover

L(V )→ π∗
V V

denotes the tautological line bundle on P(V ).
For the fiber tangent bundle T

(
P(V )/X

)
one has

T
(
P(V )/X

)
= π∗

V V ⊗ L(V )∨/OP(V ).

• Let V be vector (or an affine) bundle over X . We denote by A(V ) → X the
associated scheme V .
• By a form we understand a triple (T/S, L, α) where T → S are schemes, L is
line bundle on T and α ∈ H0(T, L⊗−p) is a form of degree p on L.

There is a natural homomorphism µp → Aut(T/S, L, α) induced from the
standard action of Gm on L.
• Let (Spec k, L, α) be a nonzero form and let u ∈ L be a basis vector. Then
the p-power class

{α} = {α(u)} ∈ K1k/p = k∗/(k∗)p

is independent on the choice of u.
• Let (T/S, L, α) and let Γ be a finite group acting on (T/S, L, α) (i.e., there is
given a homomorphism Γ → Aut(T/S, L, α)). We say that (T/S, L, α) is an
admissable Γ-form if the following conditions hold:
– α is nonzero on an open dense subscheme of T .
– Γ has only finitely many fixed points on T (a fixed point is a point P ∈ T

with gP = P for all g ∈ G).
– At each fixed point P the form α is nonzero.

• For vector bundles V , V ′ on schemes X/S resp. X ′/S we denote by V ⊞S V ′

the exterior direct sum, given by the sum of the pull backs to X ×S X ′.
Similarly we denote by V ⊠S V ′ the exterior tensor product, given by the
tensor product of the pull backs.
• For forms (T/S, L, α) and (T ′/S, L′, α′) we denote by

(T/S, L, α)⊠S (T ′/S, L′, α′) =
(
(T ×S T ′)/S, L⊠S L′, α⊠S α′

)

their exterior product, with the form defined by

(α ⊠S α′)(u ⊠S u′) = α(u)α′(u′)

for sections u, u′ of L, L′, respectively.
If (T/S, L, α) and (T ′/S, L′, α′) are admissable Γ-forms, then (T/S, L, α)⊠S

(T ′/S, L′, α′) is an admissable Γ-form.
• Let (S,Hi, αi), i = 1, . . . , n, be admissable Γ-forms and let P ∈ S be a
k-rational fixed point. We say that P is twisting for the family (S,Hi, αi)i, if
the homomorphism

Γ→ µn
p =

n∏

i=1

Aut(Hi|P, αi|P )
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is surjective.
• By a cellular variety we mean a variety which admits a stratification by affine
spaces. The motive of a cellular variety is the direct sum of powers of the
Tate motive L, with a summand L⊗i for each i-cell. If X and Y are cellular,
then X × Y is cellular and one has

CH∗(X × Y ) = CH∗(X)⊗Z CH∗(Y ).

• Let L be a line bundle L on a smooth and proper variety X over k of dimen-
sion d ≥ 0. We write

δ(L) = deg
(
c1(L)

d
)
∈ Z.

Here

deg : CH0(X)→ CH0(Spec k) = Z

is the degree map. If d = 0 we understand by δ(L) the degree of X as a finite
extension of k.

If V is a vector space of dimension n, then

δ
(
L(V )

)
= deg

(
c1
(
L(V )

)n−1)
= (−1)n−1.

• The index IX of a proper variety is

IX = deg
(
CH0(X)

)
⊂ Z

• If p is a prime, a field k is called p-special if chark 6= p and if k has no finite
field extensions of degree prime to p.
• Let (S,L, α) be a form. We consider the bundle of algebras

A = A(S,L, α) = TL/I

over R. Here TL is the tensor algebra of L and I is the ideal subsheaf
generated by

λ⊗p − α(λ)

for local sections λ of L. A a is bundle of commutative algebras of degree p.
Note that

A =

p−1⊕

i=0

L⊗i

as vector bundles. We denote by

NA : A→ OS

the norm of the algebra A.
• We use the notation

Cyclicp(Z) = (Zp)/(Z/p).
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2. Consequences of Voevodsky’s work

In this paper p always is a prime, k is a field with char k = 0 and KM
n k denotes

Milnor’s n-th K-group of k. Let

h(n,p) : K
M
n k/p→ Hn

ét(k, µ
⊗n
p ),

{a1, . . . , an} 7→ (a1, . . . , an).

be the norm residue homomorphism.

2.1. Voevodsky’s theorem. V. Voevodsky announced in October 1996 the fol-
lowing theorem:

Theorem (Voevodsky). Let p be a prime and let m be a natural number.
Suppose that for every subfield k ⊂ C containing the p-th roots of unity and for

every sequence of elements a1, . . . , an ∈ k∗, 2 ≤ n ≤ m, there exists a smooth
projective variety X over k such that :

(V1) {a1, . . . , an}k(X) = 0 in KM
n k(X)/p.

(V2) X has dimension d = pn−1 − 1.
(V3) In the category of Chow motifs over k(X) with Z(p)-coefficients there exist

an effective object Y such that

Xk(X) = L⊗0 ⊕ (Y ⊗ L).

Here L denotes the Tate motive.
(V4) The characteristic number sd

(
X(C)

)
∈ Z is not divisible by p2.

(V5) The sequence
∐

x∈X(1)

K2κ(x)
d−→

∐

x∈X(0)

K1κ(x)
NX−−→ K1k

is exact. Here NX =
∑

Nκ(x)|k.

Then one has :

(BK) The Bloch-Kato conjecture holds in weight m and mod p, i.e., the norm
residue homomorphism h(m,p) is bijective. (for all fields k with char k 6= p
)

(S) For n ≤ m, for elements a1, . . . , an ∈ k∗, and for a smooth projective
variety X satisfying (V1)–(V5), the sequence

∐

x∈X(0)

K1κ(x)
N−→ K1k

b 7→(a1,...,an,b)−−−−−−−−−−→ Hn+1
ét (k, µ⊗(n+1)

p )

is exact.

2.2. A degree formula for sd(X). We fix a prime p be a prime and a number d
of the form d = pn − 1.

Let X , Y be irreducible smooth proper varieties over k with dim Y ≤ dimX = d
and let f : X → Y be a morphism. Define deg f as follows: If dim f(X) < dimX ,
then deg f = 0. Otherwise deg f ∈ N is the degree of the extension of the function
fields:

f∗([X ]) = deg f · [Y ].

Theorem 1 (“Degree formula”).
(
sd(X)/p

)
= (deg f)

(
sd(Y )/p

)
mod IY
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This is a consequence of algebraic cobordism theory. One uses the spectrum Φ
considered in [4].

Corollary 2. The class

sd(X)/p mod IX ∈ Z/IX

is a birational invariant

2.3. On a higher degree formula. All of what I am saying in the next lines
are mainly guesses from my poor knowledge of Morava K-theories and algebraic
cobordism. Everything has to be checked.

Let Φr be the Φ-construction of [4], iterated r-times, i.e., Φr is a tower consist-
ing of Σ2id,idHZ/p, i = 0, . . . , r with all intermediate towers of length 2 being a
suspension of Φ. Then the Thom class lifts to MU → Φr and for X of dimension
rd we have a fundamental class

[X ] ∈ π2rd,rd(X ∧ Φr).

Define t(X) ∈ Z/p as the image of [X ] in

π2rd,rd(Spec k ∧ Φr) = π2rd,rd(Spec k ∧ Σ2rd,rdHZ/p) = Z/p

From the known structure of Morava K-theories it follows that (perhaps up to
multiplication with a number prime to p)

t(X1 ×X2 × · · · ×Xr) =
(
sd(X1)/p

)(
sd
(
X2)/p

)
· · · (sd(Xr)/p

)
mod p

if dimXi = d.
Furthermore, let Ψ be the fibre of Φr → HZ/p and define J(X) ⊂ Z as the image

of

π2rd,rd(X ∧Ψ)→ π2rd,rd(Spec k ∧Ψ) = π2rd,rd(Spec k ∧ Σ2rd,rdHZ/p) = Z/p

Note that Ψ = Σ2d,dΦr−1.
Then the “higher degree formula” is

t(X) = t(Y )(deg f) mod J(Y )(1)

for any f : X → Y with X , Y , smooth proper of dimension rd. It should be possible
to show this in the same way as for the degree formula for sd/p.

Moreover, one should have

J(X) = J(Y ), if deg f is prime to p(2)

by a transfer argument.
I guess that the following is true:
Let Xi, i = 1, . . . , r be of dimension d and suppose that I(XiFi

) ⊂ pZ for all i,

where
Fi = k(X1 × · · · × X̂i × · · · ×Xr).

Let X = X1 × · · · ×Xr. Then

J(X) ⊂ pZ(3)

In the case of curves (d = 1 = 21 − 1) one has (?)

J(X) = (πX)∗(K0(X)(1))

where

K0(X)(1) = ker
(
K0(X)→ CH0(X)

)
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and πX : X → Spec k is the structure map for X .
In this case (3) is not difficult to show:

Proof for d = 1 and r = 2: One has an exact sequence
∐

x∈X1(0)

K0(X2κ(x))→ K0(X1 ×X2)
(1) → K0(X2k(X1))

(1) → 0

Push forward along π′ : X1 ×X2 → X1 maps this sequence into the sequence

CH0(X1)→ K0(X1)→ K0(k(X1))→ 0

Since the index of X2k(X1) is 2-divisible, we see that

π′
∗(K0(X1 ×X2)

(1)) ⊂ CH0(X1) + 2K0(k(X1))

The claim (3) follows since IX1 is 2-divisible.

It should be possible to extend this reasoning to the general case (?).
In my application one has r = p and the Xi are of the following type: Let

am ∈ k∗0 be such that {a1, . . . , an} is a nontrivial symbol, let k = k0(t1, . . . , tp)
and let Xi/k be a norm variety for the symbol {a1, . . . , an, ti}. We may take Xi to
be defined over k0(ti). Note that then each of the fields k0(ti)(Xi) has a k0-place,
hence the field Fi has a k0(ti)-place, whence {a1, . . . , an, ti} is nontrivial over Fi.
Therefore the index of XiFi

is p.
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3. The Conner-Floyd theorem: computing sd(X)

In this section we indicate how one can get information about sd(X) from a
(Z/p)n−1-action on X with isolated fixed points.

We assume that p is odd and k ⊂ C. For odd p the Chern number sd(X) =
sd(TX) of a complex variety is also an Pontrjagin number of the underlying dif-
ferentiable manifold M = X(C). Therefore the number sd(X) can be computed in
terms of the class [M ] of M in the oriented cobordism ring.

In order to compute this number for certain norm varieties we use the following
theorem of Conner and Floyd: ( [2]).

Theorem 3. Let d = pn−1, let G = (Z/p)n, and let M be an oriented differentiable
manifold. Suppose that there exist a fixed point free G-action on M . Then the class
of M in the oriented cobordism ring Ω∗ lies in the ideal In−1,p generated by Milnor
the base elements M0,p = p · Point, M1,p, . . . , Mn−1,p (dimMi,p = pi − 1).

Corollary 4. Let d = pn − 1, let G = (Z/p)n, and let M be an oriented differen-
tiable manifold of (real) dimension 2d. Suppose that there exist an fixed point free
G-action on M . Then sd(M) is divisible by p2.

Proof. This follows from sd(M) ∈ pZ for all M of dimension 2d and sd(M1×M2) =
0 if d > dimXi > 0.

Using canonical desingularization [1] and the Conner-Floyd theorem one finds:

Corollary 5. Let p be odd, let X, Y be proper varieties with Y smooth. Suppose
that G = (Z/p)n acts on X and Y such that the fixed point schemes FX and FY are
of dimension 0 and suppose that FX ⊂ Xreg. Suppose further that the families of
G-representations (TPX)P∈FX(C), (TPY )P∈FY (C) are isomorphic. Then there exist

a smooth proper variety X̃ together with a birational isomorphism X̃ → X such

that X̃(C) and Y (C) represent the same element in Ω∗/In−1,p.
In particular, if dimX = dimY = d = pn − 1, then

sd(X̃) = sd(Y ) mod p2

This consequence is extremely useful to compute the birational invariant of
Corollary 2.

Proof. By canonical desingularization [1] we may assume that X is smooth. Let Z
be the multifold connected sum of the differentiable manifolds X(C) and −Y (C),
build by glueing together pairs of fixed points with isomorphic G-normal structures.
Since S2d and S1 × S2d−1 are bordant, one has [Z] = [X ]− [Y ] for the cobordism
classes. On Z we have a fixed point free G-action, and the Conner-Floyd theorem
shows [Z] ∈ In−1,p.

If the families of G-representations (TPX)P∈FX(C), (TPY )P∈FY (C) are isomor-
phic, we say that X and Y are G-fixed point equivalent.
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4. The forms A(α1, . . . , αn) (“algebras”)

Given a scheme S and forms (S,Hi, αi), i = 1, . . . , m, we define forms

A(α1, . . . , αn) = (Pn/S,Kn,Φn), 0 ≤ n ≤ m.

For n = 0 we put

P0 = S,

K0 = OS ,

Φ0(t) = tp.

Suppose (Pn−1/S,Kn−1,Φn−1) is defined. We consider the 2-dimensional vector
bundle

Vn = OPn−1 ⊕Hn ⊠S Kn−1

on Pn−1, and the form

ϕn : Vn → OPn−1

on Vn defined by

ϕn(t− u⊗ v) = tp − αn(u)Φn−1(v)

for sections t, u, v of OPn−1 , Hn, Kn−1, respectively.
Let (Pn−1,j , Vn,j , ϕn,j), j = 1, . . . , p− 1 be copies of (Pn−1, Vn, ϕn). We put

(Pn/S,Kn,Φn) = (Pn−1/S,Kn−1,Φn−1)⊠S

p−1

⊠S
j=1

(
P(Vn,j),L(Vn,j), ϕn,j

)
.

We assume now that S = Spec k and list the most important properties of the
forms (Pn,Kn,Φn).

Lemma 6. The variety Pn is smooth, proper, cellular, connected, and of dimension
pn − 1.

Proof. Indeed, Pn is an iterated projective bundle. The computation of the dimen-
sion is clear for n = 0 and for n > 0 we find

dimPn = dimPn−1 + (p− 1)(1 + dimPn−1)

= (pn−1 − 1) + (p− 1)pn−1 = pn − 1

by induction on n.

Lemma 7. δ(Kn) = (−1)n mod p.

Proof. This is clear for n = 0. Let

un = c1(Kn) ∈ CH1(Pn), n ≥ 0,

un−1,j = c1(Kn−1,j) ∈ CH1(Pn−1,j), n ≥ 1, j = 1, . . . , p− 1,

zn,j = c1
(
L(Vn,j)

)
∈ CH1

(
P(Vn,j)

)
, n ≥ 1, j = 1, . . . , p− 1.

For n ≥ 1 let

P̂n = Pn−1 ×
p−1∏

j=1

Pn−1,j
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Then

CH∗(P̂n) = CH∗(Pn−1)⊗
p−1⊗

j=1

CH∗(Pn−1,j)

and

CH∗(Pn) =
CH∗(P̂n)[zn,j ; j = 1, . . . , p− 1]

〈z2n,j − zn,jun−1,j; j = 1, . . . , p− 1〉 .

Moreover

un = un−1 + zn, with zn =

p−1∑

j=1

zn,j .

Note that

upn−1

n−1 = upn−1

n−1,j = 0, zp
n−1+1

n,j = 0

by dimension reasons. Hence, calculating mod p,

upn−1

n = (un−1 + zn)
pn−1

= upn−1

n−1 + zp
n−1

n = zp
n−1

n .

One finds (using Lemma 8 below)

upn−1
n = upn−1−1

n upn−1(p−1)
n = upn−1−1

n zp
n−1(p−1)

n

= upn−1−1
n

(
zp

n−1

n,1 + zp
n−1

n,2 + · · ·+ zp
n−1

n,p−1

)p−1

= −upn−1−1
n−1 zp

n−1

n,1 zp
n−1

n,2 · · · zp
n−1

n,p−1

= −upn−1−1
n−1 zn,1u

pn−1−1
n,1 zn,2u

pn−1−1
n,2 · · · zn,p−1u

pn−1−1
n,p−1 .

It follows that

δ(Kn) = −δ(Kn−1)
(
−δ(Kn−1,1)

)(
−δ(Kn−1,2)

)
· · ·

(
−δ(Kn−1,p−1)

)

= −δ(Kn−1) mod p.

whence the claim.

Lemma 8. Let R be a ring over Fp and let v1, v2, . . . , vp−1 ∈ R, be elements with
v21 = v22 = · · · = v2p−1 = 0. Then

(v1 + v2 + · · ·+ vp−1)
p−1 = −v1v2 · · · vp−1.

Proof. Note that (p− 1)! = −1 mod p.

The construction of (Pn,Kn,Φn) is functorial in the forms (S,Hi, αi). In par-
ticular the group

Γn = µn
p ⊂

n∏

i=1

Aut(S,Hi, αi)

acts on (Pn,Kn,Φn).
From now on we suppose that αi 6= 0 for i = 1, . . . , n.

Lemma 9. (Pn,Kn,Φn) is an admissable Γn-form. All fixed points are k-rational.
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Proof. By induction on n. Suppose that (Pn−1,Kn−1,Φn−1) is an admissable Γn−1-
form. It suffices to show that (P(Vn),L(Vn), ϕn) is an admissable Γn-form. It is easy
to see that ϕn is generically nonzero. Every Γn-fixed point on P(Vn) lies over a Γn−1-
fixed point P ∈ Pn−1. It suffices to show that the fibre (Specκ(P ),L(Vn)|P, ϕn|P )
is an admissable Γ-form where

Γ = Aut(S,Hn, αn) = ker(Γn → Γn−1).

This is easy to see: If (Spec k,H, α) is a nonzero form over k, then

µp = Aut(Spec k,H, α)

has in P(k ⊕ H) only the two fixed points P(0 ⊕ H) and P(k ⊕ 0). The form
ϕ(t− u) = tp − α(u) is nonzero on the lines t = 0 and u = 0.

Lemma 10. Let ηn ∈ Pn be the generic point. Then

{α1, . . . , αn,Φn(ηn)} = 0 ∈ KM
n+1k(Pn)/p.

Proof. By induction on n. Suppose that

{α1, . . . , αn−1,Φn−1(ηn−1)} = 0 ∈ KM
n k(Pn−1)/p.

One has

Φn(ηn) = Φn−1(ηn−1) ·
p−1∏

j=1

(
1− αnΦn−1,j(ηn−1,j)

)
.

Hence it suffices to show

{α1, . . . , αn, 1− αnΦn−1,j(ηn−1,j)} ∈ KM
n+1k(Pn)/p

for each j = 1, . . . , p− 1. This follows from {a, 1− ab} = −{b, 1− ab}.
Remark 1. Given the forms (Spec k,Hi, αi), form the vector space

An =

p−1⊕

j1,...,jn=0

H⊗j1
1 ⊗ · · · ⊗H⊗jn

n .

One has dimAn = pn. On An there is the form

Θn =

p−1⊕

j1,...,jn=0

(−α1)
⊗j1 ⊗ · · · ⊗ (−αn)

⊗jn

Consider the form (P(An),L(An),Θn). If p = 2, this form satisfies all the properties
of (Pn,Kn,Φn) listed above (up to a sign in the computation of δ

(
L(An)

)
). If p > 2,

all properties of (Pn,Kn,Φn) are also valid, except for the splitting of the symbol.
If n = 1, n = 2, or n = p = 3, one may define on An an algebra structure with
norm form Θ′

n in such a way that (P(An),L(An),Θ
′
n) satisfies all the properties.

The (Pn,Kn,Φn) form an approximation to these algebras, with the advantage,
that (Pn,Kn,Φn) can be constructed for all p and n.
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5. The forms B(α1, . . . , αn) (“relative algebras”)

Let n ≥ 1. Given forms (S,Hi, αi), i = 1, . . . , n− 1, and (S′/S, L, β), we define
a form

B(α1, . . . , αn−1, β) = (P ′
n/S

′,K ′
n,Φ

′
n)

as follows. Let (Pn−1/S,Kn−1,Φn−1) be as in section 4. Put

Pn−1 = S′ ×S Pn−1

We consider the 2-dimensional vector bundle

V n = OPn−1
⊕ L⊠S Kn−1

on Pn−1, and the form

ϕn : V n → OPn−1

on V n defined by

ϕn(t− u⊗ v) = tp − β(u)Φn−1(v)

for sections t, u, v of OPn−1
, L, Kn−1, respectively.

Let

(Pn−1,j , V n,j, ϕn,j,Kn−1,j, Pn−1,j), j = 1, . . . , p− 1

be copies of (Pn−1, V n, ϕn,Kn−1, Pn−1). We put

(P ′
n/S

′,K ′
n,Φ

′
n) =

p−1

⊠S′

j=1

(
P(V n,j),L(V n,j), ϕn,j

)
.

We assume now that S = Spec k and list the most important properties of the
forms (P ′

n,K
′
n,Φ

′
n).

Lemma 11. The variety P ′
n is smooth and proper over S′, and of relative dimen-

sion pn − pn−1. If S′ is cellular, so is P ′
n. The fibres of S/S′ are connected.

Proof. Note that P ′
n/S

′ is an iterated projective bundle. Moreover

dimP ′
n/S

′ = (p− 1)(dimPn−1 + 1) = pn − pn−1

by Lemma 6.

Let

u′
n = c1(K

′
n) ∈ CH1(P ′

n),

un−1,j = c1(Kn−1,j) ∈ CH1(Pn−1,j),

vn = c1(L) ∈ CH1(S′).

Lemma 12. One has

u′
n
pn

= u′
n
pn−1

vp
n−pn−1

n mod p.

If S′ = Spec k, then

δ(K ′
n) = deg(u′

n
pn−pn−1

) = −1 mod p.
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Proof. Let

P̂n = S′ ×
p−1∏

j=1

Pn−1,j

Then

CH∗(P̂n) = CH∗(S′)⊗
p−1⊗

j=1

CH∗(Pn−1,j)

and

CH∗(P ′
n) =

CH∗(P̂n)[zn,j ; j = 1, . . . , p− 1]

〈z2n,j − zn,j(vn + un−1,j); j = 1, . . . , p− 1〉 .

Moreover

u′
n = zn, with zn =

p−1∑

j=1

zn,j.

Recall that upn−1

n−1,j = 0. Calculating mod p, one finds

u′
n
pn

= zp
n

n

= zp
n

n,1 + · · ·+ zp
n

n,p−1

= zp
n−1

n,1 (vn + un−1,1)
pn−1(p−1) + · · ·+ zp

n−1

n,p−1(vn + un−1,p−1)
pn−1(p−1)

= zp
n−1

n,1 (vp
n−1

n + upn−1

n−1,1)
(p−1) + · · ·+ zp

n−1

n,p−1(v
pn−1

n + upn−1

n−1,p−1)
(p−1)

= zp
n−1

n,1 vp
n−1(p−1)

n + · · ·+ zp
n−1

n,p−1v
pn−1(p−1)
n

= zp
n−1

n vp
n−1(p−1)

n = u′
n
pn−1

vp
n−1(p−1)

n .

This proves the first claim.

Suppose vn = 0. Then zp
n−1+1

n,j = 0. One finds mod p (using Lemma 8)

u′
n
pn−1(p−1) =

(
zp

n−1

n,1 + zp
n−1

n,2 + · · ·+ zp
n−1

n,p−1

)p−1

= −zp
n−1

n,1 zp
n−1

n,2 · · · zp
n−1

n,p−1

= −zn,1upn−1−1
n−1,1 zn,2u

pn−1−1
n−1,2 · · · zn,p−1u

pn−1−1
n−1,p−1

Since δ(Kn−1) 6= 0 mod p, it follows that

δ(K ′
n) = −

(
−δ(Kn−1,1)

)(
−δ(Kn−1,2)

)
· · ·

(
−δ(Kn−1,p−1)

)

= −1 mod p,

whence the second claim.

From now on we suppose that αi 6= 0 for i = 1, . . . , n−1. Let Γ be a finite group,
let Γ → Γn−1 be an epimorphism and let Γ → Aut(S′, L, β) be a homomorphism.
Thus Γ acts on all the forms (Spec k,Hi, αi), i = 0, . . . , n− 1, and (S′, L, β).

Lemma 13. Suppose that (S′, L, β) is an admissable Γ-form with all fixed points
k-rational. Moreover suppose that each fixed point is twisting for the forms

(S,Hi, αi), i = 1, . . . , n− 1, and (S′, L, β).

Then (P ′
n,K

′
n,Φ

′
n) is an admissable Γ-form with all fixed points k-rational.
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Proof. This follows as for Lemma 9.

Lemma 14. Suppose that S′ is irreducible. Let ηn ∈ Pn be the generic point. Then

{α1, . . . , αn−1, β(ηn),Φn(ηn)} = 0 ∈ KM
n+1k(Pn)/p.

Proof. This follows as for Lemma 10.

Remark 2. Given the form (S′, L, β) one may define the “Kummer algebra”

A = A(S′, L, β) = L⊗0 ⊕ L⊗1 ⊕ · · · ⊕ L⊗p−1

with the product given by the natural multiplication in the tensor algebra using
the form β : L⊗p → L⊗0 to reduce the degree mod p. One finds

CH∗
(
P(A)

)
⊗ Fp = CH∗(S′)⊗ Fp[x]/〈xp − xp−1y〉

with x = c1
(
L(A)

)
and y = c1(L).

Hence we have a homomorphism

R = Fp[x]/〈xp − xp−1y〉 → CH∗
(
P(A)

)
⊗ Fp

Lemma 12 shows that there is a homomorphism

R→ CH∗(P ′
n)⊗ Fp, x 7→ u′

n
pn−1

, y 7→ vp
n−1

n .

If one thinks in terms of the (in general nonexisting) algebras

An = A(α1, . . . , αn−1, β)

with “subalgebras”
An−1 = A(α1, . . . , αn−1),

and one imagines to form something like the projective space PAn−1(An), then one
may think of P ′

n as an approximation P ′
n → PAn−1(An) with the homomorphism

R → CH∗(P ′
n) ⊗ Fp being the pull back on the Chow rings (if say S′ = P∞ and

with L the universal line bundle).
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6. The forms C(α1, . . . , αn) (Chain lemma construction)

Let n ≥ 2. Given forms (S,Hi, αi), i = 1, . . . , n− 1, and (S′/S, L, β), we define
forms

Cr = Cr(α1, . . . , αn−1, β) = (Sr/Sr−1, Lr, βr), r ≥ −1.
For r = −1, 0 we put

(S−1/S−2, L−1, β−1) = (S/S,Hn−1, αn−1),

(S0/S−1, L0, β0) = (S′/S, L, β).

Let r > 0 and suppose Cr−2 and Cr−1 are defined.
Let

(P ′
n−1,r/Sr−1,K

′
n−1,r,Φ

′
n−1,r) = B(α1, . . . , αn−1, βr−1)

be the form constructed in section 5, starting from (S,Hi, αi), i = 1, . . . , n − 2,
and (Sr−1/Sr−2, Lr−1, βr−1). Put

(Sr/Sr−1, Lr, βr) = (Sr−2/Sr−3, Lr−2, βr−2)⊠Sr−2 (P
′
n−1,r/Sr−1,K

′
n−1,r,Φ

′
n−1,r).

We assume now that S = Spec k and list the most important properties of the
forms (Sr/Sr−1, Lr, βr).

Lemma 15. The variety Sr is smooth and proper over S′, and of relative dimen-
sion r(pn−1 − pn−2). If S′ is cellular, so is Sr. The fibres of S/S′ are connected.

Proof. This follows from Lemma 11. For the dimension note

dimSr/Sr−1 = dimP ′
n−1,r/Sr−1 = pn−1 − pn−2

by Lemma 11.

Thus if dimS′ = (pl − 1)pn for some ℓ ≥ 0, then dimSp = (pl+1 − 1)pn−1.

Theorem 16. Let ℓ ≥ 0 and suppose that S′ is smooth and proper of dimension
(pl − 1)pn. Then

δ(Lp) = δ(L) mod p.

The proof requires some calculations.
Let a, b ∈ Fp, and let r ≥ 0 be an integer. In the ring Fp[z1, . . . , zr] let

x−1 = a,

x0 = b,

xm = zm + xm−2, 1 ≤ m ≤ r.

Then

x2k = z2k + z2k−2 + · · ·+ z4 + z2 + b,

x2k+1 = z2k−1 + z2k−3 + · · ·+ z3 + z1 + a.

We denote by I the ideal generated by

zpm − zmxp−1
m−1, 1 ≤ m ≤ r

and put

Rr(a, b) = Fp[z1, . . . , zr]/I.

The elements

zJ = zi11 · · · zirr , J = (i1, . . . , ir), 0 ≤ ij ≤ p− 1
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form an Fp-basis of Rr(a, b). For u ∈ Rr(a, b) let cm(u) be the coefficient of

zp−1
1 · · · zp−1

m .

Lemma 17. If 1 ≤ r ≤ p one has cr(x
r(p−1)
r ) = 1 in Rr(a, b).

Proof. One has for 1 ≤ m ≤ p:

xm(p−1)
m = xp(m−1)+(p−m)

m

= (zm + xm−2)
p(m−1)+(p−m)

= (zpm + xp
m−2)

(m−1)(zm + xm−2)
(p−m)

= (zmxp−1
m−1 + xp

m−2)
(m−1)(zm + xm−2)

(p−m).

Hence for m ≤ p one has

cm(xm(p−1)
m ) = cm−1(x

(m−1)(p−1)
m−1 ).

The claim follows by induction.

Proposition 18. If (a, b) 6= (0, 0), then Rr(a, b) is isomorphic to a product of rings
of the form

Fp[v1, . . . , vk]/(v
p
1 , . . . , v

p
k), k ≥ 0.

Proof. By induction on r ≥ 0. The case r = 0 is obvious.
Suppose b 6= 0. Then the polynomial

zp1 − z1x
p−1
0

is separable with roots z1 = ib, i ∈ Fp. It follows that we have isomorphism

Rr(a, b)
∼−→

∏

i∈Fp

Rr(a, b)/(z1 − ib).

The ring Rr(a, b)/(z1 − ib) is the quotient of Fp[z2, . . . , zr] by the ideal generated
by

zpm − zmxp−1
m−1, 2 ≤ m ≤ r

with

x0 = b,

x1 = ib+ a,

xm = zm + xm−2, 2 ≤ m ≤ r.

Hence Rr(a, b)/(z1 − ib) ≃ Rr−1(b, ib + a). The claim follows from the induction
hypothesis.

Suppose b = 0. Then a 6= 0. In this case we consider the homomorphism

ϕ : Fp[z1, . . . , zr]→ Fp[z1]/(z
p
1)⊗Rr−1(0, 1),

zm 7→ (a+ z1)⊗ zm−1, 2 ≤ m ≤ r,

z1 7→ z1 ⊗ 1.

We claim that ϕ(I) = 0. For this it suffices to show

ϕ(zpm − zmxp−1
m−1) = 0, 1 ≤ m ≤ r.
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This is obvious for m = 1. If m = 2, then

ϕ(zp2 − z2x
p−1
1 ) = ϕ

(
zp2 − z2(z1 + a)p−1

)

= (a+ z1)
p ⊗ zp1 −

(
(a+ z1)⊗ z1

)(
z1 ⊗ 1 + 1⊗ a

)p−1

= (a+ z1)
p ⊗ zp1 −

(
(a+ z1)⊗ z1

)(
(z1 + a)⊗ 1

)p−1

= (a+ z1)
p ⊗ (zp1 − z1) = 0.

If m = 2k ≥ 2, then

ϕ(zp2k − z2kx
p−1
2k−1) = ϕ

(
zp2k − z2k(z2k−1 + · · ·+ z3 + z1 + a)p−1

)

= (a+ z1)
p ⊗ zp2k−1 −

−
(
(a+ z1)⊗ z2k−1

)(
(a+ z1)⊗ z2k−2 + · · ·+ (a+ z1)⊗ z2 + z1 ⊗ 1 + 1⊗ a

)p−1

= (a+ z1)
p ⊗ zp2k−1 −

−
(
(a+ z1)⊗ z2k−1

)(
(a+ z1)⊗ z2k−2 + · · ·+ (a+ z1)⊗ z2 + (a+ z1)⊗ 1

)p−1

= (a+ z1)
p ⊗

(
zp2k−1 − z2k−1(z2k−2 + · · ·+ z2 + 1)

)p−1

= (a+ z1)
p ⊗ (zp2k−1 − z2k−1x

p−1
2k−2) = 0.

If m = 2k − 1 ≥ 3, then

ϕ(zp2k−1 − z2k−1x
p−1
2k−2) = ϕ

(
zp2k−1 − z2k−1(z2k−2 + · · ·+ z2)

p−1
)

= (a+ z1)
p ⊗

(
zp2k−2 − z2k−2(z2k−3 + · · ·+ z1)

p−1
)

= (a+ z1)
p ⊗ (zp2k−2 − z2k−2x

p−1
2k−3) = 0.

It follows that ϕ induces a homomorphism

ϕ : Rr(a, b)→ Fp[z1]/(z
p
1)⊗Rr−1(0, 1),

zm 7→ (a+ z1)⊗ zm−1, 2 ≤ m ≤ r,

z1 7→ z1 ⊗ 1.

ϕ is obviously surjective. By dimension reasons, ϕ must be an isomorphism. Again
the claim follows from the induction hypothesis.

Corollary 19. up2

= up for all u ∈ Rp(0, 1).

Corollary 20. Let n ≥ 2, and let un = xpn−p
p ∈ Rp(0, 1). Then cp(un) = 1.

Proof. For n = 2 this is Lemma 17. Moreover, by Corollary 19, the element un

does not depend on n.

We rewrite things in a homogenous form. Let x be a variable and let

R′ = Fp[x, z1, . . . , zp]/I
′

where I ′ is the homogenous ideal generated by

zpm − zmxp−1
m−1, 1 ≤ m ≤ p

with

x−1 = 0,

x0 = x,

xm = zm + xm−2, 1 ≤ m ≤ p.

Then R′/(x−1) = Rp(0, 1). Corollaries 19 and 20 yield the following two corollaries:
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Corollary 21. up2

= upxp2−p for all u ∈ R′.

Corollary 22. Let n ≥ 2. Then

xpn−p
p = zp−1

1 zp−1
2 · · · zp−1

p xpn−p2

mod xpn−p2+1R′

Proof. Recall the basis elements (zJ)J of Rp(0, 1) considered above. The elements

(zJxpn−p−|J|)J form a basis of the homogenous subspace of R′ of degree pn − p. It
follows that

xpn−p
p = cp(x

pn−p
p )zp−1

1 zp−1
2 · · · zp−1

p xpn−p2

mod 〈zJxpn−p−|J|; |J | < p2 − p〉.

But if |J | < p2 − p then zJxpn−p−|J| ∈ xpn−p2+1R′.

Proof of Theorem 16: Let

xr = c1(Lr)
pn−2 ∈ CHpn−2

(Sr), r ≥ −1,

zr = c1(K
′
n−1,r)

pn−2 ∈ CHpn−2

(P ′
n−1,r), r ≥ 1.

Then, calculating mod p,

x−1 = 0,

x0 = c1(L)
pn−2 ∈ CHpn−2

(S′)⊗ Fp,

xr = xr−2 + zr, r ≥ 1,

since

c1(Lr) = c1(Lr−2) + c1(K
′
n−1,r).

Moreover

zpr = zrx
p−1
r−1

by Lemma 12.
We have a homomorphism

R′(x)→ CH∗(Sp)⊗ Fp, zm 7→ zm, x 7→ x0.

It follows from Corollary 22 that (mod p)

xpℓ+2−p
p = zp−1

1 zp−1
2 · · · zp−1

p xpℓ+2−p2

0 mod 〈xpℓ+2−p2+1〉

Now if dimS′ = (pl − 1)pn, then xpl+2−p2+1
0 = 0. Hence

xpℓ+2−p
p = δ(K ′

n−1,1)δ(K
′
n−1,2) · · · δ(K ′

n−1,p−1)δ(L) = δ(L) mod p,

where the last equation follows from Lemma 12.

From now on we suppose that αi 6= 0 for i = 1, . . . , n−1. Let Γ be a finite group,
let Γ → Γn−1 be an epimorphism and let Γ → Aut(S′, L, β) be a homomorphism.
Thus Γ acts on all the forms (Spec k,Hi, αi), i = 0, . . . , n− 1, and (S′, L, β).

Lemma 23. Suppose that (S′, L, β) is an admissable Γ-form, that all fixed points
are k-rational and that each fixed point P ∈ S′ is twisting for the forms

(S′, Hi, αi), i = 1, . . . , n− 1, and (S′, L, β).

Then for all r ≥ 0, (Sr, Lr, βr) is an admissable Γ-form, all fixed points are
k-rational, and each fixed point P ∈ Sr is twisting for the forms

(Sr, Hi, αi), i = 1, . . . , n− 2, (Sr, Lr−1, βr−1), and (Sr, Lr, βr).
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Proof. Let P ∈ Sr be a fixed point. By induction we may assume that P is k-
rational and that

Γ→ Aut(Lr−2|P, βr−2|P )×Aut(Lr−1|P, βr−1|P )×
n−2∏

i=1

Aut(Hi|P, αi|P )

is surjective. We claim that

Γ→ Aut(Lr|P, βr|P )×Aut(Lr−1|P, βr−1|P )×
n−2∏

i=1

Aut(Hi|P, αi|P )

is surjective. Note that Lr|P = Lr−2|P ⊗Kn−1,r|P . The claim follows now from
the fact that Aut(Lr−2|P, αr−2|P ) acts trivially on Kn−1,r|P .

The remaining parts of the statement follow from Lemma 13.

Lemma 24. Suppose that S′ is irreducible. Let ηr ∈ Sr be the generic point. Then

{α1, . . . , αn−2, βr−1(ηr−1), βr(ηr)} = (−1)r{α1, . . . , αn−2, αn−1, β(η0)}
in KM

n k(Sr)/p.

Proof. We show

{α1, . . . , αn−2, βr−1(ηr−1), βr(ηr)} = {α1, . . . , αn−2, βr−1(ηr−1), βr(ηr−2)}.
We have

βr(ηr) = βr(ηr−2)Φ
′
n−1,r.

The claim follows now from Lemma 14.

We will need the following special case:

Corollary 25.

{α1, . . . , αn−2, βp(ηp), βp−1(ηp−1)} = {α1, . . . , αn−2, αn−1, β(η0)}
in KM

n k(Sp)/p.

Remark 3. Let S′ = Spec k. We think of the symbol

{α1, . . . , αn−2, βp(ηp)}
as a family of symbols of weight n− 1 “between”

{α1, . . . , αn−2} and {α1, . . . , αn−2, αn−1, β},
with Sp as parameter space.

Our later considerations indicate that this family is universal over p-special fields.
For n = 2 we will make this precise, and for p = 2 this can be done using Pfister
forms. I have no idea how to show this in general. In the case n = p = 3 the
universality would have important consequences for the classification of groups of
type F4.
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7. The forms K(α1, . . . , αn) (universal families of Kummer splitting
fields)

Let n ≥ 1. Given forms (S,Hi, αi), i = 1, . . . , n, we define forms

Ki = Ki(α1, . . . , αn) = (Ri/Ri+1, Ji, γi), 1 ≤ i ≤ n,

K′
i = K′

i(α1, . . . , αn) = (Ri/Ri+1, J
′
i , γ

′
i), 1 ≤ i ≤ n.

We put

(Rn/Rn+1, Jn, γn) = (S/S,Hn, αn)

and

(Rn/Rn+1, J
′
n, γ

′
n) = (S/S,OS , τ)

with τ(t) = tp.
Let i < n and suppose that Ki+1 is defined.
Recall the forms

Cr = Cr(α1, . . . , αi, γi+1) = (Sr/Sr−1, Lr, βr)

defined in section 6. Let π : Sp → Sp−1 be the projection.
We put

Ki =Cp(α1, . . . , αi, γi+1),

K′
i =π∗Cp−1(α1, . . . , αi, γi+1).

We assume now that S = Spec k and list the most important properties of the
forms (Ri/Ri+1, Ji, γi) and (Ri/Ri+1, J

′
i , γ

′
i).

Lemma 26. The variety Ri is smooth, proper, cellular, and of dimension pn− pi.

Proof. This follows from Lemma 15. For the dimension note

dimRi/Ri+1 = pi+1 − pi, i < n

by Lemma 15.

Lemma 27. δ(Ji) = 1 mod p.

Proof. By Theorem 16 we have

δ(Ji) = δ(Ji+1) mod p.

Hence δ(Ji) = δ(Jn) = 1 mod p.

The construction of (Ri/Ri+1, Ji, γi) is functorial in the forms (S,Hi, αi). In
particular the group

Γn = µn
p ⊂

n∏

i=1

Aut(S,Hi, αi)

acts on (Ri/Ri+1, Ji, γi) .
From now on we suppose that αi 6= 0 for i = 1, . . . , n.

Lemma 28. The forms (Ri/Ri+1, Ji, γi) are admissable Γn-forms, all fixed points
are k-rational, and each fixed point P ∈ Ri is twisting for the forms

(Ri, Hm, αm), m = 1, . . . , i− 1, and (Ri, Ji, γi).

Proof. This follows form Lemma 23.
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Lemma 29. Let ηi ∈ Ri be the generic point. Then, for 1 ≤ i < n,

{α1, . . . , αi−1, γi(ηi), γ
′
i(ηi)} = {α1, . . . , αi, γi+1(ηi+1)}

in KM
i+1k(Ri)/p.

Proof. This follows from Lemma 25.

In particular we have

{α1, . . . , αn} = {α1, γ2, γ
′
3, . . . , γ

′
n},(4)

{α1, γ2} = {γ1, γ′
2},(5)

{α1, . . . , αn} = {γ1, γ′
2, . . . , γ

′
n}.(6)

We write

(R, J, γ) = (R1, J1, γ1)

We denote by R̃ → R be the degree p “Kummer extension” corresponding to γ,
defined locally by OR̃ = OR[t]/

(
tp − γ(λ)

)
where λ is a local nonzero section of J .

Corollary 30. The symbol {α1, . . . , αn} vanishes in the generic point of R̃.

Proof. This follows from Lemma 29 (see (6)).
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8. Construction of a norm variety via chain lemma

We fix a p-th root of unity ζ 6= 1.
Let (R, J, γ) be the form of defined at the end of section 7 and let G = Γn.
Moreover let A = A(R, J, γ) be the associated algebra bundle, with norm

NA : A→ OR.

Let b ∈ k∗. We define the variety

X = Xb = { [x, t] ∈ P(A⊕OR) | NA(x) = btp }.
The G-action extends to a G-action on A, A⊕OR, P(A⊕OR), and X .

Proposition 31. The variety X has the following properties:

(1) X is proper of dimension d = dimX = pn − 1.
(2) One has

{α1, . . . , αn, b}k(X) = 0 in KM
n+1k(X)/p

(3) The fixed point scheme FX of the G-action on X is a smooth 0-dimensional
subscheme of X contained in the smooth part of X.

(4) There exist a proper smooth G-variety Y such that
a) X and Y are G-fixed point equivalent.
b) sd(Y ) 6≡ 0 mod p2.

Proof. (1) follows from Lemma 26 and (2) follows from Corrollary 30. For the
variety Y we take Y = P(A) with the natural G-action.

Proof of 4a): We have the map

X
π−→ Y, π([x, t]) = [x]

The map π is a branched covering of degree p. It should be noted that the map π
seems to have no real significance for the applications of the proposition, however
it turns out to be useful to compare the fixed points of X and Y .

To compute the fixed point sets FX and FY we first note that both lie over FR.
For each P ∈ FR(ksep) let GP = µp ⊂ Aut(J |P ) and let XP , YP be the fibres of X
resp. Y over P .

Recall that P is twisting by Lemma 28. Therefore the homomorphism

G→ GP

is surjective. From this one sees that all fixed points in X are contained in the
smooth locus of X .

For x ∈ FX ∩XP , y ∈ FY ∩ YP one has G-equivariant decompositions

TxX = TxXr ⊕ TPR

TyY = TyYr ⊕ TPR.

Therefore, in order to prove 4a), it suffices to show that for each r ∈ FR(ksep) the
fibres Xr and Yr are GP -fixed point equivalent. Moreover, we may assume that
k = ksep. Hence we are reduced to the case n = 1, G = µp, R = Spec k, J = k,
γ(λ) = λp, and b = 1.

In this case the G-fixed points of X resp. Y are

[ζi, 1, . . . , 1] 0 ≤ i ≤ p− 1 (for X)

[0, . . . , 0, 1
i
, 0, . . . , 0] 0 ≤ i ≤ p− 1 (for Y )
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with respect to the coordinates

A⊕ k = k ⊕ L⊕ · · · ⊕ L⊗p−1 ⊕ k = kp+1

resp.

A = k ⊕ L⊕ · · · ⊕ L⊗p−1 = kp.

The fixed points of Y have all the same tangential G-structure, since the cyclic
permutation of the coordinates on Y = P(A) commutes with the G-action. More-
over the map π : X → Y induces isomorphisms between the tangent spaces at the
fixed points of X and the fixed point [1, 0, . . . , 0] of Y . Hence X and Y have both
p fixed points, with all having the same tangential G-structure. (Of course this
can be verified also directly by computing the tangential G-structures: they are all
isomorphic to the sum of the p− 1 irreducible representations of G.)

This proves 4a) and along the way we have also seen (3).
Proof of 4b): The tangent bundle of Y decomposes (in K0(Y )) as the sum of

the tangent bundle TR of R and the fibre tangent bundle T (Y/R) of the projection
πA : Y = P(A)→ R. Hence

sd(TY ) = sd
(
π∗
A(TR)

)
+ sd

(
T (Y/R)

)
.

We have

sd
(
π∗
A(TR)

)
= π∗

A

(
sd(TR)

)
= 0

since dimR < d. Moreover

sd
(
T (Y/R)

)
= sd

(
π∗
A(A)⊗ L(A)∨ −OR

)

= sd

(p−1⊕

i=0

J⊗i ⊗ L(A)∨
)

=

p−1∑

i=0

sd(J
⊗i ⊗ L(A)∨)

=

p−1∑

i=0

(
c1(J

⊗i ⊗ L(A)∨)
)d
.

We put

x = −c1(J) ∈ CH1(R)

y = −c1(L(A)) ∈ CH1(Y ).

Then

CH∗(Y ) = CH∗(R)[y]/
(p−1∏

i=0

(y − ix)
)

=

p−1⊕

i=0

yiCH∗(R)

(by the computation of the Chow ring of projective bundles) and

sd(TY ) =

p−1∑

i=0

(y − ix)d.
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In the ring

Z[x, y]/
(p−1∏

i=0

(y − ix)
)

write
p−1∑

i=0

(y − ix)d =

p−1∑

i=0

aiy
ixd−i, ai ∈ Z.

Since d− i = dimR+ p− 1− i, we have

sd(TY ) = ap−1y
p−1xdimR

Moreover (πA)∗(y
p−1) = [R] ∈ CH0(R). Hence

sd(Y ) = deg
(
sd(TY )

)
= ap−1 deg

(
(−c1(J))dimR

)
.

The claim follows now from δ(J) = 1 mod p (Lemma 27) and from the following
Lemma 32.

Lemma 32. Let p be a prime, Z = Z/p2, and let

S = Z[y]/
(p−1∏

i=0

(y − i)
)
.

For u ∈ S define ai(u) ∈ Z by

u =

p−1∑

i=0

ai(u)y
i.

For n ≥ 1 let

un =

p−1∑

i=0

(y − i)p
n−1 ∈ S.

Then ap−1(un) = p.

Proof. One easily sees ap−1(u1) = p. We show that un does not depend on n.
The homomorphism

Φ: S →
p−1∏

i=0

Z

y 7→ (0, 1, 2, . . . , p− 1)

is an isomorphism of rings. Hence it suffices to show that Φ(un) does not depend
on n.

This means that for each j = 0, . . . , p− 1 the residue class

p−1∑

i=0

(j − i)p
n−1 mod p2

is independent of n. In fact, for any integer h one has hpn−1 = h(p−1) mod p2. This
is obvious if h = 0 mod p (if p 6= 2). Otherwise hp−1 = 1 mod p and h(p−1)p =
1 mod p2. Then

hpn−1 = h(p−1)(1+p+···+pn−1) = h(p−1) mod p2.
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If p = 2, then

S = Z[y]/(y2 − y)

and the claim is easy to check.
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9. Multiplicativity

A splitting variety of a symbol is called p-generic, if it is a generic splitting
variety over any p-special field.

Let Z be a p-generic splitting variety of {α1, . . . , αn} of dimension pn−1− 1. We
assume {α1, . . . , αn} 6= 0. It follows that IZ ⊂ pZ.

Let (R, J, γ) be the form of defined at the end of section 7.
We have diagram of varieties

A1 A1 A1

NA

x NA′

x
xmult

A(A)
ḡ←−−−− A(A′)

f̄−−−−→ Cyclicp(Z × A1)
y

y
y

R
g←−−−− R′ f−−−−→ Cyclicp(Z)

Here g is of degree prime to p and f is a morphism. The maps f , g come from the

fact that Z has point of degree prime to p over k(R̃), hence has a k(R̃′)-rational
point where R′/R is of degree prime to p. This point defines the map f . The maps
f , g are covered by the cyclic extensions of degree p:

R̃
ĝ←−−−− R̃′ f̂−−−−→ Zp

y
y

y

R
g←−−−− R′ f−−−−→ Cyclicp(Z)

with R̃′ = R̃RR
′.

They are also covered by line bundles:

J
ĝ←−−−− J ′ f̂−−−−→ (Zp × A1)/(Z/p)

y
y

y

R
g←−−−− R′ f−−−−→ Cyclicp(Z).

with A1 ⊂ Ap the image of A1 → Ap, t 7→ t(1, ζ, ζ2, . . . , ζp−1) with 1 6= ζ ∈ µp.
This diagram induces the maps f̄ , ḡ.

Note that deg ḡ = deg g and deg f̄ = deg f .
The fibre Xt of NA over the generic point Spec k(t) is a splitting variety of the

symbol

{α1, . . . , αn, t}.
One has IXt = pZ, since {α1, . . . , αn, t} 6= 0.

We assume now p 6= 2. By Proposition 31 (4), Corollary 5, and Corollary 2, one
finds that the birational invariant of Xt in

Z/IXt = Z/p

is nonzero. Since deg ḡ is prime to p, the degree formula implies that the fibre X ′
t

of NA′ has nontrivial invariant. The degree formula shows then that deg f̄ is prime
to p, hence deg f is prime to p.
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Now let K = k( p
√
b) be a cyclic extension of degree p which splits {α1, . . . , αn}.

We assume that k is p-special. It follows that there is a point SpecK → R̃ lying
over a rational point P : Spec k → R. Then b = γ(P ) in k∗/(k∗)p. It follows that

{α1, . . . , αn} = {α1, γ2(P ), γ′
3(P ), . . . , γ′

n(P )},(7)

{α1, γ2(P )} = {b, γ′
2(P )},(8)

{α1, . . . , αn} = {b, γ′
2(P ), . . . , γ′

n(P )}.(9)

(see (4)–(6) after Lemma 29).

Now let k( p
√
b), k( p

√
c) be two cyclic extensions of degree p which split the symbol

{α1, . . . , αn}. Applying the last arguments twice, one finds first bi ∈ k∗ such that

{α1, . . . , αn} = {b, b1, b2, . . . , bn},
and then ci, c

′
i ∈ k∗ such that

{b, b1, b2, . . . , bn} = {b, c1, c2, . . . , cn},
{b, c1} = {c, c′2}.

Let X(b, c1) be the Brauer-Severi variety associated to the symbol {b, c1}. It has
rational points over k( p

√
b) and over k( p

√
c). Morover, since Z is a p-generic spliting

field, we have a correspondence X(b, c1) → Z lying over Z → Z of degree prime
to p.

Corollary 33. Let x, y ∈ Z be points of degree p and let α ∈ κ(x)∗, β ∈ κ(y)∗.
Then there exist z ∈ Z of degree p and γ ∈ κ(z)∗, such that

[α] + [β] = [γ] in A0(Z,K1).

Proof. By the previous considerations, and using that CH0(ZK) = Z whenever
Z(K) 6= ∅, we may reduce to the case of Brauer-Severi variety. In this case the
statement is known [3].

Corollary 34. If k is p-special, then the set V(NA) of values 6= 0, ∞ of the map

NA : A(A)(k)→ k

is a multiplicative subgroup of k∗.
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10. On the norm principle

We fix a p-th root of unity ζ 6= 1.
Let (Spec k, I, ǫ) be a nonzero form and let K = A(Spec k, I, ǫ) be the associated

algebra.
Let (R, J, γ) be the form defined at the end of section 7, let G = Γn, and let

A = A(R, J, γ) be the associated algebra bundle, with norm

NA : A→ OR.

We denote by

NAK : A⊗K → OR ⊗K

the induced map of degree p.
Let B = OR ⊕A⊗ I. We have a natural inclusion B → A⊗K. Let

M : B → K ⊗k OR

be the restriction of NAK to B.
Let (Bi, Ri,Mi), i = 1, . . . , p− 1 be copies of (B,R,M). We put

U = P(A)×
p−1∏

i=1

P(Bi),

L = L(A)⊠
p−1

⊠
i=1

L(Bi),

V = L⊕OU .

Then dimU = pn − 1 + (p− 1)pn = pn+1 − 1 and L is a line bundle on U and V is
a 2-dimensional vector bundle on U .

Let ω ∈ K∗. On V we define a K-valued form

Θ: V → OU ⊗K

of degree p by

Θω(u ⊗⊗p−1
i=1 ui + t) = NA(u)M(u1) · · ·M(up−1)− ωtp,

where u, ui, t are sections of L(A), L(Bi), OU , respectively.
We define the variety

Xω = { [x] ∈ P(V ) | Θω(x) = 0 }.

Proposition 35. There exist an open dense subset Ω ⊂ A(K) such that the vari-
ety X = Xω has the following properties:

(1) d = dimX = p(pn − 1).
(2) One has

{α1, . . . , αn, ω}k(X) = 0 in KM
n+1K(X)/p

(3) The fixed point scheme FX of the G-action on X is a smooth 0-dimensional

subscheme of X.
(4) There exist a proper smooth G-variety Y such that

a) X and Y are G-fixed point equivalent.
b) Y is the union of (p−1)! copies of Y p, where Y is a variety of dimension

d = pn − 1 with sd(Y ) 6≡ 0 mod p2.
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Proof. (1) and (2) are obvious from former considerations (for all ω ∈ K∗).
We have to determine the fixed points on X . Any fixed point lies over a fixed

point P ∈ Rp. There are only finitely many such P , and any P is twisting for the
bundles (Spec k,Hi, αi), i = 1, . . . , n. On P(A|P ) there are exactly p fixed points.
The fixed point scheme of P(B|P ) ≃ Pp consists of a 1-dimensional component

P = P(k ⊕ I ⊕ 0⊕ · · · ⊕ 0) ≃ P
1

and p− 1 isolated fixed points

P(0⊕ 0⊕ 0⊕ · · · ⊕ J⊗i ⊗ I ⊕ · · · ⊕ 0)

Hence any of the fixed point components C in U |P is a product

C = C0 × C1 × · · · × Cp−1

with C0 a point, and, for i > 0, Ci a point or ≃ P1.
Let s = dim C. If s < p− 1, then the equation Θω(x) = 0 has no solution at all,

provided ω is generic. If s = p− 1 and

C0 = [0, . . . ,L(A)⊗i, . . . , 0]

for some i > 0, then P(V )|C has only two fixed points, which do not lie in X .
Hence fixed points appear only if

C = [1, 0, . . . , 0]× C1 × · · · × Cp−1

with Ci ≃ P1. One finds that there exactly (p − 1)!pp fixed points (for generic ω).
For this use the following facts:

Let

Φ: (P1)p−1 → P
p−1

Φ
(
([xi + tyi])i=1,...,p−1

)
= [

∏

i

(xi + tyi)]

be the “morphism of the fundamental theorem of algebra”. Φ is a finite morphism
of degree (p− 1)!. Let

Φ̂ : (P1)p−1 → P
p−1

Φ̂
(
([xi + tyi])i=1,...,p−1

)
= [

∏

i

(xi + tyi)
p].

Φ̂ is a finite morphism of degree (p− 1)!pp−1.
Hence there are exactly (p − 1)!pp fixed points over P . These are given by just

(p − 1)! copies of the fixed point set of P(A|P )p. The characteristic number of
Y = P(A) has been computed in section 8.

We assume {α1, . . . , αn}K 6= 0. Let ω be the generic element of A(K). Then
{α1, . . . , αn, ω} 6= 0.

Let further T = N−1
A (ω) (the splitting variety over K for {α1, . . . , αn, ω}, con-

structed from the family (R, J, γ) of Kummer splitting fields of {α1, . . . , αn}).
Let RK/k(T ) be the transfer of T . We claim the RK/k(T ) has a point of degree

prime to p over k(Xω).
In fact, by applying Corollary 34 to the ground field K(Xω), we see that there

exist an extension H/K(Xω) of degree prime to p, such that ω is a value of NA

over H . But then there exist an extension H ′/k(Xω) of degree prime to p, such
that ω is a value of NA over H ′ ⊗K.
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Writing H ′ = k(W ) we get maps

Xω
g←−−−− W

f−−−−→ RK/k(T )

with (deg g, p) = 1.
We would like to conclude that (deg f, p) = 1. To compute deg f we may do

base change k → K, so that K = k × · · · × k. Then the diagram looks as

Xω
g←−−−− W

f−−−−→ T :=
p∏

i=1
N−1

A (ωi)

with ω = (ω1, . . . , ωp), and ωi ∈ k are p independent generic elements. (deg f, p) = 1
follow from Proposition 35 (4) and the “higher degree formula”.

Let us take it for granted, so that deg f is prime to p. Extension from the generic
point of A(K) to A(K) provides a diagram

A(K) A(K) A(K)

NAM1...Mp−1

x
x

xRK/k(NA)

A(L)
ḡ←−−−− W

f̄−−−−→ RK/k(A(A))

with (deg ḡ, p) = (deg f̄ , p) = 1.
Assume now that k is p-special.
Let x ∈ ZK be a point of degree p and let δ ∈ κ(x)∗. Our aim is to show that

NK/k([δ]) ∈ A0(Z,K1)

is represented by a sum of elements concentrated in points of Z of degree p (over k).
If the symbol is split over K, this is easy to check (assuming CH0(ZK) = Z, when
K is a splitting field). So we may assume {α1, . . . , αn}K 6= 0.

Let ω = Nκ(x)/K(δ) ∈ K∗. By multiplying ω with some p-th power in (K∗)p,
we may arrange that ω lies in any given open dense subset of A(K).

As we have seen, there is a K-rational point P ∈ R such that

(R, J, γ)|P
represents the Kummer extension κ(x)/K. Hence ω is a value of NA over K. Hence
ω is in the image of RK/k(A(A)) under RK/k(NA). Since (deg f̄ , p) = 1, ω is also
in the image of A(L) under NAM1 . . .Mp−1.

The p projections A(L)→ R (via P(A), P(Bi)) give us p points in R, whence p
points zi ∈ Z of degree p. Furthermore we have elements δi ∈ κ(zi) such that

δ = Nκ(z0)/k(δ0)NK⊗κ(z1)/K(1 + z1
p
√
ǫ) · · ·NK⊗κ(zp−1)/K(1 + zp−1

p
√
ǫ)

in K∗.
By multiplicativity we see that

[δ] = [δ0]K + [1 + z1
p
√
ǫ] + · · ·+ [1 + zp−1

p
√
ǫ].

in A0(ZK ,K1). But then

NK/k([δ]) = p[δ0] + [NK⊗κ(z1)/κ(z1)(1 + z1
p
√
ǫ)] + . . .

is concentrated in the points zi. ???
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